JP2019089178A - 工作機械、形状センサ、及び工作機械を用いた加工方法 - Google Patents

工作機械、形状センサ、及び工作機械を用いた加工方法 Download PDF

Info

Publication number
JP2019089178A
JP2019089178A JP2017220188A JP2017220188A JP2019089178A JP 2019089178 A JP2019089178 A JP 2019089178A JP 2017220188 A JP2017220188 A JP 2017220188A JP 2017220188 A JP2017220188 A JP 2017220188A JP 2019089178 A JP2019089178 A JP 2019089178A
Authority
JP
Japan
Prior art keywords
workpiece
shape
shape sensor
spindle
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017220188A
Other languages
English (en)
Inventor
中野 博之
Hiroyuki Nakano
博之 中野
小西 孝明
Takaaki Konishi
孝明 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2017220188A priority Critical patent/JP2019089178A/ja
Publication of JP2019089178A publication Critical patent/JP2019089178A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Tool Replacement In Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

【課題】多種の工作機械に取付け可能な形状センサを備えた工作機械と、この形状センサと、この工作機械を用いた加工方法を提供する。【解決手段】本発明による工作機械4は、主軸3を備えワーク51を加工する数値制御装置104と、主軸3に取付けられている工具50を交換する自動工具交換装置1と、ワーク51の形状を測定する形状センサ300と、コンピュータ60を備える。形状センサ300は、無線給電で充電されるバッテリ9と、コンピュータ60に無線通信でデータを送信する無線通信機10と、主軸3に取付け可能であり形状センサ300に対して着脱可能な取付け部材7を備える。自動工具交換装置1は、形状センサ300を格納可能であり、形状センサ300を取付け部材7によって主軸3に取付ける。【選択図】図1

