JP2018159560A - Quantification method for trace amount of zinc in solution having high concentration of nickel - Google Patents

Quantification method for trace amount of zinc in solution having high concentration of nickel Download PDF

Info

Publication number
JP2018159560A
JP2018159560A JP2017055436A JP2017055436A JP2018159560A JP 2018159560 A JP2018159560 A JP 2018159560A JP 2017055436 A JP2017055436 A JP 2017055436A JP 2017055436 A JP2017055436 A JP 2017055436A JP 2018159560 A JP2018159560 A JP 2018159560A
Authority
JP
Japan
Prior art keywords
zinc
solution
nickel
organic solvent
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017055436A
Other languages
Japanese (ja)
Inventor
真規 安藤
Masanori Ando
真規 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMIKO TECHNO RES CO Ltd
SUMIKO TECHNO-RESEARCH CO Ltd
Original Assignee
SUMIKO TECHNO RES CO Ltd
SUMIKO TECHNO-RESEARCH CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMIKO TECHNO RES CO Ltd, SUMIKO TECHNO-RESEARCH CO Ltd filed Critical SUMIKO TECHNO RES CO Ltd
Priority to JP2017055436A priority Critical patent/JP2018159560A/en
Publication of JP2018159560A publication Critical patent/JP2018159560A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To measure a trace amount of zinc contained in a solution having a high concentration of nickel with excellent precision.SOLUTION: A quantification method for quantifying a trace amount of zinc contained in a solution having a high concentration of nickel comprises: a preparation step of preparing the solution having the high concentration of the nickel containing the nickel and the trace amount of the zinc relative to an amount of the nickel as a sample solution; a wash step of bringing an organic solvent used for solvent extraction into contact with an acidic solution; an extraction step of bringing the organic solvent after the wash obtained in the wash step into contact with the sample solution to solvent-extract the zinc contained in the sample solution into the organic solvent after the wash; a back extraction step of bringing the organic solvent after the extraction obtained in the extraction step into contact with an acidic solution to back-extract the zinc contained in the organic solvent after the extraction into the acidic solution; and a quantification step of quantifying the zinc contained in the acidic solution obtained in the back extraction step.SELECTED DRAWING: Figure 1

Description

本発明は、高濃度ニッケル溶液中の微量亜鉛の定量方法に関する。   The present invention relates to a method for determining a trace amount of zinc in a high concentration nickel solution.

ニッケル(Ni)の湿式治金においては、硫酸浴と塩化浴を用いた製錬法があり、そのプロセスの1つとして、塩化浴における電解採取法がある。このプロセスでは、まず、浸出工程において、原料であるニッケル硫化物を塩素浸出し、精製工程を経てニッケル電解液(以下、単に電解液ともいう)を電解してニッケルを得る(例えば、特許文献1や2参照)。なお、こうして得られたニッケルのことを、電気ニッケルと称する。   In the wet metallurgy of nickel (Ni), there is a smelting method using a sulfuric acid bath and a chloride bath, and one of the processes is an electrowinning method in a chloride bath. In this process, first, in a leaching step, nickel sulfide as a raw material is leached with chlorine, and after a purification step, nickel electrolytic solution (hereinafter also simply referred to as electrolytic solution) is electrolyzed to obtain nickel (for example, Patent Document 1). And 2). The nickel thus obtained is referred to as electric nickel.

電気ニッケルを得る際に、Ni以外の不純物元素への対応が求められる。特に、不純物元素の中でも亜鉛(Zn)は、数百ppmから数wt%程度の濃度で、原料となるニッケル硫化物に含有される。これに対応すべく、原料となるニッケル硫化物からZnを分離する手法が提案されている(例えば、特許文献3参照)。特許文献3では、ニッケル濃度が90〜120g/L、亜鉛濃度が1〜10mg/L、100mg/Lの電解液からイオン交換により亜鉛を分離除去することが開示されている。   When obtaining electric nickel, it is required to cope with impurity elements other than Ni. In particular, among impurity elements, zinc (Zn) is contained in nickel sulfide as a raw material at a concentration of several hundred ppm to several wt%. In order to cope with this, a method of separating Zn from nickel sulfide as a raw material has been proposed (see, for example, Patent Document 3). Patent Document 3 discloses that zinc is separated and removed by ion exchange from an electrolytic solution having a nickel concentration of 90 to 120 g / L, a zinc concentration of 1 to 10 mg / L, and 100 mg / L.

特公平7−91599号公報Japanese Patent Publication No.7-91599 特開平11−236630号公報Japanese Patent Laid-Open No. 11-236630 特開2008−38236号公報JP 2008-38236 A

上記の亜鉛の分離除去後の残留亜鉛は低濃度となっており、極微量の亜鉛濃度を精度よく測定できる方法が求められている。   Residual zinc after separation and removal of the above zinc has a low concentration, and there is a need for a method capable of accurately measuring a very small amount of zinc.

測定方法としては、例えば誘導結合プラズマ発光分析計(ICP−AES)あるいは誘導結合プラズマ質量分析計(ICP−MS)を用いて測定する方法がある。ただし、ICP−AESやICP−MSでは、高濃度ニッケル溶液を導入したときに、例えば、高濃度成分(ニッケルやナトリウムなど)がネブライザーに詰まったり、プラズマが揺らいだりすることで、亜鉛濃度を安定して測定できない場合がある。さらに、極微量の亜鉛濃度を測定するときに高濃度成分から様々な干渉を受けることが考えられ、得られた測定値の信頼性が低い。   As a measuring method, for example, there is a method of measuring using an inductively coupled plasma emission spectrometer (ICP-AES) or an inductively coupled plasma mass spectrometer (ICP-MS). However, in ICP-AES and ICP-MS, when a high-concentration nickel solution is introduced, for example, high-concentration components (nickel, sodium, etc.) are clogged in the nebulizer, and the plasma fluctuates to stabilize the zinc concentration. Measurement may not be possible. Further, when measuring a very small amount of zinc concentration, it is considered that various interferences are received from high concentration components, and the reliability of the obtained measurement value is low.

一方、高濃度成分による影響を低減するため、電解液を希釈したうえで測定することが考えられるが、ICP−AESやICP−MSでは数十倍から数百倍以上に希釈する必要があり、この場合、亜鉛の濃度も低下してICP−AESやICP−MSでの検出下限を超えて測定が困難となる。   On the other hand, in order to reduce the influence of high concentration components, it is conceivable to measure after diluting the electrolyte solution, but in ICP-AES and ICP-MS, it is necessary to dilute several tens to several hundred times, In this case, the concentration of zinc is also reduced, and the measurement is difficult to exceed the lower limit of detection by ICP-AES or ICP-MS.

また、高濃度成分による影響を低減するため、例えば沈殿分離法やイオン交換法などにより電解液から高濃度成分を測定前に予め分離することも考えられるが、この場合、分離までに多くの工程を要するため、使用する器具や試薬、作業環境などから亜鉛の混入が起こりやすく、電解液中の微量の亜鉛濃度を精度良く測定できない。   In addition, in order to reduce the influence of high concentration components, it may be possible to separate high concentration components from the electrolyte before measurement, for example, by precipitation separation or ion exchange, but in this case, many steps are required before the separation. Therefore, zinc is likely to be mixed in from the instruments, reagents, work environment, etc. used, and a very small amount of zinc concentration in the electrolyte cannot be measured with high accuracy.

また、微量の亜鉛を高濃度成分から分離するため、電解液から亜鉛を溶媒抽出する方法も考えられるが、本発明者の検討によると、抽出に使用する溶媒などから亜鉛が混入することがあり、高濃度ニッケル溶液に元々含まれる微量の亜鉛を精度良く測定できないことがある。   In addition, in order to separate a small amount of zinc from high-concentration components, a method of solvent extraction of zinc from the electrolytic solution is conceivable, but according to the study of the present inventors, zinc may be mixed from the solvent used for extraction. In some cases, a trace amount of zinc originally contained in a high-concentration nickel solution cannot be accurately measured.

本発明は、上記課題に鑑みてなされたものであり、高濃度ニッケル溶液に含まれる微量の亜鉛を精度良く測定する技術を提供することを目的とする。   This invention is made | formed in view of the said subject, and it aims at providing the technique which measures the trace amount zinc contained in a high concentration nickel solution accurately.

