JP2019087435A - Positive electrode material for lithium secondary battery and manufacturing method thereof - Google Patents

Positive electrode material for lithium secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP2019087435A
JP2019087435A JP2017215370A JP2017215370A JP2019087435A JP 2019087435 A JP2019087435 A JP 2019087435A JP 2017215370 A JP2017215370 A JP 2017215370A JP 2017215370 A JP2017215370 A JP 2017215370A JP 2019087435 A JP2019087435 A JP 2019087435A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
mno
composite
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017215370A
Other languages
Japanese (ja)
Other versions
JP6995346B2 (en
Inventor
理樹 片岡
Masaki Kataoka
理樹 片岡
昇 田口
Noboru Taguchi
昇 田口
哲 清林
Tetsu Kiyobayashi
哲 清林
信彦 竹市
Nobuhiko Takeichi
信彦 竹市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017215370A priority Critical patent/JP6995346B2/en
Publication of JP2019087435A publication Critical patent/JP2019087435A/en
Application granted granted Critical
Publication of JP6995346B2 publication Critical patent/JP6995346B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

To provide a composite used for a positive electrode material for a non-aqueous electrolyte secondary battery, which has high capacity and can be stably charged and discharged.SOLUTION: A composite includes an LiMnOhaving an NaCl type structure and an Li positive electrode material including transition metal other than tetravalent Mn. The ratio B/A of the substance mass B of the Li positive electrode material to the substance mass A of LiMnOis 0.5 to 2.0. The Li positive electrode material is preferably at least one of LiMnOand Li(MnNiCo)O(x+y+z=1, xyz≠0).SELECTED DRAWING: Figure 2

Description

本発明は、非水電解質二次電池用の正極材料およびその製造方法に関する。   The present invention relates to a positive electrode material for a non-aqueous electrolyte secondary battery and a method for producing the same.

非水電解質二次電池であるリチウム二次電池は高いエネルギー密度を有する。このため、リチウム二次電池は、携帯電話やノートパソコン等の小型電源のほか、電気自動車等の大型電源としても実用化されている。特に近年は、電動車両用途において、ガソリン代替の観点から、現行電池と比べて大幅に高容量な電池材料の開発が求められている。Li2MnO3の理論容量は460mAh/gで、コバルト酸リチウム(LiCoO2)の容量150mAh/gと比べて高い。このため、Li2MnO3は、高エネルギー密度リチウム二次電池用正極材料として注目されている。しかし、Li2MnO3は、電気化学的活性が低いことと、初期充電時に酸素放出を伴いながらLi脱離を行うため、十分な充放電容量が得られないという課題がある。 Lithium secondary batteries, which are non-aqueous electrolyte secondary batteries, have high energy density. For this reason, lithium secondary batteries are put to practical use as small power supplies such as mobile phones and notebook computers, and also large power supplies such as electric vehicles. Particularly in recent years, development of a battery material having a much higher capacity than current batteries has been required from the viewpoint of gasoline substitution in electric vehicle applications. The theoretical capacity of Li 2 MnO 3 is 460 mAh / g, which is higher than the capacity of 150 mAh / g of lithium cobaltate (LiCoO 2 ). For this reason, Li 2 MnO 3 attracts attention as a positive electrode material for high energy density lithium secondary batteries. However, Li 2 MnO 3 has problems of low electrochemical activity and the fact that sufficient charge and discharge capacity can not be obtained because Li is desorbed while releasing oxygen during initial charge.

この課題を解決するため、層状構造を有するコバルト酸リチウムに代表されるLiMO2の化学式で示される材料とLi2MnO3とを複合化することで、電気化学的な活性を改善する方法が広く検討されている。特許文献1、特許文献2、非特許文献1、および非特許文献2によれば、Li2MnO3−LiMO2の化学式で示される材料は、活性が向上し、250mAh/g以上の可逆容量を示している。また、非特許文献2では、充電容量を段階的に上げていくことで、酸素放出による構造変化を抑制し、充放電特性が改善されることが報告されている。しかし、LiMO2はLi2MnO3と比べると可逆容量が小さいため、複合化すると、300mAh/gを超えるような高容量正極の実現が難しくなる。 In order to solve this problem, there is a wide range of methods for improving the electrochemical activity by combining Li 2 MnO 3 with a material represented by the chemical formula of LiMO 2 represented by lithium cobaltate having a layered structure. It is being considered. According to Patent Document 1, Patent Document 2, Non-Patent Document 1, and Non-Patent Document 2, the material represented by the chemical formula of Li 2 MnO 3 -LiMO 2 has improved activity and a reversible capacity of 250 mAh / g or more. It shows. Further, Non-Patent Document 2 reports that the charge and discharge characteristics are improved by suppressing the structural change due to the release of oxygen by gradually increasing the charge capacity. However, since LiMO 2 has a smaller reversible capacity compared to Li 2 MnO 3 , realization of a high capacity positive electrode exceeding 300 mAh / g becomes difficult when complexed.

また、特許文献3では、Li2OとMnO2とをメカニカルミリングすることで、従来の層状型ではなく岩塩型構造を有するLi2MnO3が合成できることと、岩塩型構造を有するLi2MnO3は280mAh/gの高い初期放電容量を示すことが報告されている。岩塩型構造のLi正極材料中のLiの拡散は、層状構造のLi正極材料中のLiの拡散と比べて容易であることが、非特許文献3で報告されている。このため、岩塩型構造を有するLi2MnO3が、従来のLi正極材料と比べて高性能を示したと考えられる。しかしながら、Li2MnO3単独ではサイクル劣化が顕著で、長寿命化が課題となっている。 Further, in Patent Document 3, by mechanical milling of Li 2 O and MnO 2 , Li 2 MnO 3 having a rock salt type structure instead of the conventional layered type can be synthesized, and Li 2 MnO 3 having a rock salt type structure Has been reported to exhibit a high initial discharge capacity of 280 mAh / g. It is reported in Non-Patent Document 3 that the diffusion of Li in a rock salt type Li positive electrode material is easier than the diffusion of Li in a layered structure Li positive electrode material. For this reason, it is considered that Li 2 MnO 3 having a rock salt type structure exhibited high performance as compared with the conventional Li positive electrode material. However, with Li 2 MnO 3 alone, cycle deterioration is remarkable, and prolonging the life is a problem.