Description

本発明は、工作機械、形状センサ、及び工作機械を用いた加工方法に関する。
NC(Numerical Control、数値制御)加工では、ドリルなどに代表される切削用工具の刃先の動作を座標値で定義し、定義した動作の情報(加工動作情報)を基に工作機械に内蔵されたサーボモータが動いて工具やワーク(被加工物)が動作することで、ワークが加工される。切削用工具の加工動作情報は、NC装置(数値制御装置)へ入力する必要があり、この情報を記述したプログラムをNCプログラムと呼ぶ。
蒸気タービンの製造では、蒸気タービンの大出力化に伴う動翼の長翼化により、強度と軽量性を両立するチタン材の利用が増加している。利用されるチタン材は、母材が鍛造材であり、残留応力がどのように存在するかを予測するのは困難である。このため、加工により生じた残留応力が開放されると、ワークの仕上がり形状が所望の形状とならない可能性がある。つまり、NCプログラムに基づいた加工では、ワークの仕上がり形状が所望の形状とならない可能性がある。
そこで、ワークの仕上がり形状が所望の形状となるように、加工の合間にワークの形状をセンサで測定し、測定したワークの形状をNCプログラムにフィードバックしたいというニーズがある。ワークの形状を測定するセンサ(形状センサ)は、工作機械(加工機)に取付けられ、工作機械との仕様の整合(電気的インターフェースと機械的インターフェースの整合)が必須である。しかし、汎用の形状センサがないので、工作機械ごとに形状センサを用意する必要がある。このため、多種の工作機械に取付け可能な汎用の形状センサが求められている。
従来の工作機械においてワークの形状を測定する装置の例として、特許文献1に記載されている形状測定装置がある。特許文献1の形状測定装置は、測定対象の形状を測定した情報に基づいて、測定対象の形状を示す複数の測定座標を生成する測定座標生成部と、測定座標生成部による測定対象の測定時の走査方向に基づいて設定された補間基準線上に位置する複数の測定座標のうち、少なくとも3つの測定座標について、補間基準線上のそれぞれの位置と、測定座標を補間する補間座標を求めるために設定された補間基準線上の位置である補間位置との差に基づいて、補間座標を算出する補間座標算出部とを備える。
特開2014−102243号公報
特許文献1に記載されている形状測定装置は、測定機本体の検出部が投影部と撮像部と光プローブを備えており、光切断方式により測定対象の表面形状を検出する。しかし、この検出部(形状センサ)を他の多種の工作機械に取付けることについては、考慮されていない。このように、従来の技術では、形状センサを多種の工作機械に取付けることについて考慮されておらず、多種の工作機械に取付け可能な汎用の形状センサが存在していなかった。
本発明は、多種の工作機械に取付け可能な形状センサを備えた工作機械と、この形状センサと、この工作機械を用いた加工方法を提供することを目的とする。
本発明による工作機械は、主軸を備えワークを加工する数値制御装置と、前記主軸に取付けられている工具を交換する自動工具交換装置と、前記ワークの形状を測定する形状センサと、コンピュータとを備える。前記形状センサは、無線給電で充電されるバッテリと、前記コンピュータに無線通信でデータを送信する無線通信機と、前記主軸に取付け可能であり前記形状センサに対して着脱可能な取付け部材とを備える。前記自動工具交換装置は、前記形状センサを格納可能であり、前記形状センサを前記取付け部材によって前記主軸に取付けるように構成されている。
本発明によれば、多種の工作機械に取付け可能な形状センサを備えた工作機械と、この形状センサと、この工作機械を用いた加工方法を提供することができる。
本発明の実施例による、自動工具交換装置(ATC)を備える工作機械を示す図である。 ATCマガジン2と給電ステーション6とを示す図である。 本実施例による、工作機械を用いた加工方法のフロー図である。 計測器の構成を示す図である。 レンズによるレーザビームの偏向を示す図である。 レンズのうち、レーザビームが通過する領域だけを切り出したレンズの部分を示す図である。 レンズの部分を用いたレーザポインタの構成を示す図である。 ワークの形状を測定するのに用いる座標系を説明する図である。 ワークとワークの形状を測定している計測器との位置関係を示す模式図である。 レーザビームの出射点とワークの表面でのレーザ輝点との位置関係を示す図である。 ワークの現在の形状と設計形状とが一致する場合に、カメラが撮影したレーザ輝点の画像の例を示す図である。 ワークの現在の形状が設計形状と異なる場合で、ワークの表面の法線方向と主軸の中心軸とが一致している場合に、カメラが撮影したレーザ輝点の画像の例を示す図である。 ワークの現在の形状が設計形状と異なる場合で、ワークの表面の法線方向と主軸の中心軸とが一致していない場合に、カメラが撮影したレーザ輝点の画像の例を示す図である
