JP2019085628A - Nickel copper alloy preventing adhesion of marine organism, and manufacturing method therefor - Google Patents

Nickel copper alloy preventing adhesion of marine organism, and manufacturing method therefor Download PDF

Info

Publication number
JP2019085628A
JP2019085628A JP2017216253A JP2017216253A JP2019085628A JP 2019085628 A JP2019085628 A JP 2019085628A JP 2017216253 A JP2017216253 A JP 2017216253A JP 2017216253 A JP2017216253 A JP 2017216253A JP 2019085628 A JP2019085628 A JP 2019085628A
Authority
JP
Japan
Prior art keywords
mass
copper alloy
less
nickel
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017216253A
Other languages
Japanese (ja)
Other versions
JP7249617B2 (en
Inventor
寛子 嶋田
Hiroko Shimada
寛子 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMADA KINZOKU KK
Original Assignee
SHIMADA KINZOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMADA KINZOKU KK filed Critical SHIMADA KINZOKU KK
Priority to JP2017216253A priority Critical patent/JP7249617B2/en
Publication of JP2019085628A publication Critical patent/JP2019085628A/en
Application granted granted Critical
Publication of JP7249617B2 publication Critical patent/JP7249617B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a nickel copper alloy limiting amount of beryllium and suppressing adhesion of organism such as shells or algae compared to prior art, and further preventing adhesion of marine organism which can be prevented.SOLUTION: A nickel copper ally preventing adhesion of marine organism contains Be of 0.02 mass% to 1.8 mass% to a copper alloy containing Ni of 8.0 mass% to 20.0 mass%. A manufacturing method of the nickel copper alloy includes adding Be to a molten metal of a copper alloy containing Ni of 8.0 mass% to 20.0 mass% so that Be content is 0.02 mass% to 1.8 mass%, and coagulated.SELECTED DRAWING: Figure 3

Description

本発明は、海洋生物の付着を防止可能な、海中での使用に適したニッケル銅合金及びその製造方法に関する。   The present invention relates to a nickel-copper alloy suitable for use in the sea, which can prevent the adhesion of marine organisms, and a method for producing the same.

発電プラントや化学プラント等では、例えば、海水を冷却水として使用するため、海中に配管等を浸漬させて取水している。この配管等には、海中の貝類や藻類等の生物(即ち、海洋生物)が付着するため、これらの除去作業を定期的に行っており、多大な労力と費用を費やしている。
また、海水を冷却水として使用する熱交換器の管板の材料に、腐食の防止を目的として、ネーバル黄銅、チタン、白銅(キュプロニッケル:Cupronickel)、ステンレス鋼を使用しているが、これらの材料は海洋生物の付着を防止する機能を有しない。
In a power plant, a chemical plant, etc., for example, in order to use seawater as a cooling water, piping etc. are immersed in the sea and are taken. In this piping and the like, since organisms such as shellfish and algae in the sea adhere (i.e., marine organisms), these removing operations are performed regularly, and a great deal of labor and cost is spent.
In addition, Naval brass, titanium, copper (Cupro-nickel: Cupronickel), stainless steel are used as the material of heat exchanger tube plates that use seawater as cooling water for the purpose of preventing corrosion. The material does not have the function of preventing the adhesion of marine organisms.

そこで、特許文献1には、海水と接触する耐食面をベリリウム銅合金(BeCu)にすることが提案されている。具体的には、BeCu中のBeの量が0.01〜15.0原子%と記載され、更に、Beの他に、Si、Ti、Zr、Zn、Al、Sn、Pb、Mn、Cr、Fe、Co、Ni、As、Sbのうちの一種以上を含有してもよいことが記載されている。
また、特許文献2には、Be:0.2〜1.0質量%、Ni:1.4〜2.2質量%、残部Cu及び不可避的不純物からなるベリリウム銅合金が開示されている。
Therefore, Patent Document 1 proposes making a corrosion resistant surface in contact with seawater with a beryllium copper alloy (BeCu). Specifically, the amount of Be in BeCu is described as 0.01 to 15.0 atomic%, and in addition to Be, Si, Ti, Zr, Zn, Al, Sn, Pb, Mn, Cr, It is described that one or more of Fe, Co, Ni, As and Sb may be contained.
Further, Patent Document 2 discloses a beryllium copper alloy comprising Be: 0.2 to 1.0% by mass, Ni: 1.4 to 2.2% by mass, the balance Cu and unavoidable impurities.

