JP2019090777A - Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method - Google Patents

Ultrasonic flow rate measurement device and ultrasonic flow rate measurement method Download PDF

Info

Publication number
JP2019090777A
JP2019090777A JP2018029502A JP2018029502A JP2019090777A JP 2019090777 A JP2019090777 A JP 2019090777A JP 2018029502 A JP2018029502 A JP 2018029502A JP 2018029502 A JP2018029502 A JP 2018029502A JP 2019090777 A JP2019090777 A JP 2019090777A
Authority
JP
Japan
Prior art keywords
sound pressure
pressure distribution
ultrasonic
pipe
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018029502A
Other languages
Japanese (ja)
Other versions
JP6876643B2 (en
JP2019090777A5 (en
Inventor
武田 靖
Yasushi Takeda
靖 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Flowbiz Research Kk
Original Assignee
Flowbiz Research Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Flowbiz Research Kk filed Critical Flowbiz Research Kk
Priority to JP2018029502A priority Critical patent/JP6876643B2/en
Publication of JP2019090777A publication Critical patent/JP2019090777A/en
Publication of JP2019090777A5 publication Critical patent/JP2019090777A5/ja
Application granted granted Critical
Publication of JP6876643B2 publication Critical patent/JP6876643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To obtain an ultrasonic flow rate measurement device and an ultrasonic flow rate measurement method each of which enables a flow rate of a measurement object fluid to be correctly measured with simple configuration.SOLUTION: A reference sound pressure distribution waveform holding unit (60) holds a reference sound pressure distribution waveform that is on the basis of an ultrasonic sound wave pulse which a transmission slave (10) emits and is incident on at least three reception slaves (20) while a flow velocity of a measurement object fluid (G) in piping (5) is zero. A fluctuation sound pressure waveform acquisition unit (70) acquire a fluctuation sound pressure distribution waveform that is on the basis of the ultrasonic sound wave which the transmission slave (10) emits and is incident on at least the three reception slaves (20) while the flow velocity of the measurement object fluid (G) in the piping (5) is other than zero. A flow rate calculation unit (80) obtains an amount of shift (S) being a differential between the reference sound pressure distribution waveform and the fluctuation sound pressure distribution waveform, integrates the amount of the shift (S), thereby calculating a flow rate of the measurement object fluid (G) in the piping (5).SELECTED DRAWING: Figure 3

Description

本発明は、超音波流量測定装置及び超音波流量測定方法に関する。   The present invention relates to an ultrasonic flow measurement device and an ultrasonic flow measurement method.

従来一般の超音波流量計は、配管内の流体の流れ方向に超音波パルスを入射させて、当該超音波パルスが音速と流速を加算した速度にて配管内を飛翔することを利用して平均流速を求め、当該平均流速に配管の断面積を乗じて平均流量としている。しかし、上記の超音波流量計は、あくまで流れ方向の平均流速及び平均流量を得るだけであり、流れの状態(流れ方向と直交する方向の流速分布)については考慮されていない。このため、配管内の流速分布は、理想的な流れ場を仮定しており(前提としており)、その仮定に即した測定環境を用意しなければならず、種々の設定条件(制約)が課せられることになる。また、流速分布のズレを補正するための所謂プロファイルファクタの利用が必要であり、その較正等の観点から精度の保証が困難になっている。さらに、小口径管では測定が非常に困難であり、流れ場の軸対称性を前提としているので、曲がり管の後流などでは測定値の安定性や信頼性が保証されない。   In the conventional general ultrasonic flowmeter, an ultrasonic pulse is made to be incident in the flow direction of the fluid in the pipe, and the ultrasonic pulse travels in the pipe at the speed obtained by adding the speed of sound and the flow velocity. The flow velocity is determined, and the average flow velocity is multiplied by the cross-sectional area of the pipe to obtain an average flow rate. However, the above-mentioned ultrasonic flowmeter only obtains an average flow velocity and an average flow rate in the flow direction, and does not consider the flow state (flow velocity distribution in the direction orthogonal to the flow direction). For this reason, the flow velocity distribution in the piping assumes an ideal flow field (assumed), and it is necessary to prepare a measurement environment in line with the assumption, and various setting conditions (constraints) are imposed. Will be In addition, it is necessary to use a so-called profile factor for correcting the deviation of the flow velocity distribution, and it is difficult to guarantee the accuracy from the viewpoint of the calibration and the like. Furthermore, in small diameter tubes, measurement is very difficult, and since the axial symmetry of the flow field is assumed, the stability and reliability of the measured values can not be guaranteed in the wake of a bent tube or the like.

一方、特許文献1には、流体配管内を流れる気体流体の流速分布を超音波パルスを用いて計測する流速分布測定装置が開示されている。この流速分布測定装置では、流体配管の管壁に設置された発信用トランスデューサから当該流体配管を流れる被測定流体へ超音波パルスを出射し、流体配管において対向する管壁に二次元状に設置された複数の受信用トランスデューサにて超音波パルスを検出する。管軸方向に配列された複数の受信用トランスデューサの検出信号から超音波パルスの管軸方向の変位量を検出する。より具体的に、開き角の僅かに異なる2本の測定線を設定して、各測定線について夫々検出される変位量と飛行時間の差分から所定位置の流速を求める。   On the other hand, Patent Document 1 discloses a flow velocity distribution measuring device that measures the flow velocity distribution of a gaseous fluid flowing in a fluid piping using ultrasonic pulses. In this flow velocity distribution measuring device, ultrasonic pulses are emitted from the transmission transducer installed on the pipe wall of the fluid pipe to the fluid to be measured flowing in the fluid pipe, and are two-dimensionally installed on the opposing pipe wall in the fluid pipe. Ultrasonic pulses are detected by a plurality of receiving transducers. The displacement amount of the ultrasonic pulse in the tube axis direction is detected from detection signals of a plurality of receiving transducers arranged in the tube axis direction. More specifically, two measurement lines slightly different in opening angle are set, and the flow velocity at a predetermined position is determined from the difference between the displacement amount detected for each measurement line and the flight time.

国際公開第2008/004560号パンフレットWO 2008/004560 pamphlet

しかしながら、特許文献1は、複数の受信用トランスデューサが超音波パルスを検出した後、当該超音波パルスの管軸方向の変位量に基づいて、流れ方向と直交する方向の流速分布(流体配管の軸直交断面の流速分布)を算出し、当該流速分布に基づいて流体配管内を流れる気体流体の流量を算出するものである。従って、演算の複雑化と大容量化を招くとともに、超音波パルスの変位量から流速分布を算出する過程および流速分布から気体流体の流量を算出する過程において演算誤差や外乱要因が加わると気体流体の流量が正確に測定できないおそれがある。   However, according to Patent Document 1, after a plurality of receiving transducers detect an ultrasonic pulse, the flow velocity distribution in the direction orthogonal to the flow direction (the axis of the fluid pipe) based on the displacement of the ultrasonic pulse in the tube axis direction. The flow velocity distribution of the orthogonal cross section is calculated, and the flow rate of the gaseous fluid flowing in the fluid piping is calculated based on the flow velocity distribution. Therefore, the calculation becomes complicated and the capacity is increased, and the process of calculating the flow velocity distribution from the displacement amount of the ultrasonic pulse and the process of calculating the flow rate of the gas fluid from the flow velocity distribution Flow rate may not be accurately measured.