本発明では、工作機械で加工中のワーク(被加工物)の形状を、加工の合間に形状センサで測定し、測定により求めた形状とCADデータによる形状とを比較し、これらの形状の差が小さくなるようにワークを加工する。本発明で用いる形状センサ(計測器)は、工作機械の主軸へ取付けられ、主軸への取付け部分が工作機械の工具と同じ形状と大きさを持つ。このため、本発明で用いる形状センサは、工具と同様に、工作機械の主軸に取付けることができ、ATC(Automatic Tool Changer、自動工具交換装置)に格納することができる。工作機械の主軸への取付け部分は着脱可能であるため、本発明で用いる形状センサは、取付け部分を交換することにより、工作機械によらず使用することができる。従って、本発明によると、加工中のワークの形状測定と、ワークの高精度な加工とを、低コストで簡便に行うことができる。
本発明による工作機械は、例えば、タービンの動翼の加工に用いることができる。
以下、図1から図12を用いて本発明の実施例を説明する。
図1は、本発明の実施例による工作機械を示す図である。本実施例による工作機械4は、数値制御装置(NC装置)104と、自動工具交換装置(ATC)1と、コンピュータ60を備える。NC装置104は、工具50が取付けられる主軸3を備え、ワーク51を加工する。ATC1は、工具50を格納するATCマガジン2と、主軸3とATCマガジン2との間で工具50を搬送するツールチェンジャー5とを内部に備える。ツールチェンジャー5は、主軸3から取外した工具50をATCマガジン2に格納し、ATCマガジン2から取出した工具50を主軸3に取付けることで、主軸3に取付けられている工具50を交換する。コンピュータ60は、CADデータ101、CAMソフト102、及びNCプログラム103を格納する。CADデータ101は、ワーク51の設計形状(加工により形成すべき形状)を示すデータである。CAMソフト102は、NCプログラム103を生成する。CADデータ101とCAMソフト102は、予めコンピュータ60に格納しておく。
本実施例による工作機械4では、ATCマガジン2に、形状センサ(計測器)300が格納される。計測器300は、ツールチェンジャー5により、ATCマガジン2から主軸3に取付けられ、主軸3からATCマガジン2に戻される。計測器300は、後述するように、バッテリを備え、給電ステーションによりバッテリが充電される。
図2は、ATCマガジン2と給電ステーション6とを示す図である。ATCマガジン2は、上述したように、工具50と計測器300を格納することができる。給電ステーション6は、ATC1の内部でATCマガジン2の近傍に設けられ、給電部6aを備える。
図4は、計測器300の構成を示す図である。計測器300は、NC装置104で加工中のワーク51の形状を測定する形状センサである。計測器300は、バッテリ9と、カメラ8と、無線通信機10と、レーザポインタ(レーザビーム出射部)12a、12b、12cと、レンズ15と、ホルダ(取付け部材)7とを備え、NC装置104の主軸3に取付けられる。
ホルダ7は、計測器300をNC装置104の主軸3に取付けるための部材であり、主軸3に取付けられる工具50の取付部分と同じ形状と大きさを持つ。主軸3に取付けられる工具50は、形状と大きさが規格(例えば、日本ではMAS規格(日本工作機械工業会規格))で定められている。ホルダ7がこの規格で定められたものと同じ形状と大きさを持つことで、計測器300は、ホルダ7によって主軸3に取付けられる。
また、ホルダ7は、計測器300に対して着脱可能であり、NC装置104の主軸3に合わせて交換することができる。従って、工作機械によって主軸3の種類が異なっていても、使用する主軸3に取付けられる工具50と同じ形状と大きさを持つホルダ7を使うことにより、計測器300は、多種の工作機械に取付け可能である。
計測器300は、使用する主軸3に適合するホルダ7が取り付けられた状態で、他の工具50と共にATCマガジン2に格納することができる。
計測器300は、以上説明したような特徴を有するので、多種の工作機械に汎用的に使用することができる。
図2に示すように、計測器300は、ATCマガジン2に格納された後、ATCマガジン2が回転することにより、給電ステーション6の近傍まで移動する。その後、給電ステーション6の給電部6aは、計測器300のバッテリ9に給電可能な距離まで近づき、バッテリ9を充電する。給電部6aは、図2に示していない機構により移動し、無線給電でバッテリ9に電力を供給する。
図4に示した計測器300では、充電されたバッテリ9が、レーザポインタ12a、12b、12c、カメラ8、及び無線通信機10に給電する。レーザポインタ12a、12b、12cは、レーザビーム13a、13b、13cをそれぞれ出射し、ワーク51の形状を測定するためにワーク51の表面を照射する。カメラ8は、レーザポインタ12a〜12cが出射したレーザビーム13a〜13cのワーク51の表面での輝点(レーザ輝点)の画像を撮影する。無線通信機10は、カメラ8が撮影した画像のデータを、コンピュータ60に送信する。
このように、本実施例で用いる計測器300は、無線給電で充電され、無線通信でデータを送信するため、給電と通信のための配線が不要である。
図4に示すように、レーザポインタ12a〜12cのそれぞれから出射されたレーザビーム13a〜13cは、決められた一点(焦点14)で交差させる必要がある(理由は後述する)。このため、レーザビーム13a〜13cを偏向させる必要がある。レーザビーム13a〜13cを偏向させる方法には、レーザポインタ12a〜12cを傾斜させて配置する方法がある。しかし、この方法では、レーザポインタ12a〜12cが計測器300の外部へ張り出す量が大きくなり、計測器300の大型化につながる。そこで、図5Aに示すように、レンズ15を用いて、レーザビーム13a〜13cを偏向させる。