特表2004−528691号公報Japanese Patent Publication No. 2004-528691 特開2008−270201号公報JP, 2008-270201, A 特開2013−252995号公報JP, 2013-252995, A

C.S.Johnson, N.Li, C.Lefief, J.T.Vaughey, M.M.Thackeray, Chem. Mater., 20,6095-6106(2008)C. S. Johnson, N. Li, C. Lefief, J. T. Vaughey, M. M. Thackeray, Chem. Mater., 20, 6095-6106 (2008) A.Ito, D.Li, Y.Ohsawa, Y.Sato, Journal of Power Sources, 183, 344-346(2008)A. Ito, D. Li, Y. Ohsawa, Y. Sato, Journal of Power Sources, 183, 344-346 (2008) J.Lee, A.Urban, X.Li,D.Su, G.Hautier, G.Ceder, Science, 343, 519-522(2014)J. Lee, A. Urban, X. Li, D. Su, G. Hautier, G. Ceder, Science, 343, 519-522 (2014)

本発明は、上記事情に鑑みてなされたものであり、高い初期放電容量と充放電時のサイクル安定性を有する正極材料を開発することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to develop a positive electrode material having a high initial discharge capacity and cycle stability at the time of charge and discharge.

本発明者らは、上記目的を達成すべく鋭意研究を重ねてきた。その結果、特許文献3で報告されているNaCl型構造を有するLi2MnO3が、層状型構造を有するLi2MnO3をメカニカルミリングすることによっても得られることを見出した。そして、層状型構造を有するLi2MnO3をメカニカルミリングして得られたNaCl型構造を有するLi2MnO3によって、高い初期充放電容量が得られることを確認した。さらに、ミリング時に、層状型構造を有するLi2MnO3を他のLi正極材料と混合することにより、より高容量化し、さらに充放電時のサイクル安定性も向上することを見出した。 The present inventors have intensively studied to achieve the above object. As a result, it has been found that Li 2 MnO 3 having a NaCl type structure reported in Patent Document 3 can also be obtained by mechanical milling of Li 2 MnO 3 having a layer type structure. Then, it was confirmed that a high initial charge / discharge capacity can be obtained by Li 2 MnO 3 having a NaCl type structure obtained by mechanical milling of Li 2 MnO 3 having a layer type structure. Furthermore, it has been found that by mixing Li 2 MnO 3 having a layered structure with other Li positive electrode materials at the time of milling, the capacity is further increased and the cycle stability at the time of charge and discharge is also improved.

本発明の複合体は、NaCl型構造を有するLi2MnO3と、4価のMn以外の遷移金属を含むLi正極材料とを含有する。本発明のリチウム二次電池用の正極材料は、本発明の複合体を含有する。本発明の複合体の製造方法は、NaCl型構造を有するLi2MnO3と、4価のMn以外の遷移金属を含むLi正極材料とを含有する複合体の製造方法であって、層状構造を有するLi2MnO3と、Li正極材料とを混合する混合工程を有する。 The composite of the present invention contains Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material containing a transition metal other than tetravalent Mn. The positive electrode material for a lithium secondary battery of the present invention contains the composite of the present invention. The method for producing a composite of the present invention is a method for producing a composite containing Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material containing a transition metal other than tetravalent Mn, which has a layered structure. and Li 2 MnO 3 having, having a mixing step of mixing a Li cathode material.

本発明によれば、従来と比べて、非常に高容量で、充放電時のサイクル安定性が向上したリチウム二次電池用の正極材料が得られる。   According to the present invention, it is possible to obtain a positive electrode material for a lithium secondary battery with very high capacity and improved cycle stability at the time of charge and discharge as compared with the prior art.

実施例1−1で得られた複合体のX線回折図。The X-ray-diffraction figure of the complex obtained in Example 1-1. 実施例1−1で得られた複合体の透過型電子顕微鏡画像。Transmission electron microscope image of the complex obtained in Example 1-1. 実施例1−1で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for lithium secondary batteries produced from the complex obtained in Example 1-1. 実施例1−2で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for lithium secondary batteries produced from the complex obtained in Example 1-2. 実施例1−3で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for lithium secondary batteries produced from the complex obtained in Example 1-3. 実施例2で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。7 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 2. 実施例3で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。4 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 3. 実施例4で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。8 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 4. 実施例5で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。7 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 5. 実施例6で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。8 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 6. 実施例7で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。7 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Example 7. 比較例1で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。5 is a graph showing the results of charge / discharge tests of a positive electrode for a lithium secondary battery produced from the composite obtained in Comparative Example 1. 比較例2で得られた複合体から作製したリチウム二次電池用正極の充放電試験の結果を示すグラフ。The graph which shows the result of the charging / discharging test of the positive electrode for lithium secondary batteries produced from the complex obtained by the comparative example 2. FIG.

以下、本発明の複合体、複合体の製造方法、および正極材料について、実施形態と実施例に基づいて説明する。なお、重複説明は適宜省略する。また、2つの数値の間に「〜」を記載して数値範囲を表す場合には、この2つの数値も数値範囲に含まれる。   Hereinafter, the composite of the present invention, the method for producing the composite, and the positive electrode material will be described based on embodiments and examples. In addition, duplication explanation is omitted suitably. Moreover, when describing "-" between two numerical values and expressing a numerical range, these two numerical values are also included in a numerical range.