特開平9−264687号公報Unexamined-Japanese-Patent No. 9-264687 gazette 特許第2509414号公報Patent No. 2509414

しかしながら、特許文献1の技術では、BeCu中のBeの量の範囲が極めて広く(最小値に対する最大値が1500倍と極めて大きく)、実際の操業では、再度の実験を行ってBeの量を決める必要がある。
また、BeCu中にNiを入れることも記載されているが、量が未定である。
また、特許文献2の技術では、BeCuがBeを0.2〜1.0質量%含むことが記載されているが、Beは、その比重が約1.8と小さく、また、比較的高価な金属であることから、必要以上のBeを使用しないことが好ましい。
However, in the technique of Patent Document 1, the range of the amount of Be in BeCu is extremely wide (the maximum value for the minimum value is extremely large such as 1500 times), and in actual operation, the experiment is repeated to determine the amount of Be. There is a need.
Moreover, although putting Ni into BeCu is also described, the quantity is undecided.
Further, the technology of Patent Document 2 describes that BeCu contains 0.2 to 1.0% by mass of Be, but Be has a small specific gravity of about 1.8 and is relatively expensive. Since it is metal, it is preferable not to use more Be than necessary.

本発明はかかる事情に鑑みてなされたもので、実際に実験を行って、ベリリウムの量を制限し、従来よりも貝類や藻類等の生物の付着を抑制、更には防止可能な海洋生物の付着を防止したニッケル銅合金及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and experiments are actually carried out to limit the amount of beryllium, and the adhesion of marine organisms such as shellfish and algae can be suppressed and prevented more than before. And a method of manufacturing the same.

前記目的に沿う第1の発明に係る海洋生物の付着を防止したニッケル銅合金は、Niを8.0質量%以上20.0質量%以下含む銅合金に、Beを0.02質量%以上1.8質量%以下含ませた。   The nickel copper alloy in which adhesion of marine organisms according to the first invention in accordance with the first object is prevented is 0.02 mass% or more of Be to a copper alloy containing 8.0 mass% or more and 20.0 mass% or less of Ni. .8 mass% or less was included.

第1の発明に係る海洋生物の付着を防止したニッケル銅合金において、前記銅合金は、Niを9.0質量%以上11.0質量%以下、Mnを1.0質量%以下、Feを1.0質量%以上1.8質量%以下、Znを0.50質量%以下、Pbを0.02質量%以下、含み、残部がCu及び不可避的不純物からなることが好ましい。   In the nickel-copper alloy in which adhesion of marine organisms according to the first invention is prevented, the copper alloy contains not less than 9.0% by mass and not more than 11.0% by mass of Ni, not more than 1.0% by mass of Mn, and 1 of Fe. It is preferable that 0 mass% or more and 1.8 mass% or less, Zn be 0.50 mass% or less, Pb be 0.02 mass% or less, and the balance be Cu and an unavoidable impurity.

前記目的に沿う第2の発明に係る海洋生物の付着を防止したニッケル銅合金の製造方法は、Beの含有量が0.02質量%以上1.8質量%以下となるように、Niを8.0質量%以上20.0質量%以下含む銅合金の溶湯に前記Beを添加して凝固させる。   The method for producing a nickel-copper alloy in which adhesion of marine organisms according to the second invention according to the second object is prevented according to the above object is 8 Ni so that the content of Be is 0.02 mass% or more and 1.8 mass% or less. The Be is added to and solidified in a copper alloy melt containing 0 mass% or more and 20.0 mass% or less.