本発明者は、高濃度ニッケル溶液を溶媒抽出する場合についてさらに検討を行った。その結果、溶媒抽出に用いる有機溶媒には亜鉛が混入していることがあり、そのような有機溶媒を溶媒抽出に用いて高濃度ニッケル溶液中の亜鉛濃度を測定しようとしても、高濃度ニッケル溶液中の微量の亜鉛濃度を精度良く測定することができないことが分かった。   The present inventor further studied the case of solvent extraction of a high concentration nickel solution. As a result, zinc may be mixed in the organic solvent used for solvent extraction. Even if an attempt is made to measure the zinc concentration in a high concentration nickel solution using such an organic solvent for solvent extraction, the high concentration nickel solution is used. It was found that the trace amount of zinc in the sample could not be measured accurately.

このことから、本発明者は、測定対象試料以外から、測定装置内へ亜鉛が混入することを回避するために、予め有機溶媒を洗浄して使用し、かつ、亜鉛が溶出しない容器を使用することで、高濃度ニッケル溶液中の微量の亜鉛を溶媒抽出により精度良く測定できることを見出し、本発明を完成させるに至った。   For this reason, the present inventor uses a container in which the organic solvent is washed in advance and the zinc does not elute in order to avoid zinc from being mixed into the measuring apparatus from other than the sample to be measured. Thus, the inventors have found that a very small amount of zinc in a high-concentration nickel solution can be accurately measured by solvent extraction, and have completed the present invention.

すなわち、本発明の第1の態様は、
高濃度ニッケル溶液に含まれる微量亜鉛を定量する定量方法であって、
試料溶液として、ニッケルとニッケルに対して微量の亜鉛とを含む高濃度ニッケル溶液を準備する準備工程と、
溶媒抽出に用いる有機溶媒を酸性溶液と接触させる洗浄工程と、
前記洗浄工程で得られた洗浄後の有機溶媒を前記試料溶液に接触させて、前記試料溶液に含まれる亜鉛を前記洗浄後の有機溶媒へ溶媒抽出する抽出工程と、
前記抽出工程で得られた抽出後の有機溶媒を酸性溶液に接触させて、前記抽出後の有機溶媒に含まれる亜鉛を前記酸性溶液へ逆抽出する逆抽出工程と、
前記逆抽出工程で得られた前記酸性溶液に含まれる亜鉛を定量する定量工程と、を有する、高濃度ニッケル溶液中の微量亜鉛の定量方法が提供される。
That is, the first aspect of the present invention is:
A quantitative method for quantifying a trace amount of zinc contained in a high-concentration nickel solution,
As a sample solution, a preparation step of preparing a high-concentration nickel solution containing a trace amount of zinc with respect to nickel and nickel;
A washing step in which an organic solvent used for solvent extraction is brought into contact with an acidic solution;
An extraction step of bringing the organic solvent after washing obtained in the washing step into contact with the sample solution, and extracting the zinc contained in the sample solution into the organic solvent after washing;
A back extraction step of bringing the organic solvent after extraction obtained in the extraction step into contact with an acidic solution and back extracting zinc contained in the organic solvent after the extraction into the acidic solution;
There is provided a method for quantifying a trace amount of zinc in a high-concentration nickel solution, comprising a quantification step of quantifying zinc contained in the acidic solution obtained in the back extraction step.

本発明の第2の態様は、第1の態様の定量方法において、
前記抽出工程では、前記試料溶液のpHが2.0以上4.0以下である。
According to a second aspect of the present invention, in the quantification method of the first aspect,
In the extraction step, the pH of the sample solution is 2.0 or more and 4.0 or less.

本発明の第3の態様は、第1又は第2の態様の定量方法において、
前記洗浄工程では、前記酸性溶液のpHが2.0以下である。
According to a third aspect of the present invention, in the quantification method of the first or second aspect,
In the washing step, the acidic solution has a pH of 2.0 or less.

本発明の第4の態様は、第1〜第3の態様のいずれかの定量方法において、
前記有機溶媒が(2−エチルヘキシル)ホスホン酸2−エチルヘキシルおよびリン酸水素ビス(2−エチルヘキシル)の少なくとも1つである。
According to a fourth aspect of the present invention, in the quantification method according to any one of the first to third aspects,
The organic solvent is at least one of 2-ethylhexyl (2-ethylhexyl) phosphonate and bis (2-ethylhexyl) hydrogen phosphate.

本発明の第5の態様は、第1〜第4の態様のいずれかの定量方法において、
前記試料溶液および前記精製溶媒が接触する器具を樹脂製とする。
According to a fifth aspect of the present invention, in the quantification method according to any one of the first to fourth aspects,
The instrument in contact with the sample solution and the purification solvent is made of resin.

本発明によれば、高濃度ニッケル溶液に含まれる微量の亜鉛を精度良く測定することができる。   According to the present invention, a very small amount of zinc contained in a high-concentration nickel solution can be accurately measured.

図1は、本発明の一実施形態にかかる高濃度ニッケル溶液中の微量亜鉛の定量方法の工程図を示す。FIG. 1 shows a process chart of a method for determining a trace amount of zinc in a high concentration nickel solution according to an embodiment of the present invention. 図2は、実施例における微量亜鉛を定量する方法の工程図を示す。FIG. 2 shows a process diagram of a method for quantifying trace amounts of zinc in Examples. 図3は、溶媒抽出時の試料溶液のpHと亜鉛の回収率との相関を示す。FIG. 3 shows the correlation between the pH of the sample solution and the zinc recovery rate during solvent extraction. 図4は、溶媒抽出時の試料溶液のpHとニッケル残留濃度との相関を示す図である。FIG. 4 is a diagram showing the correlation between the pH of the sample solution and the nickel residual concentration during solvent extraction. 図5は、試験管の材質による亜鉛の溶出量の違いを説明するための図である。FIG. 5 is a diagram for explaining the difference in zinc elution amount depending on the material of the test tube. 図6は、汎用容器の材質による亜鉛の溶出量の違いを説明するための図である。FIG. 6 is a diagram for explaining the difference in the elution amount of zinc depending on the material of the general-purpose container.

<本発明の一実施形態>
以下、本発明の一実施形態にかかる高濃度ニッケル溶液中の微量亜鉛の定量方法について説明する。本実施形態の定量方法は、準備工程、洗浄工程、抽出工程、逆抽出工程および定量工程を有する。以下、各工程について図1を用いて詳述する。図1は、本発明の一実施形態にかかる高濃度ニッケル溶液中の微量亜鉛の定量方法の工程図を示す。なお、本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
<One Embodiment of the Present Invention>
Hereinafter, a method for determining a trace amount of zinc in a high concentration nickel solution according to an embodiment of the present invention will be described. The quantitative method of the present embodiment includes a preparation process, a cleaning process, an extraction process, a back extraction process, and a quantitative process. Hereafter, each process is explained in full detail using FIG. FIG. 1 shows a process chart of a method for determining a trace amount of zinc in a high concentration nickel solution according to an embodiment of the present invention. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

(準備工程S10)
まず、図1に示すように、分析対象である試料溶液として高濃度ニッケル溶液を準備する。
(Preparation step S10)
First, as shown in FIG. 1, a high concentration nickel solution is prepared as a sample solution to be analyzed.

高濃度ニッケル溶液とは、例えば、金属ニッケルの製造過程における液や、電子材料や電子部品の加工に用いるニッケルめっき液等である。高濃度ニッケル溶液における亜鉛およびニッケルの濃度は、特に限定されない。本実施形態では、後述するように、ニッケルに対して極微量の亜鉛を定量することができる。   The high-concentration nickel solution is, for example, a solution in the process of producing metallic nickel, a nickel plating solution used for processing electronic materials or electronic components, and the like. The concentration of zinc and nickel in the high concentration nickel solution is not particularly limited. In this embodiment, as will be described later, a very small amount of zinc can be quantified with respect to nickel.

(洗浄工程S20)
続いて、試料溶液から亜鉛を溶媒抽出する前に、洗浄工程S20にて溶媒抽出に使用する有機溶媒を洗浄する。この洗浄によれば、溶媒抽出で使用する有機溶媒に亜鉛が混入しているような場合であっても、溶媒抽出前に有機溶媒から亜鉛を除去し、亜鉛の定量への影響を抑制することができる。
(Washing step S20)
Subsequently, before the solvent extraction of zinc from the sample solution, the organic solvent used for the solvent extraction is washed in the washing step S20. According to this washing, even if zinc is mixed in the organic solvent used in the solvent extraction, the zinc is removed from the organic solvent before the solvent extraction to suppress the influence on the determination of zinc. Can do.

