JP2019087485A - Secondary battery disposal method - Google Patents

Secondary battery disposal method Download PDF

Info

Publication number
JP2019087485A
JP2019087485A JP2017216337A JP2017216337A JP2019087485A JP 2019087485 A JP2019087485 A JP 2019087485A JP 2017216337 A JP2017216337 A JP 2017216337A JP 2017216337 A JP2017216337 A JP 2017216337A JP 2019087485 A JP2019087485 A JP 2019087485A
Authority
JP
Japan
Prior art keywords
battery
secondary battery
internal pressure
characteristic value
secondary batteries
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017216337A
Other languages
Japanese (ja)
Other versions
JP6930386B2 (en
Inventor
伊藤 友一
Yuichi Ito
友一 伊藤
三橋 利彦
Toshihiko Mihashi
利彦 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017216337A priority Critical patent/JP6930386B2/en
Publication of JP2019087485A publication Critical patent/JP2019087485A/en
Application granted granted Critical
Publication of JP6930386B2 publication Critical patent/JP6930386B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

To provide a secondary battery disposal method that can separate a battery pack including secondary batteries with high internal pressure and reuse it.SOLUTION: A secondary battery disposal method according to the present invention is a secondary battery disposal method for reusing a battery pack 1 in which a plurality of secondary batteries 10 are disposed and deformation of the secondary batteries 10 is regulated at least with respect to an arrangement direction. The method includes: a characteristic value determination step S10 for determining whether each of battery characteristic values of the secondary batteries 10 is within a predetermined range; an internal pressure releasing step S50 for releasing internal pressure of the secondary batteries 10 in a state in which deformation of the secondary batteries 10 is regulated; and a separation step S60 of taking out, from the battery pack 1, the secondary batteries 10 about which it is determined that the battery characteristic value is within the predetermined range in the characteristic value determination step S10 and the internal pressure is released in the internal pressure releasing step S50.SELECTED DRAWING: Figure 4

Description

本発明は、二次電池の処理方法に関するものである。   The present invention relates to a method of treating a secondary battery.

複数の二次電池を備えた組電池は、例えば車両を走行させるための動力源として利用されており、古くなったものは交換される。しかし、回収された古い組電池の中にも電池特性が良好な二次電池を備えるものがあり、そのような二次電池を組電池から分離することができれば、二次電池を効率よく再利用することができる。   An assembled battery including a plurality of secondary batteries is used, for example, as a power source for driving a vehicle, and old ones are replaced. However, some of the recovered old assembled batteries also have a secondary battery with good battery characteristics, and if such a secondary battery can be separated from the assembled battery, the secondary battery can be efficiently reused. can do.

一方、二次電池は劣化に伴って内部でガスが発生し、内圧が高くなるため、膨張等の変形を起こし得る。従って、組電池に用いられる二次電池は、配列方向に対する変形が規制されるように配列されることがある。このような組電池においては、分離して再利用したい二次電池が高い内圧を有しているか否か、外観から判断することができない。そのため、組電池の状態では再利用可能だった二次電池が、組電池から分離したことで膨張してしまい、使用不能になってしまうことがあった。   On the other hand, since the secondary battery generates gas inside with the deterioration and the internal pressure becomes high, deformation such as expansion may occur. Therefore, the secondary batteries used in the assembled battery may be arranged such that deformation in the arrangement direction is restricted. In such a battery pack, it can not be judged from the appearance whether a secondary battery to be separated and reused has a high internal pressure. Therefore, the secondary battery, which was reusable in the state of the assembled battery, may expand due to separation from the assembled battery, and may become unusable.

特許文献1には、少なくとも配列方向に対する変形が規制されるように二次電池が配列された組電池を再利用する際の、二次電池の検査方法が開示されている。特許文献1に係る二次電池の検査方法においては、二次電池の変形を防ぐためにかかる加重が閾値以下である場合は各々の二次電池を分離できると判断し、二次電池の変形を防ぐためにかかる加重が閾値を超える場合はそれぞれの二次電池を分離してはいけないと判断する。   Patent Document 1 discloses a method of inspecting a secondary battery when reusing the assembled battery in which the secondary battery is arranged such that deformation at least in the arrangement direction is regulated. In the inspection method of the secondary battery according to Patent Document 1, it is judged that each secondary battery can be separated if the applied weight is equal to or less than the threshold in order to prevent the deformation of the secondary battery, and the deformation of the secondary battery is prevented. It is determined that each secondary battery should not be separated if the weight applied for the purpose exceeds the threshold.

特開2016−131076号公報JP, 2016-131076, A

特許文献1に係る二次電池の検査方法では、内圧が高い二次電池を含む組電池は分離してはいけないと判断するため、内圧が高い二次電池を含む組電池は分離して再利用することができないという問題があった。   In the inspection method of the secondary battery according to Patent Document 1, it is judged that the assembled battery including the secondary battery having a high internal pressure can not be separated, so the assembled battery including the secondary battery having a high internal pressure is separated and reused There was a problem that I could not do it.