本発明は、以上の問題意識に基づいてなされたものであり、測定対象流体の流量を簡単な構成で正確に測定することができる超音波流量測定装置及び超音波流量測定方法を得ることを目的とする。   The present invention is made based on the above-mentioned problem awareness, and an object of the present invention is to obtain an ultrasonic flow measurement device and an ultrasonic flow measurement method capable of accurately measuring the flow of a fluid to be measured with a simple configuration. I assume.

本実施形態の超音波流量測定装置は、測定対象流体が流れる配管に設置されるとともに超音波パルスを出射する送信子と、前記配管に前記送信子と対向して設置されるとともに前記超音波パルスが入射する少なくとも3個の受信子と、前記配管における前記測定対象流体の流速がゼロの状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく基準音圧分布波形を保持する基準音圧分布波形保持部と、前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく変動音圧分布波形を取得する変動音圧分布波形取得部と、前記基準音圧分布波形と前記変動音圧分布波形の差分であるシフト量を求めて、当該シフト量を積分することで、前記配管における前記測定対象流体の流量を演算する流量演算部と、を有することを特徴としている。   The ultrasonic flow rate measuring apparatus according to the present embodiment includes a transmitter which is installed in a pipe through which a fluid to be measured flows and which emits an ultrasonic pulse, and which is installed in the pipe so as to face the transmitter. And a reference sound based on the ultrasonic pulse emitted from the transmitter and entering the at least three receivers when the flow velocity of the fluid to be measured in the pipe is zero. A reference sound pressure distribution waveform holding unit that holds a pressure distribution waveform, and the ultrasonic waves emitted by the transmitter and entering the at least three receivers in a state where the flow velocity of the fluid to be measured in the pipe is other than zero. A variation sound pressure distribution waveform acquisition unit that obtains a variation sound pressure distribution waveform based on pulses, and a shift amount that is a difference between the reference sound pressure distribution waveform and the variation sound pressure distribution waveform, and the shift amount By integrating, it is characterized by having a flow rate calculation unit for calculating the flow rate of the measurement target fluid in the pipe.

前記受信子は、(2n+1)個(nは2以上の自然数)が設置されており、前記変動音圧分布波形取得部は、前記(2n+1)個の受信子から3個の受信子を選択するための全ての組み合わせ毎に、前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記3個の受信子に入射した前記超音波パルスに基づいて前記変動音圧分布波形を取得し、当該全ての組み合わせ毎の前記変動音圧分布波形を平均化することができる。   The (2 n + 1) (n is a natural number of 2 or more) receivers are installed in the receiver, and the fluctuation sound pressure distribution waveform acquiring unit selects three receivers from the (2 n + 1) receivers. The variation sound pressure is generated based on the ultrasonic pulse emitted from the transmitter and incident on the three receivers in a state where the flow velocity of the fluid to be measured in the piping is other than zero for every combination for all the combinations. A distribution waveform can be obtained, and the fluctuating sound pressure distribution waveform for every combination can be averaged.

前記送信子と前記受信子は、前記配管の内面に設置することができる。   The transmitter and the receiver can be installed on the inner surface of the pipe.

本実施形態の超音波流量測定方法は、測定対象流体が流れる配管に設置されるとともに超音波パルスを出射する送信子と、前記配管に前記送信子と対向して設置されるとともに前記超音波パルスが入射する少なくとも3個の受信子と、を有する超音波流量測定装置による超音波流量測定方法であって、前記配管における前記測定対象流体の流速がゼロの状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく基準音圧分布波形を保持する基準音圧分布波形保持ステップと、前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく変動音圧分布波形を取得する変動音圧分布波形取得ステップと、前記基準音圧分布波形と前記変動音圧分布波形の差分であるシフト量を求めて、当該シフト量を積分することで、前記配管における前記測定対象流体の流量を演算する流量演算ステップと、を有することを特徴としている。   In the ultrasonic flow rate measurement method of the present embodiment, a transmitter that is installed in a pipe through which a fluid to be measured flows and that emits ultrasonic pulses, and is installed on the pipe so as to face the transmitter, and the ultrasonic pulse An ultrasonic flow rate measuring method using an ultrasonic flow rate measuring device having at least three receivers on which the light is incident, wherein the transmitter is emitted with the flow velocity of the fluid to be measured in the pipe being zero. A reference sound pressure distribution waveform holding step of holding a reference sound pressure distribution waveform based on the ultrasonic pulse incident on at least three receivers; and the transmitter in a state where the flow velocity of the fluid to be measured in the pipe is other than zero. A variable sound pressure distribution waveform acquiring step of acquiring a variable sound pressure distribution waveform based on the ultrasonic pulse emitted and incident on the at least three receivers; the reference sound pressure Calculating a shift amount which is a difference between the cloth waveform and the fluctuating sound pressure distribution waveform, and integrating the shift amount to calculate a flow rate of the fluid to be measured in the pipe; And

本発明によれば、測定対象流体の流量を簡単な構成で正確に測定することができる超音波流量測定装置及び超音波流量測定方法が得られる。   According to the present invention, it is possible to obtain an ultrasonic flow rate measuring device and an ultrasonic flow rate measuring method capable of accurately measuring the flow rate of a fluid to be measured with a simple configuration.

本実施形態の超音波流量測定装置の送信側トランスデューサと受信側トランスデューサを配管に設置した状態を示す図である。It is a figure which shows the state which installed the transmission side transducer and receiving side transducer of the ultrasonic flow measurement apparatus of this embodiment in piping. 図1において送信側トランスデューサが超音波パルスを出射して受信側トランスデューサに超音波パルスが入射する様子を示す図である。It is a figure which shows a mode that the transmission side transducer radiate | emits an ultrasonic pulse in FIG. 1, and an ultrasonic pulse injects into a receiving side transducer. 超音波流量測定装置の内部構成を示す機能ブロック図である。It is a functional block diagram which shows the internal structure of an ultrasonic flow rate measurement apparatus. 基準音圧分布波形と変動音圧分布波形の測定手法の一例を示す図である。It is a figure which shows an example of the measurement method of a reference | standard sound pressure distribution waveform and a fluctuation | variation sound pressure distribution waveform. 3個の音圧測定値を二次関数に近似(フィッティング)することで音圧分布を推定する方法を示す図である。It is a figure which shows the method of estimating sound pressure distribution by approximating (fitting) three sound pressure measurement values to a quadratic function. 流量演算部が基準音圧分布波形と変動音圧分布波形の差分であるシフト量を積分することにより配管における測定対象流体の流量を演算する様子を示す図である。It is a figure which shows a mode that a flow volume calculating part calculates the flow volume of the measurement object fluid in piping by integrating the shift amount which is a difference of a reference sound pressure distribution waveform and a fluctuation sound pressure distribution waveform. 配管の管軸直交断面におけるxy平面上のシフト量の分布を示す図である。It is a figure which shows distribution of the shift amount on xy plane in the pipe-axis orthogonal cross section of piping. 送信側トランスデューサと受信側トランスデューサが配管の内面に敷き詰められるようにして配置された構成を示す図である。It is a figure which shows the structure arrange | positioned so that the transmission side transducer and the receiving side transducer could be spread on the inner surface of piping. 同一の管軸方向位置に周方向位置を異ならせて設けた3セットの送信側トランスデューサと受信側トランスデューサにて得られたシフト量の一例を示す図である。It is a figure which shows an example of the shift amount obtained by three sets of transmitting side transducers and receiving side transducers which varied the circumferential direction position and were provided in the same tube axial direction position.