具体的には、有機溶媒と酸性溶液とを混合して振とうする。これにより有機溶媒中に混入している亜鉛を酸性溶液へ浸出させて有機溶媒中から除去する。そして、振とう後、静置または遠心分離などにより有機層と水層とを分層して有機層を取り出すことにより、亜鉛が除去されて亜鉛濃度が例えば1μg/L以下となる洗浄後の有機溶媒を得る。   Specifically, an organic solvent and an acidic solution are mixed and shaken. Thus, zinc mixed in the organic solvent is leached into the acidic solution and removed from the organic solvent. Then, after shaking, the organic layer and the aqueous layer are separated by standing or centrifuging, and the organic layer is taken out to remove the zinc, so that the zinc concentration becomes, for example, 1 μg / L or less. Obtain the solvent.

有機溶媒としては、後述の抽出工程S30で試料溶液から亜鉛を抽出できるものであれば特に限定されないが、(2−エチルヘキシル)ホスホン酸2−エチルヘキシルおよびリン酸水素ビス(2−エチルヘキシル)の少なくとも1つを用いることが好ましい。これらの有機溶媒によれば、1回の溶媒抽出で亜鉛を十分に抽出することができる。なお、これらの有機溶媒は、密度を調整すべく、他の有機溶媒を混合して混合溶媒として用いてもよい。   The organic solvent is not particularly limited as long as zinc can be extracted from the sample solution in the extraction step S30 described later, but at least one of (2-ethylhexyl) phosphonic acid 2-ethylhexyl and hydrogen phosphate bis (2-ethylhexyl). It is preferable to use one. According to these organic solvents, zinc can be sufficiently extracted by one solvent extraction. In addition, in order to adjust the density, these organic solvents may be mixed with other organic solvents and used as a mixed solvent.

洗浄に使用する酸性溶液としては、有機溶媒に混入している亜鉛を抽出できるものであればよく、例えばpHが2.0以下の酸性溶液を用いることが好ましい。また、有機溶媒と酸性溶液との混合比率は特に限定されないが、有機溶媒中に亜鉛を残留させないようにする観点からは酸性溶液を有機溶媒に対して10体積%以上とすることが好ましい。   Any acidic solution may be used as long as it can extract zinc mixed in the organic solvent. For example, an acidic solution having a pH of 2.0 or less is preferably used. Moreover, the mixing ratio of the organic solvent and the acidic solution is not particularly limited. However, from the viewpoint of preventing zinc from remaining in the organic solvent, the acidic solution is preferably 10% by volume or more based on the organic solvent.

洗浄工程S20において有機溶媒を洗浄するときに使用する容器や器具(採取するためのピペットなど)は樹脂製とすることが好ましい。実施例で後述するように、樹脂製の容器や器具はガラス製よりも亜鉛の溶出が少なく、測定精度を高く維持できるからである。また、後述する抽出工程S30、逆抽出工程S40および定量工程S50でも同様に、樹脂製の容器や器具を用いることが好ましい。   It is preferable that a container or an instrument (such as a pipette for collecting) used for washing the organic solvent in the washing step S20 is made of resin. This is because, as will be described later in Examples, resin-made containers and instruments have less zinc elution than glass and can maintain high measurement accuracy. Similarly, in the extraction step S30, the back extraction step S40, and the quantification step S50 described later, it is preferable to use a resin container or instrument.

なお、洗浄工程S20では、有機溶媒に酸性溶液を接触させて洗浄する操作を少なくとも1回行えばよく、必要に応じて、酸性溶液で複数回の洗浄を行ってもよい。また、洗浄工程S20において、有機溶媒と酸性溶液との振とうは、手で振り混ぜたり、振とう器などの装置を用いて行ったりすることができ、振とうさせる時間(接触させる時間)は30秒〜1分程度とするとよい。   In the cleaning step S20, the cleaning operation may be performed at least once by bringing the acidic solution into contact with the organic solvent, and if necessary, the cleaning may be performed a plurality of times with the acidic solution. Further, in the washing step S20, the shaking of the organic solvent and the acidic solution can be carried out by shaking or using a device such as a shaker, and the shaking time (contact time) is It is good to set it as about 30 seconds-1 minute.

(抽出工程S30)
続いて、洗浄工程S20で得られた洗浄後の有機溶媒を用いて、試料溶液に含まれる微量の亜鉛を溶媒抽出する。具体的には、洗浄後の有機溶媒と試料溶液とを混合して振とうする。これにより試料溶液中の微量の亜鉛を有機溶媒へ浸出させる。そして、振とう後、静置または遠心分離などにより有機層と水層とを分層して有機層を取り出すことにより、亜鉛が抽出された有機溶媒を得る。なお、抽出工程S30では亜鉛とともにニッケルも抽出されることもあるが、ニッケル濃度は低く亜鉛の定量には影響を及ぼさない。
(Extraction step S30)
Subsequently, a small amount of zinc contained in the sample solution is subjected to solvent extraction using the washed organic solvent obtained in the washing step S20. Specifically, the washed organic solvent and the sample solution are mixed and shaken. Thereby, a trace amount of zinc in the sample solution is leached into the organic solvent. Then, after shaking, the organic layer and the aqueous layer are separated by standing or centrifuging, and the organic layer is taken out to obtain an organic solvent from which zinc has been extracted. In the extraction step S30, nickel may be extracted together with zinc, but the nickel concentration is low and does not affect the determination of zinc.

本実施形態では、抽出前に予め有機溶媒を洗浄することで、抽出前の有機溶媒に亜鉛が混入しているような場合でも、有機溶媒から亜鉛を除去し、その混入量を試料溶液に含まれる微量の亜鉛に対して無視できる量まで低減している。そのため、抽出後の有機溶媒は、試料溶液に含まれる微量亜鉛の濃度を正確に反映することになる。   In this embodiment, by washing the organic solvent in advance before extraction, even when zinc is mixed in the organic solvent before extraction, the zinc is removed from the organic solvent, and the mixed amount is included in the sample solution. It is reduced to a negligible amount with respect to a small amount of zinc. Therefore, the organic solvent after extraction accurately reflects the concentration of trace amount zinc contained in the sample solution.

抽出工程S30では、試料溶液をそのまま溶媒抽出してもよいが、亜鉛を効率的に抽出できるように試料溶液のpHを調整して溶媒抽出するとよい。
図3に示すように、試料溶液のpHを高くするほど、試料溶液から亜鉛を溶媒抽出しやすくなり、亜鉛の回収率を高くすることができる。具体的には、試料溶液のpHを2.0以上とすることが好ましく、2.3以上とすることがより好ましい。これにより、試料溶液からの微量亜鉛の回収率を80%以上、もしくは94%以上とすることができる。
一方、図4に示すように、試料溶液のpHを高くするほど有機溶媒に抽出されるニッケル濃度が高くなる。ニッケル濃度が高くなると微量の亜鉛濃度を精度よく定量しにくくなることから、定量の精度を高く維持する観点からはpHを低くしてニッケル濃度を低くするとよい。具体的には、試料溶液のpHを4.0以下とすることが好ましく、3.0以下とすることがより好ましい。
このように試料溶液のpHを所定の範囲内に調整することにより、試料溶液から亜鉛を回収率高く抽出しつつ、亜鉛の定量に影響を及ぼすニッケルの抽出を抑制することができる。
In the extraction step S30, the sample solution may be subjected to solvent extraction as it is, but it is preferable to perform solvent extraction by adjusting the pH of the sample solution so that zinc can be extracted efficiently.
As shown in FIG. 3, the higher the pH of the sample solution, the easier it is to extract zinc from the sample solution and the higher the zinc recovery rate. Specifically, the pH of the sample solution is preferably 2.0 or more, and more preferably 2.3 or more. Thereby, the recovery rate of the trace amount zinc from the sample solution can be 80% or more, or 94% or more.
On the other hand, as shown in FIG. 4, the higher the pH of the sample solution, the higher the nickel concentration extracted into the organic solvent. When the nickel concentration is high, it is difficult to accurately determine a minute amount of zinc concentration. From the viewpoint of maintaining high accuracy of the determination, it is preferable to lower the pH by lowering the pH. Specifically, the pH of the sample solution is preferably 4.0 or less, and more preferably 3.0 or less.
Thus, by adjusting the pH of the sample solution within a predetermined range, extraction of nickel that affects the determination of zinc can be suppressed while extracting zinc from the sample solution with a high recovery rate.