本発明は、このような事情に鑑みなされたものであって、内圧が高い二次電池を含む組電池を分離して再利用することができる二次電池の処理方法を提供するものである。   The present invention has been made in view of such circumstances, and provides a method of treating a secondary battery that can separate and reuse an assembled battery including a secondary battery with a high internal pressure.

本発明に係る二次電池の処理方法は、複数の二次電池が配列され、少なくとも配列方向に対する前記二次電池の変形が規制された組電池を再利用するための、二次電池の処理方法であって、前記二次電池の電池特性値が予め定められた範囲内であるか否かを判定する特性値判定ステップと、前記二次電池の変形を規制した状態で前記二次電池の内圧を開放する内圧開放ステップと、前記特性値判定ステップにおいて前記電池特性値が予め定められた範囲内であると判定され、かつ前記内圧開放ステップにおいて前記内圧が開放された前記二次電池を、前記組電池から取り出す分離ステップと、を備えることを特徴としたものである。   A method of treating a secondary battery according to the present invention is a method of treating a secondary battery, in which a plurality of secondary batteries are arranged, and at least a battery pack in which deformation of the secondary battery in the arrangement direction is restricted is reused. A characteristic value determining step of determining whether or not the battery characteristic value of the secondary battery is within a predetermined range; and an internal pressure of the secondary battery in a state in which the deformation of the secondary battery is regulated The secondary battery in which the battery characteristic value is determined to be within a predetermined range in the internal pressure releasing step of releasing the internal pressure and the characteristic value determining step, and the internal pressure is released in the internal pressure releasing step is And a separation step of taking out from the assembled battery.

本発明に係る二次電池の処理方法においては、電池特性が良好な二次電池を、変形を規制した状態で内圧を開放した後に組電池から取り出す。すなわち、再利用可能な電池特性を有しながらも内圧が高い二次電池を含む組電池に対して、該当する二次電池の内圧を開放してから分離する。従って、組電池から分離した後に二次電池が膨張し使用不能になることを抑制できる。
このようにして、本発明に係る二次電池の処理方法においては、内圧が高い二次電池を含む組電池を分離して再利用することができる。
In the method of treating a secondary battery according to the present invention, the secondary battery having good battery characteristics is taken out from the assembled battery after releasing the internal pressure in a state in which deformation is regulated. That is, with respect to the assembled battery including the secondary battery having a high internal pressure while having reusable battery characteristics, the internal pressure of the corresponding secondary battery is released and then separated. Therefore, the secondary battery can be prevented from expanding and becoming unusable after being separated from the assembled battery.
Thus, in the method of treating a secondary battery according to the present invention, a battery pack including a secondary battery with a high internal pressure can be separated and reused.

本発明により、内圧が高い二次電池を組電池から分離して再利用することができる二次電池の処理方法を提供することができる。   According to the present invention, it is possible to provide a method of treating a secondary battery capable of separating and reusing the secondary battery having a high internal pressure from the assembled battery.

本実施形態に係る組電池の上面図である。It is a top view of the assembled battery concerning this embodiment. 本実施形態に係る組電池の正面図である。It is a front view of the assembled battery concerning this embodiment. 本実施形態に係る二次電池の斜視図である。It is a perspective view of the secondary battery concerning this embodiment. 本実施形態に係る二次電池の処理方法のフロー図である。It is a flowchart of the processing method of the secondary battery which concerns on this embodiment. 本実施形態において、二次電池の列全体にかかる荷重を測定する例を示す図である。In this embodiment, it is a figure which shows the example which measures the load concerning the whole row | line | column of a secondary battery. 本実施形態において、内圧開放後の二次電池の電池特性と内圧開放時の外部空間の露点との関係を示すグラフである。In this embodiment, it is a graph which shows the relationship between the battery characteristic of the secondary battery after internal pressure releasing, and the dew point of the external space at the time of internal pressure releasing. 組電池全体の電池特性値を測定するステップを備える場合のフロー図である。It is a flowchart in the case of including the step which measures the battery characteristic value of the whole group battery.

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。ただし、本発明が以下の実施形態に限定される訳ではない。また、説明を明確にするため、以下の記載および図面は、適宜、簡略化されている。   Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. Further, in order to clarify the explanation, the following description and the drawings are simplified as appropriate.

まず、本実施形態に係る組電池1の構成について図1及び図2を用いて説明する。図1は組電池1の上面図であり、図2は組電池1の正面図である。
図1に示すように、組電池1は、二次電池10と、スペーサー20と、エンドプレート30と、拘束バンド40と、バスバー50と、ナット60と、を備える。また、二次電池10は、正極端子11と、負極端子12と、圧力開放部13と、を備える。
組電池1は、例えば自動車の駆動用電源として使用される組電池であり、使用時においては、通常、プラスチック等の絶縁カバーで覆われている。
First, the configuration of the battery assembly 1 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a top view of the battery assembly 1, and FIG. 2 is a front view of the battery assembly 1.
As shown in FIG. 1, the assembled battery 1 includes a secondary battery 10, a spacer 20, an end plate 30, a restraining band 40, a bus bar 50, and a nut 60. In addition, the secondary battery 10 includes a positive electrode terminal 11, a negative electrode terminal 12, and a pressure release portion 13.
The battery assembly 1 is, for example, a battery assembly used as a power supply for driving an automobile, and is usually covered with an insulating cover such as plastic during use.

