JP2015145821A - Quantitative method for organic phosphorous compound in metal salt - Google Patents

Quantitative method for organic phosphorous compound in metal salt Download PDF

Info

Publication number
JP2015145821A
JP2015145821A JP2014018536A JP2014018536A JP2015145821A JP 2015145821 A JP2015145821 A JP 2015145821A JP 2014018536 A JP2014018536 A JP 2014018536A JP 2014018536 A JP2014018536 A JP 2014018536A JP 2015145821 A JP2015145821 A JP 2015145821A
Authority
JP
Japan
Prior art keywords
aqueous solution
organic solvent
metal salt
organophosphorus compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014018536A
Other languages
Japanese (ja)
Other versions
JP6149747B2 (en
Inventor
公彦 冨士田
Kimihiko Fujita
公彦 冨士田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2014018536A priority Critical patent/JP6149747B2/en
Publication of JP2015145821A publication Critical patent/JP2015145821A/en
Application granted granted Critical
Publication of JP6149747B2 publication Critical patent/JP6149747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a quantitative method for a lipid-soluble phosphorus compound that is used to evaluate a fine amount of a lipid-soluble phosphorus compound included in a metal salt.SOLUTION: A quantitative method for a lipid-soluble phosphorus compound includes: an aqueous solution forming process of dissolving a metal salt including a lipid-soluble phosphorus compound in water; an adjusting process of adjusting the hydrogen ion concentration exponent pH of the aqueous solution to 1.0 or lower by adding acid to the obtained aqueous solution; an extracting process of adding an organic solvent to the aqueous solution to which the acid is added to extract the lipid-soluble phosphorous compound with the organic solvent; a separation and recovery process of recovering the organic solvent phase-separated from the aqueous solution; and a measurement process of determining the quantity of the lipid-soluble phosphorous compound by measuring the recovered organic solvent by a Fourier transform nuclear magnetic resonance spectral analyzer.

Description

本発明は、金属塩に含まれる有機リン化合物の定量方法に関する。   The present invention relates to a method for quantifying an organophosphorus compound contained in a metal salt.

ニッケルの工業的用途として、次のものが知られている。例えば、一般電解めっきのほか、コンピュータのハードディスク用ニッケル無電解めっきなどに硫酸ニッケルが広く用いられており、さらに最近では、二次電池用ニッケルの原料として硫酸ニッケルが多用されるようになってきている。   The following are known as industrial uses of nickel. For example, in addition to general electroplating, nickel sulfate is widely used for nickel electroless plating for hard disks in computers, and more recently, nickel sulfate has been widely used as a raw material for nickel for secondary batteries. Yes.

硫酸ニッケルを工業的に製造する一般的な方法として、原料を酸溶液に溶解後、不純物を除去する工程を経て、硫酸ニッケル溶液から蒸発晶析などにより硫酸ニッケル結晶を得る方法がある。この不純物を除去する工程では、溶媒抽出法が用いられ、その抽出剤として例えば有機リン酸系の酸性抽出剤、すなわち酸性ホスホン酸エステルや酸性ホスフィン酸エステルなどが使用される。   As a general method for industrially producing nickel sulfate, there is a method of obtaining nickel sulfate crystals from a nickel sulfate solution by evaporating crystallization through a step of removing impurities after dissolving the raw material in an acid solution. In the step of removing the impurities, a solvent extraction method is used. As the extractant, for example, an organic phosphoric acid-based acidic extractant, that is, an acidic phosphonic acid ester or an acidic phosphinic acid ester is used.

特許文献1には、アルキルホスホン酸モノアルキルエステルを抽出剤に使用して、コバルトとニッケルを含む水溶液からコバルトを分離する方法が示されている。   Patent Document 1 discloses a method for separating cobalt from an aqueous solution containing cobalt and nickel using an alkylphosphonic acid monoalkyl ester as an extractant.

特許文献2には、商品名PC−88A(大八化学株式会社製)を抽出剤に用いた溶媒抽出によってコバルトを抽出し、ニッケルとコバルトとを分離することで硫酸ニッケルを精製する方法が示されている。   Patent Document 2 discloses a method of purifying nickel sulfate by extracting cobalt by solvent extraction using the trade name PC-88A (manufactured by Daihachi Chemical Co., Ltd.) as an extractant and separating nickel and cobalt. Has been.

硫酸ニッケルの原料から不純物を除去する溶媒抽出工程において、有機層と水層は重力により相分離されるが、相分離性が悪い場合、水層中へ抽出剤が混入する恐れがある。例えば、特許文献2の最終製品である硫酸ニッケルに抽出剤が混入した場合、硫酸ニッケルを原料として使用する製品の製造工程の下流において、抽出剤が何らかの悪影響を及ぼす。   In the solvent extraction step of removing impurities from the nickel sulfate raw material, the organic layer and the aqueous layer are phase-separated by gravity. However, if the phase separation property is poor, the extractant may be mixed into the aqueous layer. For example, when an extractant is mixed in nickel sulfate, which is the final product of Patent Document 2, the extractant has some adverse effects downstream of the manufacturing process of a product that uses nickel sulfate as a raw material.

従来、硫酸ニッケルを原料として使用する製品の製造工程では、全有機炭素計(TOC計)を用いた有機体炭素の定量によって抽出剤の混入を評価していた。TOC計は、水中に存在する有機物の総量を測定するものであり、水中に溶出または混入していない有機物は検出できない。そのため、抽出剤である有機リン化合物の硫酸ニッケルへの混入を評価するには、硫酸ニッケルの水溶液を作成する必要がある。しかし、有機リン化合物は疎水性が強いため、硫酸ニッケルの水溶液を作成した場合は、有機リン化合物は水溶液の水面に浮遊してしまう。したがって、この場合は、水溶液の水面に浮遊した有機リン化合物を上手く採取することができず、その定量が上手くできない可能性があった。   Conventionally, in a manufacturing process of a product using nickel sulfate as a raw material, contamination of the extractant has been evaluated by quantifying organic carbon using a total organic carbon meter (TOC meter). The TOC meter measures the total amount of organic substances present in water, and cannot detect organic substances that are not eluted or mixed in water. Therefore, in order to evaluate the mixing of the organophosphorus compound as the extractant into nickel sulfate, it is necessary to prepare an aqueous solution of nickel sulfate. However, since the organic phosphorus compound is highly hydrophobic, when an aqueous solution of nickel sulfate is prepared, the organic phosphorus compound floats on the water surface of the aqueous solution. Therefore, in this case, the organophosphorus compound floating on the water surface of the aqueous solution could not be collected well, and the quantification thereof could not be performed well.