(NaCl型構造を有するLi2MnO3を含有する複合体)
本発明の実施形態に係る複合体は、NaCl型構造を有するLi2MnO3と、Li正極材料とを有している。Li2MnO3がNaCl型構造を有するため、従来の層状型のLi2MnO3と比べてLiイオンの伝導が容易となる。Li正極材料は、Liを含有し、リチウム二次電池の正極に用いると充放電時にLiイオンを脱離・挿入可能な物質である。Li正極材料は、4価のMn以外の遷移金属を含んでいる。この遷移金属がLi2MnO3中の4価のMn以外であるため、初期充電時の活性化が容易となり、以降の充放電サイクルにおいて高容量が得やすくなる。
(Complex containing Li 2 MnO 3 having NaCl type structure)
The composite according to the embodiment of the present invention includes Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material. Since Li 2 MnO 3 has a NaCl type structure, the conduction of Li ions is facilitated compared to the conventional layered type Li 2 MnO 3 . The Li positive electrode material is a substance that contains Li, and when used as a positive electrode of a lithium secondary battery, can release and insert Li ions during charge and discharge. The Li positive electrode material contains a transition metal other than tetravalent Mn. Since this transition metal is other than tetravalent Mn in Li 2 MnO 3 , activation at the time of initial charge becomes easy, and high capacity can be easily obtained in the subsequent charge and discharge cycles.

本実施形態の複合体は、NaCl型構造を有するLi2MnO3と、Li正極材料との低結晶性の反応物、またはこの反応物の前駆物質である高結晶性の層状構造を有するLi2MnO3とLi正極材料との混合物を含有する。Li2MnO3およびLi正極材料は、固相焼成、水熱法、またはゾル・ゲル法で合成できるが、Li2MnO3およびLi正極材料の合成方法は特に限定されない。Li2MnO3は焼成法により合成することができる。例えば、Mn酸化物とリチウム化合物を均一に混合した後、400℃〜1000℃で大気中にて焼成することでLi2MnO3が合成できる。 The composite of this embodiment is a low crystalline reactant of Li 2 MnO 3 having a NaCl type structure with a Li positive electrode material, or a Li 2 having a highly crystalline layered structure which is a precursor of this reactant. It contains a mixture of MnO 3 and Li positive electrode material. Li 2 MnO 3 and Li positive electrode materials can be synthesized by solid phase firing, hydrothermal method, or sol-gel method, but the synthesis method of Li 2 MnO 3 and Li positive electrode materials is not particularly limited. Li 2 MnO 3 can be synthesized by a firing method. For example, after uniformly mixed Mn oxide and the lithium compound, Li 2 MnO 3 can be synthesized by calcining in air at 400 ° C. to 1000 ° C..

Li2MnO3の合成に用いるMn酸化物は、沈殿法により合成できる。具体的には、Mnイオンを含む水溶液、例えば、硫酸塩、硝酸塩、または塩化物等の水溶液をアルカリ水溶液中に滴下し沈殿物を生成した後、ろ過・乾燥して水分を除去してMn酸化物が得られる。アルカリ水溶液としては、例えば、水酸化ナトリウム水溶液、炭酸ナトリウム水溶液、水酸化リチウム水溶液、水酸化カリウム水溶液等が挙げられる。これらのアルカリ水溶液は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 The Mn oxide used for the synthesis of Li 2 MnO 3 can be synthesized by the precipitation method. Specifically, an aqueous solution containing Mn ions, for example, an aqueous solution of sulfate, nitrate, chloride or the like is dropped into an aqueous alkaline solution to form a precipitate, which is then filtered and dried to remove water, thereby removing Mn oxide. The thing is obtained. Examples of the aqueous alkali solution include sodium hydroxide aqueous solution, sodium carbonate aqueous solution, lithium hydroxide aqueous solution, potassium hydroxide aqueous solution and the like. These aqueous alkali solutions may be used alone or in combination of two or more.

温度10℃〜50℃、好ましくは20℃〜30℃程度で、pHが9〜14、好ましくは12〜14となるように調整したアルカリ水溶液に、Mnイオンを含む水溶液を少しずつ添加し、沈殿物を生成させることが好ましい。アルカリ水溶液を2種以上使用する場合、各水溶液は、別途添加してもよいし、同時に添加してもよい。Mn酸化物の形状については特に制限がないが、取り扱い性の観点から、粉末状であることが好ましい。上記手順において、Mnイオンを他の遷移金属イオンを含有する塩に置き換えればそれぞれの遷移金属酸化物が得られる。   An aqueous solution containing Mn ions is added little by little to an aqueous alkali solution adjusted to have a pH of 9 to 14, preferably 12 to 14 at a temperature of 10 ° C. to 50 ° C., preferably 20 ° C. to 30 ° C. It is preferable to produce a product. When using 2 or more types of alkaline aqueous solution, each aqueous solution may be separately added, and may be added simultaneously. The form of the Mn oxide is not particularly limited, but is preferably in the form of powder from the viewpoint of handling. In the above procedure, replacing each Mn ion with a salt containing another transition metal ion gives each transition metal oxide.

Li正極材料は酸化物で、Ti、V、4価以外のMn、Co、Ni、およびFeの中から選ばれる少なくとも一種を含有することが好ましい。Li正極材料は、焼成法により合成することができる。例えば、Li正極材料が酸化物であれば、遷移金属酸化物とリチウム化合物を均一に混合した後、600℃〜1000℃で焼成することでLi正極材料が得られる。遷移金属酸化物は市販品を用いてもよいし、前述の方法で作製した遷移金属酸化物を用いてもよい。   The Li positive electrode material is preferably an oxide and contains at least one selected from Ti, V, Mn other than tetravalent Mn, Co, Ni, and Fe. The Li positive electrode material can be synthesized by a firing method. For example, if the Li positive electrode material is an oxide, the Li positive electrode material can be obtained by uniformly mixing the transition metal oxide and the lithium compound and then firing at 600 ° C. to 1000 ° C. A commercial item may be used for a transition metal oxide, and the transition metal oxide produced by the above-mentioned method may be used.