なお、試料溶液と洗浄後の有機溶媒との混合比率は、特に限定されないが、試料溶液のpHは有機溶媒との混合により変化するので、試料溶液のpHが最適な範囲から外れないように適宜変更するとよい。また、試料溶液のpHを調整する試薬としては、例えばアンモニア水溶液や硝酸を用いることができる。また、必要に応じて、pHを調整しやすいように緩衝溶液を試料溶液に添加してもよい。   The mixing ratio between the sample solution and the organic solvent after washing is not particularly limited, but the pH of the sample solution varies depending on the mixing with the organic solvent, so that the pH of the sample solution does not deviate from the optimum range. It is good to change. As a reagent for adjusting the pH of the sample solution, for example, an aqueous ammonia solution or nitric acid can be used. Moreover, you may add a buffer solution to a sample solution so that pH may be adjusted easily as needed.

また、抽出工程S30において、試料溶液と洗浄後の有機溶媒との振とうは、手で振り混ぜたり、振とう器などの装置を用いて行ったりすることができ、振とうさせる時間(接触させる時間)は30秒〜1分程度とするとよい。   Further, in the extraction step S30, the shaking of the sample solution and the washed organic solvent can be performed by shaking by hand or using a device such as a shaker. The time is preferably about 30 seconds to 1 minute.

(逆抽出工程S40)
続いて、抽出後の有機溶媒を酸性溶液で逆抽出して、抽出後の有機溶媒に含まれる亜鉛を酸性溶液に浸出させる。抽出後の有機溶媒をそのままICP−AESやICP−MSで測定する場合、有機溶媒がプラズマを不安定にして測定精度を低くさせるため、本実施形態では、定量対象である亜鉛を酸性溶媒へ逆抽出させる。ここでの逆抽出は、抽出後の有機溶媒と酸性溶液とを混合して抽出工程S30と同様に振とうし、その後、分層した水層を取り出すことにより、亜鉛が逆抽出された酸性溶液を得る。
(Back extraction step S40)
Subsequently, the extracted organic solvent is back-extracted with an acidic solution, and zinc contained in the extracted organic solvent is leached into the acidic solution. When the organic solvent after extraction is directly measured by ICP-AES or ICP-MS, the organic solvent makes plasma unstable and lowers the measurement accuracy. Therefore, in this embodiment, zinc to be quantified is converted into an acidic solvent. Let it be extracted. Here, the back extraction is performed by mixing the extracted organic solvent and the acidic solution, shaking in the same manner as in the extraction step S30, and then removing the separated aqueous layer to extract the zinc back-extracted acidic solution. Get.

逆抽出工程S40で使用する酸性溶液としては、洗浄工程S20で使用する酸性溶液と同様のものを用いることができる。   As the acidic solution used in the back extraction step S40, the same acidic solution used in the washing step S20 can be used.

(定量工程S50)
続いて、逆抽出工程S40にて亜鉛が逆抽出された水層(酸性溶液)から所定量を採取し、測定液とする。この測定液を分析装置に供することにより、測定液に含まれる亜鉛の濃度を測定する。定量工程S50では、例えば、一定量の測定液を注入して検出されるピーク面積より求める絶対検量線法、対象成分とは別の標準物質を添加して両者の検出ピーク面積の比から求める内部標準法や標準添加法など公知の方法により亜鉛濃度を求めるとよい。分析装置としては、例えばICP−AESやICP−MS、原子吸光分析計などの公知の装置を用いることができる。
(Quantitative process S50)
Subsequently, a predetermined amount is collected from the aqueous layer (acidic solution) from which zinc is back-extracted in the back extraction step S40, and used as a measurement solution. By supplying this measuring solution to an analyzer, the concentration of zinc contained in the measuring solution is measured. In the quantification step S50, for example, an absolute calibration curve method obtained from a peak area detected by injecting a fixed amount of a measuring solution, or a standard substance different from the target component is added, and an internal value obtained from a ratio of both detected peak areas The zinc concentration may be obtained by a known method such as a standard method or a standard addition method. As the analyzer, for example, a known device such as ICP-AES, ICP-MS, or atomic absorption spectrometer can be used.

なお、測定液には、抽出工程S30および逆抽出工程S40にて亜鉛とともにニッケルが抽出されて混入することがあるが、本実施形態では混入するニッケルの濃度(ニッケル残留濃度ともいう)を低く抑えているので、亜鉛を精度よく定量することができる。   In the measurement solution, nickel may be extracted and mixed with zinc in the extraction step S30 and the back extraction step S40, but in this embodiment, the concentration of the mixed nickel (also referred to as nickel residual concentration) is kept low. Therefore, zinc can be quantified with high accuracy.

<本実施形態にかかる効果>
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
<Effect according to this embodiment>
According to the present embodiment, the following one or more effects are achieved.

本実施形態では、溶媒抽出に使用する有機溶媒を洗浄して、この洗浄した有機溶媒を用いて、高濃度ニッケル溶液(試料溶液)に含まれる微量の亜鉛を溶媒抽出するとともに逆抽出することで、亜鉛濃度を測定している。有機溶媒の洗浄により、使用する前に仮に亜鉛が有機溶媒に混入していた場合であっても、有機溶媒に混入していた亜鉛による影響を抑制し、高濃度ニッケル溶液に含まれる微量の亜鉛を精度良く定量することができる。   In this embodiment, the organic solvent used for solvent extraction is washed, and by using this washed organic solvent, a trace amount of zinc contained in the high-concentration nickel solution (sample solution) is solvent-extracted and back-extracted. The zinc concentration is measured. Even if zinc is mixed in the organic solvent before use by washing the organic solvent, the influence of zinc mixed in the organic solvent is suppressed, and a small amount of zinc contained in the high-concentration nickel solution Can be accurately quantified.

また、溶媒抽出するときに試料溶液のpHを2.0〜4.0とすることが好ましく、2.3〜3.0とすることがより好ましい。pHを2.0以上とすることにより試料溶液から亜鉛を効率よく回収する一方、pHを4.0以下とすることによりニッケルの回収を抑制し、亜鉛濃度をより精度良く測定することができる。   Further, the pH of the sample solution is preferably 2.0 to 4.0, and more preferably 2.3 to 3.0, when performing solvent extraction. By setting the pH to 2.0 or more, zinc can be efficiently recovered from the sample solution, while by setting the pH to 4.0 or less, recovery of nickel can be suppressed and the zinc concentration can be measured with higher accuracy.

有機溶媒として、(2−エチルヘキシル)ホスホン酸2−エチルヘキシルおよびリン酸水素ビス(2−エチルヘキシル)の少なくとも1つを用いることが好ましい。このような有機溶媒によれば、試料溶液から亜鉛を効率的に溶媒抽出することができる。   As the organic solvent, it is preferable to use at least one of 2-ethylhexyl (2-ethylhexyl) phosphonate and bis (2-ethylhexyl) hydrogen phosphate. According to such an organic solvent, zinc can be efficiently extracted from the sample solution.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   As mentioned above, although embodiment of this invention has been described, this invention is not limited to the embodiment mentioned above at all, and can be variously modified within the range which does not deviate from the summary of this invention.

以下、本発明をさらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, the present invention will be described based on further detailed examples, but the present invention is not limited to these examples.

