JP6810886B2 - Batteries - Google Patents

Batteries Download PDF

Info

Publication number
JP6810886B2
JP6810886B2 JP2016199268A JP2016199268A JP6810886B2 JP 6810886 B2 JP6810886 B2 JP 6810886B2 JP 2016199268 A JP2016199268 A JP 2016199268A JP 2016199268 A JP2016199268 A JP 2016199268A JP 6810886 B2 JP6810886 B2 JP 6810886B2
Authority
JP
Japan
Prior art keywords
cell
cells
spacer
side wall
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016199268A
Other languages
Japanese (ja)
Other versions
JP2018060755A (en
Inventor
響子 菊池
響子 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016199268A priority Critical patent/JP6810886B2/en
Publication of JP2018060755A publication Critical patent/JP2018060755A/en
Application granted granted Critical
Publication of JP6810886B2 publication Critical patent/JP6810886B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、組電池に関する。詳しくは、二次電池を単電池とし、当該単電池を複数接続してなる組電池に関する。 The present invention relates to an assembled battery. More specifically, the present invention relates to an assembled battery in which a secondary battery is a single battery and a plurality of the single batteries are connected.

リチウムイオン二次電池、ニッケル水素電池その他の二次電池あるいはキャパシタ等の蓄電素子を単電池とし、当該単電池を直列または並列に複数接続した組電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。かかる組電池を構成する各々の単電池は、一般に、角形の電池ケース内に電極体と電解液とを収容することによって形成されている。 Lithium-ion secondary batteries, nickel-hydrogen batteries and other secondary batteries or storage elements such as capacitors are used as single batteries, and assembled batteries in which multiple such single batteries are connected in series or in parallel are power supplies for vehicles, personal computers, mobile terminals, etc. It is becoming more important as a power source for batteries. Each cell constituting such an assembled battery is generally formed by accommodating an electrode body and an electrolytic solution in a square battery case.

例えば、特許文献1には、一方向に並んで配置された複数の単電池と、隣り合う単電池の間に配置された板状のスペーサとを有し、隣り合う単電池同士が互いに近づく方向に力を受けて拘束されている電池パック(組電池)が開示されている。そして、特許文献1に記載の組電池のスペーサは、一方の面に整列して配置された複数の突起を有し、他方の面には電池対向面と平行なスペーサ平面部を有している。また、配列された単電池の間にスペーサを配置するその他の技術が特許文献2、3に開示されている。 For example, Patent Document 1 has a plurality of cells arranged side by side in one direction and a plate-shaped spacer arranged between adjacent cells, and the directions in which adjacent cells approach each other. A battery pack (battery assembly) that is restrained by the force of the battery is disclosed. The spacer of the assembled battery described in Patent Document 1 has a plurality of protrusions arranged aligned on one surface, and has a spacer flat surface portion parallel to the battery facing surface on the other surface. .. Further, other techniques for arranging spacers between arranged cells are disclosed in Patent Documents 2 and 3.

特開2014−238924号公報Japanese Unexamined Patent Publication No. 2014-238924 特開2012−230837号公報Japanese Unexamined Patent Publication No. 2012-230837 特開2016−4724号公報Japanese Unexamined Patent Publication No. 2016-4724

しかしながら、上記した組電池では、高い電流値で充放電を繰り返すと、単電池内の電解液に偏りが生じて、電極体の内部に浸透していた電解液が排出されることがある。
具体的には、高い電流値で電池の充放電を繰り返すと、電池ケース内の電極体や電解液が膨張することがある。しかし、組電池の場合には、各々の単電池が所定の圧力で拘束されているため、電池ケース内部の電極体や電解液の膨張が規制され、膨張しようとする電極体によって、電極体の内部に浸透していた電解液が電極体の外部に押し出されて排出される。
そして、電池ケース内では、重力によって電解液が電池ケースの下側に偏在しているため、かかる電極体の膨張による電解液の排出は、各々の単電池の下部において生じ易く、排出された電解液が電極体の内部に再び浸透しにくい。このため、電極体の内部で電解液が不足する部分が生じて、充放電反応のムラによる電池抵抗の上昇が発生し、ハイレート特性の低下の原因となる。
However, in the above-mentioned assembled battery, when charging and discharging are repeated at a high current value, the electrolytic solution in the cell may be biased and the electrolytic solution that has permeated into the electrode body may be discharged.
Specifically, when the battery is repeatedly charged and discharged at a high current value, the electrode body and the electrolytic solution in the battery case may expand. However, in the case of an assembled battery, since each cell is restrained by a predetermined pressure, the expansion of the electrode body and the electrolytic solution inside the battery case is restricted, and the electrode body to expand depends on the electrode body. The electrolytic solution that has permeated the inside is pushed out to the outside of the electrode body and discharged.
Since the electrolytic solution is unevenly distributed on the lower side of the battery case due to gravity in the battery case, the discharge of the electrolytic solution due to the expansion of the electrode body tends to occur in the lower part of each cell, and the discharged electrolytic solution It is difficult for the liquid to permeate the inside of the electrode body again. For this reason, a portion where the electrolytic solution is insufficient is generated inside the electrode body, an increase in battery resistance occurs due to uneven charging / discharging reaction, which causes a decrease in high rate characteristics.

本発明は、かかる点に鑑みてなされたものであり、その主な目的は、高い電流値で充放電を繰り返した場合に、各々の単電池の電池ケース内で電解液が電極体の外部に排出されることを抑制し、高いハイレート特性を維持することができる組電池を提供することを目的とする。 The present invention has been made in view of this point, and a main object thereof is to allow an electrolytic solution to move to the outside of the electrode body in the battery case of each cell when charging / discharging is repeated at a high current value. It is an object of the present invention to provide an assembled battery capable of suppressing discharge and maintaining high high-rate characteristics.