第2の発明に係る海洋生物の付着を防止したニッケル銅合金の製造方法において、前記銅合金は、Niを9.0質量%以上11.0質量%以下、Mnを1.0質量%以下、Feを1.0質量%以上1.8質量%以下、Znを0.50質量%以下、Pbを0.02質量%以下、含み、残部がCu及び不可避的不純物からなることが好ましい。   In the method for producing a nickel-copper alloy according to the second aspect, wherein adhesion of marine life is prevented, the copper alloy contains 9.0% by mass or more and 11.0% by mass or less of Ni, and 1.0% by mass or less of Mn. It is preferable that 1.0% by mass or more and 1.8% by mass or less of Fe, 0.50% by mass or less of Zn, and 0.02% by mass or less of Pb, and the balance be Cu and unavoidable impurities.

本発明に係る海洋生物の付着を防止したニッケル銅合金及びその製造方法は、Niを8.0質量%以上20.0質量%以下含む銅合金にBeが添加され、Beの含有量を0.02質量%以上1.8質量%以下にするので、従来よりも貝類や藻類等の生物の付着を抑制、更には防止できる。これにより、従来よりも、配管等のメンテナンス作業を行う頻度を低減できる。   In the nickel-copper alloy which prevents the adhesion of marine organisms according to the present invention and the method for producing the same, Be is added to a copper alloy containing 8.0% by mass or more and 20.0% by mass or less of Ni. Since the content is at least 02 mass% and not more than 1.8 mass%, adhesion of organisms such as shellfish and algae can be suppressed and prevented more than in the past. Thereby, the frequency of performing maintenance work such as piping can be reduced compared to the conventional case.

(A)、(B)はそれぞれ海中への浸漬前の従来例に係る試験材の写真、実施例に係る試験片の写真である。(A), (B) is respectively a photograph of the test material which concerns on the prior art example before the immersion in the sea, and a photograph of the test piece which concerns on an Example. (A)、(B)はそれぞれ海中への浸漬後の従来例に係る試験材の写真、実施例に係る試験片の写真である。(A), (B) is respectively a photograph of the test material which concerns on the prior art example after the immersion in the sea, and a photograph of the test piece which concerns on an Example. 鉄製の板、白銅製の円盤、及び、ニッケル銅合金製の板の海中への浸漬後の写真である。It is a photograph after immersion in the sea of a board made of iron, a disc made of copper, and a board made of nickel copper alloy.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
本発明の一実施の形態に係る海洋生物の付着を防止したニッケル銅合金(以下、単にニッケル銅合金ともいう)は、従来よりも貝類や藻類等の生物の付着を抑制、更には防止可能な、海中での使用に適した材料である。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the attached drawings for understanding of the present invention.
The nickel-copper alloy (hereinafter, also simply referred to as a nickel-copper alloy) that prevents the adhesion of marine organisms according to an embodiment of the present invention can suppress or even prevent the adhesion of organisms such as shellfish and algae than ever before. , A material suitable for use in the sea. Details will be described below.

ニッケル銅合金(Ni−Cu合金)は、Ni(ニッケル)を含む銅合金に、Be(ベリリウム)を含ませたものである。
銅合金は、Niを8.0質量%以上20.0質量%以下含有する合金であり、例えば、白銅である。具体的には、Niを9.0質量%以上11.0質量%以下、Mn(マンガン)を1.0質量%以下(下限は、0質量%でもよいが、実際には0.02質量%程度、上限は、0.50質量%が好ましく、更には0.20質量%が好ましい)、Fe(鉄)を1.0質量%以上1.8質量%以下、Zn(亜鉛)を0.50質量%以下(0質量%でもよい)、Pb(鉛)を0.02質量%以下(0質量%でもよい)、含み、残部がCu及び不可避的不純物からなる。なお、この白銅をCu分析した場合、Cu、Fe、Mn、及び、Niの合計量は99.5質量%以上である。
The nickel copper alloy (Ni-Cu alloy) is a copper alloy containing Ni (nickel) and Be (beryllium).
The copper alloy is an alloy containing 8.0% by mass or more and 20.0% by mass or less of Ni, and is, for example, white copper. Specifically, Ni is 9.0% by mass or more and 11.0% by mass or less, Mn (manganese) is 1.0% by mass or less (the lower limit may be 0% by mass, but it is actually 0.02% by mass) The upper limit is preferably 0.50% by mass, more preferably 0.20% by mass), Fe (iron) is 1.0% by mass or more and 1.8% by mass or less, Zn (zinc) is 0.50 It contains not more than mass% (may be 0 mass%), not more than 0.02 mass% (may be 0 mass%) of Pb (lead), and the balance consists of Cu and unavoidable impurities. In addition, when Cu analysis of this white copper, the total amount of Cu, Fe, Mn, and Ni is 99.5 mass% or more.