本実施例で使用する材料は以下のとおりである。
試料溶液として、ニッケル濃度50〜150g/Lの範囲のうち所定濃度に調整した液を用いた。
緩衝溶液を調製するための試薬として、クエン酸水素二アンモニウム(和光純薬工業株式会社製、原子吸光分析用)を用いた。
酸性溶液として、硝酸(和光純薬工業株式会社製の特級グレード)を用いた。
pH調整用の試薬として、20vol%アンモニア水溶液(関東化学株式会社製、原子吸光分析用)を用いた。
亜鉛の抽出溶媒として、PC−88A(大八化学工業株式会社製の(2−エチルヘキシル)ホスホン酸2−エチルヘキシル)と、テクリーンN20(JX日鉱日石エネルギー株式会社製)とを体積比20:80で混合した混合有機溶媒(以下、単に有機溶媒ともいう)を用いた。
亜鉛の標準溶液として、亜鉛標準液(関東化学株式会社製、1000mg/L)を用いた。
内部標準溶液用の試薬として、セシウム標準液(関東化学株式会社製、100mg/L)を用いた。
The materials used in this example are as follows.
As the sample solution, a solution adjusted to a predetermined concentration in a nickel concentration range of 50 to 150 g / L was used.
As a reagent for preparing the buffer solution, diammonium hydrogen citrate (manufactured by Wako Pure Chemical Industries, Ltd., for atomic absorption analysis) was used.
Nitric acid (special grade manufactured by Wako Pure Chemical Industries, Ltd.) was used as the acidic solution.
A 20 vol% aqueous ammonia solution (manufactured by Kanto Chemical Co., Inc., for atomic absorption analysis) was used as a reagent for pH adjustment.
As a zinc extraction solvent, PC-88A ((2-ethylhexyl) phosphonic acid 2-ethylhexyl manufactured by Daihachi Chemical Industry Co., Ltd.) and Teklin N20 (manufactured by JX Nippon Mining & Energy Corporation) are in a volume ratio of 20:80. A mixed organic solvent (hereinafter also simply referred to as an organic solvent) mixed in (1) was used.
A zinc standard solution (manufactured by Kanto Chemical Co., Inc., 1000 mg / L) was used as the standard solution for zinc.
As a reagent for the internal standard solution, a cesium standard solution (manufactured by Kanto Chemical Co., Inc., 100 mg / L) was used.

<実施例>
(測定容器の選定)
まず、実施例で使用する分析装置に供するための測定容器(以下、試験管ともいう)と、溶媒抽出や試薬の小分けに使用するための汎用容器のそれぞれについて、材質を適宜変更して亜鉛の溶出量を測定し、亜鉛の汚染の少ないものを選定した。
<Example>
(Selection of measurement container)
First, for each of a measurement container (hereinafter also referred to as a test tube) for use in the analyzer used in the examples and a general-purpose container for use in solvent extraction and reagent subdivision, the material is appropriately changed to make zinc The amount of elution was measured, and one with less zinc contamination was selected.

ICP−MS装置で自動分析のために使用する容積が10〜15mL程度の測定容器として、ポリスチレン製(容積12mL、試験管A)、ガラス製(容積14mL、試験管B)およびポリプロピレン製(容積14mL、試験管C)の3種の試験管を準備した。各試験管に硝酸と純水とを硝酸2.8規定、液量が10mLとなるように添加し、一晩放置した。その後、試験管の内容物についてICP−MS装置を用いて亜鉛の濃度を測定した。このとき、検量線用の標準溶液として、硝酸2.8規定、亜鉛濃度5μg/Lとなるように亜鉛添加した標準溶液を調製し、原点との1点検量線により、各試験管の内容物における亜鉛の濃度を測定した。   As a measurement container having a volume of about 10 to 15 mL used for automatic analysis with an ICP-MS apparatus, polystyrene (volume 12 mL, test tube A), glass (volume 14 mL, test tube B), and polypropylene (volume 14 mL) Three types of test tubes C) and C) were prepared. Nitric acid and pure water were added to each test tube so that the concentration of nitric acid was 2.8 N and the liquid volume was 10 mL, and left overnight. Thereafter, the contents of the test tube were measured for the zinc concentration using an ICP-MS apparatus. At this time, as a standard solution for the calibration curve, a standard solution containing 2.8N nitric acid and zinc added so as to have a zinc concentration of 5 μg / L was prepared. The concentration of zinc in was measured.

測定した結果を図5に示す。図5は、試験管の材質による亜鉛の溶出量の違いを説明するための図である。図5中のエラーバーは標準偏差(n=8)を示し、亜鉛濃度の単位はμg/Lである。図5によると、樹脂製の試験管AおよびCは、ガラス製の試験管Bに比べて亜鉛の溶出量が少なく、かつバラつきも小さいことが確認された。また樹脂製の中でも、ポリプロピレン製の試験管Cは、亜鉛の溶出量が0.2μg/L以下であり、ポリスチレン製の試験管Aよりも微量亜鉛の定量に適していることが確認された。このことから、本実施例では、測定容器として試験管Cを用いた。   The measurement results are shown in FIG. FIG. 5 is a diagram for explaining the difference in zinc elution amount depending on the material of the test tube. The error bars in FIG. 5 indicate standard deviation (n = 8), and the unit of zinc concentration is μg / L. According to FIG. 5, it was confirmed that the resin test tubes A and C had a smaller zinc elution amount and a smaller variation than the glass test tube B. Among the resins, polypropylene test tube C had an elution amount of zinc of 0.2 μg / L or less, and was confirmed to be more suitable for determination of trace amounts of zinc than polystyrene test tube A. Therefore, in this example, the test tube C was used as the measurement container.

(汎用容器の選定)
溶媒抽出や試薬の小分けに使用するための汎用容器として、ポリプロピレン製(容積50mL、容器A)、ポリプロピレン製(容積100mL、容器B)およびPFA製(容積100mL、容器C)の3種の容器を準備した。各容器に硝酸と純水とを硝酸2.8規定、液量が8割程度となるように添加し、一晩放置した。その後、各容器の内容物についてICP−MS装置を用いて亜鉛の濃度を測定した。このとき、検量線用の標準溶液として、硝酸2.8規定、亜鉛濃度5μg/Lとなるように亜鉛添加した標準溶液を調製し、原点との1点検量線により、各容器の内容物における亜鉛の濃度を測定した。
(Selection of general-purpose containers)
As general-purpose containers used for solvent extraction and reagent subdivision, three types of containers made of polypropylene (volume 50 mL, container A), polypropylene (volume 100 mL, container B), and PFA (volume 100 mL, container C) Got ready. Nitric acid and pure water were added to each container so that the amount of nitric acid was 2.8 N and the liquid volume was about 80%, and left overnight. Thereafter, the contents of each container were measured for the zinc concentration using an ICP-MS apparatus. At this time, as a standard solution for the calibration curve, a standard solution with zinc added so that the concentration of nitric acid is 2.8 N and the zinc concentration is 5 μg / L is prepared. The concentration of zinc was measured.

測定した結果を図6に示す。図6は、汎用容器の材質による亜鉛の溶出量の違いを説明するための図である。図6中のエラーバーは標準偏差(n=3)を示し、亜鉛濃度の単位はμg/Lである。図6によると、容器BおよびCは、亜鉛の溶出量が0.1μg/L以下と少なく、微量亜鉛の定量に適していることが確認された。本実施例では、容器Bが容器Cに比べて安価なことから、容器Bを汎用容器として用いた。   The measurement results are shown in FIG. FIG. 6 is a diagram for explaining the difference in the elution amount of zinc depending on the material of the general-purpose container. The error bars in FIG. 6 indicate standard deviation (n = 3), and the unit of zinc concentration is μg / L. According to FIG. 6, it was confirmed that the containers B and C had a small zinc elution amount of 0.1 μg / L or less and were suitable for the determination of trace amounts of zinc. In this example, since the container B is less expensive than the container C, the container B was used as a general-purpose container.

(亜鉛の定量下限の測定)
亜鉛の定量方法において定量下限を算出するため、試料溶液として純水を用いた空試験を図2に示すような手順で行い、空試験で得られた試料溶液の信号強度のバラつきと亜鉛の測定感度から定量下限を算出した。具体的には、以下のとおりである。
(Measurement of the lower limit of determination of zinc)
In order to calculate the lower limit of quantification in the zinc quantification method, a blank test using pure water as a sample solution is performed according to the procedure shown in FIG. 2, and the variation in signal intensity of the sample solution obtained in the blank test and the measurement of zinc are performed. The lower limit of quantification was calculated from the sensitivity. Specifically, it is as follows.

まず、図2(a)に示すように洗浄工程として、亜鉛の抽出溶媒である有機溶媒の洗浄を行った。本実施例では、有機溶媒と2mol/Lの硝酸を体積比4:1で混合し、ふたを閉めて手で1分間振とうした。その後、遠心分離機(5000rpm、1分間)にて分層させた。さらに有機溶媒を別の容器に移入し、2mol/L硝酸を体積比4:1で混合し、手で振とうした。その後、遠心分離機(5000rpm、1分間)にて分層させた。すなわち、有機溶媒の洗浄を合計2回行った。分層させた後に上液を採取して、洗浄後の有機溶媒を得た。   First, as shown in FIG. 2 (a), an organic solvent that is an extraction solvent for zinc was washed as a washing step. In this example, an organic solvent and 2 mol / L nitric acid were mixed at a volume ratio of 4: 1, and the lid was closed and shaken by hand for 1 minute. Thereafter, the layers were separated by a centrifuge (5000 rpm, 1 minute). Further, the organic solvent was transferred to another container, 2 mol / L nitric acid was mixed at a volume ratio of 4: 1 and shaken by hand. Thereafter, the layers were separated by a centrifuge (5000 rpm, 1 minute). That is, the organic solvent was washed twice in total. After the layers were separated, the upper liquid was collected to obtain an organic solvent after washing.