図1〜図9を参照して、本実施形態の超音波流量測定装置1について説明する。超音波流量測定装置1は、例えば、車両のマフラに搭載されて当該マフラ内の排気ガスの流量を測定するために用いられる。また、超音波流量測定装置1は、工場のパイプラインに搭載されて当該パイプライン内のガスの流量を測定するために用いられてもよいし、LNG(Liquefied Natural Gas)タンカーから基地などに液化天然ガスを流す際に当該液化天然ガスの流量を測定するために用いられてもよい。さらに、超音波流量測定装置1は、船舶用エンジンに搭載されて当該船舶用エンジン内の排気の流量を測定するために用いられてもよい。また、超音波流量測定装置1は、ガス等の気体だけでなく、液体の流量測定に適用することもできる。すなわち、超音波流量測定装置1の測定対象が限定されることはなく(自由度があり)、種々の設計変更が可能である。   The ultrasonic flow rate measuring device 1 of the present embodiment will be described with reference to FIGS. 1 to 9. The ultrasonic flow rate measurement device 1 is mounted on, for example, a muffler of a vehicle and used to measure the flow rate of exhaust gas in the muffler. In addition, the ultrasonic flow measurement device 1 may be mounted on a pipeline of a factory and used to measure the flow rate of gas in the pipeline, or liquefied from a LNG (Liquefied Natural Gas) tanker to a base or the like. When flowing natural gas, it may be used to measure the flow rate of the liquefied natural gas. Furthermore, the ultrasonic flow rate measuring device 1 may be mounted on a marine engine and used to measure the flow rate of exhaust gas in the marine engine. Moreover, the ultrasonic flow measurement apparatus 1 can also be applied to flow measurement of not only gas such as gas but also liquid. That is, the measuring object of the ultrasonic flow rate measuring apparatus 1 is not limited (there is a degree of freedom), and various design changes are possible.

図1、図2に示すように、超音波流量測定装置1は、測定対象流体G(例えば排気ガス)が流れる配管5(例えば車両のマフラ)の内面に設置される送信側トランスデューサ(送信子)10を有している。送信側トランスデューサ10は、配管5の管軸方向と直交する方向(図中の右方)に向けて、当該管軸直交方向を中心としてある程度の広がり角を持つ超音波パルスを出射する。   As shown in FIGS. 1 and 2, the ultrasonic flow rate measuring apparatus 1 is a transmission side transducer (transmitter) installed on an inner surface of a pipe 5 (for example, a muffler of a vehicle) through which a fluid to be measured G (for example, exhaust gas) flows. It has ten. The transmission side transducer 10 emits an ultrasonic pulse having a spread angle to a certain extent centered on the direction orthogonal to the tube axis, in a direction (right direction in the drawing) orthogonal to the direction of the tube axis of the pipe 5.

図1、図2に示すように、超音波流量測定装置1は、配管5の内面に送信側トランスデューサ10と対向して設置される受信側トランスデューサ(受信子)20を有している。受信側トランスデューサ20は、送信側トランスデューサ10と管軸直交方向(図中の左右方向)に対向する第1の受信側トランスデューサ21、第1の受信側トランスデューサ21より上流側に位置する第2の受信側トランスデューサ22及び第3の受信側トランスデューサ23、並びに、第1の受信側トランスデューサ21より下流側に位置する第4の受信側トランスデューサ24及び第5の受信側トランスデューサ25を有している。第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25には、送信側トランスデューサ10が出射した超音波パルスが入射する。   As shown in FIGS. 1 and 2, the ultrasonic flow measurement device 1 has a receiving transducer (receiver) 20 disposed on the inner surface of the pipe 5 so as to face the transmitting transducer 10. The receiving-side transducer 20 is a first receiving-side transducer 21 facing the transmitting-side transducer 10 in a direction perpendicular to the tube axis (left-right direction in the figure), a second receiving-side located upstream of the first receiving-side transducer 21 A side transducer 22 and a third receiving transducer 23, and a fourth receiving transducer 24 and a fifth receiving transducer 25 located downstream of the first receiving transducer 21 are included. The ultrasonic pulse emitted from the transmitting transducer 10 is incident on the first receiving transducer 21 to the fifth receiving transducer 25.

送信側トランスデューサ10及び第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25は、互換性を持つ同一規格のトランスデューサで構成することができる。当該トランスデューサは、超音波パルスの出射機能と入射機能を併せ持つ。   The transmitting transducer 10 and the first receiving transducer 21 to the fifth receiving transducer 25 can be composed of compatible transducers of the same standard. The transducer has a function of emitting and receiving an ultrasonic pulse.

ここでは、受信側トランスデューサ20として、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25の5個を設置した場合を例示して説明したが、受信側トランスデューサ20の数はこれに限定されることはなく、種々の設計変更が可能である。すなわち、受信側トランスデューサ20は、少なくとも3個が設置されていればよく、好ましくは(2n+1)個(nは2以上の自然数)が設置されていればよい。また、第1の受信側トランスデューサ21の上流側と下流側に配置する受信側トランスデューサの数を異ならせてもよい(例えば前者を後者より少なくしてもよい)。   Although the case where five of the first reception transducer 21 to the fifth reception transducer 25 are installed as the reception transducer 20 has been described as an example here, the number of reception transducers 20 is limited to this. It is not necessary to make various design changes. That is, at least three receiving transducers 20 may be provided, and preferably, (2n + 1) (n is a natural number of 2 or more) may be provided. Also, the number of receiving transducers disposed upstream and downstream of the first receiving transducer 21 may be different (for example, the former may be smaller than the latter).

図3に示すように、超音波流量測定装置1は、信号発振器30と、検出回路40と、データ取得回路50と、基準音圧分布波形保持部60と、変動音圧分布波形取得部70と、流量演算部80とを有している。   As shown in FIG. 3, the ultrasonic flow rate measuring apparatus 1 includes a signal oscillator 30, a detection circuit 40, a data acquisition circuit 50, a reference sound pressure distribution waveform holding unit 60, and a fluctuating sound pressure distribution waveform acquisition unit 70. , And a flow rate calculating unit 80.

信号発振器30は、送信側トランスデューサ10に供給する発振信号を出力する。信号発振器30における発振信号の基本周波数は、配管5の材料、測定対象流体Gの特性、超音波パルスの広がり等を考慮して決定される。発振信号の信号波形は、鋭角な三角形のパルス信号とすることができ、当該パルス信号の繰り返し周期は、気体音速、配管直径、平均流速等から決定することができる。発振信号(パルス信号)を出力するためのタイミング信号は、同期信号として、受信側トランスデューサ20に送られる。   The signal oscillator 30 outputs an oscillation signal supplied to the transmission side transducer 10. The fundamental frequency of the oscillation signal in the signal oscillator 30 is determined in consideration of the material of the pipe 5, the characteristics of the fluid G to be measured, the spread of the ultrasonic pulse, and the like. The signal waveform of the oscillation signal may be a sharp triangular pulse signal, and the repetition cycle of the pulse signal may be determined from the gas sound velocity, the pipe diameter, the average flow velocity, and the like. The timing signal for outputting the oscillation signal (pulse signal) is sent to the receiving transducer 20 as a synchronization signal.