図5Aは、レンズ15によるレーザビーム13a〜13cの偏向を示す図である。図5Aの左図は、レンズ15の光軸に平行な面内でのレーザビーム13a〜13bを示しており、図5Aの右図は、レンズ15の光軸に垂直な面内でのレーザビーム13a〜13cを示している。なお、図5Aの左図では、レーザビーム13cの図示を省略している。
一般に、レンズに入射した平行光は、焦点で集光される性質がある。そこで、レーザポインタ12a〜12cからそれぞれレンズ15の光軸に対して平行にレーザビーム13a〜13cを出射すれば、レーザビーム13a〜13cは、図5Aの左図に示すように、自ずと焦点14で交差する。なお、レーザポインタ12a〜12c(レーザビーム13a〜13c)は、図5Aの右図に示すように、レンズ15の光軸に垂直な面内で、正三角形の頂点となる位置に配置する(理由は後述する)。
図5Bは、レンズ15のうち、レーザポインタ12a〜12cから出射されたレーザビーム13a〜13cが通過する領域だけを切り出したレンズ15の部分を示す図である。図5Aと同様に、図5Bの左図は、レンズ15の光軸に平行な面内でのレーザビーム13a〜13bを示しており、図5Bの右図は、レンズ15の光軸に垂直な面内でのレーザビーム13a〜13cを示している。図5Bに示すように、レンズ15から、レーザビーム13a〜13cがそれぞれ通過する部分16a〜16cを切り出し、部分16a〜16cだけを計測器300に用いれば、計測器300を小型化できる。
図6は、レンズ15の部分16a〜16cを用いたレーザポインタ12a〜12cの構成を示す図である。図6では、代表して、レンズ15の部分16aを用いたレーザポインタ12aの構成を示している。レーザポインタ12b、12cは、それぞれレンズ15の部分16b、16cを備え、レーザポインタ12aと同様の構成を有する。
レーザポインタ12aは、レンズ15の部分16a(レンズ15のレーザビーム13aが通過する部分)、光ファイバ17、コリメータレンズ18、レーザポインタケース19、及び出射窓20を備える。レーザポインタケース19は、レンズ15の部分16aとコリメータレンズ18を収容する。光ファイバ17は、コリメータレンズ18に接続し、出射窓20からレーザビーム13aを出射する。レンズ15の部分16aは、コリメータレンズ18と出射窓20との間に配置され、コリメータレンズ18を通ったレーザビーム13aを偏向させて、出射窓20から出射させる。
図6に示すように、光ファイバ17とコリメータレンズ18を用いると、レーザポインタ12a〜12cを小型化でき、計測器300を小型化できる。コリメータレンズ18としては、例えば屈折率分布レンズなどを用いることができる。
次に、図7から図12を用いて、計測器300(形状センサ)を使用してワーク51の形状を測定する方法について述べる。ワーク51の形状は、ワーク51の表面部の座標を計測することで測定する。
図7は、ワーク51の形状を測定するのに用いる座標系を説明する図である。ワーク51の形状を測定するのに用いる座標系の原点は、機械原点201、主軸原点202、カメラ原点(センサ中心)203、レンズ中心204、及び計測原点205である。
機械原点201は、固定された原点である。主軸原点202は、主軸3の位置を定める原点であり、工作機械内で制御され、常に機械原点201を基準に定められる。カメラ原点203とレンズ中心204は、主軸原点202を基準にして、計測器300のカメラ8とレンズ15の位置を基に定められる原点であり、主軸原点202に対して常に固定されている。すなわち、主軸原点202、カメラ原点203、及びレンズ中心204は、常に一緒に動く。計測原点205は、レーザビーム13a〜13cの交差位置(焦点14)にある原点であり、主軸原点202に対して常に固定されている。
図8は、ワーク51とワーク51の形状を測定している計測器300との位置関係を示す模式図である。計測器300は、ワーク51の表面21の形状を測定する。図8では、計測器300を簡略化して示すとともに、ワーク51の表面21の一部だけを示している。なお、ワーク51の、表面21の形状を測定する位置を「測定ポイント」と呼ぶ。
ワーク51の設計形状(CADデータによる形状)は分かっているので、予め測定ポイント40をワーク51に定めておく。NCプログラムにより、計測器300を、測定ポイント40を測定するための位置に移動させる。このとき、計測器300は、必ず、測定ポイント40におけるワーク51の表面21の法線23の方向と主軸3の中心軸(計測器300の中心軸)の方向とが一致するように配置する。
図10は、ワーク51の現在の形状(加工中の中間形状)と設計形状とが一致する場合に、カメラ8が撮影したワーク51の表面でのレーザ輝点の画像の例を示す図である。ワーク51の現在の形状と設計形状とが一致する場合は、ワーク51の表面での3つのレーザビーム13a〜13cの輝点(レーザ輝点)の位置は、互いに一致する。従って、カメラ8が撮影した画像26として、3つのレーザ輝点が1つに重なったレーザ輝点27が中心に位置する画像が得られる。