続いて、図2(b)に示すように抽出工程として、試料溶液としての純水を30mL採取し汎用容器(容積50mL)に移入して、クエン酸水素二アンモニウム200g/L水溶液を2mL加えた。この溶液にアンモニウム水溶液を0.15mL加えることでpHを3〜4に調整した。ついで、洗浄後の有機溶媒を15mL採取して上記溶液に加え、汎用容器のふたを閉めて、1分間手で振とうした。その後、遠心分離機(5000rpm、1分間)にて分層させた。抽出時の水層のpHは2.6〜2.8であった。   Subsequently, as shown in FIG. 2B, as an extraction process, 30 mL of pure water as a sample solution was collected and transferred to a general-purpose container (volume: 50 mL), and 2 mL of 200 g / L aqueous solution of diammonium hydrogen citrate was added. . The pH was adjusted to 3-4 by adding 0.15 mL of an aqueous ammonium solution to this solution. Next, 15 mL of the washed organic solvent was collected and added to the above solution, and the lid of the general-purpose container was closed and shaken by hand for 1 minute. Thereafter, the layers were separated by a centrifuge (5000 rpm, 1 minute). The pH of the aqueous layer at the time of extraction was 2.6 to 2.8.

続いて、図2(c)に示すように逆抽出工程として、亜鉛を抽出した有機溶媒(上液)を10mL採取し、別の汎用容器(容積50mL)に移入した。その容器に2mol/L硝酸を10mL加え、ふたを閉めて、1分間手で振とうした後、遠心分離機(5000rpm、1分間)にて分層させた。その後、図2(d)に示すように、水層(下液)を5mL採取し、樹脂製試験管(容積15mL)に移入し、そこに内部標準物質として100μg/Lのセシウム標準溶液を1mL加え、10mLに定容した。その溶液を測定液とした。本実施例では、同様の操作を行い、測定液を10個調製した。   Then, as shown in FIG.2 (c), 10 mL of organic solvents (upper liquid) which extracted zinc were extract | collected as a back extraction process, and it moved to another general purpose container (volume 50mL). 10 mL of 2 mol / L nitric acid was added to the container, the lid was closed, and the mixture was shaken by hand for 1 minute, and then separated into layers by a centrifuge (5000 rpm, 1 minute). Thereafter, as shown in FIG. 2 (d), 5 mL of the aqueous layer (lower solution) was collected and transferred to a resin test tube (volume: 15 mL), and 1 mL of a 100 μg / L cesium standard solution was used as an internal standard substance there. In addition, the volume was adjusted to 10 mL. The solution was used as a measurement solution. In this example, the same operation was performed to prepare 10 measurement solutions.

続いて、調製した10個の測定液と予め作製しておいた検量線用の標準溶液をICP−MSに供し、セシウムを内部標準物質とした内部標準法により、亜鉛の信号強度、標準偏差、検量線の傾き(mg−1・L)、定量下限(mg/L)を求めた。その結果を以下の表1に示す。
なお、定量下限を求める方法は複数存在するが、本実施例では、空試験で得られた亜鉛の信号強度の標準偏差の10倍を測定感度である検量線の傾きで除した値を定量下限として採用し、下記式(1)により求めた。
定量下限(mg/L)=10×標準偏差/検量線の傾き(mg−1・L)・・・(1)
Subsequently, the prepared 10 measurement solutions and the standard solution for the calibration curve prepared in advance were subjected to ICP-MS, and the signal strength of zinc, the standard deviation, by the internal standard method using cesium as an internal standard substance, The slope of the calibration curve (mg −1 · L) and the lower limit of quantification (mg / L) were determined. The results are shown in Table 1 below.
Although there are a plurality of methods for obtaining the lower limit of quantification, in this example, a value obtained by dividing 10 times the standard deviation of the signal intensity of zinc obtained by the blank test by the slope of the calibration curve as the measurement sensitivity is used. And obtained by the following formula (1).
Lower limit of quantification (mg / L) = 10 × standard deviation / slope of calibration curve (mg −1 · L) (1)

表1に示すように、10回の空試験から計算された定量下限は0.0021mg/Lであって、0.01mg/L以下であり、微量の亜鉛を精度良く定量できることが確認された。   As shown in Table 1, the lower limit of quantification calculated from 10 blank tests was 0.0021 mg / L, which was 0.01 mg / L or less, and it was confirmed that a trace amount of zinc could be accurately quantified.

(亜鉛の回収率の測定)
次に、亜鉛の回収率を評価するため、亜鉛の追加回収試験を行った。追加回収試験とは、通常の試料溶液の分析に加えて、試料溶液に既知量の亜鉛を添加した試料溶液(以下、追加試料溶液ともいう)を調製し、通常の試料溶液と同様の分析を行い、追加試料溶液から得られた定量値から試料溶液の定量値を差し引き、その差し引いた値が亜鉛の追加量と一致するかどうかを確認する試験である。追加回収試験によれば、定量分析の過程において、亜鉛の抽出不良による損失や逆抽出時の損失などの不具合要因を確認することができ、仮に100%に近い回収率が得られた場合は不具合要因がないものと判断することができる。なお、試料溶液としては、ニッケル濃度50〜150g/Lの範囲のうち所定濃度に調整した液を用いた。
(Measurement of zinc recovery rate)
Next, in order to evaluate the recovery rate of zinc, an additional recovery test of zinc was performed. In addition to the analysis of the normal sample solution, the additional recovery test prepares a sample solution in which a known amount of zinc is added to the sample solution (hereinafter also referred to as an additional sample solution), and performs the same analysis as the normal sample solution. This is a test in which the quantitative value of the sample solution is subtracted from the quantitative value obtained from the additional sample solution, and whether or not the subtracted value matches the added amount of zinc. According to the additional recovery test, in the process of quantitative analysis, failure factors such as loss due to poor extraction of zinc and loss during back-extraction can be confirmed, and if a recovery rate close to 100% is obtained, there is a failure. It can be judged that there is no factor. In addition, as a sample solution, the liquid adjusted to the predetermined density | concentration among the nickel density | concentration of 50-150 g / L was used.

追加回収試験では、図2(b)に示すように、試料溶液を30mL採取して、5個の汎用容器(容積50mL)にそれぞれ移入し、さらにクエン酸水素二アンモニウム200g/L水溶液をそれぞれに2mL加えた。この5個の試料溶液のうち3個に対して所定濃度に調製した亜鉛水溶液(1%硝酸含有)を0.5mL添加し、追加試料溶液とした。そして、図2(b)〜(d)に示すように、上述した亜鉛の定量下限の測定と同様にして、pHの調整、洗浄後の有機溶媒による溶媒抽出、酸性溶液による逆抽出、およびセシウム標準溶液の添加により、5個の測定液を調製した。   In the additional recovery test, as shown in FIG. 2 (b), 30 mL of the sample solution was sampled and transferred to each of five general-purpose containers (volume: 50 mL), and 200 g / L aqueous solution of diammonium hydrogen citrate was added to each. 2 mL was added. 0.5 mL of a zinc aqueous solution (containing 1% nitric acid) prepared at a predetermined concentration was added to three of the five sample solutions to obtain an additional sample solution. Then, as shown in FIGS. 2B to 2D, in the same manner as the measurement of the lower limit of quantification of zinc described above, pH adjustment, solvent extraction with an organic solvent after washing, back extraction with an acidic solution, and cesium Five measurement solutions were prepared by adding the standard solution.