TOC計を用いて硫酸ニッケルへの有機リン化合物の混入を評価するために、硫酸ニッケルを溶解した水溶液から測定試料を採取している様子を「図1」に示す。具体的には、図1は、ビーカー等の容器10に入った硫酸ニッケルの水溶液13の水面下まで試料採取用シリンジ11の試料採取口12が挿入され、かつ、硫酸ニッケルに含まれていた有機リン化合物14が水溶液13の水面に浮遊している状態を示している。図1に示すように、TOC計の測定試料採取器具を用いて水溶液13を吸引する場合は、水溶液13がその水面下から吸引されるため、その水面に浮遊する有機リン化合物14は殆ど採取されない。その結果、有機リン化合物14はTOC計内に殆ど導入されず、その定量は極めて困難である。すなわち、有機リン化合物は疎水性であるから、水溶液しか測定できないTOC計は、硫酸ニッケルへの有機リン化合物の混入を評価する装置として不適当である。   FIG. 1 shows a state in which a measurement sample is collected from an aqueous solution in which nickel sulfate is dissolved in order to evaluate the mixing of the organophosphorus compound into nickel sulfate using a TOC meter. Specifically, FIG. 1 shows an example in which the sample collection port 12 of the sample collection syringe 11 is inserted below the surface of the aqueous solution 13 of nickel sulfate contained in a container 10 such as a beaker, and the organic contained in the nickel sulfate. A state in which the phosphorus compound 14 is floating on the water surface of the aqueous solution 13 is shown. As shown in FIG. 1, when the aqueous solution 13 is sucked using the measurement sample collecting instrument of the TOC meter, the organic phosphorus compound 14 floating on the water surface is hardly collected because the aqueous solution 13 is sucked from below the water surface. . As a result, the organophosphorus compound 14 is hardly introduced into the TOC meter, and its quantification is extremely difficult. That is, since the organic phosphorus compound is hydrophobic, a TOC meter that can measure only an aqueous solution is not suitable as an apparatus for evaluating the mixing of the organic phosphorus compound into nickel sulfate.

TOC計による有機リン化合物の定量分析精度を確認するため、図1に示す測定試料採取器具とTOC計を用いて、市販の硫酸ニッケルに含まれる有機体炭素(有機リン化合物)を定量した。具体的には、製品ロットが互いに異なる8個の硫酸ニッケル試料を入手し、試料の製品ロット毎に硫酸ニッケル水溶液を作成した。そして、図1に示す測定試料採取器具を用いて、作成した硫酸ニッケル水溶液を製品ロット毎に採取して、TOC計で水溶液中の有機体炭素(有機リン化合物)濃度を測定した。その測定結果を「表1」に示す。次いで、TOC計での測定に使用しなかった残りの硫酸ニッケル試料を用いて、その製品ロット毎に公知の手法でアルミニウム基板に無電解めっきを行い、めっき処理後のアルミニウム基板の表面を電子顕微鏡で観察した。アルミニウム基板表面の電子顕微鏡写真に基づいて、硫酸ニッケルの製品ロット毎にめっき不良(製品異常)が生じたか否かを判断した。その判断結果を「表1」に併せて示す。   In order to confirm the quantitative analysis accuracy of the organophosphorus compound by the TOC meter, the organic carbon (organophosphorus compound) contained in the commercially available nickel sulfate was quantified using the measurement sample collecting instrument and the TOC meter shown in FIG. Specifically, eight nickel sulfate samples having different product lots were obtained, and an aqueous nickel sulfate solution was prepared for each product lot of the samples. And the produced nickel sulfate aqueous solution was extract | collected for every product lot using the measurement sample collection instrument shown in FIG. 1, and the organic carbon (organophosphorus compound) density | concentration in aqueous solution was measured with the TOC meter. The measurement results are shown in “Table 1”. Next, using the remaining nickel sulfate sample that was not used for the measurement with the TOC meter, the aluminum substrate was electrolessly plated by a known method for each product lot, and the surface of the aluminum substrate after the plating treatment was subjected to an electron microscope. Observed at. Based on the electron micrograph on the surface of the aluminum substrate, it was determined whether or not a plating defect (product abnormality) occurred for each product lot of nickel sulfate. The determination results are also shown in “Table 1”.

表1に示すように、TOC計による有機体炭素濃度の測定値と製品異常の有無との間には、明確な相関は見出せない。また、表1に示す結果は硫酸ニッケルについてのものであるが、TOC計の特性を考慮すれば、硫酸ニッケル以外の金属塩についても表1に示す結果と同様の結果しか得られないことは明らかである。つまり、金属塩に含まれる有機リン化合物に関するTOC計による有機体炭素濃度の測定値は信用できず、TOC計は金属塩に極微量含まれる抽出剤由来の有機リン化合物の定量には用いることができないと言える。このように、金属塩に極微量含まれる有機リン化合物の定量方法は確立されておらず、新たに開発する必要があった。   As shown in Table 1, no clear correlation can be found between the measured value of the organic carbon concentration by the TOC meter and the presence or absence of product abnormality. The results shown in Table 1 are for nickel sulfate, but it is clear that only the results similar to the results shown in Table 1 can be obtained for metal salts other than nickel sulfate, considering the characteristics of the TOC meter. It is. That is, the measured value of the organic carbon concentration by the TOC meter regarding the organophosphorus compound contained in the metal salt cannot be trusted, and the TOC meter can be used for the quantification of the organic phosphorus compound derived from the extractant contained in the metal salt in a trace amount. I can't say that. Thus, a method for quantifying an organophosphorus compound contained in a trace amount in a metal salt has not been established, and it has been necessary to newly develop it.

特開昭60−231420号公報JP-A-60-231420 特開平10−310437号公報JP-A-10-310437

この発明は、金属塩に極微量含まれる有機リン化合物の定量方法を提供することを目的とする。   It is an object of the present invention to provide a method for quantifying an organophosphorus compound contained in a trace amount in a metal salt.