しかし、ワーク51の現在の形状が設計形状と異なる場合には、図11又は図12に示すように、ワーク51の表面での3つのレーザ輝点の位置が互いに異なる画像が得られる。後述するが、図11では、3つのレーザ輝点28a〜28cの位置が互いに異なり、図12では、3つのレーザ輝点31a〜31cの位置が互いに異なる。
図9は、レーザビーム13a〜13cの出射点24a〜24cと、ワーク51の表面でのレーザ輝点25a〜25cとの位置関係を示す図である。出射点24a〜24cは、それぞれレーザビーム13a〜13cがレーザポインタ12a〜12cから出射された位置を表し、レーザ輝点25a〜25cは、それぞれレーザビーム13a〜13cのワーク51の表面での輝点である。レーザポインタ12a〜12cは、上述したように、レンズ15の光軸に垂直な面内で、正三角形の頂点となる位置に配置されているので、出射点24a〜24cを直線で結ぶと、正三角形が形成される。レーザビーム13a〜13cが交差する点にワーク51の表面が存在しない場合には、ワーク51の表面では、互いに異なる位置にレーザ輝点25a〜25cが発生する。
図11は、ワーク51の現在の形状が設計形状と異なる場合で、測定ポイント40におけるワーク51の表面21の法線23の方向と主軸3の中心軸の方向とが一致している場合に、カメラ8が撮影したワーク51の表面でのレーザ輝点の画像の例を示す図である。この場合、カメラ8が撮影した画像26では、ワーク51の表面での3つのレーザ輝点28a〜28cを直線で結ぶと、正三角形30が形成される。3つのレーザ輝点28a〜28cの、正三角形30の中心(画像26の中心)からの距離は、互いに等しい。すなわち、レーザ輝点28a〜28cは、正三角形30の中心と正三角形30の各頂点とを結ぶ直線29a〜29c上にあり、正三角形30の中心からの距離が互いに等しい。
図12は、ワーク51の現在の形状が設計形状と異なる場合で、測定ポイント40におけるワーク51の表面21の法線23の方向と主軸3の中心軸の方向とが一致していない場合に、カメラ8が撮影したワーク51の表面でのレーザ輝点の画像の例を示す図である。この場合、カメラ8が撮影した画像26では、ワーク51の表面での3つのレーザ輝点31a〜31cを直線で結ぶと、正三角形でない三角形32が形成される。3つのレーザ輝点31a〜31cの、画像26の中心からの距離は、互いに異なる。すなわち、レーザ輝点31a〜31cは、画像26の中心と三角形32の各頂点とを結ぶ直線29a〜29c上にあり、画像26の中心からの距離が互いに異なる。
従って、画像26上で、3つのレーザ輝点を抽出し、これらの位置関係を求めれば、ワーク51の現在の形状と設計形状とが一致するか否かを知ることができる。ワーク51の現在の形状が設計形状と異なる場合には、ワーク51の現在の形状と設計形状とが一致する場合のレーザ輝点27の位置(画像26の中心)を原点とし、3つのレーザ輝点について、この原点からの距離rと、この原点を通る任意の直線に対する角度θとを求めることができる。これらの距離rと角度θとから、ワーク51の現在の形状を求めることができる。すなわち、画像26上で、レーザ輝点27の位置を原点としたときの3つのレーザ輝点の極座標(r、θ)で表した位置を求めることができ、この位置の座標から測定ポイント40でのワーク51の座標を求めることができる。
図3は、本実施例による、工作機械を用いた加工方法のフロー図である。図3には、本実施例の主要な特徴である、計測器300を用いたワーク51の形状の測定方法のフローを主に示した。ワーク51の少なくとも一部は、NC装置104で既に加工されているものとする。ワーク51の形状は、図3に示したフロー図に従って測定ポイント40でのワーク51の座標を求めることで、測定することができる。なお、形状センサである計測器300は、予めATCマガジン2に格納しておく。
S101では、作業者が、CADデータ101を用いて、測定ポイント40を決め、測定ポイント40におけるワーク51の表面21の法線23の方向を求める。
S102では、コンピュータ60が、CAMソフト102を用いて、計測器300(主軸3)の中心軸の方向が法線23の方向に一致し、かつレーザビーム13a〜13cが交差する点(焦点14)が測定ポイント40と一致する(であろう)位置を求め、求めた位置に焦点14を形成するように計測器300を配置するNCプログラム103を生成する。
S103では、コンピュータ60が、NCプログラム103をNC装置104に転送し、NCプログラム103を実行する。
S104では、コンピュータ60がNCプログラム103を実行し、ワーク51の形状の測定が開始される。
S105では、ATC1が、計測器300をATCマガジン2から搬送してNC装置104の主軸3に取付ける。
S106では、NC装置104が、主軸3に取付けた計測器300を、S102で求めた位置に移動させる。
S107では、コンピュータ60が、主軸3の座標を記録する。主軸3の座標は、任意の座標系で表すことができる。記録された主軸3の座標は、通常は、NCプログラム103で指定された座標と同じである。
S108では、カメラ8が、ワーク51の表面でのレーザビーム13a〜13cの輝点(レーザ輝点)の画像26を撮影する。レーザポインタ12a〜12cは、ワーク51の表面をレーザビーム13a〜13cで照射する。レーザビーム13a〜13cによりワーク51の表面にレーザ輝点ができるので、カメラ8は、このレーザ輝点を含むワーク51の表面の画像26を撮影する。カメラ8が撮影した画像26のデータは、無線通信機10がコンピュータ60に送信する。