続いて、亜鉛標準溶液を添加した3個の測定液と、亜鉛標準溶液を添加していない2個の測定液、および検量線用標準溶液をICP−MSに供し、セシウムを内部標準物質とした内部標準法により、各測定液における亜鉛の濃度を測定した。そして、得られた測定値から下記式(2)に基づいて亜鉛の回収率を算出した。追加試料溶液を含む測定液から得られた3つの測定値をAn(μg)、試料溶液を含む測定液から得られた2つの測定値をB(μg)、及び亜鉛添加量をC(μg)としたとき、以下の式(2)により亜鉛の回収率(%)を算出した。
回収率(%)=(An−B)/C×100・・・(2)
Subsequently, the three measurement solutions to which the zinc standard solution was added, the two measurement solutions to which the zinc standard solution was not added, and the standard solution for the calibration curve were subjected to ICP-MS, and cesium was used as the internal standard substance. The concentration of zinc in each measurement solution was measured by an internal standard method. And the recovery rate of zinc was computed from the obtained measured value based on following formula (2). Three measurement values obtained from the measurement solution containing the additional sample solution are An (μg), two measurement values obtained from the measurement solution containing the sample solution are B (μg), and the amount of zinc added is C (μg). Then, the recovery rate (%) of zinc was calculated by the following formula (2).
Recovery rate (%) = (An−B) / C × 100 (2)

3個の追加試料溶液の測定結果から回収率をそれぞれ算出したところ、下記表2に示すような回収率であることが確認された。また、回収率の平均値(%)、標準偏差(%)および相対標準偏差(%)を示す。   When the recovery rates were calculated from the measurement results of the three additional sample solutions, it was confirmed that the recovery rates were as shown in Table 2 below. Moreover, the average value (%), standard deviation (%), and relative standard deviation (%) of the recovery rate are shown.

表2によると、亜鉛の回収率は平均で98%であり、その標準偏差が1.4%、相対標準偏差は1.4%であった。この結果から、回収率が100%に近く、またそのバラつきも小さいため、高濃度ニッケル溶液から微量の亜鉛を溶媒抽出や逆抽出の際に損失させることなく回収でき、精度良く亜鉛濃度を定量できることが確認された。   According to Table 2, the recovery rate of zinc was 98% on average, its standard deviation was 1.4%, and the relative standard deviation was 1.4%. From this result, since the recovery rate is close to 100% and the variation is small, it is possible to recover a small amount of zinc from a high concentration nickel solution without losing it during solvent extraction or back extraction, and to accurately determine the zinc concentration. Was confirmed.

(溶媒抽出時のpHによる亜鉛の回収率の変化)
次に、微量の亜鉛を溶媒抽出するための試料溶液について最適なpH範囲を評価するため、試料溶液のpHを変更して亜鉛の回収率を測定した。なお、試料溶液としては、亜鉛の回収率の測定で用いた試料溶液と同一のものを用いた。
(Change in zinc recovery rate due to pH during solvent extraction)
Next, in order to evaluate the optimum pH range for the sample solution for solvent extraction of a trace amount of zinc, the pH of the sample solution was changed and the zinc recovery rate was measured. The sample solution used was the same as the sample solution used in the measurement of zinc recovery.

具体的には、溶媒抽出時のpHを変化させるため、上述した亜鉛の回収率の測定において、試料溶液に加えるアンモニア水溶液の量を適宜変更し、抽出前の試料溶液のpHを1.5〜3.0まで7水準で変化させて各水準で1個ずつ計7個を準備した。これらのそれぞれに所定濃度の亜鉛標準溶液を0.8mL添加して追加試料溶液とした。   Specifically, in order to change the pH at the time of solvent extraction, in the measurement of the zinc recovery rate described above, the amount of the aqueous ammonia solution added to the sample solution is appropriately changed, and the pH of the sample solution before the extraction is 1.5 to A total of 7 pieces were prepared, one at each level, varying from 7 to 3.0. To each of these, 0.8 mL of a standard zinc solution having a predetermined concentration was added to obtain an additional sample solution.

準備した各溶液について、上述した亜鉛の回収率の測定と同様に、亜鉛の回収率を算出したところ、試料溶液のpHと亜鉛の回収率との間に図3に示すような相関があることが確認された。図3は、溶媒抽出時の試料溶液のpHと亜鉛の回収率との相関を示す図である。図3によると、試料溶液のpHを高くするほど亜鉛の回収率が良くなり、回収率を94%以上として効率的に亜鉛を回収する観点からは試料溶液のpHを2.3以上とするとよいことが分かる。   For each prepared solution, the zinc recovery rate was calculated in the same manner as the measurement of the zinc recovery rate described above, and there was a correlation as shown in FIG. 3 between the pH of the sample solution and the zinc recovery rate. Was confirmed. FIG. 3 is a diagram showing the correlation between the pH of the sample solution during the solvent extraction and the zinc recovery rate. According to FIG. 3, the higher the pH of the sample solution, the better the zinc recovery rate. From the viewpoint of efficiently recovering zinc by setting the recovery rate to 94% or higher, the pH of the sample solution should be 2.3 or higher. I understand that.

(溶媒抽出時のpHによるニッケル残留濃度の変化)
次に、溶媒抽出時のpHによる逆抽出後の水層に含まれるニッケル濃度の変化を評価するため、溶媒抽出時のpHを適宜変化させて逆抽出した後の水層に残留するニッケル濃度を測定した。
(Change in residual nickel concentration due to pH during solvent extraction)
Next, in order to evaluate the change in nickel concentration in the aqueous layer after back extraction due to the pH during solvent extraction, the nickel concentration remaining in the aqueous layer after back extraction by appropriately changing the pH during solvent extraction It was measured.

本実施例では、上述したpHによる亜鉛の回収率の変化にて溶媒抽出および逆抽出を行って最終的に得られた各水層から1mLおよび0.1mL分取し、別の試験管へ移入した。内部標準物質として100mg/Lのイットリウム標準溶液1mLを試験管に加え、濃硝酸を1mL加えて、10mLに定容し、10倍希釈液と100倍希釈液を調製し、測定液とした。調整した10倍希釈液は、図4におけるニッケル残留濃度200mg/L以下の測定値に対応し、また調整した100倍希釈液は、図4におけるニッケル残留濃度200mg/L以上の測定値に対応している。
検量線作成のための標準溶液として、濃硝酸1mLを3本の試験管それぞれに入れ、おのおのの試験管に内部標準物質として100mg/Lのイットリウム標準溶液を1mLずつ加えた。その後、ニッケルの濃度水準が0mg/L、10mg/L、20mg/Lとなるようにニッケル標準溶液を添加し、10mLに定容した。
In this example, 1 mL and 0.1 mL were collected from each water layer finally obtained by solvent extraction and back extraction based on the change in the zinc recovery rate due to pH described above, and transferred to another test tube. did. As an internal standard substance, 1 mL of a 100 mg / L yttrium standard solution was added to a test tube, 1 mL of concentrated nitric acid was added, and the volume was adjusted to 10 mL to prepare a 10-fold diluted solution and a 100-fold diluted solution. The adjusted 10-fold diluted solution corresponds to the measured value of the nickel residual concentration of 200 mg / L or less in FIG. 4, and the adjusted 100-fold diluted solution corresponds to the measured value of the nickel residual concentration of 200 mg / L or more in FIG. ing.
As a standard solution for preparing a calibration curve, 1 mL of concentrated nitric acid was placed in each of three test tubes, and 1 mL of 100 mg / L yttrium standard solution was added to each test tube as an internal standard substance. Thereafter, a nickel standard solution was added so that the nickel concentration levels were 0 mg / L, 10 mg / L, and 20 mg / L, and the volume was adjusted to 10 mL.

調製した測定液と標準溶液とをICP−AESに供し、ニッケルの濃度を測定し、その測定値からニッケルの残留濃度を算出した。その結果、試料溶液のpHとニッケルの残留濃度との間に図4に示すような相関があることが確認された。図4は、溶媒抽出時の試料溶液のpHとニッケル残留濃度との相関を示す図である。図4によると、試料溶液のpHを高くするほどニッケル残留濃度が高くなることが分かる。ICP−MSなどの分析装置においては、ニッケル残留濃度が250μg/Lよりも高くなると、測定結果に影響を及ぼすことが考えられるので、ニッケル残留濃度が250μg/L以下となるように試料溶液のpHを3.0以下とするとよいことが分かる。   The prepared measurement solution and standard solution were subjected to ICP-AES, the concentration of nickel was measured, and the residual concentration of nickel was calculated from the measured value. As a result, it was confirmed that there was a correlation as shown in FIG. 4 between the pH of the sample solution and the residual nickel concentration. FIG. 4 is a diagram showing the correlation between the pH of the sample solution and the nickel residual concentration during solvent extraction. As can be seen from FIG. 4, the nickel residual concentration increases as the pH of the sample solution increases. In an analysis apparatus such as ICP-MS, if the nickel residual concentration is higher than 250 μg / L, it is considered that the measurement result is affected. Therefore, the pH of the sample solution is adjusted so that the nickel residual concentration is 250 μg / L or less. It can be seen that the value is preferably 3.0 or less.