Li2MnO3の物質量Aに対するLi正極材料の物質量Bの比B/A、すなわち「Li2MnO3のモル量/Li正極材料のモル量」は、0.5〜2.0であることが好ましい。本実施形態の複合体は、リチウム二次電池用の正極活物質等の正極材料として使用できる。なお、本実施形態の複合体は、Li2MnO3とLi正極材料以外に、導電性の向上を目的としてカーボンブラック等の炭素系材料や、複合体の表面被覆物質としてフッ化物やリン酸塩などを少量有していてもよい。 The ratio B / A of the amount of substance B of Li cathode material for substances amount A of Li 2 MnO 3, i.e. "molar amount of a molar amount / Li cathode material Li 2 MnO 3" is a 0.5 to 2.0 Is preferred. The composite of the present embodiment can be used as a positive electrode material such as a positive electrode active material for a lithium secondary battery. The composite of the present embodiment is not limited to Li 2 MnO 3 and Li positive electrode materials, for the purpose of improving conductivity, carbon-based materials such as carbon black, and fluoride or phosphate as a surface covering material of the composite. You may have a small amount etc.

Li正極材料としては、マンガン酸リチウム(LiMnO2)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、スピネルマンガンリチウム(LiMn24)、スピネルニッケルマンガンリチウム(LiNi1/2Mn3/24)、リン酸鉄リチウム(LiFePO4)、チタン酸リチウム(Li2TiO3、Li4Ti512)、Li(MnxNiyCoz)O2(x+y+z=1、xyz≠0)等が例示できる。これらの中でも、Li2MnO3とスピネルマンガンリチウムとの複合体から得られる正極を用いると、リチウム二次電池の充放電容量とサイクル特性を向上させることができる。Li正極材料は市販品を使用してもよいし、合成品を使用してもよい。 As a lithium positive electrode material, lithium manganate (LiMnO 2 ), lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), spinel manganese lithium (LiMn 2 O 4 ), spinel nickel manganese lithium (LiNi 1/2 Mn) 3/2 O 4 ), lithium iron phosphate (LiFePO 4 ), lithium titanate (Li 2 TiO 3 , Li 4 Ti 5 O 12 ), Li (Mn x Ni y Co z ) O 2 (x + y + z = 1, xyz) ≠ 0) etc. can be illustrated. Among these, when the positive electrode obtained from the complex of Li 2 MnO 3 and spinel manganese lithium is used, the charge / discharge capacity and cycle characteristics of the lithium secondary battery can be improved. A commercially available Li positive electrode material may be used, or a synthetic product may be used.

複合体の粒子サイズが小さすぎると、比表面積が大きくなり、充放電反応時に電極表面での副反応が起こりやすくなり、良好な電極特性が得られない。また、複合体の粒子サイズが大きすぎると、粒子内のイオンの拡散に時間がかかり、均一に反応しにくくなるため、電極性能が低下する。電極の良好なサイクル特性を得るためには、粒子サイズが100nm〜2μmであることが好ましく、1μm程度であることが特に好ましい。粒子サイズは試料のTEM画像から算出できる。複合体の結晶子サイズは50nm〜90nmであることが好ましい。複合体の結晶子サイズは、XRD測定のNaCl型構造に帰属される回折ピークの半価幅から、Scherrerの式に基づいて算出できる。   If the particle size of the composite is too small, the specific surface area is increased, side reactions on the electrode surface are likely to occur during charge and discharge reaction, and good electrode characteristics can not be obtained. In addition, when the particle size of the composite is too large, it takes time to diffuse the ions in the particles and it becomes difficult to react uniformly, resulting in a decrease in electrode performance. In order to obtain good cycle characteristics of the electrode, the particle size is preferably 100 nm to 2 μm, and particularly preferably about 1 μm. The particle size can be calculated from the TEM image of the sample. The crystallite size of the complex is preferably 50 nm to 90 nm. The crystallite size of the complex can be calculated from the half value width of the diffraction peak attributed to the NaCl type structure of the XRD measurement, based on the Scherrer equation.

(リチウム二次電池用の正極材料)
本発明の実施形態に係るリチウム二次電池用の正極材料は、本発明の実施形態に係る複合体を含有する。この正極材料は高容量で充放電サイクル特性に優れているため、この正極材料を含有する正極を用いたリチウム二次電池を高容量化することができる。
(Positive material for lithium secondary battery)
The positive electrode material for a lithium secondary battery according to the embodiment of the present invention contains the composite according to the embodiment of the present invention. Since this positive electrode material has high capacity and excellent charge / discharge cycle characteristics, it is possible to increase the capacity of a lithium secondary battery using the positive electrode containing this positive electrode material.

(複合体の製造方法)
本発明の実施形態に係る複合体の製造方法は、NaCl型構造を有するLi2MnO3と、4価のMn以外の遷移金属を含むLi正極材料とを含有する複合体の製造方法である。そして、本実施形態の複合体の製造方法は、層状構造を有するLi2MnO3と、Li正極材料とを混合する混合工程を備えている。混合工程は、層状構造を有するLi2MnO3の物質量Aに対するLi正極材料中の物質量Bの比B/Aが0.5〜2.0となるように、層状構造を有するLi2MnO3と、Li正極材料とを配合する過程を備えていることが好ましい。
(Method of manufacturing complex)
The method for producing a composite according to an embodiment of the present invention is a method for producing a composite containing Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material containing a transition metal other than tetravalent Mn. The method of producing a composite body of the present embodiment, the Li 2 MnO 3 having a layered structure, and a mixing step of mixing a Li cathode material. Mixing step, so that the ratio B / A of the substance amount B in Li cathode material for substances amount A of Li 2 MnO 3 having a layered structure is 0.5 to 2.0, Li 2 MnO having a layered structure It is preferable to have the process of mix | blending 3 and Li positive electrode material.

