JP2019085868A5 - - Google Patents

Download PDF

Info

Publication number
JP2019085868A5
JP2019085868A5 JP2018208684A JP2018208684A JP2019085868A5 JP 2019085868 A5 JP2019085868 A5 JP 2019085868A5 JP 2018208684 A JP2018208684 A JP 2018208684A JP 2018208684 A JP2018208684 A JP 2018208684A JP 2019085868 A5 JP2019085868 A5 JP 2019085868A5
Authority
JP
Japan
Prior art keywords
waveform
pipe
view
tube
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018208684A
Other languages
Japanese (ja)
Other versions
JP2019085868A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2018208684A priority Critical patent/JP2019085868A/en
Priority claimed from JP2018208684A external-priority patent/JP2019085868A/en
Publication of JP2019085868A publication Critical patent/JP2019085868A/en
Publication of JP2019085868A5 publication Critical patent/JP2019085868A5/ja
Pending legal-status Critical Current

Links

Description

骨組み構造体Frame structure

本発明は、ガレージ、農業用ビニールハウス、テントハウス、その他の簡易な建築物の躯体に利用される骨組み構造体に係り、特に曲げ加工を施した管材又は棒材を結束して構成されるものに関する。   The present invention relates to a framework structure used for a garage, an agricultural greenhouse, a tent house, and other simple buildings, and is particularly configured by binding bent pipes or rods. About.

従来から、大型の仮設テントやテント倉庫などのように大きい室内空間を構成するための躯体に適用される骨組み構造体としては、形態的安定性と高い剛性や強度が求められるため、下記特許文献1乃至4に開示されているようなトラス構造を主体とするものが利用されている。   Conventionally, as a frame structure applied to a skeleton for forming a large indoor space such as a large temporary tent or a tent warehouse, morphological stability and high rigidity and strength are required, the following patent document A truss structure mainly as disclosed in 1-4 is used.

一方、家庭用ガレージや農業用ビニールハウスなどの比較的小規模な室内空間を構成するための簡易躯体については、屋根の自重が小さく、高さも比較的低いものとなるため、屋根部分にトラス構造の骨組み構造体を用いるが両側壁部にはラーメン構造の骨組みを用いた躯体(例えば、下記特許文献5及び6)や、アーチ状乃至逆U字状に曲げ加工した多数のパイプをそれぞれ脚部で立脚支持すると共に各パイプの中間位置に横架させた横棒でラーメン構造を構成した躯体(例えば、下記特許文献7及び8)が採用されていることが多い。   On the other hand, a simple skeleton for constructing a relatively small indoor space such as a home garage or agricultural greenhouse has a roof with a small weight and a relatively low height. But a frame using a frame with a rigid frame structure (for example, Patent Documents 5 and 6 below) and a large number of pipes bent into an arched shape or an inverted U shape are formed on both side walls. In many cases, a frame (for example, Patent Literatures 7 and 8 below) in which a ramen structure is formed by horizontal bars that are supported by a stilt and that are laid horizontally in the middle of each pipe.

特許公報第2914564号Patent Publication No. 2914564 特許公報第3455936号Patent Publication No. 3455936 特許公報第3852202号Patent Publication No. 3852202 特許公報第5971878号Patent Publication No. 5971878 特開2002−295043号公報JP-A-2002-295043 特開2006−238834号公報JP 2006-238834 A 登録実用新案公報第3104416号Registered Utility Model Publication No. 3104416 特開2013−111015号公報JP 2013-11115 A 特公平5−12047号公報Japanese Patent Publication No. 5-12047 特公平7−110382号公報Japanese Patent Publication No. 7-110382 特許公報第2715397号Patent Publication No. 2715397 特許公報第3593105号Patent Publication No. 3593105

前記従来技術に係る小規模な室内空間を構成するための簡易躯体は、両側壁部がラーメン構造により立設させてあるため、風圧などの外力に対して弱い構造になっており、耐震性にも劣ることは否めず、必要に応じて補強対策を施す必要がある。
また、一定間隔ごと立設させて整列せしめられる骨組み材や曲げパイプの間隔が広くなると、張設された幕体や取り付けられた薄板材に撓みが生じやすく、経年変化によってその撓みが大きくなると外観的に見苦しいものになる。
The simple skeleton for forming a small-sized indoor space according to the prior art described above has a structure that is weak against external forces such as wind pressure because both side walls are erected by a ramen structure. It is inevitable that reinforcement measures must be taken as necessary.
Also, if the spacing between the frame members and bent pipes that are erected and aligned at regular intervals increases, the curtains that are stretched and the thin sheet materials that are attached are likely to bend, and if the deflection increases over time, the appearance will increase. Will be unsightly.

ところで、本願出願人は、1989年当時から管材又は棒材の押し通し曲げ加工方法及び同加工装置についての開発・改良を行ってきており(上記特許文献9−12)、現在では、管材に対する曲げ加工を管材断面の扁平化を防止しながら小さい曲率半径で安定的且つ高精度に実行でき、さらに自在な三次元連続曲げを実現できるようになっている。
そして、この押し通し曲げ加工装置によって曲げ加工された管材にはダイスのベアリング部でしごきを受けたことによる加工硬化が生じており、加工前の状態より強度が向上している。
By the way, the applicant of the present application has been developing and improving a method and apparatus for pushing and bending a pipe or a rod material since 1989 (Patent Documents 9 to 12). Can be stably and accurately performed with a small radius of curvature while preventing the cross section of the tube material from being flattened, and moreover, flexible three-dimensional continuous bending can be realized.
Then, the pipe material bent by the push-through bending apparatus has undergone work hardening due to being ironed by the bearing portion of the die, and has a higher strength than the state before the processing.

そこで、本願発明は、前記押し通し曲げ加工装置によって曲げ加工を施した管材を利用して構成できる骨組み構造体を提供し、もって上記特許文献5乃至8に開示されているような小規模な室内空間を構成するための簡易躯体について指摘されている上記問題点を解消することを目的とする。
なお、棒材については、前記押し通し曲げ加工装置を用いても管材ほどの加工効率や加工精度が得られないため、従来からのプレス曲げ加工などによることになるが、当然に本発明の骨組み構造体に利用できるため、棒材を排除する訳ではない。
In view of the above, the present invention provides a framed structure that can be configured by using a pipe material that has been bent by the push-through bending apparatus, and thus has a small indoor space as disclosed in Patent Documents 5 to 8 described above. It is an object of the present invention to solve the above-mentioned problems pointed out about a simple skeleton for constituting the above.
In addition, since the working efficiency and the working accuracy of the pipe material cannot be obtained even with the push-through bending device, the bar material is formed by a conventional press bending process. Bars are not excluded because they can be used for the body.