検出回路40は、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25の各出力端に接続されている。図示は省略しているが、検出回路40は、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25から出力される入射超音波強度に応じた大きさの検出信号を増幅する信号増幅器と、信号増幅器の出力のピーク値を読み取るピーク検出回路とを有している。検出回路40は、高速サンプリングレートで流量を求めるために、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25の出力を同時に検出する。検出回路40は、信号発振器30から供給されるタイミング信号に従ってパルス受信タイミングを設定する。   The detection circuit 40 is connected to the output ends of the first reception transducer 21 to the fifth reception transducer 25. Although not shown, the detection circuit 40 is a signal amplifier for amplifying a detection signal having a magnitude corresponding to the intensity of incident ultrasonic waves output from the first reception transducer 21 to the fifth reception transducer 25. And a peak detection circuit for reading the peak value of the output of the signal amplifier. The detection circuit 40 simultaneously detects the outputs of the first reception transducer 21 to the fifth reception transducer 25 in order to obtain the flow rate at a high sampling rate. The detection circuit 40 sets pulse reception timing in accordance with the timing signal supplied from the signal oscillator 30.

データ取得回路50は、例えば、検出回路40が読み取った第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25の出力(ピーク値)を全て収集するデジタル式マルチプレクサによって構成されている。   The data acquisition circuit 50 is configured by, for example, a digital multiplexer that collects all the outputs (peak values) of the first reception transducer 21 to the fifth reception transducer 25 read by the detection circuit 40.

基準音圧分布波形保持部60は、配管5における測定対象流体Gの流速がゼロの状態で送信側トランスデューサ10が出射して第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25に入射した超音波パルスに基づく基準音圧分布波形を保持する。基準音圧分布波形は、超音波流量測定装置1の製造時にデフォルト設定したものを予め基準音圧分布波形保持部60に保持させてもよいし、超音波流量測定装置1のメンテナンス時に測定して基準音圧分布波形保持部60に保持させてもよい。あるいは、配管5や測定対象流体Gが変わる度に基準音圧分布波形を測定して、基準音圧分布波形保持部60が保持する基準音圧分布波形を更新してもよい。   In the reference sound pressure distribution waveform holding unit 60, the transmission side transducer 10 emits light in a state where the flow velocity of the fluid G to be measured in the piping 5 is zero, and enters the first reception side transducer 21 to the fifth reception side transducer 25. The reference sound pressure distribution waveform based on the ultrasonic pulse is held. The reference sound pressure distribution waveform may be previously held in the reference sound pressure distribution waveform holding unit 60 in advance by default when the ultrasonic flow measurement device 1 is manufactured, or may be measured during maintenance of the ultrasonic flow measurement device 1 The reference sound pressure distribution waveform holding unit 60 may be held. Alternatively, the reference sound pressure distribution waveform may be measured every time the pipe 5 or the fluid G to be measured changes, and the reference sound pressure distribution waveform held by the reference sound pressure distribution waveform holding unit 60 may be updated.

基準音圧分布波形保持部60が保持する基準音圧分布波形を測定(更新)する場合、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25から3個の受信側トランスデューサを選択するための全ての組み合わせ毎に、配管5における測定対象流体Gの流速がゼロ以外の状態で送信側トランスデューサ10が出射して上記3個の受信側トランスデューサに入射した超音波パルスに基づいて基準音圧分布波形を取得し、当該全ての組み合わせ毎の基準音圧分布波形を平均化してもよい。3個の受信側トランスデューサの組み合わせは、以下の10通りがある。
(1)第1の受信側トランスデューサ21、第2の受信側トランスデューサ22、第3の受信側トランスデューサ23
(2)第1の受信側トランスデューサ21、第2の受信側トランスデューサ22、第4の受信側トランスデューサ24
(3)第1の受信側トランスデューサ21、第2の受信側トランスデューサ22、第5の受信側トランスデューサ25
(4)第1の受信側トランスデューサ21、第3の受信側トランスデューサ23、第4の受信側トランスデューサ24
(5)第1の受信側トランスデューサ21、第3の受信側トランスデューサ23、第5の受信側トランスデューサ25
(6)第1の受信側トランスデューサ21、第4の受信側トランスデューサ24、第5の受信側トランスデューサ25
(7)第2の受信側トランスデューサ22、第3の受信側トランスデューサ23、第4の受信側トランスデューサ24
(8)第2の受信側トランスデューサ22、第3の受信側トランスデューサ23、第5の受信側トランスデューサ25
(9)第2の受信側トランスデューサ22、第4の受信側トランスデューサ24、第5の受信側トランスデューサ25
(10)第3の受信側トランスデューサ23、第4の受信側トランスデューサ24、第5の受信側トランスデューサ25
When measuring (updating) the reference sound pressure distribution waveform held by the reference sound pressure distribution waveform holding unit 60, to select three reception transducers from the first reception transducer 21 to the fifth reception transducer 25 In all combinations of the above, the reference sound pressure distribution based on the ultrasonic pulses emitted from the transmitting side transducer 10 and incident on the three receiving side transducers in a state where the flow velocity of the fluid G to be measured in the piping 5 is other than zero. A waveform may be acquired, and the reference sound pressure distribution waveform for each of all the combinations may be averaged. There are ten combinations of three receiving transducers:
(1) first receiving transducer 21, second receiving transducer 22, third receiving transducer 23
(2) The first receiving transducer 21, the second receiving transducer 22, the fourth receiving transducer 24
(3) first receiving transducer 21, second receiving transducer 22, fifth receiving transducer 25
(4) The first receiving transducer 21, the third receiving transducer 23, the fourth receiving transducer 24
(5) The first receiving transducer 21, the third receiving transducer 23, the fifth receiving transducer 25
(6) The first receiving transducer 21, the fourth receiving transducer 24, the fifth receiving transducer 25
(7) Second receiving transducer 22, third receiving transducer 23, fourth receiving transducer 24
(8) Second receiving transducer 22, third receiving transducer 23, fifth receiving transducer 25
(9) Second receiving transducer 22, fourth receiving transducer 24, fifth receiving transducer 25
(10) Third receiving transducer 23, fourth receiving transducer 24, fifth receiving transducer 25

3個の受信側トランスデューサの選択の組み合わせによっては、一部又は全部の受信側トランスデューサの出力が得られないことがあり得る。その場合、当該組み合わせの基準音圧分布波形が無かったものとして、他の組み合わせの基準音圧分布波形の平均をとってもよい。   Depending on the combination of the three receiver transducers selected, the output of some or all of the receiver transducers may not be available. In that case, assuming that the reference sound pressure distribution waveform of the combination is not present, the average of the reference sound pressure distribution waveforms of other combinations may be taken.

変動音圧分布波形取得部70は、配管5における測定対象流体Gの流速がゼロ以外の状態で送信側トランスデューサ10が出射して第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25に入射した超音波パルスに基づく変動音圧分布波形を取得する。変動音圧分布波形取得部70は、配管5における測定対象流体Gの流れを常時モニタリングしており、時々刻々と移り変わる変動音圧分布波形を取得し続ける。   In the fluctuating sound pressure distribution waveform acquisition unit 70, the transmission side transducer 10 emits when the flow velocity of the fluid G to be measured in the pipe 5 is other than zero, and enters the first reception side transducer 21 to the fifth reception side transducer 25. The fluctuating sound pressure distribution waveform based on the ultrasonic pulse is acquired. The fluctuating sound pressure distribution waveform acquisition unit 70 constantly monitors the flow of the fluid G to be measured in the pipe 5, and keeps acquiring the fluctuating sound pressure distribution waveform that changes from moment to moment.