ここで開示される組電池は、電極体と電解液とが電池ケースに収容された単電池を複数備えており、該単電池の各々の電極端子同士が直列に接続された組電池であって、複数の単電池の各々の側壁同士が対向するように該単電池が所定の方向に沿って配列され、該配列方向に沿って複数の単電池の各々が拘束されている。
そして、かかる組電池では、電極端子を上方に向けて単電池の各々を配置したとき、単電池の側壁の下側の領域に掛かる面圧が、単電池の側壁の上側の領域に掛かる面圧よりも小さくなるように複数の単電池の各々が拘束されている。
The assembled battery disclosed here includes a plurality of cell cells in which an electrode body and an electrolytic solution are housed in a battery case, and the electrode terminals of the cell cells are connected in series to each other. The cells are arranged along a predetermined direction so that the side walls of the plurality of cells face each other, and each of the plurality of cells is constrained along the arrangement direction.
Then, in such an assembled battery, when each of the cells is arranged with the electrode terminals facing upward, the surface pressure applied to the lower region of the side wall of the cell is the surface pressure applied to the upper region of the side wall of the cell. Each of the plurality of cells is constrained so as to be smaller than.

ここで開示される組電池では、上記したように、電極端子を上方に向けて単電池の各々を配置したとき、単電池の側壁の下側の領域に掛かる面圧が、単電池の側壁の上側の領域に掛かる面圧よりも小さくなるように複数の単電池の各々が拘束されている。このように、重力によって電解液が偏在し易い下側の領域に掛かる面圧を相対的に小さくし、かかる下側の領域における電極体や電解液の膨張を許容することによって、電極体内に浸透していた電解液が電極体の外部に押し出されて排出されることを防止できる。これによって、充放電反応のムラによる電池抵抗の上昇を抑制し、組電池のハイレート特性を高い状態で維持することができる。 In the assembled battery disclosed here, as described above, when each of the cells is arranged with the electrode terminals facing upward, the surface pressure applied to the lower region of the side wall of the cell is the side wall of the cell. Each of the plurality of cells is constrained so as to be smaller than the surface pressure applied to the upper region. In this way, the surface pressure applied to the lower region where the electrolytic solution is likely to be unevenly distributed due to gravity is relatively reduced, and the electrode body and the electrolytic solution are allowed to expand in the lower region, thereby penetrating into the electrode body. It is possible to prevent the electrolytic solution that has been used from being pushed out to the outside of the electrode body and discharged. As a result, an increase in battery resistance due to uneven charging / discharging reaction can be suppressed, and the high rate characteristics of the assembled battery can be maintained in a high state.

本発明の第1の実施形態に係る組電池を模式的に示す斜視図である。It is a perspective view which shows typically the assembled battery which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る組電池を模式的に示す側面図である。It is a side view which shows typically the assembled battery which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る組電池に用いられるスペーサを模式的に示す側面図である。It is a side view which shows typically the spacer used for the assembled battery which concerns on 1st Embodiment of this invention. 本発明の第1の実施形態に係る組電池に用いられるスペーサを模式的に示す正面図である。It is a front view which shows typically the spacer used for the assembled battery which concerns on 1st Embodiment of this invention. 本発明の第2の実施形態に係る組電池に用いられるスペーサを模式的に示す側面図である。It is a side view which shows typically the spacer used for the assembled battery which concerns on 2nd Embodiment of this invention. 本発明の第3の実施形態に係る組電池に用いられるスペーサを模式的に示す正面図である。It is a front view which shows typically the spacer used for the assembled battery which concerns on 3rd Embodiment of this invention. 本発明の第3の実施形態に係る組電池に用いられるスペーサを模式的に示す側面図である。It is a side view which shows typically the spacer used for the assembled battery which concerns on 3rd Embodiment of this invention. 試験例における抵抗増加率の測定結果を示すグラフであり、縦軸は抵抗増加率(%)を示し、横軸はサイクル数を示す。It is a graph which shows the measurement result of the resistance increase rate in a test example, the vertical axis shows the resistance increase rate (%), and the horizontal axis shows the number of cycles.

以下、本発明の一実施形態に係る組電池として、リチウムイオン二次電池を単電池とし、当該リチウムイオン二次電池を複数接続してなる組電池を例に挙げて説明する。なお、ここで開示される組電池において、単電池として用いられる電池はリチウムイオン二次電池に限定されず、例えば、ニッケル水素電池などを用いることができる。 Hereinafter, as the assembled battery according to the embodiment of the present invention, a lithium ion secondary battery is used as a single battery, and an assembled battery formed by connecting a plurality of the lithium ion secondary batteries will be described as an example. In the assembled battery disclosed here, the battery used as the cell is not limited to the lithium ion secondary battery, and for example, a nickel hydrogen battery or the like can be used.

1.第1の実施形態
先ず、図1および図2を参照しながら本実施形態に係る組電池10の全体構成を説明する。図1は本実施形態の組電池10を模式的に示す斜視図であり、図2は本実施形態に係る組電池を模式的に示す側面図である。なお、図2では説明の便宜上、図1中の拘束板70A、70Bや締付け用ビーム材72を省略している。
1. 1. First Embodiment First, the overall configuration of the assembled battery 10 according to the present embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a perspective view schematically showing the assembled battery 10 of the present embodiment, and FIG. 2 is a side view schematically showing the assembled battery 10 of the present embodiment. In FIG. 2, for convenience of explanation, the restraint plates 70A and 70B and the tightening beam material 72 in FIG. 1 are omitted.

本実施形態に係る組電池10は、電極体と電解液(図示省略)とが電池ケース50に収容された単電池20を4個備えており、該単電池20の各々の電極端子(正極端子60および負極端子62)同士が直列に接続されている。以下、各々の構成について具体的に説明する。 The assembled battery 10 according to the present embodiment includes four cell cells 20 in which an electrode body and an electrolytic solution (not shown) are housed in a battery case 50, and each electrode terminal (positive electrode terminal) of the cell cell 20 is provided. 60 and the negative electrode terminal 62) are connected in series. Hereinafter, each configuration will be specifically described.

本実施形態において、電極体は、従来からリチウムイオン二次電池に用いられるものと同様のものを特に限定なく使用することができ、例えば、正極シートと負極シートとをセパレータを介して積層させ、該積層体を捲回することによって形成された捲回電極体などを使用することができる。
また、電解液についても、従来からリチウムイオン二次電池に用いられるものと同様のものを特に限定なく使用することができ、例えば、有機溶媒(非水溶媒)に支持塩を含有させた非水電解液などを使用することができる。
In the present embodiment, as the electrode body, the same electrode body as that conventionally used for the lithium ion secondary battery can be used without particular limitation. For example, a positive electrode sheet and a negative electrode sheet are laminated via a separator. A wound electrode body or the like formed by winding the laminated body can be used.
Further, as the electrolytic solution, the same one as that conventionally used for a lithium ion secondary battery can be used without particular limitation. For example, a non-aqueous solvent (non-aqueous solvent) containing a supporting salt can be used. An electrolytic solution or the like can be used.