願発明は、直線軸を中心とする一定振幅の第1の平面波形に曲げ加工されていると共に、全区間又は一部区間において前記第1の平面波形の曲げ方向と垂直な方向へ弧状曲げ加工されており、且つ前記弧状曲げ加工に重畳させて、弧状曲げ面を中心とする一定振幅で一定周期の第2の平面波形に曲げ加工されているの管材又は棒材と、前記第1の平面波形がその波形と前記直線軸に関して対称な平面波形であることのみが前記第の管材又は棒材と異なる第の管材又は棒材とをそれぞれ多数本用い、前記第の管材又は棒材における前記第1の平面波形の最大振幅部分と前記第の管材又は棒材における前記対な平面波形の最大振幅部分とを対向当接させて結束することにより骨組みによる面を構成したことを特徴とする骨組み構造体に係る。
この発明の骨組み構造体によれば、対称な平面波形に曲げられた管材又は棒材が各最大振幅部分同士で側方へ連結せしめられると、管材又は棒材の長手方向に関してアーチ状面の一部又は全部に相当するような弧状面であって、さらにその弧状面が前記直線軸に沿って同面に垂直な方向へも一定振幅・一定周期で波打っている骨組み面を構成できる。
平面波形については、直線軸を中心に蛇行した波形であればよく、振幅については一定であることが要求されるが、周期性があるかどうかは問わない。
管材に対する曲げ加工方法については、管材の横断面をできるだけ扁平化させずに曲げ加工を施すという点で前記押し通し曲げ加工装置によることが望ましく、棒材に対する曲げ加工方法としては、従来から用いられているロール曲げやプレス曲げ又はそれらの併用などによることが望ましい。
結束のための手段としては、2本の管材又は棒材を抱持して掛止機構で固定する方式の結束具や従来から汎用されている樹脂製又は金属製の結束バンドを用いることができ、一時的に利用される簡易な骨組み構造体であれば、樹脂製又は金属製の粘着テープで結束するような手段であってもよい。
This gun onset Ming, arcuate with being bent in a first plane wave of constant amplitude centered on the linear axis, the bending direction perpendicular to the direction of the first plane wave in the entire interval or a partial section A first pipe or bar that has been bent and superimposed on the arc-shaped bending, and has been bent into a second planar waveform having a constant amplitude and a constant cycle centered on the arc-shaped bending surface ; each large number using only a symmetric plane waveform and said first tube or rod and a different second tube, or rod with respect to said linear axis first plane waveform and the waveform, the first a surface by framework by tying a maximum amplitude part of the tube or of the first plane wave in the bar the maximum amplitude portion and the second tubular material or the symmetric plane wave in the bar to face contact A skeleton structure characterized by being constructed According to the body.
According to the framework structure of the present invention, when the pipe or bar bent into a symmetrical plane waveform is laterally connected between the maximum amplitude portions, one of the arched surfaces in the longitudinal direction of the tube or bar is formed. It is possible to form a framed surface which is an arc-shaped surface corresponding to a part or the whole, and furthermore, the arc-shaped surface undulates in a direction perpendicular to the surface along the linear axis at a constant amplitude and a constant cycle.
The plane waveform may be a waveform meandering around the linear axis, and the amplitude is required to be constant, but it does not matter whether or not there is periodicity.
Regarding the bending method for the pipe material, it is preferable to use the press-through bending apparatus in that the bending is performed without flattening the cross section of the pipe material as much as possible, and the bending method for the rod material is conventionally used. It is desirable to use roll bending, press bending, or a combination thereof.
As a means for binding, a binding tool of a type in which two pipes or rods are held and fixed by a locking mechanism, or a resin or metal binding band conventionally used widely can be used. As long as it is a simple framed structure that is temporarily used, a unit that binds with a resin or metal adhesive tape may be used.

願発において、前記平面波形が、前記直線軸に対して平行な最大振幅区間と前記直線軸に対して±60°の交差角度をもつ傾斜区間とが同一長さで交互に連続した台形波形とすることが望ましい
このような構成にすることで、各骨組み構造体は管材又は棒材が構成する正六角形が隙間なく縦横に整列したハニカム構造面を構成することになり、同面の方向に作用する外力が分散されるため座屈強度の大きい壁面となる。
In this gun onset bright, before Symbol plane wave is continuously alternately tilting section and the same length with the angle of intersection ± 60 ° relative to the linear axis parallel to the maximum amplitude section with respect to the linear axis It is desirable to have a trapezoidal waveform with a constant shape.
By adopting such a configuration , each framework structure constitutes a honeycomb structure surface in which regular hexagons formed by a pipe or a bar are arranged vertically and horizontally without a gap, and external forces acting in the direction of the same surface are dispersed. As a result, the wall surface has a large buckling strength.

また、本願発明における前記平面波形正弦波形としておいてもよい
正弦波形としておくことにより、管材又は棒材による滑らかな波形が隣接した骨組み面を構成できるため、特有の高い審美性を発現させることができる。
Also, the plane wave in the present invention may have been with a sinusoidal waveform.
By providing a sinusoidal waveform, a smooth waveform of the pipe or the bar can form the adjacent skeleton surface, and thus a unique high aesthetic property can be exhibited.

さらに、本願発明においては、各管材又は各棒材の両端面が前記直線軸に垂直な二面において揃っており、且つ前記二面上での各管材又は各棒材の端面の位置を同一にしておくことが望ましい。
このようにすることで、骨組み面を所定単位サイズ面に構成し、その単位サイズ面における各管材又は各棒材の端面同士を所定継手機構によって連結して、より大きな骨組み面へ拡張してゆくことが可能になる。
なお、各管材又は各棒材の端面の位置が同一であるだけでなく、整列させておくようにすれば、継手機構による連結作業はより効率的になる。
一方、単位サイズ面の側方への拡張については、骨組み面の両側端にある管材又は棒材の最大振幅部分同士を結束させるだけでよい。
Further, in the present invention, both end surfaces of each tube or each bar are aligned on two surfaces perpendicular to the linear axis, and the positions of the end surfaces of each tube or each bar on the two surfaces are the same. It is desirable to keep.
In this way, the bone set surface configured into a predetermined unit size surface, the end faces of each tube or each bar in the unit size surface connected by a predetermined joint mechanism, to expand to a larger framework surface It is possible to go.
In addition, if the positions of the end faces of the respective pipe members or the respective bar members are not only the same but also aligned, the connection operation by the joint mechanism becomes more efficient.
On the other hand, when expanding the unit size surface to the side, it is only necessary to bind the maximum amplitude portions of the pipes or rods at both ends of the skeleton surface.

願発明の骨組み構造体によると、所定条件で曲げ加工が施された管材又は棒材を結束することで、骨組みによる弧状壁面を構成することが可能である。
また、本願発明の骨組み構造体では、骨組みによる壁面を一定振幅・一定周期で波打った態様に構成しており、壁面における管材又は棒材の長手方向に作用する外力に対して一定の弾性を具備させて、管材や棒材が曲げ加工により加工硬化を受けていることによる脆性の高まりを吸収・緩和させることができ、さらに波打ちによる特有の審美性を発現させることができる。
また、曲げ加工条件を台形波や正弦波とした場合には、壁面の骨組み構成をハニカム構造にして座屈強度を向上させた骨組み構造体や、略紡錘形状の窓が整列した高い審美性を感じさせる骨組み構造体を構成することができる。
そして、骨組みによる壁面を一定条件での所定サイズの単位壁面とすれば簡単な継手機構で連結拡張させてゆくことができ、各種のサイズ及び形態の骨組み構造物の構築に容易に対応することが可能になる
本願発明の骨組み構造体を利用した弧状壁面は、トラス構造を内在させている訳ではないが、細めの管材や棒材で構成した場合であっても、ラーメン構造を基本とする従来の小規模な幕体張設用躯体(ガレージや農業用ビニールハウスなど)と比較して遥かに強固な構造で風雪にも強く、耐震性にも優れている。
また、本願発明の骨組み構造体を利用して構築した躯体は、その弧状壁面全体に管材又は棒材が蛇行した態様になっているため、幕体や薄板を取り付けた場合にそれらの展設面を内側から均等に支持できると共に、その固定箇所も均等に多数設けることができるため、幕体や薄板の撓みが目立たないようにできる。
According to the gun onset bright scaffold structures, by tying the bending has been performed tube or rod in a predetermined condition, it is possible to construct an arc-like wall surface that by the framework.
Further, in the framework structure of the present invention, the wall surface of the framework is configured to undulate at a constant amplitude and a constant period, and has a constant elasticity with respect to an external force acting on the wall surface in the longitudinal direction of the pipe or the rod. By providing this, it is possible to absorb and alleviate the increase in brittleness due to the work hardening of the pipe and the bar by the bending process, and it is possible to express unique aesthetics due to waving.
Further, when the bending processing conditions trapezoid or sine wave, and frame structures with improved buckling strength in the honeycomb structural skeleton structure of the wall, high esthetics are substantially spindle-shaped window aligned Can be configured.
Then, it can Yuku be connected is expanded by a simple joint mechanism when the wall by bone set a unit wall surface of a predetermined size at a predetermined condition, easily corresponding that in the construction of framework structures various sizes and forms Becomes possible .
The arc-shaped wall surface using the framework structure of the present invention does not include a truss structure, but even if it is formed of a thin tube or rod, a conventional small-scale structure based on a ramen structure is used. It has a much stronger structure and is resistant to wind and snow, and has excellent seismic resistance, compared to a frame for laying curtains (garage, agricultural greenhouse, etc.).
In addition, since the frame constructed using the framework structure of the present invention has a mode in which the pipe or the bar meanders over the entire arc-shaped wall surface, when a curtain or a thin plate is attached, the extended surface of the curtain or the thin plate is used. Can be uniformly supported from the inside, and a number of fixed portions can be provided evenly, so that the bending of the curtain or the thin plate can be made inconspicuous.