変動音圧分布波形取得部70は、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25から3個の受信側トランスデューサを選択するための全ての組み合わせ毎に、配管5における測定対象流体Gの流速がゼロ以外の状態で送信側トランスデューサ10が出射して上記3個の受信側トランスデューサに入射した超音波パルスに基づいて変動音圧分布波形を取得し、当該全ての組み合わせ毎の変動音圧分布波形を平均化してもよい。3個の受信側トランスデューサの組み合わせは、上述した通りである。   The fluctuating sound pressure distribution waveform acquisition unit 70 measures the fluid G to be measured in the pipe 5 for every combination for selecting three receiving transducers from the first receiving transducer 21 to the fifth receiving transducer 25. The fluctuating sound pressure distribution waveform is acquired based on the ultrasonic pulses emitted from the transmitting transducer 10 and incident to the three receiving transducers in a state where the flow velocity of the fluid is not zero, The distribution waveform may be averaged. The combination of the three receiving transducers is as described above.

3個の受信側トランスデューサの選択の組み合わせによっては、一部又は全部の受信側トランスデューサの出力が得られないことがあり得る。その場合、当該組み合わせの変動音圧分布波形が無かったものとして、他の組み合わせの変動音圧分布波形の平均をとってもよい。   Depending on the combination of the three receiver transducers selected, the output of some or all of the receiver transducers may not be available. In such a case, it is possible to take an average of other combinations of fluctuating sound pressure distribution waveforms, assuming that there is no fluctuating sound pressure distribution waveform of the combination.

図4は、基準音圧分布波形と変動音圧分布波形の測定手法の一例を示している。図4には、送信側トランスデューサ10が出射した超音波バースト波(Transmitted signal)と、第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25から選択した3個の受信側トランスデューサが取得した受信波形(Received signal, ch1〜ch3)とが描かれている。すなわち、超音波バースト波は、送信側トランスデューサ10に印加した電圧波形を示し、3個の受信波形は、時間遅れで送信側トランスデューサ10の反対側に到達した3個の受信側トランスデューサによる電圧波形を示している。図4において、V1〜V3は、3個の受信波形(ch1〜ch3)の振幅を示している(この例ではV2>V1>V3となっている)。   FIG. 4 shows an example of a method of measuring a reference sound pressure distribution waveform and a fluctuating sound pressure distribution waveform. In FIG. 4, ultrasonic burst waves (Transmitted signals) emitted by the transmission side transducer 10 and receptions obtained by three reception side transducers selected from the first reception side transducer 21 to the fifth reception side transducer 25 are shown. Waveforms (Received signal, ch1 to ch3) are drawn. That is, the ultrasonic burst wave indicates a voltage waveform applied to the transmission side transducer 10, and the three reception waveforms show voltage waveforms by the three reception side transducers that reached the opposite side of the transmission side transducer 10 with a time delay. It shows. In FIG. 4, V1 to V3 indicate the amplitudes of three reception waveforms (ch1 to ch3) (in this example, V2> V1> V3).

基準音圧分布波形と変動音圧分布波形の測定に際しては、例えば、数十Hz〜1kHz程度の周波数で、図4に示すような受信波形を繰り返し取得する。超音波バースト波の送信から一定時間の遅れで受信波の電圧波形が観察される。この時間差は、簡単には管内径/音速に相当するが、斜めに進行する波に対しては距離が若干長くなるので、その分の時間差が付加される。信号処理では、例えば、上記時間差または当該時間差に受信センサ波形の立ち上がり時間(センサの一次遅れ)を加えた時刻での音圧をヒルベルト変換による包絡線検出により3つ決定する態様、さらには上記包絡線の最大値を利用する態様などにより、瞬間のシフト量を決定する。以上の操作を繰り返してシフト量の時間平均(平滑化)をとることにより、基準音圧分布波形と変動音圧分布波形が測定される。   In the measurement of the reference sound pressure distribution waveform and the fluctuating sound pressure distribution waveform, for example, a reception waveform as shown in FIG. 4 is repeatedly acquired at a frequency of about several tens Hz to 1 kHz. The voltage waveform of the received wave is observed with a predetermined time delay from the transmission of the ultrasonic burst wave. This time difference simply corresponds to the tube inner diameter / sound velocity, but since the distance is slightly longer for waves traveling obliquely, a time difference corresponding to that is added. In the signal processing, for example, a mode in which three sound pressures at a time obtained by adding the rise time (first delay of the sensor) of the reception sensor waveform to the time difference or the time difference are determined by envelope detection by Hilbert transform, and further The shift amount of the moment is determined by an aspect using the maximum value of the line or the like. The reference sound pressure distribution waveform and the fluctuating sound pressure distribution waveform are measured by repeating the above operation and taking time average (smoothing) of the shift amount.

また、基準音圧分布波形保持部60が保持する基準音圧分布波形および変動音圧分布波形取得部70が取得する変動音圧分布波形は、例えば、次のようにして測定することができる。すなわち、音圧分布はガウス分布で表されるが、そのピーク近傍では二次関数に近似することが可能であるから、少なくとも3個の音圧測定値から、そのピーク中心位置を含む音圧分布波形を推定することができる。図5は、3個の音圧測定値を二次関数に近似(フィッティング)することで音圧分布波形を推定する方法を示している。   Also, the reference sound pressure distribution waveform held by the reference sound pressure distribution waveform holding unit 60 and the fluctuating sound pressure distribution waveform acquired by the fluctuating sound pressure distribution waveform acquiring unit 70 can be measured, for example, as follows. That is, although the sound pressure distribution is represented by a Gaussian distribution, since it is possible to approximate to a quadratic function in the vicinity of the peak, the sound pressure distribution including the peak center position from at least three sound pressure measurement values The waveform can be estimated. FIG. 5 shows a method of estimating a sound pressure distribution waveform by approximating (fitting) three sound pressure measurement values to a quadratic function.

ガウス分布は、中心値近傍で多項式展開すると、以下のように表される。

Figure 2019090777
The Gaussian distribution is expressed as follows when it is subjected to polynomial expansion near the center value.
Figure 2019090777

このため、中心値近傍ではガウス分布を放物線(二次関数)で近似することができる。二次関数は未知係数が3個(a+ax+a)であるから、3個の音圧測定値を二次関数に近似(フィッティング)することで音圧分布波形を推定することができる。 Therefore, it is possible to approximate a Gaussian distribution with a parabola (quadric function) in the vicinity of the central value. Since the quadratic function has three unknown coefficients (a 1 + a 2 x + a 3 x 2 ), estimate the sound pressure distribution waveform by fitting (fitting) the three measured sound pressure values to the quadratic function Can.

一方、流速分布の非対称性や飛翔位置が流動方向に角度をもって広がっている場合、純粋な放物線のような対称形から外れてしまうので、本実施形態では、上記対称形から外れた部分を補正するために、より高次の多項式関数を採用している。   On the other hand, if the asymmetry of the flow velocity distribution or the flight position spreads at an angle in the flow direction, it deviates from a symmetrical shape like a pure parabola, so in this embodiment, the part deviated from the symmetrical shape is corrected. In order to use higher order polynomial functions.