層状構造を有するLi2MnO3とLi正極材料合は、Li2MnO3中のLiとMnとがカチオンミキシングするよう高エネルギーを加えながら混合する必要がある。このため、層状構造を有するLi2MnO3とLi正極材料合の配合物をメカニカルミリング処理して混合することが好ましい。メカニカルミリング装置としては、例えば、ボールミル、振動ミル、ターボミル、およびディスクミル等を用いることができる。これらの中でもボールミルを用いた混合が好ましい。混合時の雰囲気は特に制限がなく、例えば、ArやN2等の不活性ガス雰囲気、または大気雰囲気等が採用できる。 It is necessary to mix Li 2 MnO 3 having a layered structure and Li positive electrode material combination while adding high energy so that Li and Mn in Li 2 MnO 3 perform cation mixing. Therefore, it is preferable to mechanically mill and mix a blend of Li 2 MnO 3 having a layered structure and a Li positive electrode material combination. As a mechanical milling device, for example, a ball mill, a vibration mill, a turbo mill, and a disc mill can be used. Among these, mixing using a ball mill is preferable. The atmosphere at the time of mixing is not particularly limited, and, for example, an inert gas atmosphere such as Ar or N 2 or an air atmosphere can be adopted.

(リチウム二次電池)
本発明の実施形態に係るリチウム二次電池は、本実施形態のリチウム二次電池用の正極材料を正極活物質として含む正極と、負極と、電解質と、セパレータを備えている。このリチウム二次電池は、例えば、非水電解質リチウム二次電池、全固体型リチウム二次電池、または金属リチウム二次電池等である。これらのリチウム二次電池の基本的な構造は、本実施形態のリチウム二次電池用の正極材料を正極活物質として用いることを除いて、公知のリチウム二次電池の構造と同様とすることができる。本実施形態のリチウム二次電池の形状についても特に限定がなく、円筒型や角型等の形状が採用できる。
(Lithium rechargeable battery)
The lithium secondary battery according to the embodiment of the present invention includes a positive electrode including the positive electrode material for a lithium secondary battery of the present embodiment as a positive electrode active material, a negative electrode, an electrolyte, and a separator. The lithium secondary battery is, for example, a non-aqueous electrolyte lithium secondary battery, an all solid lithium secondary battery, a metal lithium secondary battery or the like. The basic structure of these lithium secondary batteries may be similar to that of a known lithium secondary battery except that the positive electrode material for a lithium secondary battery of this embodiment is used as a positive electrode active material. it can. The shape of the lithium secondary battery of the present embodiment is also not particularly limited, and a shape such as a cylindrical shape or a square shape can be adopted.

負極は、リチウムを含有する負極材料を負極活物質として含んでいてもよいし、リチウムを含有しない負極活物質から構成されていてもよい。負極活物質としては、例えば、黒鉛、易結晶性炭素、難焼結性炭素、リチウム金属、シリコン、スズ、またはこれらを含む合金等、リチウムと反応する物質を用いることができる。必要に応じて導電剤やバインダー等を用いて、Al、Cu、Ni、ステンレス、またはカーボン等からなる負極集電体にこれらの負極活物質を担持させることで、負極が作製できる。セパレータは、例えば、ポリエチレンやポリプロピレン等のポリオレフィン樹脂、フッ素樹脂、ナイロン、芳香族アラミド、または無機ガラス等の材質から構成される。セパレータは、多孔質膜、不織布、または織布等の形態の材料を用いることができる。   The negative electrode may contain a lithium-containing negative electrode material as a negative electrode active material, or may be composed of a lithium-free negative electrode active material. As the negative electrode active material, for example, a substance which reacts with lithium, such as graphite, microcrystalline carbon, hardly sinterable carbon, lithium metal, silicon, tin, or an alloy containing any of these, can be used. A negative electrode can be produced by supporting these negative electrode active materials on a negative electrode current collector made of Al, Cu, Ni, stainless steel, carbon or the like using a conductive agent, a binder or the like as necessary. The separator is made of, for example, a material such as a polyolefin resin such as polyethylene or polypropylene, a fluorine resin, nylon, an aromatic aramid, or an inorganic glass. The separator can use a material in the form of a porous membrane, a non-woven fabric, or a woven fabric.

非水電解質リチウム二次電池では、正極活物質である本実施形態のリチウム二次電池の正極材料、導電剤、およびバインダーを混合した正極合剤を、Al、ステンレス、またはカーボンクロス等の正極集電体に担持させることで、正極が作製できる。導電剤としては、例えば、黒鉛、コークス類、カーボンブラック、または針状カーボン等の炭素材料を用いることができる。非水電解質リチウム二次電池の電解質は非水溶媒系の電解液である。この電解液の溶媒としては、カーボネート類、エーテル類、ニトリル類、含硫黄化合物等の公知の非水溶媒系二次電池の電解液の溶媒を用いることができる。   In a non-aqueous electrolyte lithium secondary battery, a positive electrode material such as Al, stainless steel, or carbon cloth, which is a positive electrode active material of the lithium secondary battery of the present embodiment which is a positive electrode active material, a conductive agent, and a binder are mixed. The positive electrode can be manufactured by supporting the current collector. As a conductive agent, carbon materials, such as graphite, cokes, carbon black, or needle-like carbon, can be used, for example. The electrolyte of the non-aqueous electrolyte lithium secondary battery is a non-aqueous solvent-based electrolyte. As a solvent of this electrolyte solution, the solvent of electrolyte solution of well-known nonaqueous solvent type secondary batteries, such as carbonates, ethers, nitriles, and a sulfur-containing compound, can be used.

全固体型リチウム二次電池では、正極活物質としての本実施形態のリチウム二次電池の正極材料、導電剤、バインダー、および固体電解質等を含む正極合剤を、Ti、Al、Ni、ステンレス等の正極集電体に担持させることで、正極が作製できる。導電剤としては、非水電解質リチウム二次電池の場合と同様に、例えば、黒鉛、コークス類、カーボンブラック、または針状カーボン等の炭素材料を用いることができる。全固体型リチウム二次電池の固体電解質としては、例えば、ポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖およびポリオキシアルキレン鎖の少なくとも一方を含む高分子化合物等のポリマー系固体電解質、硫化物系固体電解質、または酸化物系固体電解質等を用いることができる。   In the all solid lithium secondary battery, a positive electrode material containing the positive electrode material of the lithium secondary battery of the present embodiment as a positive electrode active material, a conductive agent, a binder, a solid electrolyte and the like, Ti, Al, Ni, stainless steel, etc. The positive electrode can be manufactured by supporting it on the positive electrode current collector. As in the case of the non-aqueous electrolyte lithium secondary battery, a carbon material such as graphite, cokes, carbon black or needle-like carbon can be used as the conductive agent. The solid electrolyte of the all solid lithium secondary battery includes, for example, polymer based solid electrolytes such as polyethylene oxide type polymer compounds, polymer compounds containing at least one of polyorganosiloxane chain and polyoxyalkylene chain, sulfide type A solid electrolyte, an oxide-based solid electrolyte, or the like can be used.