実施例1に係る骨組み構造体に用いる曲げ加工後の管材の正面図(A)と側面図(B)、及び実施例2に係る骨組み構造体に用いる曲げ加工後の2種類の管材の正面図(A1),(A2)と側面図(C)である。A front view (A) and a side view (B) of a tube material after bending used for the frame structure according to the first embodiment, and a front view of two types of tube material after bending used for the frame structure according to the second embodiment. (A1), (A2) and a side view (C). 実施例1に係る骨組み構造体の正面図(A)と側面図(B)と平面図(C)である。FIG. 3 is a front view (A), a side view (B), and a plan view (C) of the skeleton structure according to the first embodiment. 結束具の例を示す外観斜視図である。It is an external appearance perspective view which shows the example of a binding tool. 実施例1に係る骨組み構造体で円筒面状の骨組み壁面が構成できることを示す正面図(A)と側面図(B)と平面図(C)である。It is a front view (A), a side view (B), and a plan view (C) showing that a cylindrical framework wall surface can be formed by the framework structure according to the first embodiment. 実施例2に係る骨組み構造体の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of the framework structure which concerns on Example 2. 実施例3に係る骨組み構造体に用いる曲げ加工後の管材の正面図(A)と側面図(B)、及び実施例4に係る骨組み構造体を構成する曲げ加工後の2種類の管材の正面図(A1),(A2)と側面図(C)である。A front view (A) and a side view (B) of a bent pipe used for the frame structure according to the third embodiment, and a front view of two types of bent pipes forming the frame structure according to the fourth embodiment. (A1), (A2) and a side view (C). 実施例3に係る骨組み構造体の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of the framework structure which concerns on Example 3. 実施例4に係る骨組み構造体の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of the framework structure which concerns on Example 4. 実施例5に係る骨組み構造体に用いる曲げ加工後の一方の管材の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of one pipe after bending process used for the frame structure which concerns on Example 5. 実施例5に係る骨組み構造体に用いる曲げ加工後の他方の管材の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of the other tube material after bending process used for the framework structure which concerns on Example 5. 実施例5に係る骨組み構造体の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of the framework structure which concerns on Example 5. 実施例5に係る他の骨組み構造体(骨組み壁面が波打ち)の正面図(A)と側面図(B)と平面図(C)である。It is the front view (A), side view (B), and top view (C) of another frame structure (frame wall is wavy) which concerns on Example 5. 実施例6として実施例1に係る骨組み構造体を管継手により連結する場合の説明図である。FIG. 16 is an explanatory diagram of a case where the skeleton structure according to the first embodiment is connected by a pipe joint as the sixth embodiment. 管継手の3種類の例を示す外観斜視図である。It is an appearance perspective view showing three kinds of examples of a pipe joint. 骨組み構造体の管材の端部を図14の(B)の管継手で連結した場合の要部断面図である。FIG. 15 is a cross-sectional view of a main part in a case where the ends of the tube material of the skeleton structure are connected by the pipe joint of FIG. 骨組み構造体が棒材で構成されている場合における棒継手の正面図(A)と側面図(B)と平面図(C)とX-X矢視断面図(D)である。It is the front view (A), side view (B), plan view (C), and XX arrow sectional view (D) of a bar joint in case a frame structure is comprised with a bar. 骨組み構造体の棒材の端部を図16の棒継手で連結した場合の要部断面図である。FIG. 17 is a cross-sectional view of a main part when the ends of the bar members of the skeleton structure are connected by the bar joint of FIG. 16. 実施例1と実施例5の骨組み構造体を連結して構成される幕体張設用躯体(農業用ビニールシート又は温室)の正面図(A)及び側面図(B)である。It is a front view (A) and a side view (B) of a curtain body extension building frame (agricultural vinyl sheet or greenhouse) configured by connecting the frame structures of the first embodiment and the fifth embodiment. 実施例1と実施例5の骨組み構造体を連結して構成される他の幕体張設用躯体(ガレージ)の正面図(A)及び側面図(B)である It is a front view (A) and a side view (B) of another curtain body for extension body construction (garage) constituted by connecting the framework structures of Example 1 and Example 5 .

本発明の骨組み構造体の実施例について図面を参照しながら説明する。
各実施例では主に押し通し曲げ加工方法により曲げ加工を施した管材が用いられた骨組み構造体について説明するが、素材としては機械構造用炭素鋼鋼管(STKM)やステンレス鋼管(SUS304など)が一般的であり、それほど機械的強度が求められない場合にはアルミニウム管も用いられる。
なお、棒材を用いた骨組み構造体の場合において、棒材の曲げ加工には従来から利用されているプレス・ベンディング(プレス曲げ方式)やドロー・ベンディング(回転引き曲げ方式)やコンプレッション・ベンディング(圧縮曲げ方式)が適用される。
An embodiment of the framework structure of the present invention will be described with reference to the drawings.
In each embodiment, a frame structure using a pipe material bent by a press-through bending method will be mainly described. As a material, a carbon steel pipe for machine structure (STKM) and a stainless steel pipe (SUS304, etc.) are generally used. When the mechanical strength is not required, an aluminum tube is also used.
In the case of a framed structure using a bar, the bending of the bar is performed using a press bending (press bending method), a draw bending (rotary pull bending method), and a compression bending ( Compression bending method) is applied.

この実施例の骨組み構造体に使用される管材11は、図1の(A):正面図及び(B):側面図に示されるような平面波形に曲げ加工されている。
具体的には、管材11は、直線軸12に対して平行な最大振幅区間13と直線軸12に対して±60°の交差角度をもつ傾斜区間14とが同一の長さで交互に連続した台形波形に曲げ加工が施されたものである。
The tube material 11 used in the frame structure of this embodiment is bent into a plane waveform as shown in FIG. 1 (A): front view and (B): side view.
Specifically, in the tube 11, the maximum amplitude section 13 parallel to the linear axis 12 and the inclined section 14 having an intersection angle of ± 60 ° with the linear axis 12 are alternately continuous with the same length. This is a trapezoidal waveform that has been bent.

そして、管材11を表裏反転させたものは、正面図が図1の(A)における直線軸12に関して対称なものであり、側面図が(B)である管材となる。
したがって、同一形態の管材11だけを多数本用意しておき、最大振幅区間13同士を対向当接させて結束具15によって側方へ順次結束してゆくと、図2に示すような骨組み構造体16を構成できる。
ただし、この実施例での骨組み構造体16は10本の管材11を結束したものになっている。
When the tube 11 is turned over, the tube is a tube whose front view is symmetrical with respect to the linear axis 12 in FIG. 1A and whose side view is (B).
Therefore, when a large number of pipes 11 of the same form are prepared in advance, and the maximum amplitude sections 13 are abutted against each other and sequentially bound laterally by the binding tool 15, a frame structure as shown in FIG. 16 can be configured.
However, the frame structure 16 in this embodiment is formed by binding ten pipes 11.