ニッケル銅合金が含有するBe量は、0.02質量%以上1.8質量%以下である(即ち、ニッケル銅合金中のBeを除いた量が上記した銅合金の量となる)。
ここで、Beの含有量が0.02質量%未満の場合、Beの添加による効果が小さ過ぎて、貝類や藻類等の生物が付着し易くなる。一方、Beの含有量が1.8質量%超の場合、本発明者らが試験を行った知見によると、貝類や藻類等の生物が付着し易くなった。
従って、ニッケル銅合金中のBe量を、0.02質量%以上1.8質量%以下としたが、下限を0.03質量%、上限を0.10質量%、更には0.05質量%とすることが好ましい。
The amount of Be contained in the nickel copper alloy is 0.02% by mass or more and 1.8% by mass or less (that is, the amount excluding the Be in the nickel copper alloy is the amount of the above-described copper alloy).
Here, when the content of Be is less than 0.02 mass%, the effect of the addition of Be is too small, and organisms such as shellfish and algae are easily attached. On the other hand, when the content of Be is more than 1.8% by mass, organisms such as shellfish and algae easily adhere, according to the findings obtained by the present inventors.
Therefore, the amount of Be in the nickel copper alloy is set to 0.02 mass% or more and 1.8 mass% or less, but the lower limit is 0.03 mass%, the upper limit is 0.10 mass%, and further 0.05 mass%. It is preferable to

上記したニッケル銅合金は、使用環境に応じて種々の形状に加工し使用できる。
例えば、鋳造加工や塑性加工を行い、継手(フランジやエルボ)、配管、線材等の部品(構造物)に加工して使用できる。
また、薄板材(例えば、厚さが4mm以下程度)に加工し、この薄板材をそのまま、又は、他の板材に貼り合わせて、使用することもできる。
更に、例えば、電気めっきや溶融めっき等を用いて他の材料にめっきしたり、また、溶射等を用いて他の材料に被覆したりして、使用することもできる。
The above-mentioned nickel-copper alloy can be processed and used in various shapes according to the use environment.
For example, it can be used by performing casting processing or plastic processing and processing into parts (structures) such as joints (flanges and elbows), pipes, wires and the like.
Moreover, it can be processed into a thin plate material (for example, about 4 mm or less in thickness), and this thin plate material can be used as it is or pasted to another plate material.
Furthermore, for example, other materials may be plated using electroplating, hot-dip plating, etc., or may be coated with other materials using thermal spraying etc.

続いて、本発明の一実施の形態に係る海洋生物の付着を防止したニッケル銅合金の製造方法について説明する。
ニッケル銅合金は、Beの含有量が0.02質量%以上1.8質量%以下(下限が0.03質量%、上限が0.10質量%、更には0.05質量%)となるように、Niを含む銅合金の溶湯にBeを添加して撹拌した後、凝固させることで得られる。
なお、前記したように、銅合金には、Niを8.0質量%以上20.0質量%以下含む合金、例えば白銅を使用できる。
Then, the manufacturing method of the nickel copper alloy which prevented adhesion of the marine life concerning one embodiment of the present invention is explained.
In the nickel copper alloy, the content of Be is 0.02 mass% or more and 1.8 mass% or less (the lower limit is 0.03 mass%, the upper limit is 0.10 mass%, and further 0.05 mass%). After adding and stirring Be to the molten metal of the copper alloy containing Ni, it is obtained by solidifying.
As described above, as the copper alloy, an alloy containing 8.0% by mass or more and 20.0% by mass or less of Ni, for example, copper can be used.