S109では、コンピュータ60が、S108で撮影した画像26から、3つのレーザ輝点を抽出する。
S110では、コンピュータ60が、S109で抽出した3つのレーザ輝点の位置が互いに一致しているか否かを判定する。3つのレーザ輝点の位置が互いに一致している場合は、この一致した位置が測定ポイント40の位置と一致しており、ワーク51の現在の形状(加工中の中間形状)が設計形状(CADデータによる形状)と一致している、すなわちワーク51が設計通りに加工されていることを意味する。この場合には、S113に進む。3つのレーザ輝点の位置が互いに一致していない場合は、S111とS112に進む。
S111では、NC装置104が、主軸3を、測定ポイント40におけるワーク51の表面21の法線23の方向に動かす。主軸3を法線23の方向に動かすと、3つのレーザ輝点の位置が、図11と図12に示した直線29a〜29cに沿って移動する。
S112では、S110と同様に、コンピュータ60が、3つのレーザ輝点の位置が互いに一致しているか否かを判定する。
S111とS112とを繰り返し、NC装置104は、3つのレーザ輝点の位置が互いに一致するまで、主軸3を法線23の方向に動かす。3つのレーザ輝点の位置が互いに一致したら、S113に進む。
S113では、S107と同様に、コンピュータ60が、主軸3の座標を記録する。
S114では、S111で主軸3を動かした場合に、コンピュータ60が、主軸3の移動距離を求める。主軸3の移動距離は、S107で記録した主軸3の座標とS113で記録した主軸3の座標とから求めることができる。求めた主軸3の移動距離は、ワーク51の現在の形状と設計形状との差、すなわち、加工により生じたワーク51の変形量を表す。
S115で、ワーク51の形状の測定を終了する。
S116では、ATC1が、計測器300をNC装置104の主軸3からATCマガジン2に戻す。計測器300は、再びATCマガジン2に格納される。
S117では、ATC1が、工具50をATCマガジン2から搬送してNC装置104の主軸3に取付け、NC装置104が、工具50が取付けられた主軸3でワーク51を加工する。NC装置104は、コンピュータ60がNCプログラム103を書き換える(補正する)ことにより、S114で求めたワーク51の形状の差が小さくなるように(ワーク51の形状が設計形状と同じになるように)ワーク51を加工する。なお、S117は、さらにワーク51を加工する必要がある場合に実行する処理である。S114で求めた主軸3の移動距離(ワーク51の現在の形状と設計形状との差)が予め定めた閾値よりも小さい場合には、S117の処理を実行しなくてもよい。
以上説明したように、本実施例の計測器300では、無線通信機10が画像26のデータをコンピュータ60に転送し、無線給電により電力がバッテリ9に供給される。このため、計測器300は、一切、配線を必要としない。すなわち、計測器300は、従来の計測器では必要であった工作機械4との電気的インターフェースの整合性を考慮する必要がない。
また、本実施例の計測器300では、ホルダ7が着脱可能であるので、ホルダ7を工作機械の主軸に合わせて交換することができる。ホルダ7を交換することにより、計測器300は、多種の工作機械に取付け可能であり、汎用的に使用することができる。すなわち、計測器300は、従来の計測器では必要であった工作機械4との機械的インターフェースの整合性を考慮する必要がない。
以上説明したように、本実施例による工作機械では、加工中のワークの形状を、多種の工作機械に汎用的に使用することができる計測器(形状センサ)で測定することが可能である。加工の途中で計測器によりワークの形状を測定し、測定した形状と設計形状との差を小さくするようにNCプログラムを補正して(書き換えて)ワークを加工することを繰り返せば、ワークの仕上がり形状を設計形状通りにすることができ、ワークを高精度に加工することができる。
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
1…自動工具交換装置(ATC)、2…ATCマガジン、3…工作機械の主軸、4…工作機械、5…ツールチェンジャー、6…給電ステーション、6a…給電部、7…ホルダ、8…カメラ、9…バッテリ、10…無線通信機、12a〜12c…レーザポインタ、13a〜13c…レーザビーム、14…レーザビームの焦点、15…レンズ、16a〜16c…レンズのレーザビームが通過する部分、17…光ファイバ、18…コリメータレンズ、19…レーザポインタケース、20…出射窓、21…ワークの表面、23…ワークの表面の法線、24a〜24c…出射点、25a〜25c…レーザ輝点、26…画像、27…1つに重なったレーザ輝点、28a〜28c…レーザ輝点、29a〜29c…直線、30…正三角形、31a〜31c…レーザ輝点、32…三角形、40…測定ポイント、50…工具、51…ワーク、60…コンピュータ、101…CADデータ、102…CAMソフト、103…NCプログラム、104…数値制御装置(NC装置)、201…機械原点、202…主軸原点、203…カメラ原点、204…レンズ中心、205…計測原点、300…計測器。