ここで、結束具15としては図3に示すようなものが使用される。
この結束具15は、2本の管材11が平行な関係で当接した状態でそれらの外周面を抱持する形態に曲げ加工がなされたステンレス等の金属製帯板15aの両端に、同金属製のフック部15bと係合部15cを溶接等によって固着させた器具であり、帯板15aの弾性を利用して2本の管材11を内側へ受け入れ、フック部15bを係合部15cへ掛止させることで各管材11を抱持結束するようになっている。
Here, the binding tool 15 as shown in FIG. 3 is used.
The bundling tool 15 is provided at both ends of a metal strip 15a made of stainless steel or the like, which is bent so as to embrace the outer peripheral surfaces thereof in a state where the two pipes 11 abut in a parallel relationship. Is a device in which a hook portion 15b and an engaging portion 15c are fixed to each other by welding or the like, and the two tube members 11 are received inside using the elasticity of the band plate 15a, and the hook portion 15b is hooked on the engaging portion 15c. By stopping, each tube material 11 is held and bound.

この実施例の骨組み構造体16によると、図2に示すとおり、管材11で構成した平面的構造ではあるが、正六角形を隙間なく並べたハニカム構造が構成されており、その骨組み壁面方向に作用する外力に対して大きな強度を具備している。
また、骨組み構造体16において隣接している管材11は、最大振幅区間13同士が結束具15で結束されているだけで相互に回動自在であるため、図4に示すように、円筒面の一部を構成するような骨組み壁面に湾曲させることが可能であり、さらには、蛇行壁面や三角波状に折曲した壁面にすることもできる。
According to the skeleton structure 16 of this embodiment, as shown in FIG. 2, although it is a planar structure composed of the tube material 11, a honeycomb structure in which regular hexagons are arranged without gaps is configured, and the honeycomb structure 16 acts in the direction of the framing wall surface. It has a large strength against external force.
Further, since the adjacent tube members 11 in the frame structure 16 are mutually rotatable only by binding the maximum amplitude sections 13 to each other with the binding members 15, as shown in FIG. It is possible to bend to a framed wall surface that constitutes a part, and it is also possible to form a meandering wall surface or a wall surface bent in a triangular wave shape.

したがって、この実施例の骨組み構造体16は、管材11として細いものを用いても機械的強度が大きく、また各管材11の結束連結方向に関して様々な曲面を構成できるものであり、小規模な幕体張設用躯体(ガレージや農業用ビニールハウスなど)などを構成するための単位壁面として最適である。
特に、同一形状の曲げ加工を施した管材11を多数本製造しておけば常に簡単に組立てることが可能であり、また図2や図4に示すように各管材11の両端が揃った壁面構成にできるため、後述するように管継手を用いた縦方向への連結と結束具を用いた横方向への連結によって壁面を縦横に拡張できるという利点がある。
Therefore, the skeleton structure 16 of this embodiment has a large mechanical strength even when a thin tube 11 is used, and can form various curved surfaces in the binding and connecting direction of the respective tubes 11. It is most suitable as a unit wall for constructing a skeleton (garage, agricultural greenhouse, etc.).
In particular, it is always possible to assemble easily if a large number of pipe materials 11 having the same shape are subjected to bending processing, and it is possible to always assemble them easily. Also, as shown in FIGS. Therefore, as described later, there is an advantage that the wall surface can be expanded vertically and horizontally by the connection in the vertical direction using the pipe joint and the connection in the horizontal direction using the binding device.

この実施例の骨組み構造体に使用される管材は形態上2種類あり、一方の管材21は図1の(A1):正面図及び(C):側面図で表され、他方の管材25は同図の(A2):正面図及び(C):側面図で表されるものである。
正面図において、管材21は、実施例1の図1の(A)と同様に、直線軸22に対して平行な最大振幅区間23と直線軸22に対して±60°の交差角度をもつ傾斜区間24とが同一の長さで交互に連続した台形波形になっており、管材25は管材21と直線軸22に関して対称に表れる台形波形になっている。
There are two types of tubing used in the frame structure of this embodiment. One tubing 21 is shown by (A1): front view and (C): side view in FIG. 1, and the other tubing 25 is shown in FIG. (A2): Front view and (C): Side view of the drawing.
In the front view, the pipe member 21 has a maximum amplitude section 23 parallel to the linear axis 22 and a slope having an intersection angle of ± 60 ° with the linear axis 22 as in FIG. 1A of the first embodiment. The section 24 has a trapezoidal waveform alternately continuous with the same length, and the tube 25 has a trapezoidal waveform that appears symmetrically with respect to the tube 21 and the linear axis 22.

ただし、この実施例で用いられる管材が前記のように管材21と管材25の2種類とされているのは、図1の(C):側面図に示されるとおり、それらの管材21,25は双方とも前記台形波形への曲げ加工と共にその曲げ加工方向に垂直な方向へも前記直線軸22を中心とした台形波形に曲げ加工が施されているからである。
なお、この実施例では、(C):側面図の台形波形は図1の(A1),(A2):正面図の台形波形と同一周期・同一位相であり、振幅は少し小さいものになっている。
However, the two types of pipes used in this embodiment are the pipes 21 and 25 as described above, as shown in FIG. This is because, in both cases, the trapezoidal waveform is also bent in the direction perpendicular to the bending direction in the trapezoidal waveform around the linear axis 22 together with the bending processing.
In this embodiment, (C): the trapezoidal waveform in the side view has the same period and the same phase as (A1) and (A2) in FIG. 1: the trapezoidal waveform in the front view, and the amplitude is slightly smaller. I have.

したがって、管材21と管材25を多数本用意しておき、管材21の最大振幅区間23と管材25の最大振幅区間23’を対向隣接させて上記結束具15によって結束すると、図5に示すような波状の骨組み構造体26を構成でき、その波状の骨組み壁面においては結束部分が波面の山(最前部)と谷(最後部)となっている。
このように骨組み構造体26の面を波打たせておくことにより、管材21,25の方向に加わる外力に対する弾性が付与されると共に、幕体張設用躯体として用いた場合に、躯体の骨組み自体や張設した幕体の波状変化による特有の審美性が発現される。
Accordingly, when a large number of the pipe members 21 and 25 are prepared, and the maximum amplitude section 23 of the pipe member 21 and the maximum amplitude section 23 ′ of the tube member 25 are opposed to and adjacent to each other and bound by the binding device 15, as shown in FIG. A wavy skeleton structure 26 can be formed, and the binding portion of the wavy skeleton wall surface is a peak (frontmost portion) and a valley (last portion) of a wavefront.
By waving the surface of the frame structure 26 in this manner, elasticity against external force applied in the direction of the pipe members 21 and 25 is imparted, and when the frame structure 26 is used as a frame for curtain covering, the frame structure of the frame is reduced. A unique aesthetic is exhibited by the wavy change of the curtain itself or the stretched curtain.

この実施例の骨組み構造体に使用される管材31は図6の(A):正面図及び(B):側面図に示されるような平面波形に曲げ加工されている。
すなわち、上記実施例1が管材11に台形波形の曲げ加工がなされているのに対して、この実施例の管材31は直線軸32を中心軸とした正弦波状に曲げ加工が施されている。
The tube material 31 used in the frame structure of this embodiment is bent into a plane waveform as shown in FIG. 6 (A): front view and (B): side view.
That is, while the tube 11 is bent in a trapezoidal waveform in the first embodiment, the tube 31 in this embodiment is bent in a sine wave shape with the linear axis 32 as the center axis.