二次電池10、スペーサー20、及びエンドプレート30は、いずれも矩形の平板形状を有している。図1に示すように、両端に位置する2枚のエンドプレート30の間に、複数の二次電池10とスペーサー20が接しながら交互に配列されている。
スペーサー20は絶縁性を有する板であり、二次電池10同士の絶縁を確保する。スペーサー20は、空気などの冷却用流体が流れるための流路を備えた構造であってもよい。
The secondary battery 10, the spacer 20, and the end plate 30 all have a rectangular flat plate shape. As shown in FIG. 1, a plurality of secondary batteries 10 and spacers 20 are alternately arranged in contact with each other between two end plates 30 positioned at both ends.
The spacer 20 is a plate having an insulating property, and secures insulation between the secondary batteries 10. The spacer 20 may have a structure provided with a flow path for flowing a cooling fluid such as air.

また、図2に示すように、エンドプレート30を挟んで連結するように拘束バンド40が取り付けられている。このような構成にすることで、二次電池10、スペーサー20、及びエンドプレート30が固定され、少なくとも配列方向に対して二次電池10の膨張等の変形が規制される。   Further, as shown in FIG. 2, a restraining band 40 is attached so as to sandwich and connect the end plate 30. With such a configuration, the secondary battery 10, the spacer 20, and the end plate 30 are fixed, and deformation such as expansion of the secondary battery 10 is restricted at least in the arrangement direction.

また、図1に示すように、配列された二次電池10の正極端子11は、金属製のバスバー50を介して隣の二次電池10の負極端子12と電気的に接続されている。バスバー50は、金属製のナット60によって締結される。このようにして、全ての二次電池10は、電気的に接続されている。   Further, as shown in FIG. 1, the positive electrode terminals 11 of the arranged secondary batteries 10 are electrically connected to the negative electrode terminals 12 of the adjacent secondary battery 10 through the metal bus bars 50. The bus bar 50 is fastened by a metal nut 60. Thus, all the secondary batteries 10 are electrically connected.

ここで、図3を用いて、圧力開放部13の詳細な構成について説明する。図3は、二次電池10の斜視図である。図3に示すように、圧力開放部13は、二次電池10のケース上部に設けられた圧力開放穴131と、Oリング132と、ボルト133と、を備える。   Here, the detailed structure of the pressure release part 13 is demonstrated using FIG. FIG. 3 is a perspective view of the secondary battery 10. As shown in FIG. 3, the pressure release unit 13 includes a pressure release hole 131 provided in the upper portion of the case of the secondary battery 10, an O-ring 132, and a bolt 133.

圧力開放穴131は、二次電池10の外部空間と内部空間とを連通する穴であって、二次電池10の使用時においては、通常、Oリング132を介してボルト133を締結することによって塞がれている。すなわち、二次電池10は密閉されている。
二次電池10の使用を続けると、劣化に伴って二次電池10のケース内にガスが溜まり、二次電池10の内部空間が陽圧の状態になる。この状態でボルト133を緩めると、圧力開放穴131からケース内のガスが外部空間に排出され、二次電池10の内圧が開放される。二次電池10の内圧を開放した後でボルト133を締め直せば、二次電池10を再び使用することができる。
The pressure release hole 131 is a hole communicating the external space of the secondary battery 10 with the internal space, and when the secondary battery 10 is used, the bolt 133 is usually fastened via the O-ring 132. It is blocked. That is, the secondary battery 10 is sealed.
When the use of the secondary battery 10 is continued, gas is accumulated in the case of the secondary battery 10 as it is deteriorated, and the internal space of the secondary battery 10 becomes in a positive pressure state. In this state, when the bolt 133 is loosened, the gas in the case is discharged from the pressure release hole 131 to the external space, and the internal pressure of the secondary battery 10 is released. If the internal pressure of the secondary battery 10 is released and the bolt 133 is tightened, the secondary battery 10 can be used again.

次に、図4のフロー図を用いて、本実施形態に係る二次電池の処理方法を説明する。本実施形態に係る二次電池の処理方法は、回収された使用済みの組電池1に対して、各二次電池10を再利用するための処理方法である。   Next, the processing method of the secondary battery according to the present embodiment will be described using the flowchart of FIG. 4. The processing method of the secondary battery according to the present embodiment is a processing method for reusing each secondary battery 10 with respect to the collected used battery pack 1.