より多くの音圧測定値があればより高次の近似解を使用できるので、検出精度の向上が期待できる。例えば、本実施形態のように、(2n+1)個のn=2として、5個の受信側トランスデューサを使えば、四次多項式により、音圧分布波形の非対称性を考慮したフィッティングが可能となり、ピーク中心位置を含む音圧分布波形をより高精度で推定することが可能になる。四次多項式は、例えば、以下のように表される。

Figure 2019090777
Since higher order approximate solutions can be used if there are more sound pressure measurement values, improvement in detection accuracy can be expected. For example, if five receiving transducers are used as (2n + 1) n = 2 as in the present embodiment, the fourth-order polynomial enables fitting in consideration of the asymmetry of the sound pressure distribution waveform, and the peak It becomes possible to estimate the sound pressure distribution waveform including the center position with higher accuracy. The fourth order polynomial is expressed, for example, as follows.
Figure 2019090777

さらに、本実施形態のように、(2n+1)個(nは2以上の自然数)の中から3個の受信側トランスデューサを選択するための全ての組み合わせ(2n+1)毎に、配管5における測定対象流体Gの流速がゼロ以外の状態で送信側トランスデューサ10が出射して上記3個の受信側トランスデューサに入射した超音波パルスに基づいて音圧分布波形を取得し、当該全ての組み合わせ毎の音圧分布波形を平均化することにより、音圧分布波形の検出精度を向上させることができる。特に、配管5における超音波パルスの移動量の変動が大きい場合には、より広い範囲の音圧分布波形を検出できるので、ダイナミックレンジの向上を図ることができる。 Furthermore, as in this embodiment, (2n + 1) (n is a natural number of 2 or more) for each of all the combinations to select the three receiving side transducers from the (2n + 1 C 3), measured in the pipe 5 A sound pressure distribution waveform is acquired based on the ultrasonic pulse emitted from the transmitting side transducer 10 and incident on the three receiving side transducers in a state where the flow velocity of the target fluid G is other than zero, and the sound for every combination The detection accuracy of the sound pressure distribution waveform can be improved by averaging the pressure distribution waveform. In particular, when the variation of the movement amount of the ultrasonic pulse in the pipe 5 is large, the sound pressure distribution waveform in a wider range can be detected, so that the dynamic range can be improved.

流量演算部80は、図6に示すように、基準音圧分布波形保持部60が保持する基準音圧分布波形の中心位置と変動音圧分布波形取得部70が取得する変動音圧分布波形のピーク位置の差分であるシフト量Sを求めて、当該シフト量Sを積分することで、配管5における測定対象流体Gの流量を演算する。   As shown in FIG. 6, the flow rate calculating unit 80 is configured such that the center position of the reference sound pressure distribution waveform held by the reference sound pressure distribution waveform holding unit 60 and the fluctuation sound pressure distribution waveform acquired by the fluctuation sound pressure distribution waveform acquiring unit 70. The flow rate of the fluid G to be measured in the pipe 5 is calculated by calculating the shift amount S which is the difference between peak positions and integrating the shift amount S.

配管5における測定対象流体Gの流量をQ、基準音圧分布波形と変動音圧分布波形の差分であるシフト量をS、配管5における測定対象流体Gの流速分布をU、音速をcとすると、以下の各数式が成り立つ。これは、配管5における測定対象流体Gが非軸対称流れの場合を想定している。以下の各数式では、配管5の管軸直交平面内における座標系をx、yとし(配管5の中心が原点)、配管5の管軸方向の座標系をzとしている。   Assuming that the flow rate of the fluid G to be measured in the pipe 5 is Q, the shift amount that is the difference between the reference sound pressure distribution waveform and the fluctuating sound pressure distribution waveform is S, the flow velocity distribution of the fluid G to be measured in the pipe 5 is U, and the speed of sound is c. , Each following formula holds. This assumes that the fluid G to be measured in the pipe 5 has a non-axisymmetric flow. In the following formulas, the coordinate system in the plane orthogonal to the pipe axis of the pipe 5 is x, y (the center of the pipe 5 is the origin), and the coordinate system of the pipe 5 in the pipe axis direction is z.

まず、流量Qは流速分布Uの面積分で表される。

Figure 2019090777
First, the flow rate Q is represented by the area fraction of the flow velocity distribution U.
Figure 2019090777

次いで、シフト量Sは測定線状の流速の線積分で表され、シフト量Sの分布を積分すると以下のようになる。

Figure 2019090777
Next, the shift amount S is represented by the line integral of the measured linear flow velocity, and the distribution of the shift amount S is integrated as follows.
Figure 2019090777

そして、流量Qはシフト量Sの分布の線積分により求められる。

Figure 2019090777
Then, the flow rate Q is obtained by line integration of the distribution of the shift amount S.
Figure 2019090777

一方、配管5における測定対象流体Gが軸対称流れの場合には、上記に加えて、配管5における測定対象流体Gの平均流速をv、配管5の内径をDとしたときに、以下の各数式が成り立つ。   On the other hand, when the fluid G to be measured in the piping 5 has an axisymmetric flow, in addition to the above, when the average flow velocity of the fluid G to be measured in the piping 5 is v and the inside diameter of the piping 5 is D, The formula holds.

まず、シフト量Sは、配管5における流速分布Uを積分することにより求められる。

Figure 2019090777
First, the shift amount S is obtained by integrating the flow velocity distribution U in the pipe 5.
Figure 2019090777

次いで、平均流速vは次の式で表される。

Figure 2019090777
Next, the average flow velocity v is expressed by the following equation.
Figure 2019090777

そして、流量Qは次の式で表される。
Q=v・(πD/4)
The flow rate Q is expressed by the following equation.
Q = v · (πD 2/ 4)

図7は、配管5の管軸直交断面におけるxy平面上のシフト量Sの分布を示している。図7に示すように、シフト量Sは配管5の管軸直交断面におけるxy平面上でばらつくので、例えば、上述した平均化の手法が有用であると考えられる。   FIG. 7 shows the distribution of the shift amount S on the xy plane in the cross section orthogonal to the pipe axis of the pipe 5. As shown in FIG. 7, since the shift amount S varies on the xy plane in the cross section perpendicular to the pipe axis of the pipe 5, for example, it is considered that the above-described averaging method is useful.

図8は、送信側トランスデューサ10と受信側トランスデューサ20が配管5の内面に敷き詰められるようにして配置されている構成を示している。すなわち、同一の管軸方向位置に周方向位置を異ならせて設けた複数セットの送信側トランスデューサと受信側トランスデューサにて得られたシフト量Sひいては流量を平均化してもよい。図9は、同一の管軸方向位置に周方向位置を異ならせて設けた3セットの送信側トランスデューサと受信側トランスデューサにて得られたシフト量Sの一例(数値計算結果と実験結果)を示している。   FIG. 8 shows a configuration in which the transmitting transducer 10 and the receiving transducer 20 are disposed so as to be spread over the inner surface of the pipe 5. That is, the shift amounts S obtained by a plurality of sets of transmitting transducers and receiving transducers provided at different circumferential positions at the same axial position may be averaged. FIG. 9 shows an example (a numerical calculation result and an experimental result) of the shift amount S obtained by three sets of transmitting side transducers and receiving side transducers provided with different circumferential positions at the same position in the tube axial direction. ing.