この銅合金は、上記した組成となるように各金属を秤量し、溶解炉で溶解することで得られる。
使用にあっては、溶解炉で溶解させたニッケル銅合金(Be含有)を、鋳型へ注入して冷却し凝固させたり、また、凝固させた後に塑性加工を施したりすることができる。
This copper alloy is obtained by measuring each metal so that it may become the above-mentioned composition, and melt | dissolving with a melting furnace.
In use, a nickel-copper alloy (containing Be) melted in a melting furnace can be poured into a mold and allowed to cool and solidify, or can be subjected to plastic processing after solidifying.

次に、本発明の作用効果を確認するために行った実施例について説明する。
まず、生物の付着状況を確認するため、生物繁茂期の7月初旬より数ヶ月間、条件の異なる海中に、図1(A)に示す試験材(従来例)と、図1(B)に示す試験片(実施例1)を、それぞれ浸漬させた結果について説明する。なお、図1(A)に示す試験材は、鉄(SS400)、ステンレス(SUS304)、及び、銅(C1220)で構成され、図1(B)に示す試験片は、Niを含む銅合金に前記した構成の白銅(Niの含有量:10.0質量%)を使用し、Beの含有量を0.04質量%(誤差も含めると0.03質量%〜0.05質量%)にしたニッケル銅合金で構成されたものである。
Next, an example carried out to confirm the operation and effect of the present invention will be described.
First, in order to confirm the adhesion state of the organisms, the test material shown in FIG. 1 (A) (conventional example) and FIG. The results of immersion of the test pieces (Example 1) shown will be described. The test material shown in FIG. 1A is made of iron (SS400), stainless steel (SUS 304), and copper (C1220), and the test piece shown in FIG. 1B is a copper alloy containing Ni. Using the white copper (content of Ni: 10.0% by mass) of the above-mentioned constitution, the content of Be was made 0.04% by mass (0.03% by mass to 0.05% by mass including the error) It is composed of a nickel-copper alloy.

(試験1)
図1(A)に示す試験材と図1(B)に示す試験片をそれぞれ、外海と河口の水が混じり合う湾内の海中に4ヶ月間浸漬させた。その結果を、以下に説明する。
試験材を構成する鉄の部分には、赤錆、土、藻類、及び、フジツボの付着が確認され、ステンレスと銅の各部分には、土、藻類、及び、フジツボの付着が確認された。
一方、ニッケル銅合金製の試験片には、貝類や藻類等の生物の付着がなかった。
(Test 1)
The test material shown in FIG. 1 (A) and the test piece shown in FIG. 1 (B) were each immersed for 4 months in the sea in the bay where the water of the open sea and the estuary were mixed. The results are described below.
The adhesion of rust, soil, algae, and barnacles was confirmed in the portion of iron constituting the test material, and the adhesion of soil, algae, and barnacles was confirmed in each portion of stainless steel and copper.
On the other hand, the test piece made of the nickel copper alloy did not have adhesion of organisms such as shellfish and algae.

(試験2)
図1(A)に示す試験材と図1(B)に示す試験片をそれぞれ、港湾の海中に3ヶ月間浸漬させた。その結果を、以下に説明する。
試験材については、図2(A)に示すように、その全体に管棲多毛類(エゾカサネカンザシ)が付着した。このエゾカサネカンザシは、円筒形の殻を造り、殻の口から鰓を出して呼吸し、また、餌をとるものであり、殻は石灰質で強固に付着するものである。
一方、試験片については、図2(B)に示すように、試験片が取付けられたロープに、上記した管棲多毛類が付着していたが、ニッケル銅合金製の試験片には、貝類や藻類等の生物の付着がなかった。
(Test 2)
The test material shown in FIG. 1 (A) and the test piece shown in FIG. 1 (B) were each immersed in the sea of the port for 3 months. The results are described below.
As for the test material, as shown in FIG. 2 (A), the tubercle moths (Ezo-kasane kanesasi) adhered to the whole. The lizard has a cylindrical shell, which breathes from the mouth of the shell and breathes, and takes food, and the shell is calcareous and adheres firmly.
On the other hand, with regard to the test piece, as shown in FIG. 2 (B), the above-described tubercladus was attached to the rope to which the test piece was attached, but in the test piece made of nickel copper alloy, shellfish And no adhesion of organisms such as algae.