まず、ステップS10(特性値測定ステップ)において、組電池1を構成する個々の二次電池10の電池特性値を測定する。本実施形態では、電池特性値として、電池容量値と内部抵抗値とを測定する。   First, in step S10 (characteristic value measurement step), the battery characteristic values of the individual secondary batteries 10 constituting the assembled battery 1 are measured. In the present embodiment, a battery capacity value and an internal resistance value are measured as the battery characteristic value.

二次電池10の電池容量値は、公知の方法により測定することができる。具体的には、例えば、二次電池10を電気容量いっぱいに充電した後、一定の電流値で完全に放電させる。このときに放電させた電流の時間積算値を、二次電池10の電池容量値として測定することができる。   The battery capacity value of the secondary battery 10 can be measured by a known method. Specifically, for example, after charging the secondary battery 10 to full capacity, it is completely discharged at a constant current value. The time integration value of the current discharged at this time can be measured as the battery capacity value of the secondary battery 10.

また、二次電池10の内部抵抗値も、公知の方法により測定することができる。具体的には、例えば、一定の電気量になるまで充電した二次電池10を、25℃の定温環境下で、1Cの一定電流値で10秒間放電を行い、放電終了時の電池電圧値を測定し、再び二次電池10を放電前の電気量になるまで充電する。この充放電サイクルを、電流値を3C、5C、10Cと変化させながら繰り返し、それぞれの放電電流値による放電終了時の電池電圧値を測定する。その後、横軸を放電電流値、縦軸を放電終了時の電池電圧値とした座標平面に、上記の放電により得られたデータをプロットする。そして、これらのプロットデータに基づいて、最小二乗法により近似直線を算出し、その傾きを二次電池10の内部抵抗値として得ることができる。   In addition, the internal resistance value of the secondary battery 10 can also be measured by a known method. Specifically, for example, the secondary battery 10 charged to a certain amount of electricity is discharged at a constant current value of 1 C for 10 seconds in a constant temperature environment of 25 ° C., and the battery voltage value at the end of the discharge is The secondary battery 10 is measured and charged again to the amount of electricity before discharging. This charge and discharge cycle is repeated while changing the current value to 3 C, 5 C, and 10 C, and the battery voltage value at the end of the discharge is measured according to each discharge current value. Thereafter, the data obtained by the above discharge is plotted on a coordinate plane in which the horizontal axis is the discharge current value and the vertical axis is the battery voltage value at the end of the discharge. Then, based on these plot data, an approximate straight line can be calculated by the least squares method, and the slope thereof can be obtained as the internal resistance value of the secondary battery 10.

次に、図4に示すように、ステップS20(特性値判定ステップ)に進み、組電池1を構成する各々の二次電池10について、ステップS10(特性値測定ステップ)で測定された電池特性値が、予め定められた許容範囲内であるか否かを判定する。
組電池1に含まれる二次電池10のうち、1つでも電池特性値が許容範囲内であった場合は、分離して再利用できる二次電池10が存在すると判断し、ステップS30(内圧測定ステップ)に進む。一方、組電池1に含まれる全ての二次電池10が許容範囲から外れていた場合は、再利用可能な二次電池10が存在しないと判断し、ステップS65(廃棄ステップ)に進む。ステップS65に進んだ場合は、組電池1を廃棄して処理を終了する。
Next, as shown in FIG. 4, the process proceeds to step S20 (characteristic value determination step), and the battery characteristic value measured in step S10 (characteristic value measurement step) for each of the secondary batteries 10 constituting the assembled battery 1 Is determined to be within a predetermined tolerance.
If at least one of the secondary batteries 10 included in the assembled battery 1 has a battery characteristic value within the allowable range, it is determined that there is a secondary battery 10 that can be separated and reused, and step S30 (internal pressure measurement Go to step). On the other hand, when all the secondary batteries 10 included in the assembled battery 1 are out of the allowable range, it is determined that there is no reusable secondary battery 10, and the process proceeds to step S65 (discarding step). If the process proceeds to step S65, the battery pack 1 is discarded and the process is ended.

ステップS30(荷重測定ステップ)では、組電池1に含まれる二次電池10の列全体にかかる、列方向の荷重を測定する。二次電池10の列全体にかかる荷重は、公知の荷重測定器で測定することができる。図5は、公知の荷重測定器で二次電池10の列全体にかかる荷重を測定するときの状態を示す。図5の例で示した荷重測定器は、2つの測定プレート70を備える。   In step S30 (load measurement step), the load in the column direction applied to the entire row of the secondary batteries 10 included in the battery assembly 1 is measured. The load applied to the entire row of secondary batteries 10 can be measured by a known load measuring device. FIG. 5 shows a state in which a load applied to the entire row of secondary batteries 10 is measured by a known load measuring device. The load measuring device shown in the example of FIG. 5 comprises two measuring plates 70.