そして、管材31を表裏反転させたものは、正面図が図6の(A)における直線軸32に関して対称なものであり、側面図が(B)である管材となる。
したがって、同一形態の管材31だけを多数本用意しておき、最大振幅部分33同士を対向隣接させて結束手段によって結束してゆくと、図7に示すような骨組み構造体34を構成できる。
この実施例での結束手段としては、管材31が正弦波状の曲げになっているために前記実施例1,2のように直線区間同士の結束条件にはならないことから、金属製又は樹脂製の結束バンド35が使用される。
When the tube 31 is turned over, the front is symmetrical with respect to the linear axis 32 in FIG. 6A, and the tube is the side shown in FIG.
Therefore, when only a large number of tubes 31 of the same form are prepared and the maximum amplitude portions 33 are opposed to and adjacent to each other and bound by the binding means, a framework structure 34 as shown in FIG. 7 can be constructed.
As the binding means in this embodiment, since the tube material 31 is bent sinusoidally, it does not satisfy the binding conditions between the straight sections as in the first and second embodiments, and thus is made of metal or resin. A binding band 35 is used.

この実施例の骨組み構造体34によると、図7の(A)に示すように、管材31の正弦波形状の側方への結合により紡錘状の形状が平面的に隙間なく連続した骨組み面が構成され、滑らかな印象の審美性を呈する骨組み面を構成できる。
なお、この実施例は、実施例1と管材に対する曲げ加工条件が台形波形と正弦波形で相違しているだけであり、その他の特長については実施例1の場合と同様である。
According to the skeleton structure 34 of this embodiment, as shown in FIG. 7 (A), the skeleton surface in which the fusiform shape is continuous without any gap in a plane is formed by coupling the sine material to the side of the sine wave shape. It is possible to form a framed surface that is structured and presents a smooth impression of aesthetics.
This embodiment is different from the first embodiment only in the bending conditions for the tube material for the trapezoidal waveform and the sine waveform, and the other features are the same as those of the first embodiment.

この実施例の骨組み構造体に使用される管材は形態上2種類あり、一方の管材41は図6の(A1):正面図及び(C):側面図で表され、他方の管材42は同図の(A2):正面図及び(C):側面図で表されるものである。
正面図において、管材41は、実施例3の場合の図6の(A)と同様に、直線軸43を中心軸とした正弦波状に曲げ加工が施されており、管材42は管材41と直線軸43に関して対称に表れる正弦波状に曲げ加工が施されたものである。
There are two types of pipes used in the frame structure of this embodiment. One pipe 41 is shown in FIG. 6 (A1): front view and (C): side view, and the other pipe 42 is the same. (A2): Front view and (C): Side view of the drawing.
In the front view, similarly to FIG. 6A in the case of the third embodiment, the tube 41 is bent in a sine wave shape with the linear axis 43 as the center axis, and the tube 42 is in a straight line with the tube 41. This is a sine wave-shaped bending process that appears symmetrically with respect to the axis 43.

この実施例は、実施例1に対する実施例2の関係と同様であり、形態上で管材41と管材42の2種類とされているのは、図6の(C):側面図に示されるとおり、それらの管材41,42は双方とも前記正弦波形への曲げ加工と共に、その曲げ加工方向に垂直な方向へも正弦波形に曲げ加工が施されているからである。
なお、図6の(C):側面図の正弦波形が同図の(A1),(A2):正面図の正弦波形と同一周期・同一位相であり、振幅が少し小さいものになっている点も、波形が異なるだけで実施例1に対する実施例2の関係と同一である。
This embodiment is similar to the relationship of the second embodiment with respect to the first embodiment, and the two types of the tube material 41 and the tube material 42 in the form are as shown in FIG. 6C: side view. This is because both of the tube members 41 and 42 are bent in the sine waveform in the direction perpendicular to the bending direction together with the bending process into the sine waveform.
6 (C): the sine waveform in the side view is the same in period and phase as the sine waveforms in (A1) and (A2): the front view in FIG. 6, and the amplitude is slightly smaller. Also, the relationship is the same as that of the second embodiment with respect to the first embodiment except for the waveform.

したがって、管材41と管材42を多数本用意しておき、最大振幅部分44同士を対向当接させて結束バンド35によって結束してゆくと、図8に示すような骨組み構造体45を構成できる。
そして、この骨組み構造体45の骨組み面自体が有する審美性は実施例3と同様であり、骨組み面を波状としたことによる外力に対する弾性の付与及び審美性の発現に関しては上記実施例2の場合と同様である。
Accordingly, when a large number of pipe members 41 and 42 are prepared, and the maximum amplitude portions 44 are brought into contact with each other and bound by the binding band 35, a frame structure 45 as shown in FIG. 8 can be formed.
The aesthetic property of the skeleton surface of the skeleton structure 45 is the same as that of the third embodiment. The elasticity against external force due to the wavy skeleton surface and the appearance of the aesthetic property are the same as those of the second embodiment. Is the same as

この実施例の骨組み構造体に使用される管材も形態上2種類あり、一方の管材51は図9の(A):正面図と(B):側面図と(C):平面図で表され、他方の管材52は図10の(A):正面図と(B):側面図と(C):平面図で表される。ただし、この実施例では便宜上、図面では各管材51,52を太線で描いている。
各図から明らかなように、各管材51,52は、それぞれ直線軸53,54を中心とする一定振幅の台形波形に曲げ加工されていると共に、その全長において台形波形の曲げ方向と垂直な方向へ弧状に曲げ加工されている。
There are also two types of pipes used in the frame structure of this embodiment, and one of the pipes 51 is shown in FIG. 9 (A): front view and (B): side view and (C): plan view. 10 (A): front view, FIG. 10 (B): side view, and FIG. 10 (C): plan view. However, in this embodiment, for convenience, the pipe members 51 and 52 are drawn with thick lines in the drawings.
As is clear from the figures, each of the pipe members 51 and 52 is bent into a trapezoidal waveform having a constant amplitude centered on the linear axes 53 and 54, respectively, and has a direction perpendicular to the bending direction of the trapezoidal waveform over its entire length. It is bent in an arc shape.

ここに、台形波形は、実施例1で管材11に施した台形波形と同様であり、直線軸53,54に対して平行な最大振幅区間と同直線軸53,54に対して±60°の交差角度をもつ傾斜区間とが同一の長さで交互に連続したものであるが、管材51と管材52の各台形波形は、それぞれの直線軸53,54に関して相互に対象な関係にある。
また、弧状の曲げ加工ついては1/4円弧状の曲げとされているが、両端部については継手連結のための直管区間とされている。
Here, the trapezoidal waveform is similar to the trapezoidal waveform applied to the tube 11 in the first embodiment, and has a maximum amplitude section parallel to the linear axes 53 and 54 and ± 60 ° with respect to the linear axes 53 and 54. Although the inclined sections having the intersection angle are alternately continuous with the same length, the trapezoidal waveforms of the tube material 51 and the tube material 52 have a symmetrical relationship with each other with respect to the respective linear axes 53 and 54.
In addition, the arc-shaped bending process is a 1/4 arc-shaped bending, but the both end portions are straight pipe sections for joint connection.