続いて、冬の海中に、鉄(SS400)製の板(比較例1)、前記した構成の白銅(Niの含有量:10.0質量%)製の円盤(比較例2)、及び、ニッケル銅合金製の板(実施例2)を、それぞれ浸漬させた結果について、図3を参照しながら説明する。なお、ニッケル銅合金製の板は、Niを含む銅合金に前記した構成の白銅(Niの含有量:10質量%)を使用し、Beの含有量を0.04質量%(誤差も含めると0.03質量%〜0.05質量%)にしたニッケル銅合金で構成されている。
図3に示すように、鉄製の板(右端)については、その全体に貝類や藻類等の生物が付着した。また、白銅製の円盤(中央)については、鉄製の板よりも生物の付着を抑制できたが、部分的に付着が確認された。
一方、ニッケル銅合金製の板(左端)については、生物の付着がなかった。
Subsequently, in the winter sea, a plate (comparative example 1) made of iron (SS 400), a disc made of white copper (content of Ni: 10.0% by mass) of the above-mentioned constitution (comparative example 2), and nickel The results of immersing the copper alloy plate (Example 2) will be described with reference to FIG. In addition, the board made of nickel copper alloy uses the white copper (content of Ni: 10 mass%) of the above-mentioned composition to the copper alloy containing Ni, and the content of Be is 0.04 mass% (including an error) It is comprised with the nickel copper alloy made into 0.03 mass%-0.05 mass%).
As shown in FIG. 3, organisms such as shellfish and algae adhered to the whole of the iron plate (right end). In addition, with regard to the disc made of white copper (center), the adhesion of organisms could be suppressed more than the plate made of iron, but the adhesion was partially confirmed.
On the other hand, no biological attachment was found on the nickel copper alloy plate (left end).

更に、Beの含有量が1.8質量%以下のニッケル銅合金製の試験片についても、上記と同様の条件で試験を行ったが、上記した実施例1、2と同様、貝類や藻類等の生物の付着はなかった。しかし、Beの含有量が1.8質量%を超えたニッケル銅合金製の試験片については、貝類や藻類等の生物の付着が確認された。
以上のことから、本発明の海洋生物の付着を防止したニッケル銅合金及びその製造方法により、従来よりも貝類や藻類等の生物の付着を抑制、更には防止できることを確認できた。これにより、従来よりも、配管等のメンテナンス作業を行う頻度を低減できる。
Furthermore, although the test was performed under the same conditions as above for the test piece made of a nickel copper alloy having a content of Be of 1.8% by mass or less, shellfish, algae, etc. as in Examples 1 and 2 described above There was no attachment of organisms. However, with regard to a test piece made of a nickel-copper alloy in which the content of Be exceeds 1.8% by mass, adhesion of organisms such as shellfish and algae was confirmed.
From the above, it has been confirmed that adhesion of organisms such as shellfish and algae can be suppressed and further prevented by the nickel-copper alloy which prevents adhesion of marine organisms of the present invention and a method for producing the same. Thereby, the frequency of performing maintenance work such as piping can be reduced compared to the conventional case.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の海洋生物の付着を防止したニッケル銅合金及びその製造方法を構成する場合も本発明の権利範囲に含まれる。
なお、前記実施の形態においては、Niを8.0質量%以上20.0質量%以下含む銅合金として、白銅を用いた場合について説明したが、これに限定されるものではなく、例えば、Niを8.0質量%以上20.0質量%以下含み、残部がCu及び不可避的不純物からなる銅合金がある。
Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the configuration described in the above-described embodiment, and the items described in the appended claims It also includes other embodiments and modifications that are considered within the scope. For example, a nickel-copper alloy in which adhesion of marine organisms of the present invention is prevented by combining some or all of the above-described embodiments and modifications is also included in the scope of the present invention. .
In addition, in the said embodiment, although the case where white copper was used as a copper alloy containing 8.0 mass% or more and 20.0 mass% or less was demonstrated, it is not limited to this, For example, Ni There is a copper alloy containing 8.0% by mass or more and 20.0% by mass or less, and the balance being Cu and unavoidable impurities.