また、本実施形態における単電池20は、扁平な角型の電池ケース50を使用した角型の単電池20であり、かかる電池ケース50の上面54に電極端子(正極端子60と負極端子62)が設けられている。正極端子60は、電池ケース50内の電極体の正極と電気的に接続されており、負極端子62は負極と電気的に接続されている。 Further, the cell 20 in the present embodiment is a square cell 20 using a flat square battery case 50, and electrode terminals (positive electrode terminal 60 and negative electrode terminal 62) are formed on the upper surface 54 of the battery case 50. Is provided. The positive electrode terminal 60 is electrically connected to the positive electrode of the electrode body in the battery case 50, and the negative electrode terminal 62 is electrically connected to the negative electrode.

本実施形態に係る組電池10では、各々の単電池20の側壁20a同士が対向するように所定の方向に沿って配列されている。具体的には、本実施形態に係る組電池10では、各々の単電池20間で正極端子60と負極端子62とが隣接するように、電池ケース50の側壁(即ち扁平な角型の電池ケース50の扁平面)20a同士を対向させるとともに、各々の単電池20を一つずつ反転させて配置している。
そして、隣接する単電池20間において、一方の単電池20と正極端子60と他方の単電池20の負極端子62とが接続具64によって電気的に接続されている。これによって、複数の単電池20の各々が電気的に直列に接続されている。
In the assembled battery 10 according to the present embodiment, the side walls 20a of each cell 20 are arranged along a predetermined direction so as to face each other. Specifically, in the assembled battery 10 according to the present embodiment, the side wall of the battery case 50 (that is, a flat square battery case) so that the positive electrode terminal 60 and the negative electrode terminal 62 are adjacent to each other between the cell 20s. The flat surfaces of 50) 20a are opposed to each other, and each cell 20 is inverted and arranged one by one.
Then, between the adjacent cells 20, one cell 20, the positive electrode terminal 60, and the negative terminal 62 of the other cell 20 are electrically connected by a connector 64. As a result, each of the plurality of cell cells 20 is electrically connected in series.

そして、組電池10は、上記のように配列された各々の単電池20を、該配列方向yに沿って拘束することによって構築される。本実施形態では、配列させた単電池20の周囲に複数の単電池20を拘束する拘束部材が取り付けられている。かかる拘束部材は、一対の拘束板70A,70Bと締付け用ビーム材72とによって構成されており、一対の拘束板70A,70Bの各々を単電池20の配列方向yの最外側に配置し、当該一対の拘束板70A,70Bを架橋するように、単電池20の配列方向yに沿って延びる締付け用ビーム材72を取り付け、かかる締付け用ビーム材72の端部をビス74により拘束板70A,70Bに締め付けることによって、配列された単電池20の各々をその配列方向yに沿って所定の荷重が加わるように拘束する。このとき、締付け用ビーム材72の締め付け具合に応じて、各々の単電池20の側壁20aに締め付け方向(即ち配列方向y)に沿った面圧(拘束荷重)が加えられる。 Then, the assembled battery 10 is constructed by restraining each of the cell cells 20 arranged as described above along the arrangement direction y. In the present embodiment, a restraining member for restraining a plurality of the cells 20 is attached around the arranged cells 20. The restraint member is composed of a pair of restraint plates 70A and 70B and a tightening beam material 72, and each of the pair of restraint plates 70A and 70B is arranged on the outermost side of the cell 20 in the arrangement direction y. A tightening beam material 72 extending along the arrangement direction y of the cell 20 is attached so as to bridge the pair of restraint plates 70A and 70B, and the end portions of the tightening beam material 72 are bound by screws 74 to the restraint plates 70A and 70B. By tightening to, each of the arranged cell batteries 20 is restrained so that a predetermined load is applied along the arrangement direction y. At this time, a surface pressure (constraint load) along the tightening direction (that is, the arrangement direction y) is applied to the side wall 20a of each cell 20 according to the tightening condition of the tightening beam material 72.

上記のようにして構築された組電池10を使用するに際しては、図1および図2に示すように、正極端子60と負極端子62とが設けられている面の反対側の面が接地面となるように配置する。以下の説明では、単電池20の高さ方向zにおいて、正極端子60と負極端子62が設けられている方向を高さ方向zの上方、接地面が設けられている方向を高さ方向zの下方とする。 When using the assembled battery 10 constructed as described above, as shown in FIGS. 1 and 2, the surface opposite to the surface on which the positive electrode terminal 60 and the negative electrode terminal 62 are provided is the ground plane. Arrange so that In the following description, in the height direction z of the cell 20, the direction in which the positive electrode terminal 60 and the negative electrode terminal 62 are provided is above the height direction z, and the direction in which the ground contact surface is provided is the height direction z. Downward.

そして、本実施形態に係る組電池10では、図2に示すように、正極端子60および負極端子62を上方に向けて単電池20の各々を配置したとき、単電池20の側壁20aの下側の領域Bに掛かる面圧が、単電池20の側壁20aの上側の領域Aに掛かる面圧よりも小さくなるように複数の単電池20の各々が拘束されている。
このように、重力によって電解液が偏在し易い下側の領域Bに掛かる面圧を相対的に小さくし、かかる下側の領域Bにおける電極体や電解液の膨張を許容することによって、電極体内に浸透している電解液が電極体の外部に排出されることを防止できる。
Then, in the assembled battery 10 according to the present embodiment, as shown in FIG. 2, when each of the cell 20 is arranged with the positive electrode terminal 60 and the negative electrode terminal 62 facing upward, the lower side of the side wall 20a of the cell 20 Each of the plurality of cell cells 20 is constrained so that the surface pressure applied to the region B of the cell 20 is smaller than the surface pressure applied to the area A above the side wall 20a of the cell 20.
In this way, by relatively reducing the surface pressure applied to the lower region B where the electrolytic solution is likely to be unevenly distributed due to gravity and allowing the electrode body and the electrolytic solution to expand in the lower region B, the inside of the electrode body. It is possible to prevent the electrolytic solution permeating the electrode body from being discharged to the outside of the electrode body.