まず、組電池1のエンドプレート30の外側面に対し、荷重測定器の測定プレート70を隙間無く接触させて固定する。測定プレート70を固定した状態で、組電池1の拘束バンド40を全て取り外すと、測定プレート70の内側面に、二次電池10の列全体に加えられていた荷重の反力がかかる。荷重測定器は、測定プレート70の内側面を外側に押圧する荷重を測定できるように構成されているため、組電池1における圧縮荷重の反力を測定することができる。この測定値を二次電池10の列全体にかかる荷重とみなすことで、二次電池10の列全体にかかる荷重を測定することができる。   First, the measuring plate 70 of the load measuring device is brought into contact with and fixed to the outer surface of the end plate 30 of the battery assembly 1 without a gap. When all the restraint bands 40 of the battery assembly 1 are removed with the measurement plate 70 fixed, the reaction force of the load applied to the entire row of the secondary batteries 10 is applied to the inner side of the measurement plate 70. The load measuring device is configured to be able to measure the load that presses the inner side surface of the measurement plate 70 outward, so that the reaction force of the compressive load in the battery assembly 1 can be measured. By regarding this measured value as the load applied to the entire row of the secondary batteries 10, the load applied to the entire row of the secondary batteries 10 can be measured.

次に、図4に示すように、ステップS40(荷重判定ステップ)に進み、二次電池10の列全体にかかる荷重が、予め定められた閾値以下であるか否かを判定する。二次電池10の列全体にかかる荷重が閾値を超えていた場合は、分離して再利用したい二次電池10の内圧が高い可能性があるため、ステップS50(内圧開放ステップ)に進む。一方、二次電池10の列全体にかかる荷重が閾値以下である場合は、各二次電池10の内圧が十分に低く、分離しても膨張等の変形を起こさないと判断して、ステップS60(分離ステップ)へと進む。   Next, as shown in FIG. 4, the process proceeds to step S40 (load determination step), and it is determined whether or not the load applied to the entire row of the secondary battery 10 is equal to or less than a predetermined threshold. If the load applied to the entire row of the secondary battery 10 exceeds the threshold value, the internal pressure of the secondary battery 10 to be separated and reused may be high, so the process proceeds to step S50 (internal pressure release step). On the other hand, when the load applied to the entire row of the secondary battery 10 is equal to or less than the threshold value, it is determined that the internal pressure of each secondary battery 10 is sufficiently low and that no separation such as expansion occurs even if separated; Proceed to (Separation step).

ステップS50(内圧開放ステップ)では、分離して再利用したい二次電池10の内圧を、二次電池10の変形を規制した状態で開放する。具体的には、図5に示すように、測定プレート70を組電池1のエンドプレート30の外側面に対して固定した状態で、分離して再利用したい二次電池10のボルト133を緩める。このようにすることで、二次電池10の形状を保持したまま、二次電池10の内圧を開放することができる。二次電池10の内圧が外気圧とほぼ等しくなるまで二次電池10内のガスを排出した後、再び二次電池10のボルト133を締結し、ステップS60(分離ステップ)へと進む。   In step S50 (internal pressure release step), the internal pressure of the secondary battery 10 to be separated and reused is released in a state in which the deformation of the secondary battery 10 is restricted. Specifically, as shown in FIG. 5, with the measurement plate 70 fixed to the outer surface of the end plate 30 of the assembled battery 1, the bolt 133 of the secondary battery 10 to be separated and reused is loosened. By doing so, the internal pressure of the secondary battery 10 can be released while maintaining the shape of the secondary battery 10. After discharging the gas in the secondary battery 10 until the internal pressure of the secondary battery 10 becomes almost equal to the external pressure, the bolt 133 of the secondary battery 10 is tightened again, and the process proceeds to step S60 (separation step).

ステップS60(分離ステップ)では、分離して再利用したい二次電池10を組電池1から分離し、処理を終了する。分離された二次電池10は、単独の形で再利用してもよいし、他の二次電池10と新たな組電池を形成して再利用してもよい。
なお、回収した二次電池10を複数組み合わせて新たな組電池を形成する場合は、一部の二次電池10だけが偏って劣化しないように考慮して組み合わせるとよい。例えば、使用環境によっては、組電池に含まれる二次電池のうち、外側のものが中央のものに比べて早く劣化するような場合がある。このような場合は、電池特性値の良好な二次電池10を外側に配置し、電池特性値が比較的低い二次電池10を内側に配置するようにして組電池を形成すると、劣化しても二次電池10同士の性能差が生じにくく、長持ちさせることができる。
In step S60 (separation step), the secondary battery 10 desired to be separated and reused is separated from the assembled battery 1, and the process is ended. The separated secondary battery 10 may be reused in a single form, or may be reused by forming a new battery pack with another secondary battery 10.
In the case where a plurality of collected secondary batteries 10 are combined to form a new assembled battery, it is preferable to combine in consideration that only a part of the secondary batteries 10 do not deteriorate biased. For example, depending on the use environment, there are cases where the outer battery among the secondary batteries included in the assembled battery is deteriorated more quickly than the central battery. In such a case, when the battery pack is formed such that the secondary battery 10 having good battery characteristic values is disposed on the outside and the secondary battery 10 having relatively low battery characteristic values is disposed on the inside, deterioration occurs. Also, the performance difference between the secondary batteries 10 is less likely to occur, and can be made to last longer.