上記課題を解決するため、本発明に係る第1の手段は、有機リン化合物を含む金属塩を水に溶解させる水溶液化工程と、得られた水溶液に酸を添加して、前記水溶液の水素イオン濃度指数pHを1.0以下に調整する調整工程と、前記酸を添加した水溶液に有機溶媒を添加して、前記有機リン化合物を前記有機溶媒で抽出する抽出工程と、前記水溶液と相分離した前記有機溶媒を回収する分離回収工程と、回収した前記有機溶媒をフーリエ変換核磁気共鳴分光分析装置で測定することにより前記有機リン化合物を定量する測定工程と、を有することを特徴とする有機リン化合物の定量方法である。   In order to solve the above problems, a first means according to the present invention includes an aqueous solution step in which a metal salt containing an organophosphorus compound is dissolved in water, an acid is added to the obtained aqueous solution, and hydrogen ions in the aqueous solution are added. An adjustment step for adjusting the concentration index pH to 1.0 or less, an organic solvent is added to the aqueous solution to which the acid is added, and the organic phosphorus compound is extracted with the organic solvent, and the aqueous solution is phase-separated. A separation and recovery step for recovering the organic solvent; and a measurement step for quantifying the organophosphorus compound by measuring the recovered organic solvent with a Fourier transform nuclear magnetic resonance spectrometer. This is a method for quantifying a compound.

本発明に係る第2の手段は、第1の手段において、前記金属塩の塩基が、Li、Co、Fe、Ni、Zn、Ag、Cu、Ca、Mg、Na、K、Al、Pb、またはMnであることを特徴とするものである。   According to a second means of the present invention, in the first means, the base of the metal salt is Li, Co, Fe, Ni, Zn, Ag, Cu, Ca, Mg, Na, K, Al, Pb, or It is characterized by being Mn.

本発明に係る第3の手段は、第1または2の手段において、前記金属塩が硫酸ニッケルまたは硫酸コバルトであることを特徴とするものである。   A third means according to the present invention is characterized in that, in the first or second means, the metal salt is nickel sulfate or cobalt sulfate.

本発明に係る第4の手段は、第3の手段において、前記有機リン化合物は、前記金属塩の精製工程で使用した有機リン酸系抽出剤であることを特徴とするものである。   A fourth means according to the present invention is characterized in that, in the third means, the organophosphorus compound is an organophosphate extractant used in the purification step of the metal salt.

本発明に係る第5の手段は、第1〜第4のいずれかの手段において、前記有機溶媒は、軽水素、重水素、または軽水素と重水素とで構成される有機溶媒であることを特徴とするものである。   According to a fifth means of the present invention, in any one of the first to fourth means, the organic solvent is light hydrogen, deuterium, or an organic solvent composed of light hydrogen and deuterium. It is a feature.

本発明は、不純物として有機リン化合物を含む金属塩を水溶液化し、この水溶液のpHを1.0以下に調整した後に、疎水性の有機リン化合物を有機溶媒で液液抽出するため、金属塩中の極めて微量(ppmオーダー)の有機リン化合物でも確実に抽出することができる。また、本発明によれば、金属塩の主成分である金属イオンは有機層に分配されないことから、測定対象である有機リン化合物のみを簡便な手段で漏れなく分離回収することができる。さらに、分離回収した有機溶媒をそのままフーリエ変換核磁気共鳴分光分析装置(FT−NMR装置)で測定できるため、測定結果が短時間で得られるとともに、測定試料の調整が不要となることから、測定試料の減少を回避して信頼性の高い測定データを得ることができる。   In the present invention, a metal salt containing an organic phosphorus compound as an impurity is made into an aqueous solution, and the pH of the aqueous solution is adjusted to 1.0 or less, and then the hydrophobic organic phosphorus compound is liquid-liquid extracted with an organic solvent. Even an extremely small amount (ppm order) of an organophosphorus compound can be reliably extracted. In addition, according to the present invention, since metal ions that are the main component of the metal salt are not distributed to the organic layer, only the organophosphorus compound to be measured can be separated and recovered by simple means without omission. Furthermore, since the separated and recovered organic solvent can be directly measured with a Fourier transform nuclear magnetic resonance spectrometer (FT-NMR apparatus), the measurement result can be obtained in a short time and adjustment of the measurement sample is not required. Measurement data with high reliability can be obtained by avoiding the decrease of the sample.

TOC計の測定試料を採取する様子を示す図である。It is a figure which shows a mode that the measurement sample of a TOC meter is extract | collected. 本発明に係る有機リン化合物の定量方法を示す流れ図である。It is a flowchart which shows the determination method of the organophosphorus compound which concerns on this invention. FT−NMR装置による測定結果を示す図である(実施例1)。It is a figure which shows the measurement result by a FT-NMR apparatus (Example 1). FT−NMR装置による測定結果を示す図である(実施例2)。It is a figure which shows the measurement result by a FT-NMR apparatus (Example 2). FT−NMR装置による測定結果を示す図である(比較例1)。It is a figure which shows the measurement result by a FT-NMR apparatus (comparative example 1). FT−NMR装置による測定結果を示す図である(比較例2)。It is a figure which shows the measurement result by a FT-NMR apparatus (comparative example 2).

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図2は、本発明に係る有機リン化合物の定量方法における各工程を示す流れ図である。本発明に係る有機リン化合物の定量方法は、有機リン化合物を極微量(ppmオーダー)含む金属塩を水に溶解させる水溶液化工程と、得られた水溶液に酸を添加して、この水溶液の水素イオン濃度指数pHを1.0以下に調整する調整工程と、酸を添加した水溶液に有機溶媒を添加して、有機リン化合物を有機溶媒で抽出する抽出工程と、水溶液と相分離した有機溶媒を回収する分離回収工程と、回収した有機溶媒をそのままフーリエ変換核磁気共鳴分光分析装置(FT−NMR装置)で測定することにより有機リン化合物を定量する測定工程と、を有するものである。   FIG. 2 is a flowchart showing each step in the method for quantifying an organophosphorus compound according to the present invention. The organic phosphorus compound quantification method according to the present invention includes an aqueous solution step in which a metal salt containing a trace amount (ppm order) of an organic phosphorus compound is dissolved in water, an acid is added to the obtained aqueous solution, and hydrogen in this aqueous solution is added. An adjustment step of adjusting the ion concentration index pH to 1.0 or less, an extraction step of extracting an organic phosphorus compound with an organic solvent by adding an organic solvent to an aqueous solution to which an acid has been added, and an organic solvent phase-separated from the aqueous solution It has a separation / recovery step to be recovered and a measurement step for quantifying the organic phosphorus compound by measuring the recovered organic solvent as it is with a Fourier transform nuclear magnetic resonance spectrometer (FT-NMR device).