このように、本実施形態によれば、基準音圧分布波形保持部60が、配管5における測定対象流体Gの流速がゼロの状態で送信側トランスデューサ10が出射して第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25に入射した超音波パルスに基づく基準音圧分布波形を保持し、変動音圧分布波形取得部70が、配管5における測定対象流体Gの流速がゼロ以外の状態で送信側トランスデューサ10が出射して第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25に入射した超音波パルスに基づく変動音圧分布波形を取得し、流量演算部80が、基準音圧分布波形と変動音圧分布波形の差分であるシフト量Sを求めて、当該シフト量Sを積分することで、配管5における測定対象流体Gの流量を演算する。これにより、測定対象流体Gの流量を簡単な構成で正確に測定することが可能になる。   As described above, according to the present embodiment, the reference sound pressure distribution waveform holding unit 60 emits the transmission side transducer 10 when the flow velocity of the fluid G to be measured in the pipe 5 is zero, and the first reception side transducer 21 The reference sound pressure distribution waveform based on the ultrasonic pulse incident on the fifth reception-side transducer 25 is held, and the fluctuating sound pressure distribution waveform acquisition unit 70 determines that the flow velocity of the fluid G to be measured in the pipe 5 is other than zero. The variation sound pressure distribution waveform based on the ultrasonic pulse emitted from the transmission side transducer 10 and incident on the first reception side transducer 21 to the fifth reception side transducer 25 is acquired, and the flow rate operation unit 80 generates the reference sound pressure distribution. A shift amount S which is a difference between the waveform and the fluctuating sound pressure distribution waveform is determined, and the shift amount S is integrated to calculate the flow rate of the fluid G to be measured in the pipe 5 . This makes it possible to accurately measure the flow rate of the fluid G to be measured with a simple configuration.

以上の実施形態では、送信側トランスデューサ10と受信側トランスデューサ20を配管5の内面に設置した場合を例示して説明したが、送信側トランスデューサ10と受信側トランスデューサ20を配管5の外面に設置した所謂クランプオン方式も適用可能である。但し、配管5における超音波パルスの移動量は、配管5の大きさ(直径)にもよるが、通常は非常に小さい(例えば0.1mm〜数mm)ので、少なくとも受信側トランスデューサ20については、配管5の内面に設置した方が良い。なぜなら、クランプオン方式で受信側トランスデューサ20が配管5の外面に設置された場合、配管5の壁面の存在によるビームの屈折量が超音波パルスの移動量と同程度となって、受信側トランスデューサ20の検出精度が低くなってしまうからである。さらに、隣接する第1の受信側トランスデューサ21〜第5の受信側トランスデューサ25の間隔が非常に小さいので、例えば、ある受信側トランスデューサが検出すべき超音波パルスを隣接する別の受信側トランスデューサが検出してしまうといったエラーが発生しやすくなってしまうからである。以上より、配管5の口径が大きく壁面が薄い場合は、クランプオン方式で受信側トランスデューサ20を配管5の外面に設置することも可能であるが、それ以外の場合は、受信側トランスデューサ20を配管5の内面に設置することが好ましい。   Although the above embodiment exemplifies the case where the transmitting transducer 10 and the receiving transducer 20 are installed on the inner surface of the pipe 5, the transmitting transducer 10 and the receiving transducer 20 are installed on the outer surface of the pipe 5. The clamp on method is also applicable. However, although the amount of movement of the ultrasonic pulse in the pipe 5 depends on the size (diameter) of the pipe 5, it is usually very small (for example, 0.1 mm to several mm). It is better to install on the inner surface of the pipe 5. This is because, when the receiving transducer 20 is installed on the outer surface of the pipe 5 in the clamp-on method, the amount of refraction of the beam due to the presence of the wall of the pipe 5 becomes approximately the same as the displacement of the ultrasonic pulse. This is because the detection accuracy of Furthermore, since the distance between the adjacent first reception transducers 21 to the fifth reception transducers 25 is very small, for example, another reception transducer adjacent to an ultrasonic pulse to be detected by one reception transducer detects It is because it becomes easy to generate an error such as As described above, when the diameter of the pipe 5 is large and the wall surface is thin, it is possible to install the receiving side transducer 20 on the outer surface of the pipe 5 by clamp-on method, but in other cases, the receiving side transducer 20 is piped It is preferable to install in the inner surface of 5.

本実施形態の超音波流量計1は、例えば、車両のマフラに搭載されて当該マフラ内の排気ガスの流量を計測するために用いることができる。   The ultrasonic flowmeter 1 of the present embodiment can be mounted, for example, on a muffler of a vehicle and used to measure the flow rate of exhaust gas in the muffler.

1 超音波流量計
5 配管
10 送信側トランスデューサ(送信子)
20 受信側トランスデューサ(受信子)
21 第1の受信側トランスデューサ
22 第2の受信側トランスデューサ
23 第3の受信側トランスデューサ
24 第4の受信側トランスデューサ
25 第5の受信側トランスデューサ
30 信号発振器
40 検出回路
50 データ取得回路
60 基準音圧分布波形保持部
70 変動音圧分布波形取得部
80 流量演算部
G 測定対象流体
S シフト量
1 Ultrasonic Flowmeter 5 Piping 10 Transmitter Transducer (Transmitter)
20 Receiver Transducer (Receiver)
21 first receiving transducer 22 second receiving transducer 23 third receiving transducer 24 fourth receiving transducer 25 fifth receiving transducer 30 signal oscillator 40 detection circuit 50 data acquisition circuit 60 reference sound pressure distribution 60 reference sound pressure distribution Waveform holding unit 70 Fluctuating sound pressure distribution waveform acquiring unit 80 Flow rate calculating unit G Measurement target fluid S Shift amount

Claims (4)