なお、上記実施形態のステップS50(内圧開放ステップ)において内圧を開放するときの外部空間の環境は、内圧開放後における二次電池10の電池特性と相関する。図6は、内圧開放後の二次電池10の電池特性と内圧開放時の外部空間の露点との関係を示すグラフである。   The environment of the external space when releasing the internal pressure in step S50 (internal pressure releasing step) of the above-described embodiment correlates with the battery characteristics of the secondary battery 10 after the internal pressure is released. FIG. 6 is a graph showing the relationship between the battery characteristics of the secondary battery 10 after internal pressure release and the dew point of the external space at internal pressure release.

図6の縦軸は、内圧を開放した直後の二次電池10の電池容量を100%とし、そこから満充電と完全放電のサイクルを200回行った後の電池容量を示している。縦軸の値が高いほど、二次電池10の電池特性が良好であるといえる。図6の横軸は、内圧を開放するときの外部空間の露点を示している。   The vertical axis in FIG. 6 shows the battery capacity after the battery capacity of the secondary battery 10 immediately after releasing the internal pressure is 100%, and after 200 cycles of full charge and full discharge from this. It can be said that the battery characteristic of the secondary battery 10 is better as the value on the vertical axis is higher. The horizontal axis in FIG. 6 indicates the dew point of the external space when releasing the internal pressure.

図6に示すように、内圧を開放したときの外部空間の露点が低いほど、二次電池10の電池特性が良好であることが分かる。すなわち、内圧開放時の外部空間の露点は、0℃以下であると好ましく、−30℃以下であるとより好ましく、−60℃以下であると更により好ましいといえる。
これは、特に0℃以下の露点環境においては水蒸気圧が低いため、二次電池10のボルト133を緩めた際に外部空間から二次電池10の内部へ流入する水蒸気の量が減り、水蒸気による電解液の分解や電極の腐食が抑制されたからであると考えられる。
As shown in FIG. 6, it is understood that the battery characteristics of the secondary battery 10 are better as the dew point of the external space is lower when the internal pressure is released. That is, the dew point of the external space at the time of internal pressure release is preferably 0 ° C. or less, more preferably −30 ° C. or less, and still more preferably −60 ° C. or less.
This is because the water vapor pressure is low particularly in a dew point environment of 0 ° C. or less, so when the bolt 133 of the secondary battery 10 is loosened, the amount of water vapor flowing from the external space into the interior of the secondary battery 10 decreases. It is considered that the decomposition of the electrolyte and the corrosion of the electrode were suppressed.

また、乾燥空気や不活性ガスの雰囲気下で二次電池10の内圧を開放しても、二次電池10の内部に水蒸気が流入するのを抑制することができる。従って、二次電池10の内圧を開放する操作は乾燥空気や不活性ガスの雰囲気下で行うと好ましい。   In addition, even if the internal pressure of the secondary battery 10 is released in an atmosphere of dry air or an inert gas, the flow of water vapor into the secondary battery 10 can be suppressed. Therefore, the operation of releasing the internal pressure of the secondary battery 10 is preferably performed in an atmosphere of dry air or an inert gas.

以上で説明したように、本実施形態に係る二次電池の処理方法では、再利用可能な電池特性と高い内圧を有する二次電池10に対して、二次電池10の内圧を開放した後に分離する。このため、分離後の二次電池10の膨張を抑制でき、再利用することができる。   As described above, in the method of processing a secondary battery according to the present embodiment, separation is performed after releasing the internal pressure of the secondary battery 10 to the secondary battery 10 having reusable battery characteristics and a high internal pressure. Do. For this reason, expansion of the secondary battery 10 after separation can be suppressed, and can be reused.

なお、本発明は上記の実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。   In addition, this invention is not limited to said embodiment, It is possible to change suitably in the range which does not deviate from the meaning.

例えば、上記の実施形態においては、初めにステップS10において個々の二次電池10の電池特性値を測定したが、他の実施形態として、図7に示すように、ステップS10の前にステップS01(組電池特性測定ステップ)とステップS02(組電池特性判定ステップ)とを備えてもよい。   For example, in the above embodiment, the battery characteristic value of each secondary battery 10 was first measured in step S10, but as another embodiment, as shown in FIG. 7, step S01 (step S01) An assembled battery characteristic measuring step) and a step S 02 (assembled battery characteristic determination step) may be provided.