(水溶液化工程)
まず、水溶液化工程では、有機リン化合物を含む金属塩を純水に溶解させる。金属塩の塩基は、Na、Kなどのアルカリ金属、Be、Mg、Caなどのアルカリ土類金属、または繊維金属などである。特に、塩基がLi、Co、Fe、Ni、Zn、Ag、Cu、Ca、Mg、Na、K、Al、Pb、またはMnである金属塩の精製工程では、金属塩の原料に含まれる不純物を除去するために、有機リン化合物が使用されることがある。そのため、これらの金属塩には、微量の有機リン化合物が混入している可能性がある。
(Water solution process)
First, in the aqueous solution process, a metal salt containing an organic phosphorus compound is dissolved in pure water. The base of the metal salt is an alkali metal such as Na or K, an alkaline earth metal such as Be, Mg, or Ca, or a fiber metal. In particular, in the purification step of a metal salt whose base is Li, Co, Fe, Ni, Zn, Ag, Cu, Ca, Mg, Na, K, Al, Pb, or Mn, impurities contained in the raw material of the metal salt are removed. An organophosphorus compound may be used to remove. Therefore, a trace amount of an organophosphorus compound may be mixed in these metal salts.

金属塩は、水に易溶であるもの、すなわち通常の撹拌操作だけで水に溶解するものが好ましい。塩基がLi、Co、Fe、Ni、Zn、Ag、Cu、Ca、Mg、Na、K、Al、Pb、またはMnである金属塩は、室温の水に対する溶解度が比較的高いことから特に好ましい。また、金属塩が硫酸ニッケルまたは硫酸コバルトの場合は、濃度が高くなり過ぎない限り、室温の水に硫酸ニッケルを添加して撹拌するだけで、硫酸ニッケルは完全に溶解する。一方、水に難溶性の金属塩の場合は、何らかの分解処理が必要となり、その際に目的成分の有機リン化合物が有機溶媒に抽出されない形態となる可能性がある。   The metal salt is preferably one that is readily soluble in water, that is, one that is soluble in water only by a normal stirring operation. A metal salt whose base is Li, Co, Fe, Ni, Zn, Ag, Cu, Ca, Mg, Na, K, Al, Pb, or Mn is particularly preferable because of its relatively high solubility in water at room temperature. Further, when the metal salt is nickel sulfate or cobalt sulfate, the nickel sulfate is completely dissolved only by adding nickel sulfate to water at room temperature and stirring unless the concentration becomes too high. On the other hand, in the case of a metal salt that is sparingly soluble in water, some kind of decomposition treatment is required, and at that time, there is a possibility that the organophosphorus compound as the target component is not extracted into the organic solvent.

金属塩に含まれる有機リン化合物としては、例えば硫酸ニッケルや硫酸コバルトの精製工程で使用される有機リン酸系抽出剤が挙げられる。具体的には、商品名Cyanex 277、D2EHPA、またはPC−88Aなどである。   Examples of the organic phosphorus compound contained in the metal salt include an organic phosphoric acid-based extractant used in the purification step of nickel sulfate or cobalt sulfate. Specifically, trade names such as Cyanex 277, D2EHPA, or PC-88A.

ちなみに、PC−88Aの化合物名は、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシルである。PC−88Aの構造式を以下に示す。   Incidentally, the compound name of PC-88A is mono-2-ethylhexyl 2-ethylhexylphosphonate. The structural formula of PC-88A is shown below.

(調整工程)
次いで、調整工程では、金属塩の水溶液に酸、特に強酸を添加することにより、抽出工程における水溶液のpHを1.0以下(pH≦1.0)にする。金属塩の塩基がCo、Cu、Ni、またはZnなどの遷移金属である場合は、抽出工程におけるpHが1.0を超えると、金属塩中の有機リン化合物が遷移金属と複雑な有機金属錯体を形成(錯形成)することがある。そして、錯形成が起こると、有機リン化合物の疎水性の度合いがばらつく、すなわち一部の有機リン化合物が親水化するため、有機リン化合物が有機溶媒に十分に抽出されなくなるおそれがある。
(Adjustment process)
Next, in the adjustment step, an acid, particularly a strong acid, is added to the aqueous solution of the metal salt so that the pH of the aqueous solution in the extraction step is 1.0 or less (pH ≦ 1.0). When the base of the metal salt is a transition metal such as Co, Cu, Ni, or Zn, if the pH in the extraction process exceeds 1.0, the organophosphorus compound in the metal salt is complex with the transition metal May be formed (complex formation). When complex formation occurs, the degree of hydrophobicity of the organic phosphorus compound varies, that is, part of the organic phosphorus compound becomes hydrophilic, and the organic phosphorus compound may not be sufficiently extracted into the organic solvent.

金属塩の水溶液に添加する強酸としては、臭化水素、塩酸、硝酸、または硫酸が挙げられる。これらの強酸を水溶液のpHが1.0以下になるまで添加することにより、水溶液中の有機リン化合物が塩基である金属と錯形成せずに遊離した状態に変化する。一方で、この水溶液のpHが0.1未満になると、有機リン化合物自体の分解が生じるため、金属塩の水溶液のpHは0.1〜1.0であることが好ましく、さらには0.1〜0.2が好適である。なお、強酸は、水溶液化工程において、金属塩を純水に溶解させる前に、この水溶媒に予め添加しておいてもよい。   Examples of the strong acid added to the aqueous metal salt solution include hydrogen bromide, hydrochloric acid, nitric acid, and sulfuric acid. By adding these strong acids until the pH of the aqueous solution becomes 1.0 or less, the organophosphorus compound in the aqueous solution changes to a free state without complexing with the base metal. On the other hand, when the pH of the aqueous solution is less than 0.1, the organic phosphorus compound itself is decomposed. Therefore, the pH of the aqueous metal salt solution is preferably 0.1 to 1.0, and more preferably 0.1 ~ 0.2 is preferred. Note that the strong acid may be added in advance to the aqueous solvent before the metal salt is dissolved in pure water in the aqueous solution process.