具体的には、本実施形態においては、単電池20の側壁20aの下側の領域Bに掛かる面圧を、上側の領域Aよりも小さくするために、図2〜図4に示す構造のスペーサ40を用いている。以下、本実施形態に係る組電池10に用いられるスペーサ40を具体的に説明する。図3は本実施形態に係る組電池に用いられるスペーサを模式的に示す側面図であり、図4は本実施形態に係る組電池に用いられるスペーサを模式的に示す正面図である。 Specifically, in the present embodiment, in order to make the surface pressure applied to the lower region B of the side wall 20a of the cell 20 smaller than that of the upper region A, the spacer having the structure shown in FIGS. 40 is used. Hereinafter, the spacer 40 used in the assembled battery 10 according to the present embodiment will be specifically described. FIG. 3 is a side view schematically showing a spacer used for the assembled battery according to the present embodiment, and FIG. 4 is a front view schematically showing a spacer used for the assembled battery according to the present embodiment.

図2に示すように、本実施形態のスペーサ40は、側壁20aが対向するように配置された各々の単電池20の間に配置されており、板状のスペーサ本体41の表面から単電池20の側壁20aに向かって突出する複数の凸条42a、42bを有している。かかる複数の凸条42a、42bは、図4に示すように、単電池20の幅方向xに沿って延びるとともに、単電池20の高さ方向zにおいて所定の間隔を空けて並行に配置されている。このような凸条42a、42bが設けられたスペーサ40を、図2に示すように、単電池20の間に配置することによって、各々の単電池20の間に空気などの冷媒を流通させるための隙間44を形成することができる。 As shown in FIG. 2, the spacer 40 of the present embodiment is arranged between the respective cell cells 20 arranged so that the side walls 20a face each other, and the cell cells 20 are arranged from the surface of the plate-shaped spacer body 41. It has a plurality of ridges 42a and 42b protruding toward the side wall 20a of the ridge. As shown in FIG. 4, the plurality of ridges 42a and 42b extend along the width direction x of the cell 20 and are arranged in parallel at a predetermined interval in the height direction z of the cell 20. There is. As shown in FIG. 2, by arranging the spacer 40 provided with the ridges 42a and 42b between the cell 20s, a refrigerant such as air can flow between the cell 20s. The gap 44 can be formed.

そして、本実施形態においては、単電池20の側壁20aの上側の領域Aに当接する凸条42aの突出高さt1に比べて、下側の領域Bに対応する凸条42bの突出高さt2が低くなるように構成されている。このような構造のスペーサ40を単電池20の間に配置し、各々の単電池20を単電池20の配列方向yに沿って拘束すると、単電池20の側壁20aの下側の領域Bとスペーサ40の凸条42bとの間に間隙が生じる。これによって、単電池20の側壁20aの下側の領域Bに掛かる面圧を、単電池20の側壁20aの上側の領域Aに掛かる面圧よりも小さくすることができる。
このようにして、電池ケース50内において電解液が偏在し易い下側の領域Bに掛かる面圧を相対的に小さくし、かかる下側の領域Bにおける電極体や電解液の膨張を許容することによって、電極体内に浸透している電解液が電極体の外部に排出されることを防止することができる。これによって、充放電反応のムラによる電池抵抗の上昇を抑制し、組電池のハイレート特性を高い状態で維持することができる。
Then, in the present embodiment, the protrusion height t2 of the ridge 42b corresponding to the lower region B is compared with the protrusion height t1 of the ridge 42a that abuts on the upper region A of the side wall 20a of the cell 20. Is configured to be low. When the spacer 40 having such a structure is arranged between the cells 20 and each cell 20 is constrained along the arrangement direction y of the cell 20, the spacer 40 and the region B on the lower side of the side wall 20a of the cell 20 A gap is formed between the ridges 42b of 40 and the ridges 42b. As a result, the surface pressure applied to the lower region B of the side wall 20a of the cell 20 can be made smaller than the surface pressure applied to the upper region A of the side wall 20a of the cell 20.
In this way, the surface pressure applied to the lower region B where the electrolytic solution is likely to be unevenly distributed in the battery case 50 is relatively reduced, and the expansion of the electrode body and the electrolytic solution in the lower region B is allowed. Therefore, it is possible to prevent the electrolytic solution that has permeated into the electrode body from being discharged to the outside of the electrode body. As a result, an increase in battery resistance due to uneven charging / discharging reaction can be suppressed, and the high rate characteristics of the assembled battery can be maintained in a high state.

なお、図2では、配列された単電池20を拘束した際に、単電池20の側壁20aの下側の領域Bとスペーサ40の凸条42bとの間に間隙が生じているが、単電池20の側壁20aの下側の領域Bに凸条42bが接触しているか否かは特に限定されない。
具体的には、凸条42bの突出高さt2を凸条42aの突出高さt1よりも低くすると、側壁20aの下側の領域Bに凸条42bが接触していても、側壁20aの下側の領域Bに掛かる面圧が相対的に小さくなるため、電極体内に浸透している電解液が電極体の外部に排出されることを防止することができる。
In FIG. 2, when the arranged cells 20 are restrained, a gap is formed between the lower region B of the side wall 20a of the cells 20 and the protrusions 42b of the spacer 40, but the cells Whether or not the ridge 42b is in contact with the lower region B of the side wall 20a of 20 is not particularly limited.
Specifically, when the protrusion height t2 of the ridge 42b is made lower than the protrusion height t1 of the ridge 42a, even if the ridge 42b is in contact with the region B below the side wall 20a, it is below the side wall 20a. Since the surface pressure applied to the side region B becomes relatively small, it is possible to prevent the electrolytic solution permeating into the electrode body from being discharged to the outside of the electrode body.

また、相対的に突出高さが低い方の凸条42bが形成されている下側の領域の寸法L2(図3参照)は、高さ方向zにおけるスペーサ40の全長寸法L1の25%〜75%に設定することが好ましく、50%程度に設定することがより好ましい。かかる領域の寸法L2がスペーサ40の全長寸法L1の25%を下回ると、電極体や電解液の膨張を許容することができる下側の領域Bの面積が小さくなって、電解液の排出を防止する効果が小さくなる恐れがある。一方、75%を超えると相対的に大きな面圧で単電池20を拘束する上側の領域Aの面積が小さくなって、構築後の組電池10の耐久性や安全性が低下する恐れがある。 Further, the dimension L2 (see FIG. 3) of the lower region where the ridge 42b having the relatively lower protrusion height is formed is 25% to 75% of the total length dimension L1 of the spacer 40 in the height direction z. It is preferably set to%, and more preferably set to about 50%. When the dimension L2 of such a region is less than 25% of the total length dimension L1 of the spacer 40, the area of the lower region B that can tolerate the expansion of the electrode body and the electrolytic solution becomes small, and the discharge of the electrolytic solution is prevented. There is a risk that the effect of On the other hand, if it exceeds 75%, the area of the upper region A that restrains the cell 20 with a relatively large surface pressure becomes small, and the durability and safety of the assembled battery 10 after construction may decrease.