以上説明したように、予め洗浄して亜鉛を除去した有機溶媒を用いて、高濃度ニッケル溶液から微量の亜鉛を溶媒抽出することにより、高濃度のニッケルから亜鉛を効率よく分離するとともに、亜鉛の外部からの混入を抑制して、高濃度ニッケル溶液に含まれていた微量の亜鉛を精度良く定量することができる。また、溶媒抽出の際に高濃度ニッケル溶液のpHを2.3〜3.0に調整することで、ニッケルの混入を抑制しつつ、亜鉛を効率よく回収することができる。   As described above, a small amount of zinc is extracted from a high-concentration nickel solution using an organic solvent that has been previously washed to remove zinc, so that zinc can be efficiently separated from high-concentration nickel. It is possible to accurately quantify a small amount of zinc contained in the high-concentration nickel solution by suppressing external mixing. Further, by adjusting the pH of the high-concentration nickel solution to 2.3 to 3.0 at the time of solvent extraction, zinc can be efficiently recovered while suppressing the mixing of nickel.

Claims (5)

高濃度ニッケル溶液に含まれる微量亜鉛を定量する定量方法であって、
試料溶液として、ニッケルとニッケルに対して微量の亜鉛とを含む高濃度ニッケル溶液を準備する準備工程と、
溶媒抽出に用いる有機溶媒を酸性溶液と接触させる洗浄工程と、
前記洗浄工程で得られた洗浄後の有機溶媒を前記試料溶液に接触させて、前記試料溶液に含まれる亜鉛を前記洗浄後の有機溶媒へ溶媒抽出する抽出工程と、
前記抽出工程で得られた抽出後の有機溶媒を酸性溶液に接触させて、前記抽出後の有機溶媒に含まれる亜鉛を前記酸性溶液へ逆抽出する逆抽出工程と、
前記逆抽出工程で得られた前記酸性溶液に含まれる亜鉛を定量する定量工程と、を有する、高濃度ニッケル溶液中の微量亜鉛の定量方法。
A quantitative method for quantifying a trace amount of zinc contained in a high-concentration nickel solution,
As a sample solution, a preparation step of preparing a high-concentration nickel solution containing a trace amount of zinc with respect to nickel and nickel;
A washing step in which an organic solvent used for solvent extraction is brought into contact with an acidic solution;
An extraction step of bringing the organic solvent after washing obtained in the washing step into contact with the sample solution, and extracting the zinc contained in the sample solution into the organic solvent after washing;
A back extraction step of bringing the organic solvent after extraction obtained in the extraction step into contact with an acidic solution and back extracting zinc contained in the organic solvent after the extraction into the acidic solution;
A quantification step of quantifying zinc contained in the acidic solution obtained in the back extraction step.
前記抽出工程では、前記試料溶液のpHが2.0以上4.0以下である、
請求項1に記載の高濃度ニッケル溶液中の微量亜鉛の定量方法。
In the extraction step, the pH of the sample solution is 2.0 or more and 4.0 or less.
The method for determining a trace amount of zinc in the high concentration nickel solution according to claim 1.
前記洗浄工程では、前記酸性溶液のpHが2.0以下である、
請求項1又は2に記載の高濃度ニッケル溶液中の微量亜鉛の定量方法。
In the washing step, the pH of the acidic solution is 2.0 or less.
A method for quantifying a trace amount of zinc in a high-concentration nickel solution according to claim 1 or 2.
前記有機溶媒が(2−エチルヘキシル)ホスホン酸2−エチルヘキシルおよびリン酸水素ビス(2−エチルヘキシル)の少なくとも1つである、
請求項1〜3のいずれか1項に記載の高濃度ニッケル溶液中の微量亜鉛の定量方法。
The organic solvent is at least one of 2-ethylhexyl (2-ethylhexyl) phosphonate and bis (2-ethylhexyl) hydrogen phosphate;
The method for determining a trace amount of zinc in the high-concentration nickel solution according to any one of claims 1 to 3.
前記試料溶液および前記精製溶媒が接触する器具を樹脂製とする、
請求項1〜4のいずれか1項に記載の高濃度ニッケル溶液中の微量亜鉛の定量方法。
An instrument in contact with the sample solution and the purification solvent is made of resin.
The method for determining a trace amount of zinc in the high concentration nickel solution according to any one of claims 1 to 4.
JP2017055436A 2017-03-22 2017-03-22 Quantification method for trace amount of zinc in solution having high concentration of nickel Pending JP2018159560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017055436A JP2018159560A (en) 2017-03-22 2017-03-22 Quantification method for trace amount of zinc in solution having high concentration of nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017055436A JP2018159560A (en) 2017-03-22 2017-03-22 Quantification method for trace amount of zinc in solution having high concentration of nickel

Publications (1)

Publication Number Publication Date
JP2018159560A true JP2018159560A (en) 2018-10-11

Family

ID=63795486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017055436A Pending JP2018159560A (en) 2017-03-22 2017-03-22 Quantification method for trace amount of zinc in solution having high concentration of nickel

Country Status (1)

Country Link
JP (1) JP2018159560A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452320B2 (en) 2019-11-07 2024-03-19 住友金属鉱山株式会社 Method for quantifying Zn and manufacturing method for sample
KR20240054884A (en) 2022-10-18 2024-04-26 신에쓰 가가꾸 고교 가부시끼가이샤 Onium salt, resist composition, and patterning process

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7452320B2 (en) 2019-11-07 2024-03-19 住友金属鉱山株式会社 Method for quantifying Zn and manufacturing method for sample
KR20240054884A (en) 2022-10-18 2024-04-26 신에쓰 가가꾸 고교 가부시끼가이샤 Onium salt, resist composition, and patterning process

Similar Documents

Publication Publication Date Title
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
Tanimizu et al. Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples
JP2009128315A (en) Method for analyzing trace precious metal with radio-frequency plasma mass spectrometer
JP2018159560A (en) Quantification method for trace amount of zinc in solution having high concentration of nickel
US10422023B2 (en) Recovery of rare earth elements by liquid-liquid extraction from fresh water to hypersaline solutions
JP4512605B2 (en) Determination of trace impurity elements using inductively coupled plasma mass spectrometer
JP7020447B2 (en) A method for analyzing inclusions and / or precipitates in a metal sample, and a method for collecting inclusions and / or precipitates in a metal sample.
Duan et al. Rapid determination of 26 elements in iron meteorites using matrix removal and membrane desolvating quadrupole ICP-MS
JP6094822B2 (en) Method for quantifying fat-soluble phosphorus compounds
JP2015114240A (en) Gold distribution rate analysis method of ore
JP2007327797A (en) High-frequency inductively coupled plasma emission spectrometric analysis method
JPH11142387A (en) Method for separating determining quadrivalent selenium from hexavalent selenium in solution
JP2015145821A (en) Quantitative method for organic phosphorous compound in metal salt
JP2008128992A (en) Apparatus and method for analyzing silicon containing solid metallic material
JP2014159992A (en) Method for measuring trace amount of zinc in high concentration metallic solution
Grygoyc Jabło nska-Czapla, M. Development of a Tellurium Speciation Study Using IC-ICP-MS on Soil Samples Taken from an Area Associated with the Storage, Processing, and Recovery of Electrowaste
JP2011252711A (en) Impurity analyzing method of sample containing metal main component
Sabzkoohi et al. A validated analytical method to measure metals dissolved in deep eutectic solvents
JP6992714B2 (en) Quantitative method of elemental metal in metal oxide
JP2015081912A (en) Quantitative analysis method of impurity element ions
JP2017191088A (en) Method for analyzing deterioration in organic solvent
CN112611749A (en) Method for detecting content of ammonium citrate in liquid
KR102126606B1 (en) Method for analyzing contents of k in la compounds
KR101873242B1 (en) METHOD FOR ANALYZING COMPONENT RATIO OF ELECTROFORMED Fe-Ni ALLOY FILM
JP2017096693A (en) Method for quantifying chloride ion concentration