以下、実施例を示して本発明を具体的に説明するが、本発明はこれらの実施例のみに限定されない。   EXAMPLES Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.

合成例:層状構造を有するLi2MnO3の作製
複合体を構成するLi2MnO3を以下の方法により作製した。市販の硫酸マンガン(MnSO4)を蒸留水に溶かして、濃度1Mの硫酸マンガン水溶液を得た。濃度1Mの水酸化ナトリウム水溶液にこの硫酸マンガン水溶液を少しずつ添加し、沈殿物を生成させた。沈殿物が中性になるまで蒸留水で洗浄し、その後、大気中にて80℃で乾燥させて酸化マンガン(Mn34)を得た。得られた酸化マンガン中のMnの物質量:炭酸リチウム中のLiの物質量が1:2となるように、得られた酸化マンガンと市販の炭酸リチウム(LiCO3)を混合した。この混合物を大気中にて800℃で10時間熱処理して、層状構造を有するLi2MnO3を得た。
Synthesis Example: The Li 2 MnO 3 constituting the manufacturing complex of Li 2 MnO 3 having a layered structure was prepared in the following manner. Commercially available manganese sulfate (MnSO 4 ) was dissolved in distilled water to obtain a 1 M aqueous solution of manganese sulfate. The manganese sulfate aqueous solution was added little by little to a 1 M aqueous sodium hydroxide solution to form a precipitate. The precipitate was washed with distilled water until it became neutral, and then dried at 80 ° C. in the atmosphere to obtain manganese oxide (Mn 3 O 4 ). The obtained manganese oxide and commercially available lithium carbonate (LiCO 3 ) were mixed so that the amount of the substance of Mn in the obtained manganese oxide: the amount of the substance of Li in lithium carbonate would be 1: 2. The mixture was heat treated in air at 800 ° C. for 10 hours to obtain Li 2 MnO 3 having a layered structure.

実施例1−1〜実施例7:複合体の作製
混合比(いわゆるモル比)が表1に記載された値となるように、層状構造を有するLi2MnO3と、表1に記載されたLi正極材料とを配合した。なお、表1の「混合比(モル比)」は、配合した層状構造を有するLi2MnO3の物質量:Li正極材料の物質量を示している。その後、遊星型ボールミルを用いて、500rpm、10時間〜140時間のメカニカルミリング処理によって乾式混合して実施例1−1〜実施例7の複合体を得た。メカニカルミリング処理は、容量80mLのZrO2製ポットとZrO2ボールを使用し、大気雰囲気で室温にて行った。
Examples 1-1 to 7 Preparation of a Composite Li 2 MnO 3 having a layered structure and listed in Table 1 such that the mixing ratio (so-called molar ratio) has the value described in Table 1 It compounded with Li positive electrode material. In addition, "mixing ratio (molar ratio)" in Table 1 indicates the amount of substance of Li 2 MnO 3 having a layered structure compounded: the amount of substance of Li positive electrode material. Thereafter, dry mixing was performed by mechanical milling at 500 rpm for 10 hours to 140 hours using a planetary ball mill to obtain the composites of Example 1-1 to Example 7. The mechanical milling was performed at room temperature in an air atmosphere using an 80 mL volume of a ZrO 2 pot and a ZrO 2 ball.

実験例1:複合体のXRD測定
実施例1−1で得られた複合体について、波長0.15405nmのCu−Kα線を用いたXRD測定を行った。その結果を図1に示す。図1によれば、この複合体の結晶性は非常に低いものの、主にNaCl型構造に帰属される回折ピークが確認され、層状構造またはスピネル型構造に帰属される回折ピークも一部確認された。すなわち、この複合体の主成分は、NaCl型構造を有するLi2MnO3と、Li正極材料との低結晶性の反応物であった。この複合体のTEM画像を図2に示す。図2に示すように、複合体は一次粒子径が数十nm〜200nm程度の粒子の凝集体であることが確認された。
Experimental Example 1: XRD Measurement of Complex The complex obtained in Example 1-1 was subjected to XRD measurement using a Cu-Kα ray having a wavelength of 0.15405 nm. The results are shown in FIG. According to FIG. 1, although the crystallinity of this complex is very low, a diffraction peak attributed mainly to the NaCl type structure is confirmed, and a diffraction peak attributed to the layered structure or the spinel type structure is partially confirmed. The That is, the main component of this complex was a low crystalline reaction product of Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material. A TEM image of this complex is shown in FIG. As shown in FIG. 2, it was confirmed that the complex is an aggregate of particles having a primary particle diameter of about several tens of nm to about 200 nm.

実験例2:電気化学セルの充放電試験(実施例1−1〜実施例7、比較例1、比較例2)
上記実施例で得られた複合体を用いて、下記の方法で電気化学セル(コインセルCR2032)を作製し、充放電試験を行った。実施例1−1〜実施例7で得られた活物質である複合体84質量%、アセチレンブラック(AB)8質量%、およびPTFEバインダー8質量%を混合した合剤を調製し、アルミニウムメッシュに密着接合させ、加熱処理(減圧中、220℃、10時間以上)して各実施例の正極を得た。
Experimental Example 2: Charge / Discharge Test of Electrochemical Cell (Examples 1-1 to 7, Comparative Examples 1 and 2)
An electrochemical cell (coin cell CR2032) was produced by the following method using the composite obtained in the above example, and a charge and discharge test was performed. Example 1-1 A mixture comprising 84% by mass of the composite as an active material obtained in Example 1, 8% by mass of acetylene black (AB) and 8% by mass of a PTFE binder is prepared, and an aluminum mesh is prepared. The electrodes were closely bonded and heat-treated (under reduced pressure, at 220 ° C. for 10 hours or more) to obtain the positive electrode of each example.