ステップS01(組電池特性測定ステップ)では、組電池1全体が有する電池特性値を測定する。具体的には、組電池1の備える外部端子を用いて電池容量や内部抵抗値等を測定する。
その後、ステップS02(組電池特性判定ステップ)において、組電池1の電池特性値が予め定められた許容範囲内であった場合は、ステップS10(特性値測定ステップ)に進み、組電池1の全体としての電池特性値が予め定められた許容範囲から外れていた場合は、ステップS65(廃棄ステップ)に進む。
In step S01 (assembled battery characteristic measurement step), the battery characteristic value of the entire assembled battery 1 is measured. Specifically, the battery capacity, the internal resistance value, and the like are measured using the external terminal provided in the battery pack 1.
Thereafter, when the battery characteristic value of the assembled battery 1 is within the predetermined allowable range in step S02 (the assembled battery characteristic determining step), the process proceeds to step S10 (the characteristic value measuring step). If the battery characteristic value as D is out of the predetermined allowable range, the process proceeds to step S65 (discarding step).

このようにステップS01、ステップS02を備えた場合は、組電池1の備える二次電池10の電池特性値を一つずつ検査しなくても、廃棄されるべき組電池1を選別することができるため、電池特性値を測定するための効率を上げることができる。   As described above, when step S01 and step S02 are provided, the assembled battery 1 to be discarded can be sorted out without checking the battery characteristic values of the secondary battery 10 provided in the assembled battery 1 one by one. Therefore, the efficiency for measuring the battery characteristic value can be increased.

また、上記の実施形態では、ステップS30(荷重測定ステップ)及びステップS40(荷重判定ステップ)を備えた二次電池の処理方法を説明したが、他の実施形態において、これらを省略してもよい。すなわち、ステップS20(特性値判定ステップ)で二次電池10の電池特性値を判定した後、直接ステップS50(内圧開放ステップ)に進み、分離して再利用したい二次電池10の内圧を開放してもよい。   Moreover, although said embodiment demonstrated the processing method of the secondary battery provided with step S30 (load measurement step) and step S40 (load determination step), these may be abbreviate | omitted in other embodiment. . That is, after the battery characteristic value of the secondary battery 10 is determined in step S20 (characteristic value determination step), the process directly proceeds to step S50 (internal pressure release step) to release the internal pressure of the secondary battery 10 to be separated and reused. May be

このようにステップS30、ステップS40を省略した場合は、荷重測定器が無い場合であっても、本発明に係る二次電池の処理方法を適用することができる。
また、例えば、固定された複数の枠内に1つずつ二次電池を組み込んだ組電池のような、二次電池の内圧を測定することが構造上難しい組電池に対しても、本発明に係る二次電池の処理方法を適用することができる。
Thus, when step S30 and step S40 are omitted, the method of processing a secondary battery according to the present invention can be applied even if there is no load measuring device.
Further, the present invention is also applicable to a battery assembly in which it is difficult to measure the internal pressure of the secondary battery, such as a battery assembly in which the secondary battery is incorporated one by one in a plurality of fixed frames. The method of treating the secondary battery can be applied.

また、上記の実施形態においては、初めに二次電池10の電池特性値を測定し、その後、電池特性値が許容範囲内の二次電池10の内圧を開放する方法を説明した。この場合、二次電池10の内圧を開放する操作を最小限の回数に抑えることができる。
一方、他の実施形態として、初めに二次電池10の内圧を開放し、その後で二次電池10の電池特性値を測定してもよい。この場合、二次電池10の内圧を開放してから各種操作を行うため、安全な状態で二次電池10を扱うことができる。
In the above embodiment, the method for measuring the battery characteristic value of the secondary battery 10 and then releasing the internal pressure of the secondary battery 10 within the allowable range was described. In this case, the operation of releasing the internal pressure of the secondary battery 10 can be minimized.
On the other hand, as another embodiment, the internal pressure of the secondary battery 10 may be released first, and then the battery characteristic value of the secondary battery 10 may be measured. In this case, since various operations are performed after releasing the internal pressure of the secondary battery 10, the secondary battery 10 can be handled in a safe state.

以上のように、本発明に係る二次電池の処理方法は、内圧が高い二次電池を含む組電池を分離して再利用することができる。   As described above, the method of treating a secondary battery according to the present invention can separate and reuse an assembled battery including a secondary battery having a high internal pressure.

1 組電池
10 二次電池
11 正極端子
12 負極端子
13 圧力開放部
20 スペーサー
30 エンドプレート
40 拘束バンド
50 バスバー
60 ナット
70 測定プレート
131 圧力開放穴
132 Oリング
133 ボルト
DESCRIPTION OF SYMBOLS 1 assembled battery 10 secondary battery 11 positive electrode terminal 12 negative electrode terminal 13 pressure relief part 20 spacer 30 end plate 40 restraint band 50 bus bar 60 nut 70 measurement plate 131 pressure release hole 132 O ring 133 bolt

Claims (1)