なお、上記した実施形態は、4個の単電池20を配列させることによって組電池10を構築しているが、単電池の個数は2個以上であれば特に限定されない。
また、上記した実施形態では、各単電池20の間に配置される全てのスペーサに、図3に示す構造のスペーサ40を用いているが、かかる点も特に限定されない。例えば、単電池20の間に配置される複数のスペーサの内、一部のスペーサのみに図3に示す構造のスペーサ40を用いていてもよい。この場合であっても、単電池20の側壁20aの下側の領域Bに掛かる面圧を、単電池20の側壁20aの上側の領域Aに掛かる面圧よりも小さくすることができる。
In the above embodiment, the assembled battery 10 is constructed by arranging four cell batteries 20, but the number of cell cells is not particularly limited as long as it is two or more.
Further, in the above-described embodiment, the spacer 40 having the structure shown in FIG. 3 is used for all the spacers arranged between the cells 20, but this point is not particularly limited. For example, among the plurality of spacers arranged between the cell 20s, the spacer 40 having the structure shown in FIG. 3 may be used only for a part of the spacers. Even in this case, the surface pressure applied to the lower region B of the side wall 20a of the cell 20 can be made smaller than the surface pressure applied to the upper region A of the side wall 20a of the cell 20.

また、側壁20aの下側の領域Bに対応する位置に凸条が形成されていないスペーサ(すなわち、図3中の下側の凸条42bが形成されていないスペーサ)を用いることもできる。但し、構築後の組電池10の耐久性や安全性を考慮すると、上記した実施形態のように、下側の領域Bに対応する下側の凸条42bが形成されていることが好ましい。なお、構築後の組電池10の耐久性や安全性と、電解液の排出の防止とを考慮すると、凸条42bの突出高さt2は、凸条42aの突出高さt1の半分程度であることが好ましい。 Further, it is also possible to use a spacer in which no ridge is formed at a position corresponding to the lower region B of the side wall 20a (that is, a spacer in which the lower ridge 42b in FIG. 3 is not formed). However, considering the durability and safety of the assembled battery 10 after construction, it is preferable that the lower ridge 42b corresponding to the lower region B is formed as in the above-described embodiment. Considering the durability and safety of the assembled battery 10 after construction and the prevention of discharge of the electrolytic solution, the protruding height t2 of the ridge 42b is about half of the protruding height t1 of the ridge 42a. Is preferable.

なお、凸条42a、42bの突出高さt1、t2は、t1>t2の関係を満たす限り、特に限定されない。しかし、凸条42aの突出高さt1を高くすることによって、スペーサ40と単電池20との隙間44が大きくなり、各々の単電池20の冷却性能を向上させることができるが、スペーサ40の強度が低下して構築後の組電池10の耐久性や安全性が低下する恐れがあるため、これらのことを考慮して適切な高さに適宜調整することが好ましい。 The protruding heights t1 and t2 of the ridges 42a and 42b are not particularly limited as long as the relationship of t1> t2 is satisfied. However, by increasing the protruding height t1 of the ridge 42a, the gap 44 between the spacer 40 and the cell 20 becomes large, and the cooling performance of each cell 20 can be improved, but the strength of the spacer 40 is increased. There is a risk that the durability and safety of the assembled battery 10 after construction will be reduced, and therefore it is preferable to appropriately adjust the height in consideration of these factors.

2.第2の実施形態
上記した第1の実施形態では、図2に示すように、単電池20の側壁20aの下側の領域Bに掛かる面圧を上側の領域Aに掛かる面圧よりも小さくするために、図3に示される構造のスペーサ40を使用しているが、ここで開示される組電池は、下側の領域Bに掛かる面圧が相対的に小さくなるように各々の組電池を拘束することができれば、スペーサ40の構造は特に限定されず、図3に示される構造のスペーサ40以外のスペーサを用いてもよい。
2. 2. Second Embodiment In the first embodiment described above, as shown in FIG. 2, the surface pressure applied to the lower region B of the side wall 20a of the cell 20 is made smaller than the surface pressure applied to the upper region A. Therefore, the spacer 40 having the structure shown in FIG. 3 is used, but the assembled batteries disclosed here use each assembled battery so that the surface pressure applied to the lower region B becomes relatively small. The structure of the spacer 40 is not particularly limited as long as it can be constrained, and a spacer other than the spacer 40 having the structure shown in FIG. 3 may be used.

具体的には、本実施形態においては、図3に示される構造のスペーサ40に代えて、図5に示すような、単電池の高さ方向zの上方から下方に向かって突出高さが小さくなるように複数の凸条42c、42d、42eが形成されたスペーサ40Aを用いる。
このようなスペーサ40Aを用いた場合であっても、単電池の側壁の下側の領域に掛かる面圧を上側の領域に掛かる面圧よりも小さくして、電極体の外部に電解液が排出されることを防止できる。
Specifically, in the present embodiment, instead of the spacer 40 having the structure shown in FIG. 3, the protruding height is small from above to below in the height direction z of the cell as shown in FIG. A spacer 40A in which a plurality of ridges 42c, 42d, 42e are formed so as to be used is used.
Even when such a spacer 40A is used, the surface pressure applied to the lower region of the side wall of the cell is made smaller than the surface pressure applied to the upper region, and the electrolytic solution is discharged to the outside of the electrode body. It can be prevented from being done.