試験電極計算容量の約50倍の容量を有する金属リチウム箔を対極として用いた。また、ポリプロピレン微多孔膜をセパレータとして用いた。そして、エチレンカーボネート(EC)とジエチルカーボネート(DEC)の混合液(EC:DEC=1:1(容量%比))にLiPF6を溶解したもの(1mol/L)を電解液として用いた。カットオフ電位1.5V〜4.8Vの範囲で、電流密度を10mA/gとして充放電試験を行った。その結果を図3に示す。 A metallic lithium foil having a capacity of about 50 times the test electrode calculated capacity was used as a counter electrode. In addition, a microporous polypropylene membrane was used as a separator. Then, a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (EC: DEC = 1: 1 ( volume% ratio)) to those obtained by dissolving LiPF 6 to (1 mol / L) was used as the electrolyte. The charge / discharge test was performed at a current density of 10 mA / g at a cutoff potential of 1.5 V to 4.8 V. The results are shown in FIG.

図3に示すように、実施例1−1で得られた複合体を用いた正極は、初期充電容量288mAh/gおよび初期放電容量389mAh/gを示した。また、この正極の初期容量に対する20サイクル後の放電容量維持率(表1では単に「維持率」)は66%であった。また、実施例1−2から実施例7の正極を用いた充放電試験の結果を図4から図11にそれぞれに示す。図4から図11に示す充放電曲線をもとに初期容量充電容量と初期放電容量を決定した。その結果を表1に示す。   As shown in FIG. 3, the positive electrode using the composite obtained in Example 1-1 exhibited an initial charge capacity of 288 mAh / g and an initial discharge capacity of 389 mAh / g. In addition, the discharge capacity retention ratio after 20 cycles with respect to the initial capacity of the positive electrode (simply, the "maintenance ratio" in Table 1) was 66%. Moreover, the result of the charging / discharging test using the positive electrode of Example 1-2 to Example 7 is each shown to FIGS. 4-11. The initial capacity charge capacity and the initial discharge capacity were determined based on the charge and discharge curves shown in FIGS. 4 to 11. The results are shown in Table 1.

Figure 2019087435
Figure 2019087435

表1に示すように、4価以外のMnを含むLi正極材料を含有する複合体(実施例1−1〜実施例1−3)から作製した正極は良好な電極特性が得られた。また、MnとCoを含むLi正極材料を含有する複合体(実施例3)から作製した正極は、より良好な電極特性が得られることがわかった。さらに、Li2MnO3の物質量:Li正極材料の物質量が1:0.5〜1のときに、高い放電容量とサイクル安定性が得られることがわかった。すなわち、好ましいLi正極材料は、LiMn24とLi(Mn0.7Ni0.2Co0.1)O2であった。 As shown in Table 1, the positive electrode produced from the composite (Example 1-1 to Example 1-3) containing the Li positive electrode material containing Mn other than tetravalent obtained good electrode characteristics. In addition, it was found that the positive electrode produced from the composite (Example 3) containing the Li positive electrode material containing Mn and Co has better electrode characteristics. Furthermore, it has been found that high discharge capacity and cycle stability can be obtained when the substance mass of Li 2 MnO 3 : the substance mass of Li positive electrode material is 1: 0.5-1. That is, preferable Li positive electrode materials were LiMn 2 O 4 and Li (Mn 0.7 Ni 0.2 Co 0.1 ) O 2 .

また、複合体に代えてNaCl型構造を有するLi2MnO3(比較例1)、またはLiMn24(比較例2)を用いた点を除いて、上記と同様の方法で各比較例の正極を作製した。比較例1と比較例2の正極を用いた充放電試験の結果を図12と図13にそれぞれ示す。図12に示すように、比較例1では、初期充電容量が432mAh/gで初期放電容量が314mAh/gであった。図13に示すように、比較例2では、初期充電容量が105mAh/gで初期放電容量が332mAh/gであった。 Moreover, except that Li 2 MnO 3 (Comparative Example 1) having a NaCl type structure (Comparative Example 1) or LiMn 2 O 4 (Comparative Example 2) was used in place of the complex, each Comparative Example was prepared in the same manner as above. The positive electrode was produced. The results of charge and discharge tests using the positive electrodes of Comparative Example 1 and Comparative Example 2 are shown in FIGS. 12 and 13, respectively. As shown in FIG. 12, in Comparative Example 1, the initial charge capacity was 432 mAh / g and the initial discharge capacity was 314 mAh / g. As shown in FIG. 13, in Comparative Example 2, the initial charge capacity was 105 mAh / g and the initial discharge capacity was 332 mAh / g.

本発明の複合体は、非水電解質二次電池用の正極活物質などに利用できる。   The composite of the present invention can be used as a positive electrode active material for non-aqueous electrolyte secondary batteries.

Claims (9)