したがって、管材51と管材52をそれぞれ多数本用い、管材51と管材52の各台形波形の最大振幅区間同士を対向当接させて結束具15によって結束してゆくと、図11に示すような骨組み構造体55を構成できる。
この骨組み構造体55は1/4円弧のアーチ状骨組み壁面を構成しているが、管材51,52が台形波形に曲げ加工されたものであるため、実施例1と同様にハニカム構造による骨組み壁面になっている。
Therefore, when a large number of the pipe members 51 and 52 are used, and the maximum amplitude sections of the trapezoidal waveforms of the tube members 51 and 52 are brought into opposition to each other and bound by the binding device 15, a skeleton as shown in FIG. The structure 55 can be configured.
This frame structure 55 constitutes a 1/4 arcuate arched frame wall surface. However, since the pipe members 51 and 52 are bent into a trapezoidal waveform, the frame wall surface having the honeycomb structure is formed in the same manner as in the first embodiment. It has become.

そして、ハニカム構造によるアーチ状骨組み壁面になっているこの骨組み構造体55は、幕体張設用躯体などの屋根部分に最適であり、簡単な骨組み構造物でより大きな面積の室内空間を構成することが可能になる。
なお、この実施例では各管材51,52に台形波形の曲げ加工を施している場合について説明しているが、正弦波形など他の波形に曲げ加工によるものであってもよい。
This framework 55, which is an arch-shaped framework wall with a honeycomb structure, is most suitable for a roof portion such as a frame for extending a curtain body, and forms a larger area indoor space with a simple framework. It becomes possible.
In this embodiment, a case is described in which each of the pipe members 51 and 52 is subjected to a trapezoidal waveform bending process, but may be formed into another waveform such as a sine waveform.

また、管材51と管材52に対して、前記の台形波形の曲げと円弧状の曲げに重畳させて、円弧曲げ面を中心として一定振幅で一定周期の台形波形や正弦波形への曲げ加工を施すようにすれば、図12の骨組み構造体56に示すように波打ったアーチ状骨組み壁面となり、実施例2や実施例4の場合と同様に、骨組み面に一定の弾性を付与すると共に、特有の審美性を発現させる。   Further, the pipe material 51 and the pipe material 52 are subjected to bending processing into a trapezoidal waveform or a sine waveform having a constant amplitude and a constant cycle around the arc bending surface by superimposing the bending of the trapezoidal waveform and the bending of the arc shape. In this way, as shown in the skeleton structure 56 of FIG. 12, a wavy arch-shaped skeleton wall surface is provided. As in the case of the second and fourth embodiments, the skeleton surface is given a certain elasticity, Express the aesthetics of

この実施例は、前記の各実施例に係る骨組み構造体を各管材の端部同士で連結させる場合の機構に関する。
その連結のための条件として、骨組み構造体における各管材の両端面が台形波形や正弦波形の振幅の中心である直線軸に垂直な二面において揃っており、且つその二面上での各管材の端面の位置が同一であることが前提となるが、上記の実施例1から5の骨組み構造体16,26,34,45,55,56は、図2、図5、図7、図8、図11及び図12から明らかなように、すべてその前提条件を満たしている。
したがって、ここでは実施例1に係る骨組み構造体16を連結する場合を例にとって説明するが、他の実施例2〜5の骨組み構造体26,34,45,55,56であっても同様である。
This embodiment relates to a mechanism in a case where the skeleton structure according to each of the above-described embodiments is connected to each other at the ends of each tube.
As a condition for the connection, both end surfaces of each tube material in the framed structure are aligned on two surfaces perpendicular to the linear axis which is the center of the amplitude of the trapezoidal waveform or the sine waveform, and each tube material on the two surfaces. It is assumed that the positions of the end faces are the same. However, the frame structures 16, 26, 34, 45, 55, and 56 of the above-described first to fifth embodiments are shown in FIGS. 11 and FIG. 12, all the prerequisites are satisfied.
Therefore, here, the case where the skeleton structures 16 according to the first embodiment are connected will be described as an example, but the same applies to the skeleton structures 26, 34, 45, 55, and 56 of the other embodiments 2 to 5. is there.

まず、図2の(C)に示されるように、骨組み構造体16における各管材11の両端面では、2本の管材11の端面が隣接して一対となった態様で、均等な間隔にて一列に整列している。
したがって、図2の骨組み構造体16を一対用意してそれぞれの端部同士を対向させると、図13に示すように、各骨組み構造体16a,16bのすべての管材11の端面同士を対向させることができ、この実施例では対向する端面同士を管継手60によって連結することになる。
First, as shown in FIG. 2 (C), at both end surfaces of each tube 11 in the frame structure 16, the end surfaces of the two tubes 11 are adjacently paired, and are evenly spaced. They are arranged in a line.
Therefore, when a pair of skeleton structures 16 of FIG. 2 are prepared and their ends are opposed to each other, as shown in FIG. 13, the end faces of all the tube materials 11 of each skeleton structure 16a and 16b are opposed to each other. In this embodiment, the opposed end faces are connected by the pipe joint 60.

そして、管継手60としては図14の(A),(B),(C)に示すようなものを用いることができる。
図14の3種類の管継手60a,60b,60cは、管材11の管内に内嵌する直径を有する2本の短い丸棒61,62と、その2本の丸棒61,62をそれらの長手方向の中間位置で管材11の管壁厚の2倍より僅かに大きい間隔を持たせた平行な状態で固定している薄板状のフランジ63とからなり、そのフランジ63を平面図として見た外縁形状は、2本の管材11の端面を包絡する長円の中央部分が少し括れた形状になっている。
いずれの管継手60a,60b,60cにおいても、フランジ63の上下にある丸棒61,62の部分が、連結される2つの骨組み構造体16a,16bの各一対の管材11の端面から管内へ内嵌し、管材11の端面同士がフランジ63を挟装した状態で各骨組み構造体16a,16bを連結させる。
ただし、(A)の管継手60aは両端が半球面に形成されただけの単純な丸棒61,62であるが、(B)の管継手60bでは各丸棒61,62におけるフランジ63の上下にある各部分の中間位置にそれぞれ丸棒61,62の並び方向へ孔64,65が穿設されており、(C)の管継手60cでは各丸棒61,62におけるフランジ63の上下にある各部分の中間位置の全周にU字状溝66,67が形成されている。
As the pipe joint 60, those shown in FIGS. 14A, 14B and 14C can be used.
The three types of pipe joints 60a, 60b, 60c in FIG. 14 include two short round rods 61, 62 having a diameter to be fitted in the pipe of the pipe material 11, and the two round rods 61, 62 having the same length. And a thin plate-like flange 63 fixed in a parallel state at an intermediate position in the direction with a spacing slightly larger than twice the tube wall thickness of the tube material 11, and the outer edge of the flange 63 viewed in a plan view. The shape is such that the central part of an ellipse enclosing the end faces of the two pipe members 11 is slightly constricted.
In any of the pipe joints 60a, 60b, 60c, the portions of the round bars 61, 62 above and below the flange 63 are inserted into the pipe from the end faces of the pair of pipes 11 of the two framed structures 16a, 16b to be connected. The frame members 16a and 16b are connected to each other with the end faces of the tube material 11 sandwiching the flange 63 therebetween.
However, the pipe joint 60a of (A) is a simple round bar 61, 62 only having both ends formed into a hemispherical surface, whereas the pipe joint 60b of (B) has the upper and lower portions of the flange 63 of each round bar 61, 62. The holes 64 and 65 are formed in the middle position of each part in the arrangement direction of the round bars 61 and 62, respectively, and are located above and below the flange 63 of each round bar 61 and 62 in the pipe joint 60c of (C). U-shaped grooves 66, 67 are formed all around the middle position of each part.