測定対象流体が流れる配管に設置されるとともに超音波パルスを出射する送信子と、
前記配管に前記送信子と対向して設置されるとともに前記超音波パルスが入射する少なくとも3個の受信子と、
前記配管における前記測定対象流体の流速がゼロの状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく基準音圧分布波形を保持する基準音圧分布波形保持部と、
前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく変動音圧分布波形を取得する変動音圧分布波形取得部と、
前記基準音圧分布波形と前記変動音圧分布波形の差分であるシフト量を求めて、当該シフト量を積分することで、前記配管における前記測定対象流体の流量を演算する流量演算部と、
を有することを特徴とする超音波流量測定装置。
A transmitter which is installed in a pipe through which a fluid to be measured flows and which emits an ultrasonic pulse;
At least three receivers disposed in the pipe opposite to the transmitter and on which the ultrasonic pulse is incident;
Reference sound pressure distribution waveform that holds a reference sound pressure distribution waveform based on the ultrasonic pulses emitted from the transmitter and incident on the at least three receivers when the flow velocity of the fluid to be measured in the pipe is zero A holding unit,
Fluctuating sound pressure distribution for acquiring fluctuating sound pressure distribution waveforms based on the ultrasonic pulses emitted from the transmitter and incident on the at least three receivers in a state where the flow velocity of the fluid to be measured in the piping is other than zero A waveform acquisition unit,
A flow rate calculating unit which calculates a flow rate of the fluid to be measured in the pipe by calculating a shift amount which is a difference between the reference sound pressure distribution waveform and the fluctuating sound pressure distribution waveform, and integrating the shift amount;
An ultrasonic flow measuring device characterized by having.
前記受信子は、(2n+1)個(nは2以上の自然数)が設置されており、
前記変動音圧分布波形取得部は、前記(2n+1)個の受信子から3個の受信子を選択するための全ての組み合わせ毎に、前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記3個の受信子に入射した前記超音波パルスに基づいて前記変動音圧分布波形を取得し、当該全ての組み合わせ毎の前記変動音圧分布波形を平均化する、
ことを特徴とする請求項1に記載の超音波流量測定装置。
The (2 n + 1) (where n is a natural number of 2 or more) receivers are installed.
The fluctuating sound pressure distribution waveform acquiring unit is configured such that the flow velocity of the fluid to be measured in the pipe is other than zero for every combination for selecting three receivers from the (2n + 1) receivers. Acquiring the fluctuating sound pressure distribution waveform based on the ultrasonic pulse emitted from the transmitter and incident on the three receptive members, and averaging the fluctuating sound pressure distribution waveform for all the combinations;
The ultrasonic flow measurement device according to claim 1, characterized in that:
前記送信子と前記受信子は、前記配管の内面に設置されている、
ことを特徴とする請求項1又は請求項2に記載の超音波流量測定装置。
The transmitter and the receiver are disposed on the inner surface of the pipe,
The ultrasonic flow measurement device according to claim 1 or 2, characterized in that:
測定対象流体が流れる配管に設置されるとともに超音波パルスを出射する送信子と、
前記配管に前記送信子と対向して設置されるとともに前記超音波パルスが入射する少なくとも3個の受信子と、
を有する超音波流量測定装置による超音波流量測定方法であって、
前記配管における前記測定対象流体の流速がゼロの状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく基準音圧分布波形を保持する基準音圧分布波形保持ステップと、
前記配管における前記測定対象流体の流速がゼロ以外の状態で前記送信子が出射して前記少なくとも3個の受信子に入射した前記超音波パルスに基づく変動音圧分布波形を取得する変動音圧分布波形取得ステップと、
前記基準音圧分布波形と前記変動音圧分布波形の差分であるシフト量を求めて、当該シフト量を積分することで、前記配管における前記測定対象流体の流量を演算する流量演算ステップと、
を有することを特徴とする超音波流量測定方法。
A transmitter which is installed in a pipe through which a fluid to be measured flows and which emits an ultrasonic pulse;
At least three receivers disposed in the pipe opposite to the transmitter and on which the ultrasonic pulse is incident;
A method of ultrasonic flow measurement with an ultrasonic flow measurement device having
Reference sound pressure distribution waveform that holds a reference sound pressure distribution waveform based on the ultrasonic pulses emitted from the transmitter and incident on the at least three receivers when the flow velocity of the fluid to be measured in the pipe is zero Holding step,
Fluctuating sound pressure distribution for acquiring fluctuating sound pressure distribution waveforms based on the ultrasonic pulses emitted from the transmitter and incident on the at least three receivers in a state where the flow velocity of the fluid to be measured in the piping is other than zero Waveform acquisition step,
A flow rate calculating step of calculating a flow rate of the fluid to be measured in the pipe by calculating a shift amount which is a difference between the reference sound pressure distribution waveform and the fluctuating sound pressure distribution waveform and integrating the shift amount;
An ultrasonic flow rate measuring method characterized by having.
JP2018029502A 2018-02-22 2018-02-22 Ultrasonic flow measuring device and ultrasonic flow measuring method Active JP6876643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018029502A JP6876643B2 (en) 2018-02-22 2018-02-22 Ultrasonic flow measuring device and ultrasonic flow measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018029502A JP6876643B2 (en) 2018-02-22 2018-02-22 Ultrasonic flow measuring device and ultrasonic flow measuring method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018506644A Division JP6321316B1 (en) 2017-11-14 2017-11-14 Ultrasonic flow measuring device and ultrasonic flow measuring method

Publications (3)

Publication Number Publication Date
JP2019090777A true JP2019090777A (en) 2019-06-13
JP2019090777A5 JP2019090777A5 (en) 2020-12-24
JP6876643B2 JP6876643B2 (en) 2021-05-26

Family

ID=66836272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018029502A Active JP6876643B2 (en) 2018-02-22 2018-02-22 Ultrasonic flow measuring device and ultrasonic flow measuring method

Country Status (1)

Country Link
JP (1) JP6876643B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792273A (en) * 2022-11-02 2023-03-14 清华大学 Method for measuring fluid flow rate, flow measuring device and computer storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161035U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JP2003254987A (en) * 2002-02-27 2003-09-10 Tokyo Gas Co Ltd Capacitance type flow velocity detecting device using temperature fluctuation and capacitance type flow rate detecting device using temperature fluctuation
WO2005031368A2 (en) * 2003-09-26 2005-04-07 Robert Bosch Gmbh Ultrasound flow sensor provided with a transducer array
WO2008004560A1 (en) * 2006-07-04 2008-01-10 Yasushi Takeda Flow velocity measurement device and ultrasonic flow rate meter
JP2017075834A (en) * 2015-10-14 2017-04-20 東京電力ホールディングス株式会社 Flow rate measurement device and flow rate measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161035U (en) * 1983-04-14 1984-10-29 オムロン株式会社 ultrasonic flow meter
JP2003254987A (en) * 2002-02-27 2003-09-10 Tokyo Gas Co Ltd Capacitance type flow velocity detecting device using temperature fluctuation and capacitance type flow rate detecting device using temperature fluctuation
WO2005031368A2 (en) * 2003-09-26 2005-04-07 Robert Bosch Gmbh Ultrasound flow sensor provided with a transducer array
WO2008004560A1 (en) * 2006-07-04 2008-01-10 Yasushi Takeda Flow velocity measurement device and ultrasonic flow rate meter
JP2017075834A (en) * 2015-10-14 2017-04-20 東京電力ホールディングス株式会社 Flow rate measurement device and flow rate measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115792273A (en) * 2022-11-02 2023-03-14 清华大学 Method for measuring fluid flow rate, flow measuring device and computer storage medium
CN115792273B (en) * 2022-11-02 2024-02-23 清华大学 Method for measuring fluid flow rate, flow measuring device and computer storage medium

Also Published As

Publication number Publication date
JP6876643B2 (en) 2021-05-26

Similar Documents

Publication Publication Date Title
CN103542901B (en) A kind of flowmeter
WO2008004560A1 (en) Flow velocity measurement device and ultrasonic flow rate meter
JPH10104039A (en) Measuring apparatus for multichannel flow rate
JP2012509473A (en) Method and apparatus for calibrating a measurement transducer of an ultrasonic flow measurement unit
KR20160029656A (en) Ultrasonic flowmeter and method for measuring flow rate
CN114001804B (en) Calibration method and system of ultrasonic metering device based on time difference method
JP4535065B2 (en) Doppler ultrasonic flow meter
JP2007187506A (en) Ultrasonic flowmeter
CN214583449U (en) High-precision wide-range ultrasonic flow measuring device
JP2006078362A (en) Coaxial-type doppler ultrasonic current meter
JP6876643B2 (en) Ultrasonic flow measuring device and ultrasonic flow measuring method
WO2019097570A1 (en) Ultrasonic flow-rate measurement device and ultrasonic flow-amount measurement method
JP2007051913A (en) Correction method for ultrasonic flowmeter
KR101764870B1 (en) Signal processing system for ultrasonic floemeter
JP2010256075A (en) Flowmeter and method of measuring flow rate
JP2018138891A (en) Ultrasonic flowmeter
CN102967334A (en) System and method for measuring fluid flow through utilizing signal envelope curve processing
AU2015249080A1 (en) Apparatus and a method for providing a time measurement
JP6652840B2 (en) Ultrasonic flow meter
US10571320B2 (en) Flow measurement using ultrasound to detect a time of flight difference using noise measurements
JP6187343B2 (en) Ultrasonic measuring instrument
JP5316795B2 (en) Ultrasonic measuring instrument
JP2005091332A (en) Ultrasonic flowmeter
CN107532933B (en) Method for determining the transit time of an ultrasonic pulse train, in particular in an ultrasonic flow meter, flow meter
JP4561071B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201105

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210426

R150 Certificate of patent or registration of utility model

Ref document number: 6876643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE

Ref document number: 6876643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250