NaCl型構造を有するLi2MnO3と、4価のMn以外の遷移金属を含むLi正極材料とを含有する複合体。 A composite containing Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material containing a transition metal other than tetravalent Mn. 請求項1において、
前記Li2MnO3の物質量Aに対する前記Li正極材料の物質量Bの比B/Aが0.5〜2.0である複合体。
In claim 1,
A composite in which the ratio B / A of the substance mass B of the Li positive electrode material to the substance mass A of the Li 2 MnO 3 is 0.5 to 2.0.
請求項1または2において、
前記Li正極材料が酸化物で、
前記遷移金属が、Ti、4価以外のMn、Co、Ni、およびFeの中から選ばれる少なくとも一種である複合体。
In claim 1 or 2,
The Li positive electrode material is an oxide,
The complex, wherein the transition metal is at least one selected from Ti, Mn other than tetravalent, Co, Ni, and Fe.
請求項3において、
前記Li正極材料がLiMn24とLi(MnxNiyCoz)O2(x+y+z=1、xyz≠0)の少なくとも一方である複合体。
In claim 3,
A complex in which the Li positive electrode material is at least one of LiMn 2 O 4 and Li (Mn x Ni y Co z ) O 2 (x + y + z = 1, xyz ≠ 0).
請求項1から4のいずれかに記載された複合体を含有するリチウム二次電池用の正極材料。   The positive electrode material for lithium secondary batteries containing the composite as described in any one of Claims 1-4. NaCl型構造を有するLi2MnO3と、4価のMn以外の遷移金属を含むLi正極材料とを含有する複合体の製造方法であって、
層状構造を有するLi2MnO3と、前記Li正極材料とを混合する混合工程を有する複合体の製造方法。
A method for producing a composite containing Li 2 MnO 3 having a NaCl type structure and a Li positive electrode material containing a transition metal other than tetravalent Mn,
And Li 2 MnO 3 having a layered structure, manufacturing method of a composite body having a mixing step of mixing the Li cathode material.
請求項6において、
前記混合工程が、前記層状構造を有するLi2MnO3の物質量Aに対する前記Li正極材料の物質量Bの比B/Aが0.5〜2.0となるように、前記層状構造を有するLi2MnO3と、前記Li正極材料とを配合する過程を有する複合体の製造方法。
In claim 6,
The mixing step has the layered structure such that the ratio B / A of the mass B of the Li positive electrode material to the mass A of Li 2 MnO 3 having the layered structure is 0.5 to 2.0. A method for producing a composite, comprising the step of blending Li 2 MnO 3 and the Li positive electrode material.
請求項6または7において、
前記Li正極材料が酸化物で、
前記遷移金属が、Ti、4価以外のMn、Co、Ni、およびFeの中から選ばれる少なくとも一種である複合体の製造方法。
In claim 6 or 7,
The Li positive electrode material is an oxide,
The method for producing a complex, wherein the transition metal is at least one selected from Ti, Mn other than tetravalent, Co, Ni, and Fe.
請求項8において、
前記Li正極材料がLiMn24とLi(MnxNiyCoz)O2(x+y+z=1、xyz≠0)の少なくとも一方である複合体の製造方法。
In claim 8,
The method for producing a complex, wherein the Li positive electrode material is at least one of LiMn 2 O 4 and Li (Mn x Ni y Co z ) O 2 (x + y + z = 1, xyz ≠ 0).
JP2017215370A 2017-11-08 2017-11-08 Positive electrode material for lithium secondary batteries and its manufacturing method Active JP6995346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017215370A JP6995346B2 (en) 2017-11-08 2017-11-08 Positive electrode material for lithium secondary batteries and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017215370A JP6995346B2 (en) 2017-11-08 2017-11-08 Positive electrode material for lithium secondary batteries and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019087435A true JP2019087435A (en) 2019-06-06
JP6995346B2 JP6995346B2 (en) 2022-01-14

Family

ID=66763287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017215370A Active JP6995346B2 (en) 2017-11-08 2017-11-08 Positive electrode material for lithium secondary batteries and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6995346B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle
JP2011134670A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Lithium secondary battery positive electrode active material
JP2014237579A (en) * 2013-05-10 2014-12-18 株式会社半導体エネルギー研究所 Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
JP2015053252A (en) * 2013-08-08 2015-03-19 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009245808A (en) * 2008-03-31 2009-10-22 Toyota Central R&D Labs Inc Lithium ion secondary battery, and power source for electric vehicle
JP2011134670A (en) * 2009-12-25 2011-07-07 Toyota Motor Corp Lithium secondary battery positive electrode active material
JP2014237579A (en) * 2013-05-10 2014-12-18 株式会社半導体エネルギー研究所 Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
JP2015053252A (en) * 2013-08-08 2015-03-19 トヨタ自動車株式会社 Positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP6995346B2 (en) 2022-01-14

Similar Documents

Publication Publication Date Title
JP7228773B2 (en) Positive electrode active material and battery
KR101395478B1 (en) Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery using said positive electrode active material
KR101762980B1 (en) Positive electrode active material powder, method for producing same, and nonaqueous electrolyte secondary battery
JP7127277B2 (en) Positive electrode active material for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode active material for lithium ion secondary battery
JP4096754B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
KR101335460B1 (en) Cathode Active Material Comprising Lithium Manganese-Based Oxide and Non Aqueous Electrolyte Secondary Battery Based upon the Same
KR101463881B1 (en) Manganese spinel-type lithium transition metal oxide
US20120319034A1 (en) Lithium secondary battery active material and lithium secondary battery using the same
JP5846482B2 (en) Sodium manganese titanium nickel composite oxide, method for producing the same, and sodium secondary battery using the same as a member
JP7131056B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
US20240290968A1 (en) Method of producing cathode active material, and method of producing lithium ion battery
KR20170125074A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and method for manufacturing the same
KR101337365B1 (en) Cathode Active Material with High Capacity and Improved Conductivity and Non-aqueous Electrolyte Secondary Battery Comprising the Same
US20120228562A1 (en) Anode active material for a rechargeable lithium battery
JP7292574B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JPH11204110A (en) Manufacture of anode material for lithium ion battery
CN114556633A (en) Positive electrode active material, method of preparing the same, and lithium secondary battery comprising the same
WO2015001957A1 (en) Lithium ion secondary battery positive electrode active material, lithium ion secondary battery positive electrode, lithium ion secondary battery, and method for manufacturing said active material, said positive electrode, and said battery
CN111466047A (en) Positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP2014238976A (en) Lithium secondary battery positive electrode active material, and lithium secondary battery arranged by use thereof
JP7271945B2 (en) Positive electrode active material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP7363747B2 (en) Method for manufacturing positive electrode active material, method for manufacturing positive electrode active material and lithium ion battery
JP2022037814A (en) Positive electrode active material for lithium ion secondary batteries and manufacturing method thereof
JPWO2018168470A1 (en) Spinel-type lithium nickel manganese-containing composite oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6995346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150