ところで、図13から推察できるように、管継手60によって骨組み構造体16a,16bが連結された状態においても、その連結部分に結束具15を適用して、連結部分と他の結束部分とが外観上区別できないようにすることが望ましい。
図3の結束具15は単純に2本の管材に対する結束機能のみを有しているが、例えば、管材がアルミニウム製であって、帯板15aに図3で見られるような内側への括れを持たせることなく、その帯板15aの内側面に管材11の外周面を咬持するための多数の錐状小突起を設けておくなどして、結束具15に結束機能と共に抜け止め機能を具備させるようにすれば、単に管材の端面同士を位置決めしてフランジ63を介した突き当て状態にする機能だけの管継手60a[図14の(A)]で足りる。
By the way, as can be inferred from FIG. 13, even in a state where the frame structures 16 a and 16 b are connected by the pipe joint 60, the tying tool 15 is applied to the connecting portion, so that the connecting portion and the other tying portions have an external appearance. It is desirable to be indistinguishable.
The tying member 15 of FIG. 3 simply has a tying function only for two pipe materials. For example, when the tubing material is made of aluminum, the band plate 15a has an inward constriction as seen in FIG. Without having it, the binding device 15 is provided with a binding function as well as a binding function by providing a large number of small conical projections for biting the outer peripheral surface of the tube material 11 on the inner surface of the band plate 15a. In this case, a pipe joint 60a (FIG. 14A) having only the function of simply positioning the end faces of the pipe material and bringing the pipe material into abutting state via the flange 63 is sufficient.

一方、そのような結束具を用いない場合には、図14の(B)の管継手60bや(C)の管継手60cを用いることになる。
図15は管継手60bを適用した場合の連結状態を示す要部断面図である。
丸棒61,62におけるフランジ63の上下にある各部分が各骨組み構造体16a,16bの端部において隣接している2本の管材11にそれぞれ内嵌すると、上下で対向した各一対の管材11同士が丸棒61,62で位置決めされて、フランジ63を介して突き当てられるが、予め管材11にはその突き当て状態で各丸棒61,62の孔64,65に対応する位置に孔が穿設されている。
したがって、管材11の直径の略2倍の長さに相当する2本の抜け止めピン68を管材11の孔と丸棒61,62の孔64,65とで構成される上下の貫通孔にそれぞれ挿入し、その状態で結束具15を取り付ければ抜け止めピン68の抜け止めになり、簡単で合理的な管継手機構が実現できる。
On the other hand, when such a binding device is not used, the pipe joint 60b shown in FIG. 14B and the pipe joint 60c shown in FIG. 14C are used.
FIG. 15 is a cross-sectional view of a main part showing a connected state when the pipe joint 60b is applied.
When the upper and lower portions of the flange 63 of the round bars 61 and 62 are respectively fitted into two adjacent pipes 11 at the ends of the respective frame structures 16a and 16b, a pair of upper and lower pipes 11 facing each other are fitted. The two are positioned by the round bars 61 and 62 and are abutted through the flange 63.In advance, the tube 11 has holes at positions corresponding to the holes 64 and 65 of the round bars 61 and 62 in the abutted state. Has been drilled.
Therefore, two retaining pins 68 corresponding to a length approximately twice as large as the diameter of the tube 11 are respectively inserted into upper and lower through holes formed by the hole of the tube 11 and the holes 64, 65 of the round bars 61, 62. If it is inserted and the tie 15 is attached in that state, the retaining pin 68 is prevented from coming off, and a simple and rational pipe joint mechanism can be realized.

図14の(C)の管継手60cは、骨組み構造体16を連結して構成される構造物が半永久的に設置されるようなものである場合に利用される。
丸棒61,62におけるフランジ63の上下にある部分が各骨組み構造体16a,16bの端部において隣接している2本の管材11にそれぞれ内嵌して、上下で対向した各一対の管材11同士の位置決めと突き当てがなされることは前記の管継手60a,60bの場合と同様である。
この管継手60cでは、その状態で各管材11における丸棒61,62の溝66,67に相当する部分を外側からかしめることにより抜け止めが行われる。
The pipe joint 60c shown in FIG. 14C is used in a case where a structure formed by connecting the frame structure 16 is installed semi-permanently.
The upper and lower portions of the flanges 63 of the round bars 61 and 62 are respectively fitted into two adjacent pipes 11 at the ends of the respective frame structures 16a and 16b, and a pair of upper and lower pipes 11 are vertically opposed to each other. Positioning and abutting of each other are performed in the same manner as in the case of the aforementioned pipe joints 60a and 60b.
In the pipe joint 60c, in this state, the portions corresponding to the grooves 66, 67 of the round bars 61, 62 in each pipe material 11 are crimped from the outside to prevent the pipes 11 from coming off.

一方、骨組み構造体16が管材ではなく棒材で構成されている場合には、図16に示すような棒継手70を用いることができる。
この棒継手70は、長円状の筒体71における軸方向の中間位置に仕切板72が設けられ、且つ仕切板72の上下の各壁部73,74における長円の長手方向の両端部分に孔75,76が穿設されたものである。
ここで、筒体71の長円は、棒材が平行に2本隣接した状態でその外周を包絡する形状になっている。
On the other hand, when the skeleton structure 16 is made of a bar instead of a tube, a bar joint 70 as shown in FIG. 16 can be used.
In this rod joint 70, a partition plate 72 is provided at an intermediate position in the axial direction of the oval cylindrical body 71, and at both ends in the longitudinal direction of the ellipse at the upper and lower walls 73, 74 of the partition plate 72. Holes 75 and 76 are formed.
Here, the ellipse of the cylindrical body 71 has a shape enclosing the outer periphery thereof in a state where two bars are adjacent to each other in parallel.

したがって、図13の骨組み構造体16a,16bで管材11の代わりに棒材が使用されているとした場合において、図17に示すように、棒材77が2本隣接している上下の骨組み構造体の各端部を棒継手70で連結させることになるが、まず、棒継手70の仕切板72の上下の各壁部73,74に前記各端部を内嵌させて仕切板72を介した突き当て状態とされる。
そして、予め各棒材77の端部には棒継手70に内嵌した状態で棒継手70の孔75,76に対応する位置に孔78が穿設されており、棒継手70の孔75,76と各棒材77の孔78に棒継手70の長円の長手方向に相当する長さの抜け止めピン79を貫挿させる。
また、抜け止めピン79の抜け止めを兼ねて結束バンド35が取り付けられる。
Therefore, in the case where a bar is used instead of the pipe 11 in the skeleton structures 16a and 16b in FIG. 13, as shown in FIG. 17, the upper and lower skeleton structures in which two rods 77 are adjacent to each other are used. Each end of the body is connected by a rod joint 70.First, the ends are fitted in the upper and lower walls 73, 74 of the partition plate 72 of the rod joint 70, and the respective ends are inserted through the partition plate 72. It is in the hit state.
A hole 78 is drilled at a position corresponding to the holes 75 and 76 of the bar joint 70 in a state in which the rod member 77 is fitted inside the bar joint 70 in advance. A retaining pin 79 having a length corresponding to the longitudinal direction of the ellipse of the bar joint 70 is inserted through the hole 76 of the bar member 77 and the bar 78.
Also, the binding band 35 is attached to the retaining band 79 so as to prevent the retaining pin 79 from coming off.

以上のような管継手60a,60b,60cや棒継手70を用いることにより、実施例1〜5に示した各骨組み構造体16,26,34,45,55,56を連結することができ、ガレージや農業用ビニールハウスなどの幕体張設用躯体をある程度自由度をもたせながら構築できる。
たとえば、図18は農業用ビニールハウスや温室に係る幕体張設用躯体80であり、図19はガレージに係る幕体張設用躯体81であるが、それぞれ実施例1の骨組み構造体16と実施例5の骨組み構造体55を管継手60(60a,60b,60c)で連結することにより構成できる。
By using the pipe joints 60a, 60b, 60c and the rod joint 70 as described above, the respective frame structures 16, 26, 34, 45, 55, 56 shown in the first to fifth embodiments can be connected, It is possible to build a frame for erecting curtains such as garages and agricultural greenhouses with some degree of freedom.
For example, FIG. 18 shows a curtain body erection frame 80 for an agricultural greenhouse or greenhouse, and FIG. 19 shows a curtain body erection frame 81 for a garage. It can be configured by connecting the frame structure 55 of the fifth embodiment with pipe joints 60 (60a, 60b, 60c).