Claims (8)

  1. 主軸を備えワークを加工する数値制御装置と、
    前記主軸に取付けられている工具を交換する自動工具交換装置と、
    前記ワークの形状を測定する形状センサと、
    コンピュータと、を備え、
    前記形状センサは、無線給電で充電されるバッテリと、前記コンピュータに無線通信でデータを送信する無線通信機と、前記主軸に取付け可能であり前記形状センサに対して着脱可能な取付け部材とを備え、
    前記自動工具交換装置は、前記形状センサを格納可能であり、前記形状センサを前記取付け部材によって前記主軸に取付けるように構成されている、
    ことを特徴とする工作機械。
  2. 前記形状センサは、前記ワークの表面をレーザビームで照射するレーザビーム出射部をさらに備え、
    前記主軸に取付けられた前記形状センサは、前記数値制御装置で加工された前記ワークの表面を前記レーザビームで照射するように構成され、
    前記コンピュータは、加工により形成すべき前記ワークの形状のデータを格納し、前記レーザビームの前記ワークの表面での輝点の位置と、格納した前記ワークの形状のデータとを用いて、加工された前記ワークの形状と格納した前記ワークの形状との差を求めるように構成され、
    前記数値制御装置は、前記差が小さくなるように前記ワークを加工するように構成されている、請求項1に記載の工作機械。
  3. 前記形状センサは、前記レーザビームの前記ワークの表面での輝点の画像を撮影するカメラをさらに備え、前記無線通信機が前記コンピュータに前記カメラが撮影した画像のデータを送信するように構成されている、請求項2に記載の工作機械。
  4. 無線給電で充電されるバッテリと、
    コンピュータに無線通信でデータを送信する無線通信機と、
    着脱可能であり、ワークを加工する数値制御装置の主軸に取付け可能な取付け部材と、を備え、
    前記主軸に取付けられている工具を交換する自動工具交換装置に格納可能であり、前記自動工具交換装置を用いて前記取付け部材によって前記主軸に取付けられ、前記ワークの形状を測定するように構成されている、
    ことを特徴とする形状センサ。
  5. 前記ワークの表面をレーザビームで照射するレーザビーム出射部をさらに備える、請求項4に記載の形状センサ。
  6. 前記レーザビームの前記ワークの表面での輝点の画像を撮影するカメラをさらに備え、
    前記無線通信機は、前記コンピュータに前記カメラが撮影した画像のデータを送信するように構成されている、請求項5に記載の形状センサ。
  7. 主軸を備えワークを加工する数値制御装置と、前記主軸に取付けられている工具を交換する自動工具交換装置と、前記ワークの形状を測定する形状センサと、加工により形成すべき前記ワークの形状のデータを格納するコンピュータとを備えて、
    前記形状センサが、無線給電で充電されるバッテリと、前記コンピュータに無線通信でデータを送信する無線通信機と、前記主軸に取付け可能であり前記形状センサに対して着脱可能な取付け部材と、前記ワークの表面をレーザビームで照射するレーザビーム出射部とを備える、工作機械を用い、
    前記自動工具交換装置が、前記自動工具交換装置に格納されている前記形状センサを前記取付け部材によって前記主軸に取付ける工程と、
    前記主軸に取付けられた前記形状センサが、前記数値制御装置で加工された前記ワークの表面を前記レーザビームで照射する工程と、
    前記コンピュータが、前記レーザビームの前記ワークの表面での輝点の位置と、格納した前記ワークの形状のデータとを用いて、加工された前記ワークの形状と格納した前記ワークの形状との差を求める工程と、
    前記自動工具交換装置が、前記主軸に取付けられた前記形状センサを前記自動工具交換装置に格納し、前記自動工具交換装置に格納されている工具を前記主軸に取付ける工程と、
    前記数値制御装置が、前記差が小さくなるように前記ワークを加工する工程と、
    を備えることを特徴とする加工方法。
  8. 前記形状センサは、カメラをさらに備え、
    前記カメラが、前記レーザビームの前記ワークの表面での輝点の画像を撮影する工程と、
    前記無線通信機が、前記コンピュータに前記カメラが撮影した画像のデータを送信する工程と、をさらに備える請求項7に記載の加工方法。
JP2017220188A 2017-11-15 2017-11-15 工作機械、形状センサ、及び工作機械を用いた加工方法 Pending JP2019089178A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017220188A JP2019089178A (ja) 2017-11-15 2017-11-15 工作機械、形状センサ、及び工作機械を用いた加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017220188A JP2019089178A (ja) 2017-11-15 2017-11-15 工作機械、形状センサ、及び工作機械を用いた加工方法