(抽出工程)
次いで、抽出工程では、pHが調整された水溶液に有機溶剤を添加して、この混合溶液を撹拌または振とうすることにより、水溶液の水面に浮遊する有機リン化合物を有機溶媒中に移行させる。有機リン化合物が有機溶媒に完全に抽出されるように、水溶液と有機溶媒との混合溶液を5〜30分間撹拌または振とうすることが好ましい。そして、混合溶液を撹拌後に静置することにより、水層と有機層とが相分離して、疎水性の有機リン化合物は選択的に有機溶媒に抽出される。
(Extraction process)
Next, in the extraction step, an organic solvent is added to the aqueous solution whose pH is adjusted, and this mixed solution is stirred or shaken to transfer the organic phosphorus compound floating on the water surface of the aqueous solution into the organic solvent. It is preferable to stir or shake the mixed solution of the aqueous solution and the organic solvent for 5 to 30 minutes so that the organic phosphorus compound is completely extracted into the organic solvent. Then, by allowing the mixed solution to stand after stirring, the aqueous layer and the organic layer are phase-separated, and the hydrophobic organic phosphorus compound is selectively extracted into the organic solvent.

抽出工程において水溶液に添加する有機溶媒は、FT−NMR装置における測定溶媒でもあるので、重クロロホルムや重メタノールなどの重溶媒であることが好ましい。しかし、FT−NMR装置の測定対象物質は有機リン化合物であり、リン原子31Pの電磁遮蔽効果によって有機リン化合物に係る核磁気共鳴スペクトル(以下、「FT−NMRスペクトル」という)の共鳴ピークは、特異的な化学シフト値に現れる。したがって、有機リン化合物をFT−NMR装置で測定する場合は、測定溶媒が重溶媒でなくとも、有機リン化合物の定量は可能である。すなわち、抽出工程において水溶液に添加する有機溶媒は、必ずしも重溶媒である必要はなく、軽水素、重水素、または軽水素と重水素とで構成される有機溶媒であってもよい。 Since the organic solvent added to the aqueous solution in the extraction step is also a measurement solvent in the FT-NMR apparatus, it is preferably a heavy solvent such as deuterated chloroform or deuterated methanol. However, the measurement target substance of the FT-NMR apparatus is an organophosphorus compound, and the resonance peak of the nuclear magnetic resonance spectrum (hereinafter referred to as “FT-NMR spectrum”) related to the organophosphorus compound is due to the electromagnetic shielding effect of the phosphorus atom 31 P. Appear in specific chemical shift values. Therefore, when the organophosphorus compound is measured with an FT-NMR apparatus, the quantification of the organophosphorus compound is possible even if the measurement solvent is not a heavy solvent. That is, the organic solvent added to the aqueous solution in the extraction step is not necessarily a heavy solvent, and may be light hydrogen, deuterium, or an organic solvent composed of light hydrogen and deuterium.

(分離回収工程)
次いで、分離回収工程では、抽出工程において完全に相分離した混合溶液の有機層すなわち上層の有機溶媒のみを選択的に回収する。具体的には、分液漏斗などを用いて水溶液化工程から抽出工程を経た、完全に相分離した混合溶液の有機溶媒のみを試験管などのFT−NMR装置の測定器具に移入する。
(Separation and recovery process)
Next, in the separation and recovery step, only the organic layer of the mixed solution, that is, the upper organic solvent of the mixed solution completely separated in the extraction step is selectively recovered. Specifically, only the organic solvent of the mixed solution that has undergone the extraction process from the aqueous solution process and the extraction process using a separatory funnel is completely transferred to the measuring instrument of the FT-NMR apparatus such as a test tube.

(測定工程)
次いで、測定工程では、試験管などに回収した有機溶媒をそのままFT−NMR装置を用いて測定する。FT−NMRスペクトルの化学シフト値3.8ppm付近に現れる共鳴ピークを観測することにより、金属塩に極微量含まれる有機リン化合物を定量することができる。有機リン化合物の種類によってFT−NMRスペクトルの共鳴ピークの位置は多少変化するが、その位置は化学シフト値3.8ppmから大きく外れることはない。そのため、化学シフト値3.8ppmの付近に現れる共鳴ピークのみを観測すれば必要にして十分である。本発明では、金属塩に含まれる有機リン化合物の全量をFT−NMR装置で測定するので、金属塩における有機リン化合物の含有率がppmオーダーであっても信頼性の高い測定データを得ることができる。
(Measurement process)
Next, in the measurement process, the organic solvent recovered in a test tube or the like is directly measured using an FT-NMR apparatus. By observing a resonance peak appearing in the vicinity of a chemical shift value of 3.8 ppm in the FT-NMR spectrum, the organophosphorus compound contained in a trace amount in the metal salt can be quantified. The position of the resonance peak of the FT-NMR spectrum varies somewhat depending on the type of the organophosphorus compound, but the position does not deviate significantly from the chemical shift value of 3.8 ppm. Therefore, it is necessary and sufficient to observe only the resonance peak appearing near the chemical shift value of 3.8 ppm. In the present invention, since the total amount of the organophosphorus compound contained in the metal salt is measured with an FT-NMR apparatus, highly reliable measurement data can be obtained even if the content of the organophosphorus compound in the metal salt is on the order of ppm. it can.

したがって、金属塩の精製工程で異常が生じているか否かを確認するには、精製後の金属塩のFT−NMRスペクトルを得て、その化学シフト値3.8ppm付近に共鳴ピークが存在するか否かを確認するだけでよい。その化学シフト値3.8ppm付近に共鳴ピークが確認できる場合は、その金属塩の精製工程において活性炭などの不純物除去フィルタが破過しており、活性炭などの交換や補充が必要である。   Therefore, in order to confirm whether or not an abnormality has occurred in the purification step of the metal salt, an FT-NMR spectrum of the metal salt after purification is obtained, and whether a resonance peak exists near the chemical shift value of 3.8 ppm. It is only necessary to confirm whether or not. When a resonance peak can be confirmed in the vicinity of the chemical shift value of 3.8 ppm, the impurity removal filter such as activated carbon has broken through in the purification process of the metal salt, and the activated carbon or the like needs to be replaced or supplemented.