複数の二次電池が配列され、少なくとも配列方向に対する前記二次電池の変形が規制された組電池を再利用するための、二次電池の処理方法であって、
前記二次電池の電池特性値が予め定められた範囲内であるか否かを判定する特性値判定ステップと、
前記二次電池の変形を規制した状態で前記二次電池の内圧を開放する内圧開放ステップと、
前記特性値判定ステップにおいて前記電池特性値が予め定められた範囲内であると判定され、かつ前記内圧開放ステップにおいて前記内圧が開放された前記二次電池を、前記組電池から取り出す分離ステップと、を備える、
二次電池の処理方法。
What is claimed is: 1. A method of processing a secondary battery, comprising: arranging a plurality of secondary batteries; and reusing a battery pack in which the deformation of the secondary battery is restricted at least in the arrangement direction,
A characteristic value determining step of determining whether the battery characteristic value of the secondary battery is within a predetermined range;
An internal pressure releasing step of releasing the internal pressure of the secondary battery in a state where the deformation of the secondary battery is regulated;
A separation step in which the battery characteristic value is determined to be within a predetermined range in the characteristic value determination step, and the secondary battery whose internal pressure is released in the internal pressure release step is taken out from the assembled battery; Equipped with
Processing method of secondary battery.
JP2017216337A 2017-11-09 2017-11-09 How to handle the secondary battery Active JP6930386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216337A JP6930386B2 (en) 2017-11-09 2017-11-09 How to handle the secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216337A JP6930386B2 (en) 2017-11-09 2017-11-09 How to handle the secondary battery

Publications (2)

Publication Number Publication Date
JP2019087485A true JP2019087485A (en) 2019-06-06
JP6930386B2 JP6930386B2 (en) 2021-09-01

Family

ID=66763333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216337A Active JP6930386B2 (en) 2017-11-09 2017-11-09 How to handle the secondary battery

Country Status (1)

Country Link
JP (1) JP6930386B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273139A (en) * 2003-03-05 2004-09-30 Canon Inc Lithium secondary battery
US20100300601A1 (en) * 2009-05-29 2010-12-02 Panasonic Ev Energy Co., Ltd. Separation method of secondary battery
JP2011100634A (en) * 2009-11-06 2011-05-19 Sharp Corp Nonaqueous electrolyte secondary battery with nonaqueous electrolyte injection function, and nonaqueous electrolyte secondary battery and nonaqueous electrolyte injector used for this
JP2012138295A (en) * 2010-12-27 2012-07-19 Primearth Ev Energy Co Ltd Secondary battery and method for reusing secondary battery
JP2016131076A (en) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 Inspection method for secondary battery
JP2017117636A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Processing method for recycling secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273139A (en) * 2003-03-05 2004-09-30 Canon Inc Lithium secondary battery
US20100300601A1 (en) * 2009-05-29 2010-12-02 Panasonic Ev Energy Co., Ltd. Separation method of secondary battery
JP2010277873A (en) * 2009-05-29 2010-12-09 Primearth Ev Energy Co Ltd Sorting method of secondary battery
JP2011100634A (en) * 2009-11-06 2011-05-19 Sharp Corp Nonaqueous electrolyte secondary battery with nonaqueous electrolyte injection function, and nonaqueous electrolyte secondary battery and nonaqueous electrolyte injector used for this
JP2012138295A (en) * 2010-12-27 2012-07-19 Primearth Ev Energy Co Ltd Secondary battery and method for reusing secondary battery
JP2016131076A (en) * 2015-01-13 2016-07-21 トヨタ自動車株式会社 Inspection method for secondary battery
JP2017117636A (en) * 2015-12-24 2017-06-29 トヨタ自動車株式会社 Processing method for recycling secondary battery

Also Published As

Publication number Publication date
JP6930386B2 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
CN108140777B (en) Battery module and battery pack including the same
JP5270454B2 (en) Secondary battery sorting method
US7507498B2 (en) Secondary battery module having piezo sensor
EP3285310B1 (en) Assembled battery
US9166248B2 (en) Manufacturing method of battery pack
US20180040926A1 (en) Indirect battery pressure measurement
JP6485346B2 (en) Processing method for reusing secondary batteries
JP5852087B2 (en) Method for selecting used secondary battery and method for manufacturing assembled battery
CN107799837B (en) Recovery method and reuse method for secondary battery
US11695161B2 (en) Battery cell having structure for prevention of swelling
JP6225924B2 (en) Secondary battery inspection method
JP7293599B2 (en) How to reuse secondary batteries
JP6810886B2 (en) Batteries
JP5765258B2 (en) Secondary battery control device and control method
US20200136108A1 (en) Energy storage apparatus
JP6762895B2 (en) Lead-acid battery
JP2019087485A (en) Secondary battery disposal method
JP7192323B2 (en) Method for reusing secondary battery, management device, and computer program
JP6323311B2 (en) In-vehicle secondary battery capacity estimation device
JP6982783B2 (en) How to inspect the battery stack
JP7061259B2 (en) How to recover the capacity of the secondary battery cell
JP2022000841A (en) Inspection method of secondary battery
JP2016072198A (en) Battery pack
JP2021071321A (en) Soc estimating device, power storage device, and soc estimating method
US20230282898A1 (en) Method for determining mechanical stresses in a traction energy store

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210726

R151 Written notification of patent or utility model registration

Ref document number: 6930386

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151