Publications (1)

Publication Number Publication Date
JP2019089178A true JP2019089178A (ja) 2019-06-13

Family

ID=66835569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017220188A Pending JP2019089178A (ja) 2017-11-15 2017-11-15 工作機械、形状センサ、及び工作機械を用いた加工方法

Country Status (1)

Country Link
JP (1) JP2019089178A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111928776A (zh) * 2020-07-31 2020-11-13 中国航空工业集团公司济南特种结构研究所 基于多传感器的数控机床非接触式在线测量系统与方法
JP2021008011A (ja) * 2019-07-02 2021-01-28 三菱電機株式会社 加工検査装置、加工検査システム、加工検査方法およびプログラム
JP6842591B1 (ja) * 2020-07-07 2021-03-17 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム
JP6887048B1 (ja) * 2020-07-07 2021-06-16 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021008011A (ja) * 2019-07-02 2021-01-28 三菱電機株式会社 加工検査装置、加工検査システム、加工検査方法およびプログラム
JP7292133B2 (ja) 2019-07-02 2023-06-16 三菱電機株式会社 加工検査装置、加工検査システム、加工検査方法およびプログラム
JP6842591B1 (ja) * 2020-07-07 2021-03-17 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム
JP6887048B1 (ja) * 2020-07-07 2021-06-16 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム
JP2022014557A (ja) * 2020-07-07 2022-01-20 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム
JP2022022785A (ja) * 2020-07-07 2022-02-07 Dmg森精機株式会社 工作機械、工作機械の制御方法、および、工作機械の制御プログラム
CN111928776A (zh) * 2020-07-31 2020-11-13 中国航空工业集团公司济南特种结构研究所 基于多传感器的数控机床非接触式在线测量系统与方法

Similar Documents

Publication Publication Date Title
JP2019089178A (ja) 工作機械、形状センサ、及び工作機械を用いた加工方法
CN109070354B (zh) 射束加工机的轴校准
US8805570B2 (en) Workpiece measuring device, collision preventing device, and machine tool
US10502555B2 (en) Laser processing system having measurement function
US9740190B2 (en) Method for programming a three-dimensional workpiece scan path for a metrology system
JP2012213840A (ja) 工作機械
US10281579B2 (en) Method of operating a confocal white light sensor on a coordinate measuring machine
CZ2001583A3 (cs) Kalibrační zaměřovač pro robotizovaný stroj a způsob pouľití zaměřovače
US9751181B2 (en) Distance measurement holder and machine tool having interfering object sensing function
CN105277568A (zh) 用于检测要通过激光加工设备加工的工件的表面数据和/或边界面的测量设备
US20180267505A1 (en) Control system of machine tool
CN114302782A (zh) 装置和设备
CN110953996A (zh) 测量系统以及带有孔的轴的制造方法
US20090065488A1 (en) Laser machining calibration method
CN107363424A (zh) 一种用于激光切割头定位的随动式扫描定位装置及方法
JP2006300817A (ja) 光学式測定器、光学式測定装置及び光学式測定システム
CN109530984A (zh) 视觉定位焊装方法
JP2008070143A (ja) 光学式測定システム
CN113211444B (zh) 一种用于机器人标定的系统及标定方法
EP3549711A1 (en) Core adjustment method
CN110057338B (zh) 一种基于复合测量的工件原点自适应设置方法
JP2008157646A (ja) 光学式測定装置及び加工システム
JP5474104B2 (ja) 変位測定装置、変位測定方法、光学用部材成形用金型の製造方法及び光学用部材
CN112945102B (zh) 一种基于玻璃切割技术的精密平台精度计量与补偿方法
US20220178679A1 (en) Method for calibrating cnc processing apparatus