3.第3の実施形態
また、上記した第1および第2の実施形態で用いられるスペーサ40は、図4に示すように、複数の凸条42a、42bが、単電池20の幅方向xに沿って延びるとともに、単電池20の高さ方向zにおいて所定の間隔を空けて並行に配置されている。
しかし、凸条が延びる方向は本発明を限定するものではなく、例えば、図6に示すように、単電池の高さ方向zに沿って延びる複数の凸条43が、単電池20の幅方向xにおいて所定の間隔を空けて並行に形成されているようなスペーサ40Bを用いてもよい。
このような単電池の高さ方向zに沿って延びる凸条43を有したスペーサ40Bを用いる場合には、図7に示すように、高さ方向zにおける凸条43の上側部分の突出高さt3よりも、下側部分の突出高さt4の方が低くなるようする。これによって、単電池の側壁の下側の領域に掛かる面圧を相対的に小さくして、電解液の排出を防止することができる。
3. 3. Third Embodiment In the spacer 40 used in the first and second embodiments described above, as shown in FIG. 4, a plurality of ridges 42a and 42b are formed along the width direction x of the cell 20. Along with the extension, they are arranged in parallel with a predetermined interval in the height direction z of the cell 20.
However, the direction in which the ridges extend is not limited to the present invention. For example, as shown in FIG. 6, a plurality of ridges 43 extending along the height direction z of the cell are in the width direction of the cell 20. Spacers 40B that are formed in parallel at predetermined intervals may be used in x.
When a spacer 40B having a ridge 43 extending along the height direction z of such a cell is used, as shown in FIG. 7, the protruding height of the upper portion of the ridge 43 in the height direction z is used. The protrusion height t4 of the lower portion is made lower than that of t3. As a result, the surface pressure applied to the lower region of the side wall of the cell can be relatively reduced, and the discharge of the electrolytic solution can be prevented.

4.第4の実施形態
また、上記した第1〜第3の実施形態では、単電池の側壁の下側の領域に対応したスペーサの凸条の突出高さを相対的に低くすることによって、単電池の側壁の下側の領域に掛かる面圧を上側の領域に掛かる面圧よりも小さくしている。
しかし、単電池の側壁の下側の領域に掛かる面圧を上側の領域よりも小さくする手段は上記したスペーサを利用した手段に限られず、例えば、拘束部材による拘束位置を従来よりも上側に変更した場合でも、単電池の側壁の下側の領域に掛かる面圧を相対的に小さくすることができる。
4. Fourth Embodiment In the first to third embodiments described above, the protrusion height of the ridges of the spacer corresponding to the region below the side wall of the cell is relatively low, so that the cell is a cell. The surface pressure applied to the lower region of the side wall is smaller than the surface pressure applied to the upper region.
However, the means for reducing the surface pressure applied to the lower region of the side wall of the cell is smaller than the upper region is not limited to the means using the spacer described above. Even in this case, the surface pressure applied to the region below the side wall of the cell can be relatively reduced.

具体的には、図1に示すように、通常の組電池10では、各々の単電池20の側壁に均一な面圧が掛かるように、最外側の単電池20の側壁を覆うような拘束板70A、70Bを用い、かかる拘束板70A、70Bの高さ方向zの中央付近に締付け用ビーム材72を取り付けて各々の単電池20を拘束する。
これに対して、第4の実施形態に係る組電池では、拘束板70A、70Bの高さ方向zの寸法を従来よりも小さくし、かかる拘束板70A、70Bが単電池20の側壁の上側の領域のみを覆うように配置する。そして、この拘束板70A、70Bに締付け用ビーム材72を取り付けて各々の単電池20を拘束する。これによって、単電池20の側壁に掛かる面圧を側壁の上側の領域に集中させて、下側の領域に掛かる面圧を相対的に小さくすることができるため、上記した第1〜第3の実施形態と同様に、電池ケース50内において電極体内部から電解液が排出されることを防止することができる。
Specifically, as shown in FIG. 1, in a normal assembled battery 10, a restraint plate that covers the outermost side wall of the cell 20 so that a uniform surface pressure is applied to the side wall of each cell 20. Using 70A and 70B, a tightening beam material 72 is attached near the center of the restraint plates 70A and 70B in the height direction z to restrain each cell 20.
On the other hand, in the assembled battery according to the fourth embodiment, the dimensions of the restraint plates 70A and 70B in the height direction z are made smaller than before, and the restraint plates 70A and 70B are on the upper side of the side wall of the cell 20. Arrange so as to cover only the area. Then, the tightening beam material 72 is attached to the restraint plates 70A and 70B to restrain each of the cell 20. As a result, the surface pressure applied to the side wall of the cell 20 can be concentrated in the upper region of the side wall, and the surface pressure applied to the lower region can be relatively reduced. Similar to the embodiment, it is possible to prevent the electrolytic solution from being discharged from the inside of the electrode body in the battery case 50.

なお、本実施形態のような拘束部材による拘束位置を変更する手段は、上述した第1〜第3の実施形態におけるスペーサの構造を変更する手段と合わせて実施することができる。すなわち、図2に示すようにスペーサ40を単電池20の間に配置するとともに、上側の領域Aに面圧が集中するような位置に拘束部材を配置することによって、下側の領域Bに掛かる面圧を十分に小さくすることができるため、電解液の排出による電池抵抗の上昇をより好適に防止することができる。 The means for changing the restraint position by the restraint member as in the present embodiment can be implemented together with the means for changing the structure of the spacer in the first to third embodiments described above. That is, as shown in FIG. 2, the spacer 40 is arranged between the cells 20 and the restraining member is arranged at a position where the surface pressure is concentrated in the upper region A, so that the spacer 40 is applied to the lower region B. Since the surface pressure can be sufficiently reduced, it is possible to more preferably prevent an increase in battery resistance due to discharge of the electrolytic solution.

[試験例]
以下、本発明に関する試験例を説明するが、以下の試験例は本発明を限定することを意図したものではない。
[Test example]
Hereinafter, test examples relating to the present invention will be described, but the following test examples are not intended to limit the present invention.