以下の実施例では、硫酸コバルトの精製工程で使用する有機リン酸系抽出剤である商品名PC−88A由来の有機リン化合物の定量方法を示す。分析対象となる金属塩は、硫酸コバルト結晶である。   In the following examples, a method for quantifying an organophosphorus compound derived from the trade name PC-88A, which is an organophosphate extractant used in the purification process of cobalt sulfate, is shown. The metal salt to be analyzed is a cobalt sulfate crystal.

[実施例1]
PC−88A由来の有機リン化合物を含む金属塩として、市販の硫酸コバルトを使用した。この硫酸コバルト5gを分液漏斗に移入し、ここに純水10mlを添加した後、超音波振とう機を用いて硫酸コバルトを充分に溶解させた。この硫酸コバルト水溶液に塩酸500μLを添加して、硫酸コバルト水溶液のpHを0.2とした。次いで、この硫酸コバルト水溶液に有機溶媒として重クロロホルムを10mL添加して振とうすることにより、PC−88A由来の有機リン化合物を重クロロホルムに抽出させた。振とう終了後、この混合溶液を10分間静置して、水層と有機層(重クロロホルム層)とに完全に相分離させた。次いで、この重クロロホルム層のみをFT−NMR装置用の試料管に移入して回収した。この重クロロホルムが入った試験管をFT−NMR装置(ブルカーバイオスピン社製、AVANCE400型)にセットして、そのFT−NMRスペクトルを得た。FT−NMR装置の観測核は水素核に設定し、その積算回数は5000回とした。
[Example 1]
Commercially available cobalt sulfate was used as a metal salt containing an organophosphorus compound derived from PC-88A. After 5 g of this cobalt sulfate was transferred to a separatory funnel and 10 ml of pure water was added thereto, the cobalt sulfate was sufficiently dissolved using an ultrasonic shaker. To this cobalt sulfate aqueous solution, 500 μL of hydrochloric acid was added to adjust the pH of the cobalt sulfate aqueous solution to 0.2. Next, 10 mL of deuterated chloroform as an organic solvent was added to this aqueous cobalt sulfate solution and shaken to extract the organophosphorus compound derived from PC-88A into deuterated chloroform. After completion of the shaking, the mixed solution was allowed to stand for 10 minutes to completely separate the phase into an aqueous layer and an organic layer (deuterated chloroform layer). Subsequently, only this heavy chloroform layer was transferred to a sample tube for an FT-NMR apparatus and recovered. The test tube containing this deuterated chloroform was set in an FT-NMR apparatus (manufactured by Bruker Biospin, AVANCE400 type), and its FT-NMR spectrum was obtained. The observation nucleus of the FT-NMR apparatus was set to a hydrogen nucleus, and the number of integrations was 5000.

得られたFT−NMRスペクトルを「図3」に示す。図3の縦軸は検出強度(無次元)を、また横軸は化学シフト(ppm)を表す。図3において、化学シフト値3.8ppm付近に有機リン化合物に起因する共鳴ピークを明瞭に認識できる。そのため、硫酸コバルトへの有機リン化合物の混入量を図3から容易に定量できる。   The obtained FT-NMR spectrum is shown in FIG. The vertical axis in FIG. 3 represents the detection intensity (dimensionless), and the horizontal axis represents the chemical shift (ppm). In FIG. 3, a resonance peak caused by the organophosphorus compound can be clearly recognized around a chemical shift value of 3.8 ppm. Therefore, the amount of organic phosphorus compound mixed in cobalt sulfate can be easily determined from FIG.

実施例1における硫酸コバルト水溶液への塩酸添加量と、塩酸添加後の硫酸コバルト水溶液のpH値と、FT−NMRスペクトルから有機リン化合物の共鳴ピークを判別できるか否かの判断結果と、を「表2」に示す。   The amount of hydrochloric acid added to the aqueous cobalt sulfate solution in Example 1, the pH value of the aqueous cobalt sulfate solution after addition of hydrochloric acid, and the determination result of whether or not the resonance peak of the organophosphorus compound can be determined from the FT-NMR spectrum, Table 2 ”shows.

[実施例2]および[比較例1、2]
実施例1における塩酸添加量500μLを以下の量に変更し、それ以外は実施例1と同様にして、FT−NMRスペクトルを得た。
・実施例2: 塩酸600μL / pH<0.1
・比較例1: 塩酸400μL / pH=2.0
・比較例2: 塩酸 0μL / pH=7.3
[Example 2] and [Comparative Examples 1 and 2]
The FT-NMR spectrum was obtained in the same manner as in Example 1 except that the hydrochloric acid addition amount of 500 μL in Example 1 was changed to the following amount.
Example 2: Hydrochloric acid 600 μL / pH <0.1
Comparative Example 1: Hydrochloric acid 400 μL / pH = 2.0
Comparative Example 2: Hydrochloric acid 0 μL / pH = 7.3

実施例2で得たFT−NMRスペクトルを図4に示す。また、比較例1で得たFT−NMRスペクトルを図5に示す。また、比較例2で得たFT−NMRスペクトルを図6に示す。さらに、実施例2および比較例1、2における硫酸コバルト水溶液への塩酸添加量と、塩酸添加後の硫酸コバルト水溶液のpH値と、FT−NMRスペクトルから有機リン化合物の共鳴ピークを判別できるか否かの判断結果と、を「表2」に併せて示す。   The FT-NMR spectrum obtained in Example 2 is shown in FIG. The FT-NMR spectrum obtained in Comparative Example 1 is shown in FIG. The FT-NMR spectrum obtained in Comparative Example 2 is shown in FIG. Furthermore, the amount of hydrochloric acid added to the cobalt sulfate aqueous solution in Example 2 and Comparative Examples 1 and 2, the pH value of the cobalt sulfate aqueous solution after addition of hydrochloric acid, and the resonance peak of the organophosphorus compound can be determined from the FT-NMR spectrum. The determination results are also shown in “Table 2”.