本発明の骨組み構造体は、ガレージや農業用ビニールハウスや仮設テントなどの簡易な幕体張設用躯体に利用することができる。   INDUSTRIAL APPLICABILITY The framework structure of the present invention can be used for a simple curtain-covering frame such as a garage, an agricultural greenhouse, or a temporary tent.

11…管材、12…直線軸、13…最大振幅区間、14…傾斜区間、15…結束具、15a…帯板、15b…フック部、15c…係合部、16,16a,16b…骨組み構造体、21…管材、22…直線軸、23,23’…最大振幅区間、24…傾斜区間、25…管材、26…骨組み構造体、31…管材、32…直線軸、33…最大振幅部分、34…骨組み構造体、35…結束バンド、41,42…管材、43…直線軸、44…最大振幅部分、51,52…管材、53,54…直線軸、55,56…骨組み構造体、60,60a,60b,60c…管継手、61…丸棒、62…丸棒、63…フランジ、64…孔、65…孔、66,67…U字状溝、68…抜け止めピン、70…棒継手、71…筒体、72…仕切板、73,74…壁部、75,76…孔、77…棒材、78…孔、79…抜け止めピン、80,81…幕体張設用躯体。 11 ... Tube, 12 ... Linear axis, 13 ... Maximum amplitude section, 14 ... Inclination section, 15 ... Bundling tool, 15a ... Band plate, 15b ... Hook section, 15c ... Engaging section, 16,16a, 16b ... Frame structure , 21 ... tube material, 22 ... linear axis, 23,23 '... maximum amplitude section, 24 ... inclination section, 25 ... tube material, 26 ... frame structure, 31 ... tube material, 32 ... linear axis, 33 ... maximum amplitude part, 34 … Frame structure, 35… tie band, 41,42… tube material, 43… linear axis, 44… maximum amplitude part, 51,52… tube material, 53,54… linear axis, 55,56… frame structure, 60, 60a, 60b, 60c… Fitting, 61… Round bar, 62… Round bar, 63… Flange, 64… Hole, 65… Hole, 66,67… U-shaped groove, 68… Retaining pin, 70… Bar fitting , 71 ... cylindrical body, 72 ... partition plate, 73, 74 ... wall, 75, 76 ... hole, 77 ... bar, 78 ... hole, 79 ... retaining pin, 80, 81 ... curtain body extension frame.

Claims (4)

直線軸を中心とする一定振幅の第1の平面波形に曲げ加工されていると共に、全区間又は一部区間において前記第1の平面波形の曲げ方向と垂直な方向へ弧状曲げ加工されており、且つ前記弧状曲げ加工に重畳させて、弧状曲げ面を中心とする一定振幅で一定周期の第2の平面波形に曲げ加工されているの管材又は棒材と、前記第1の平面波形がその波形と前記直線軸に関して対称な平面波形であることのみが前記第の管材又は棒材と異なる第の管材又は棒材とをそれぞれ多数本用い、前記第の管材又は棒材における前記第1の平面波形の最大振幅部分と前記第の管材又は棒材における前記対な平面波形の最大振幅部分とを対向当接させて結束することにより骨組みによる面を構成したことを特徴とする骨組み構造体。 While being bent into a first plane waveform having a constant amplitude centered on the linear axis, and being bent in a direction perpendicular to the bending direction of the first plane waveform in all or some sections , And a first pipe material or a rod material which is superimposed on the arc-shaped bending process and is bent into a second plane waveform having a constant amplitude and a constant period around the arc-shaped bending surface, and the first plane waveform is A large number of second pipes or rods, each of which is different from the first pipe or rod only in that the waveform is a plane waveform symmetrical with respect to the linear axis, are used in the first pipe or bar. and characterized by being configured to face by framework by tying oppositely brought into contact with the maximum amplitude portion of the symmetric plane wave at a maximum amplitude portion and the second tubular material or the bar of the first plane wave Skeletal structure. 前記平面波形が、前記直線軸に対して平行な最大振幅区間と前記直線軸に対して±60°の交差角度をもつ傾斜区間とが同一長さで交互に連続した台形波形である請求項1に記載の骨組み構造体。 The plane wave is claim 1 and an inclined section having an angle of intersection ± 60 ° relative to the linear axis parallel to the maximum amplitude section with respect to the linear axis is continuous trapezoidal waveform alternately at the same length framework structure according to. 前記平面波形が、正弦波形である請求項1に記載の骨組み構造体。 The skeleton structure according to claim 1, wherein the planar waveform is a sine waveform. 各管材又は各棒材の両端面が前記直線軸に垂直な二面において揃っており、且つ前記二面上での各管材又は各棒材の端面の位置を同一にした請求項1、請求項2又は請求項3に記載の骨組み構造体。 Both end surfaces of the tube or the bar are aligned in a perpendicular dihedral on the linear axis, and said claim 1 the position of the end surface of each tube or each bar on the top two sides were the same, claim A skeleton structure according to claim 2 or claim 3 .
JP2018208684A 2018-11-06 2018-11-06 Frame structure Pending JP2019085868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018208684A JP2019085868A (en) 2018-11-06 2018-11-06 Frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018208684A JP2019085868A (en) 2018-11-06 2018-11-06 Frame structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017213808A Division JP6635606B2 (en) 2017-11-06 2017-11-06 Frame structure

Publications (2)

Publication Number Publication Date
JP2019085868A JP2019085868A (en) 2019-06-06
JP2019085868A5 true JP2019085868A5 (en) 2020-03-19

Family

ID=66763985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018208684A Pending JP2019085868A (en) 2018-11-06 2018-11-06 Frame structure

Country Status (1)

Country Link
JP (1) JP2019085868A (en)

Similar Documents

Publication Publication Date Title
US4003178A (en) Open mesh metal panels
JP5255840B2 (en) Architectural panels and building structures
JP6247046B2 (en) Greenhouses and greenhouse frames
JP2022036882A (en) Joint structure of combined bundle of column in column
CA2366099A1 (en) Interlocking truss system
KR20110084643A (en) Union type multiple axile coupling joint for structure of steel pipes
JP6635606B2 (en) Frame structure
JP2019085868A5 (en)
JP2019085868A (en) Frame structure
JPH0128176Y2 (en)
AU2019275605B2 (en) Integrated beam for corrugated sheet and integrated frame structure formed thereon
JP2006037549A (en) Anchorage reinforcing bar and anchorage structure of hoop using its reinforcing bar
JP2020510143A (en) Composite wood structure and method for manufacturing the structure
JP4761550B2 (en) Curved sheet receiving member
JP6814023B2 (en) Seismic control device
RU40340U1 (en) CONNECTING ELEMENT
JP2008002152A (en) Preassembled reinforcement unit and connecting fitting for forming it
JP6823687B2 (en) Octagonal hollow tube for greenhouse
JP3014968U (en) Truss formwork
SU1760043A1 (en) Latticed construction member
RU2209275C2 (en) Arch covering
JPH09228635A (en) Prefabricated structure of curved framework body having variable curvature
RU178154U1 (en) BUILDING ELEMENT FOR MANUFACTURING LATTICE STRUCTURES
JP3939686B2 (en) Formwork panel and building formwork using the same and concrete foundation
RU64658U1 (en) BUILDING DESIGN FROM PROFILE ELEMENTS