1.試験例1および試験例2
(1)試験例1
正極シートと負極シートとセパレータとが捲回された捲回電極体を電解液とともに角型の電池ケース内に収納してリチウムイオン二次電池(単電池)を作製した後、4個の単電池を側壁同士が対向するように隣接して配置し、各々の単電池の正極端子と負極端子を接続具によって電気的に接続した。そして、各々の単電池の間にスペーサを配置した後、拘束板と締付け用ビーム材とからなる拘束部材を用いて配列方向に沿って拘束して組電池を構築した。
そして、試験例1においては、図2および図3に示すように、単電池20の側壁20aの下側の領域Bに対応する凸条42bの突出高さt2が、上側の領域Aに対応する凸条42aの突出高さt1よりも低くなるように構成されたスペーサ40を、各々の単電池20の間に配置した。
なお、下側の領域Bに対応する凸条42bの突出高さt2は、上側の領域Aに対応する凸条42aの突出高さt1の1/2とした。また、相対的に突出高さt2が低い方の凸条42bが形成されている領域の寸法L2を、高さ方向zにおけるスペーサ40の全長寸法L1の50%とした。
1. 1. Test Example 1 and Test Example 2
(1) Test Example 1
After manufacturing a lithium ion secondary battery (cell cell) by storing the wound electrode body in which the positive electrode sheet, the negative electrode sheet, and the separator are wound together with the electrolytic solution in a square battery case, four cell cells Are adjacent to each other so that the side walls face each other, and the positive electrode terminal and the negative electrode terminal of each cell are electrically connected by a connector. Then, after arranging a spacer between each cell, the assembled battery was constructed by restraining along the arrangement direction using a restraining member composed of a restraining plate and a tightening beam material.
Then, in Test Example 1, as shown in FIGS. 2 and 3, the protruding height t2 of the ridge 42b corresponding to the lower region B of the side wall 20a of the cell 20 corresponds to the upper region A. Spacers 40 configured to be lower than the protrusion height t1 of the ridges 42a were arranged between the respective cell batteries 20.
The protrusion height t2 of the ridge 42b corresponding to the lower region B was set to 1/2 of the protrusion height t1 of the ridge 42a corresponding to the upper region A. Further, the dimension L2 of the region where the ridge 42b having the relatively lower protrusion height t2 is formed is set to 50% of the total length dimension L1 of the spacer 40 in the height direction z.

(2)試験例2
各々の単電池の間に凸条の突出高さが全て同じスペーサを配置し、各々の単電池の側壁に均一な面圧が掛かるように各々の単電池を拘束したことを除いて、試験例1と同じ条件で組電池を構築した。
(2) Test Example 2
Test examples, except that spacers with the same protrusion height were placed between each cell, and each cell was restrained so that a uniform surface pressure was applied to the side wall of each cell. The assembled battery was constructed under the same conditions as in 1.

2.評価試験
上記した各々の組電池について、25℃の温度条件下において充放電を繰り返す充放電サイクル試験を行い、該サイクル試験における抵抗増加率(%)を算出した。具体的な試験条件は以下のとおりである。
先ず、25℃の温度条件下において、2Cの充電レートでSOC100%の充電状態まで定電流充電を行い、その後2Cの放電レートでSOC0%の充電状態まで定電流放電を行う充放電を1サイクルとした。そして、かかる充放電サイクルを100回行う度に各々の組電池の電池抵抗(IV抵抗)(mΩ)を測定し、充放電サイクル試験を行う前の電池抵抗(0サイクル目の電池抵抗)を100%とし、かかる0サイクル目の電池抵抗に対する電池抵抗の抵抗増加率(%)を算出した。結果を図8に示す。
なお、試験例1では、上記した充放電サイクルを3000回行って電池抵抗を30回測定し、試験例2では、充放電サイクルを2000回行って電池抵抗を20回測定した。
2. 2. Evaluation Test Each of the above-mentioned assembled batteries was subjected to a charge / discharge cycle test in which charging / discharging was repeated under a temperature condition of 25 ° C., and the resistance increase rate (%) in the cycle test was calculated. The specific test conditions are as follows.
First, under a temperature condition of 25 ° C., a constant current charge is performed at a charge rate of 2C to a charge state of SOC 100%, and then a constant current discharge is performed at a discharge rate of 2C to a charge state of SOC 0%. did. Then, the battery resistance (IV resistance) (mΩ) of each assembled battery is measured every time the charge / discharge cycle is performed 100 times, and the battery resistance (battery resistance at the 0th cycle) before the charge / discharge cycle test is 100. %, And the resistance increase rate (%) of the battery resistance with respect to the battery resistance in the 0th cycle was calculated. The results are shown in FIG.
In Test Example 1, the above charge / discharge cycle was performed 3000 times to measure the battery resistance 30 times, and in Test Example 2, the charge / discharge cycle was performed 2000 times to measure the battery resistance 20 times.

3.評価結果
図8に示すように、試験例2では、1000サイクル目を超えた辺りから電池抵抗が急激に増加し、2000サイクルに達した際には、抵抗増加率が120%を超えていた。これは、充放電を繰り返すことによって、電極体が膨張し、電極体内に浸漬していた電解液が排出されたためと解される。
一方、図3に示すような構造のスペーサを使用した試験例1では、電池抵抗の増加が緩やかであり、2000サイクルの時点で抵抗増加率が110%以下であり、充放電が3000サイクルに達した場合でも抵抗増加率が115%以下であった。
このことから、図3に示すような構造のスペーサを使用し、単電池の側壁の下側の領域に掛かる面圧が上側の領域に掛かる面圧よりも小さくなるように各単電池を拘束することによって、電極体内の電解液が外部に排出されることを防止して、電池抵抗の上昇を抑制することができ、組電池のハイレート特性を高い状態で維持できることが確認できた。
3. 3. Evaluation Results As shown in FIG. 8, in Test Example 2, the battery resistance increased sharply from around the 1000th cycle, and when the 2000th cycle was reached, the resistance increase rate exceeded 120%. It is understood that this is because the electrode body expands by repeating charging and discharging, and the electrolytic solution immersed in the electrode body is discharged.
On the other hand, in Test Example 1 using a spacer having a structure as shown in FIG. 3, the increase in battery resistance is gradual, the resistance increase rate is 110% or less at 2000 cycles, and the charge / discharge reaches 3000 cycles. Even in this case, the resistance increase rate was 115% or less.
For this reason, a spacer having a structure as shown in FIG. 3 is used to restrain each cell so that the surface pressure applied to the lower region of the side wall of the cell is smaller than the surface pressure applied to the upper region. As a result, it was confirmed that the electrolytic solution in the electrode body could be prevented from being discharged to the outside, the increase in battery resistance could be suppressed, and the high rate characteristics of the assembled battery could be maintained in a high state.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above.