[比較例3]
実施例1で使用した硫酸コバルトに含まれるPC−88A由来の有機リン化合物をTOC計で定量した。具体的には、この硫酸コバルト5gをビーカーに移入し、ここに純水10mlを添加した後、超音波振とう機を用いて硫酸コバルトを充分に溶解させた。この硫酸コバルト水溶液の表面に浮遊する有機リン化合物を図1に示す測定試料採取器具を用いて採取しようと試みたところ、大部分の有機リン化合物がビーカー容器10の内壁に付着してしまい、試料採取用シリンジ11で有機リン化合物を上手く採取することができなかった。試料採取用シリンジ11で採取できた硫酸コバルト水溶液について、その有機体炭素濃度をTOC計で測定しても、表1に示す結果と同じ結果になることは自明であるため、TOC計による有機リン化合物の定量を中止した。
[Comparative Example 3]
The organophosphorus compound derived from PC-88A contained in the cobalt sulfate used in Example 1 was quantified with a TOC meter. Specifically, 5 g of this cobalt sulfate was transferred to a beaker, 10 ml of pure water was added thereto, and then the cobalt sulfate was sufficiently dissolved using an ultrasonic shaker. When an attempt was made to collect the organophosphorus compound floating on the surface of this cobalt sulfate aqueous solution using the measurement sample collecting instrument shown in FIG. 1, most of the organophosphorus compound adhered to the inner wall of the beaker container 10, and the sample The organophosphorus compound could not be successfully collected with the collection syringe 11. It is obvious that even if the organic carbon concentration of the cobalt sulfate aqueous solution collected with the sampling syringe 11 is measured with a TOC meter, the same result as shown in Table 1 is obtained. Compound quantification was discontinued.

[考察]
実施例2では、実施例1と同様に有機リン化合物が硫酸コバルト水溶液中のコバルトと錯体を形成せずに重クロロホルムに抽出されたため、有機リン化合物の共鳴ピークを明確に検出できた。一方で、比較例1および2では、有機リン化合物がコバルトと錯体を形成して重クロロホルムに抽出されなかったため、有機リン化合物の共鳴ピークを検出できなかった。
[Discussion]
In Example 2, since the organophosphorus compound was extracted into deuterated chloroform without forming a complex with cobalt in the cobalt sulfate aqueous solution as in Example 1, the resonance peak of the organophosphorus compound could be clearly detected. On the other hand, in Comparative Examples 1 and 2, since the organophosphorus compound formed a complex with cobalt and was not extracted into deuterated chloroform, the resonance peak of the organophosphorus compound could not be detected.

有機リン酸系抽出剤を用いた溶媒抽出工程をもつ湿式製錬において、水相への抽出剤の混入を評価する手法として利用することができる。製品となる金属塩のみならず、工程液や中間物を対象とした管理にも適用することができる。   In a hydrometallurgical process having a solvent extraction step using an organic phosphate extractant, it can be used as a technique for evaluating the mixing of the extractant into the aqueous phase. It can be applied not only to product metal salts but also to management for process liquids and intermediates.

10 容器
11 試料採取用シリンジ
12 試料採取口
13 水溶液
14 有機リン化合物
DESCRIPTION OF SYMBOLS 10 Container 11 Sample collection syringe 12 Sample collection port 13 Aqueous solution 14 Organophosphorus compound

Claims (5)

有機リン化合物を含む金属塩を水に溶解させる水溶液化工程と、
得られた水溶液に酸を添加して、前記水溶液の水素イオン濃度指数pHを1.0以下に調整する調整工程と、
前記酸を添加した水溶液に有機溶媒を添加して、前記有機リン化合物を前記有機溶媒で抽出する抽出工程と、
前記水溶液と相分離した前記有機溶媒を回収する分離回収工程と、
回収した前記有機溶媒をフーリエ変換核磁気共鳴分光分析装置で測定することにより前記有機リン化合物を定量する測定工程と、を有することを特徴とする有機リン化合物の定量方法。
An aqueous solution step of dissolving a metal salt containing an organophosphorus compound in water;
An adjustment step of adjusting the hydrogen ion concentration index pH of the aqueous solution to 1.0 or less by adding an acid to the obtained aqueous solution;
An extraction step of adding an organic solvent to the aqueous solution to which the acid has been added, and extracting the organic phosphorus compound with the organic solvent;
A separation and recovery step for recovering the organic solvent phase-separated from the aqueous solution;
And a measuring step of quantifying the organophosphorus compound by measuring the collected organic solvent with a Fourier transform nuclear magnetic resonance spectrometer.
前記金属塩の塩基が、Li、Co、Fe、Ni、Zn、Ag、Cu、Ca、Mg、Na、K、Al、Pb、またはMnであることを特徴とする請求項1に記載の有機リン化合物の定量方法。   2. The organophosphorus according to claim 1, wherein the base of the metal salt is Li, Co, Fe, Ni, Zn, Ag, Cu, Ca, Mg, Na, K, Al, Pb, or Mn. Compound quantification method. 前記金属塩が硫酸ニッケルまたは硫酸コバルトであることを特徴とする請求項1または2に記載の有機リン化合物の定量方法。   The method for quantifying an organophosphorus compound according to claim 1 or 2, wherein the metal salt is nickel sulfate or cobalt sulfate. 前記有機リン化合物は、前記金属塩の精製工程で使用した有機リン酸系抽出剤であることを特徴とする請求項3に記載の有機リン化合物の定量方法。   The method for quantifying an organophosphorus compound according to claim 3, wherein the organophosphorus compound is an organophosphate extractant used in the purification step of the metal salt. 前記有機溶媒は、軽水素、重水素、または軽水素と重水素とで構成される有機溶媒であることを特徴とする請求項1〜4のいずれか1項に記載の有機リン化合物の定量方法。   The method for quantifying an organophosphorus compound according to any one of claims 1 to 4, wherein the organic solvent is light hydrogen, deuterium, or an organic solvent composed of light hydrogen and deuterium. .
JP2014018536A 2014-02-03 2014-02-03 Method for quantifying organophosphorus compounds in metal salts Active JP6149747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014018536A JP6149747B2 (en) 2014-02-03 2014-02-03 Method for quantifying organophosphorus compounds in metal salts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014018536A JP6149747B2 (en) 2014-02-03 2014-02-03 Method for quantifying organophosphorus compounds in metal salts