10 組電池
20 単電池
20a 単電池の側壁
40、40A、40B スペーサ
41 スペーサ本体
42a、42b、42c、42d、42e、43 凸条
44 隙間
50 電池ケース
54 電池ケースの上面
60 正極端子
62 負極端子
64 接続具
70A、70B 拘束板
72 締付け用ビーム材
74 ビス
A 上側の領域
B 下側の領域
L1 高さ方向のスペーサの全長
L2 下側の領域の寸法
t1、t2、t3、t4 凸条の突出高さ
x 単電池の幅方向
y 単電池の配列方向
z 単電池の高さ方向
10 sets Battery 20 Single battery 20a Side wall of single battery 40, 40A, 40B Spacer 41 Spacer body 42a, 42b, 42c, 42d, 42e, 43 Convex 44 Gap 50 Battery case 54 Upper surface of battery case 60 Positive terminal 62 Negative terminal 64 Connector 70A, 70B Restraint plate 72 Tightening beam material 74 Screw A Upper area B Lower area L1 Total length of spacer in the height direction L2 Lower area dimensions t1, t2, t3, t4 Protrusion height of ridges X Single cell width direction y Single cell arrangement direction z Single cell height direction

Claims (1)

電極体と電解液とが電池ケースに収容された単電池を複数備えており、該単電池の各々の電極端子同士が直列に接続された組電池であって、
複数の前記単電池の各々の側壁同士が対向するように該単電池が所定の方向に沿って配列され、該配列方向に沿って前記複数の単電池の各々が拘束されており、
前記側壁が対向するように配置された各々の単電池の間にスペーサが配置されており、
前記スペーサは、
対向した一対の単電池のうち、一方の単電池の側壁に沿って配置される板状のスペーサ本体と、
前記スペーサ本体の表面から他方の単電池の側壁に向かって突出する複数の凸条と
を有し、
前記複数の凸条の各々は、前記スペーサの正面視において、所定の第1の方向に沿って延びるとともに、前記第1の方向と交差する第2の方向において所定の間隔を空けて配置され、当該第2の方向において隣接する凸条の間に冷媒流通用の隙間が形成されており、かつ、
前記電極端子を上方に向けて前記単電池の各々を配置したとき、前記単電池の側壁の上側の領域に当接する凸条の突出高さに比べて、下側の領域に対応する凸条の突出高さが低くなるように、前記複数の凸状の各々の突出高さが設定され、前記単電池の側壁の下側の領域に掛かる面圧が、前記単電池の側壁の上側の領域に掛かる面圧よりも小さくなるように前記複数の単電池の各々が拘束されており、
前記下側の領域の高さ寸法は、高さ方向におけるスペーサの全長寸法1の25%〜75%である、組電池。
It is an assembled battery in which a plurality of cell cells in which an electrode body and an electrolytic solution are housed in a battery case are provided, and the electrode terminals of the cell cells are connected in series.
The cells are arranged along a predetermined direction so that the side walls of the plurality of cells face each other, and each of the plurality of cells is constrained along the arrangement direction.
A spacer is arranged between each of the cells arranged so that the side walls face each other.
The spacer is
A plate-shaped spacer body arranged along the side wall of one of the pair of facing cells,
With a plurality of ridges protruding from the surface of the spacer body toward the side wall of the other cell.
Have,
Each of the plurality of ridges extends along a predetermined first direction in the front view of the spacer, and is arranged at a predetermined interval in a second direction intersecting the first direction. A gap for refrigerant flow is formed between adjacent ridges in the second direction, and
When each of the cells is arranged with the electrode terminals facing upward, the protrusions corresponding to the lower region are compared with the protruding height of the protrusions abutting on the upper region of the side wall of the cell. The protrusion height of each of the plurality of convex shapes is set so that the protrusion height is low, and the surface pressure applied to the region below the side wall of the cell is applied to the region above the side wall of the cell. Each of the plurality of cells is restrained so as to be smaller than the applied surface pressure .
The assembled battery, wherein the height dimension of the lower region is 25% to 75% of the total length dimension 1 of the spacer in the height direction .
JP2016199268A 2016-10-07 2016-10-07 Batteries Active JP6810886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016199268A JP6810886B2 (en) 2016-10-07 2016-10-07 Batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016199268A JP6810886B2 (en) 2016-10-07 2016-10-07 Batteries

Publications (2)

Publication Number Publication Date
JP2018060755A JP2018060755A (en) 2018-04-12
JP6810886B2 true JP6810886B2 (en) 2021-01-13

Family

ID=61908927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016199268A Active JP6810886B2 (en) 2016-10-07 2016-10-07 Batteries

Country Status (1)

Country Link
JP (1) JP6810886B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6986206B2 (en) * 2018-03-26 2021-12-22 トヨタ自動車株式会社 Batteries assembled
JP7441013B2 (en) * 2018-09-28 2024-02-29 三洋電機株式会社 assembled battery
CN113597655A (en) * 2019-03-28 2021-11-02 株式会社杰士汤浅国际 Electricity storage device
JP7448499B2 (en) 2021-02-26 2024-03-12 トヨタ自動車株式会社 Power storage device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6724298B2 (en) * 2014-07-31 2020-07-15 株式会社Gsユアサ Power supply module
JP6210335B2 (en) * 2015-03-11 2017-10-11 トヨタ自動車株式会社 Battery pack spacer and battery pack

Also Published As

Publication number Publication date
JP2018060755A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
EP2871695B1 (en) Battery pack
CN108140777B (en) Battery module and battery pack including the same
EP2381506B1 (en) Battery module
JP6810886B2 (en) Batteries
US10243193B2 (en) Battery pack
US9472793B2 (en) Battery pack
EP2381507B1 (en) Battery pack
US9553295B2 (en) Battery pack
EP3285310B1 (en) Assembled battery
KR101863431B1 (en) Battery pack spacer and battery pack
EP3424094B1 (en) Battery pack
CA2661100A1 (en) Electrochemical cell for hybrid electric vehicle applications
JP2009048965A (en) Battery pack, and manufacturing method thereof
JP6633193B2 (en) battery pack
EP3154108B1 (en) Battery module and battery pack including same
JP6852308B2 (en) Batteries
KR20190009340A (en) Battery module with cover assembly
KR20140016955A (en) Electrochemical cell for storing electrical energy
US20200136108A1 (en) Energy storage apparatus
JP2015176659A (en) Lead acid battery
JP2015512119A (en) Battery cell
JP5994545B2 (en) Lead acid battery
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
JP6488889B2 (en) Power storage module
KR102317274B1 (en) Battery module and battery pack including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201125

R151 Written notification of patent or utility model registration

Ref document number: 6810886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151