Publications (2)

Publication Number Publication Date
JP2015145821A true JP2015145821A (en) 2015-08-13
JP6149747B2 JP6149747B2 (en) 2017-06-21

Family

ID=53890109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014018536A Active JP6149747B2 (en) 2014-02-03 2014-02-03 Method for quantifying organophosphorus compounds in metal salts

Country Status (1)

Country Link
JP (1) JP6149747B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106802A (en) * 2015-12-09 2017-06-15 住友金属鉱山株式会社 Method for quantifying phosphorous extraction agent
CN107271471A (en) * 2017-07-04 2017-10-20 中国环境科学研究院 The extraction of monoesters phosphorus component and phosphorus nuclear magnetic resonance spectrum figure analysis method in a kind of lake sediment
CN107957432A (en) * 2017-11-25 2018-04-24 王会会 A kind of method of phosphorus content in water quality detection instrument detection water

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107765A (en) * 1989-09-21 1991-05-08 Nippon Oil & Fats Co Ltd Rapid measuring method for phosphorus of organic material
US5240681A (en) * 1990-10-15 1993-08-31 Calgon Corporation Apparatus for injection analysis of total inorganic phosphate
US5252486A (en) * 1990-10-15 1993-10-12 Calgon Corporation Flow injection analysis of total inorganic phosphate
JP2004317141A (en) * 2003-04-11 2004-11-11 Sumika Chemical Analysis Service Ltd Quantitatively determining method of phosphorus
JP2011057784A (en) * 2009-09-08 2011-03-24 Toyobo Co Ltd Polylactic acid-based stereocomplex body
JP2015145820A (en) * 2014-02-03 2015-08-13 住友金属鉱山株式会社 Quantitative method for lipid-soluble phosphorus compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107765A (en) * 1989-09-21 1991-05-08 Nippon Oil & Fats Co Ltd Rapid measuring method for phosphorus of organic material
US5240681A (en) * 1990-10-15 1993-08-31 Calgon Corporation Apparatus for injection analysis of total inorganic phosphate
US5252486A (en) * 1990-10-15 1993-10-12 Calgon Corporation Flow injection analysis of total inorganic phosphate
JP2004317141A (en) * 2003-04-11 2004-11-11 Sumika Chemical Analysis Service Ltd Quantitatively determining method of phosphorus
JP2011057784A (en) * 2009-09-08 2011-03-24 Toyobo Co Ltd Polylactic acid-based stereocomplex body
JP2015145820A (en) * 2014-02-03 2015-08-13 住友金属鉱山株式会社 Quantitative method for lipid-soluble phosphorus compound

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017106802A (en) * 2015-12-09 2017-06-15 住友金属鉱山株式会社 Method for quantifying phosphorous extraction agent
CN107271471A (en) * 2017-07-04 2017-10-20 中国环境科学研究院 The extraction of monoesters phosphorus component and phosphorus nuclear magnetic resonance spectrum figure analysis method in a kind of lake sediment
CN107271471B (en) * 2017-07-04 2018-06-08 中国环境科学研究院 The extraction of monoesters phosphorus component and phosphorus nuclear magnetic resonance spectrum figure analysis method in a kind of lake sediment
CN107957432A (en) * 2017-11-25 2018-04-24 王会会 A kind of method of phosphorus content in water quality detection instrument detection water

Also Published As

Publication number Publication date
JP6149747B2 (en) 2017-06-21

Similar Documents

Publication Publication Date Title
KR101163299B1 (en) Method for analysis of metal sample
JP5035788B2 (en) Rare earth metal extractant and extraction method
JP6149747B2 (en) Method for quantifying organophosphorus compounds in metal salts
CN101701914A (en) Analysis detection method for calcium element in ore
Zhang et al. Investigation of the synergistic extraction behavior between cerium (III) and two acidic organophosphorus extractants using FT-IR, NMR and mass spectrometry
RU2703241C1 (en) Method of extracting metal compound particles, a method of analyzing metal compound particles and an electrolytic solution used
Mason et al. Phosphate defects and apatite inclusions in coral skeletal aragonite revealed by solid-state NMR spectroscopy
US11143593B2 (en) Methods to process samples in acidic solutions to detect beryllium in samples by optical fluorescence
Ni et al. Novel insights into molecular composition of organic phosphorus in lake sediments
JP6094822B2 (en) Method for quantifying fat-soluble phosphorus compounds
JP2010127790A (en) Method of measuring particle size distribution of particulate
Premadas et al. Inductively coupled plasma atomic emission spectrometric determination of lanthanides and Y in various uranium hydrometallurgical products
CN102830074B (en) The quantitative analysis method of scandium in titanium slag chlorination discarded object
JP2020160009A (en) Method of analyzing inclusions and/or precipitates in metal sample, and method of collecting inclusions and/or precipitates in metal sample
Sahin et al. Determination of trace metals in water samples by flame atomic absorption spectrometry after co-precipitation with In (OH)~ 3
JP6481862B2 (en) Method for quantifying phosphorus extractant
Song et al. Ultrasonic-assisted cloud point extraction for determination of nickel in water samples by flame atomic absorption spectrometry
CN102426166B (en) Method for testing element content in ferrous metal coating
Mahamuni et al. Liquid-liquid extraction and recovery of gallium (III) from acid media with 2-octylaminopyridine in chloroform: analysis of bauxite ore
CN116735696A (en) Extraction test method for carbonate combined chlorine of carbonate geological sample
JP2019191005A (en) Method of measuring chelating agent
CN108872213B (en) Method for measuring high-content nickel element in Au82Ni alloy
Othman et al. Solvent extraction of metals from liquid photographic waste using acidic extractants
JP2016003355A (en) Washing method of cation exchange-type extraction agent and recovery method of rare earth elements
CN112611749A (en) Method for detecting content of ammonium citrate in liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170508

R150 Certificate of patent or registration of utility model

Ref document number: 6149747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150