Claims (4)

Niを8.0質量%以上20.0質量%以下含む銅合金に、Beを0.02質量%以上1.8質量%以下含ませたことを特徴とする海洋生物の付着を防止したニッケル銅合金。   A copper alloy containing 8.0% by mass or more and 20.0% by mass or less of nickel contained Be in an amount of 0.02% by mass or more and 1.8% by mass or less alloy. 請求項1記載の海洋生物の付着を防止したニッケル銅合金において、前記銅合金は、Niを9.0質量%以上11.0質量%以下、Mnを1.0質量%以下、Feを1.0質量%以上1.8質量%以下、Znを0.50質量%以下、Pbを0.02質量%以下、含み、残部がCu及び不可避的不純物からなることを特徴とする海洋生物の付着を防止したニッケル銅合金。   In the nickel-copper alloy in which adhesion of marine organisms is prevented according to claim 1, the copper alloy contains 9.0% by mass or more and 11.0% by mass or less of Ni, 1.0% by mass or less of Mn, and 1.% of Fe. 0% by mass or more and 1.8% or less by mass, 0.50% or less by mass of Zn, 0.02% or less by mass of Pb, and the remainder is composed of Cu and unavoidable impurities Prevented nickel copper alloy. Beの含有量が0.02質量%以上1.8質量%以下となるように、Niを8.0質量%以上20.0質量%以下含む銅合金の溶湯に前記Beを添加して凝固させることを特徴とする海洋生物の付着を防止したニッケル銅合金の製造方法。   The Be is added to and solidified in a copper alloy melt containing 8.0% by mass or more and 20.0% by mass or less so that the content of Be is 0.02% by mass or more and 1.8% by mass or less A method for producing a nickel-copper alloy, which is characterized in that adhesion of marine organisms is prevented. 請求項3記載の海洋生物の付着を防止したニッケル銅合金の製造方法において、前記銅合金は、Niを9.0質量%以上11.0質量%以下、Mnを1.0質量%以下、Feを1.0質量%以上1.8質量%以下、Znを0.50質量%以下、Pbを0.02質量%以下、含み、残部がCu及び不可避的不純物からなることを特徴とする海洋生物の付着を防止したニッケル銅合金の製造方法。   In the manufacturing method of the nickel copper alloy which prevented adhesion of the marine life according to claim 3, the copper alloy contains not less than 9.0% by mass and not more than 11.0% by mass of Ni, and not more than 1.0% by mass of Mn. 1.0% by mass or more and 1.8% by mass or less, Zn by 0.50% by mass or less, Pb by 0.02% by mass or less, and the balance is composed of Cu and unavoidable impurities A method of producing a nickel-copper alloy which prevents the adhesion of
JP2017216253A 2017-11-09 2017-11-09 Nickel-copper alloy preventing adhesion of marine organisms and method for producing the same Active JP7249617B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216253A JP7249617B2 (en) 2017-11-09 2017-11-09 Nickel-copper alloy preventing adhesion of marine organisms and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216253A JP7249617B2 (en) 2017-11-09 2017-11-09 Nickel-copper alloy preventing adhesion of marine organisms and method for producing the same

Publications (2)

Publication Number Publication Date
JP2019085628A true JP2019085628A (en) 2019-06-06
JP7249617B2 JP7249617B2 (en) 2023-03-31

Family

ID=66763965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216253A Active JP7249617B2 (en) 2017-11-09 2017-11-09 Nickel-copper alloy preventing adhesion of marine organisms and method for producing the same

Country Status (1)

Country Link
JP (1) JP7249617B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197833A (en) * 1984-03-17 1985-10-07 Ngk Insulators Ltd Clad material consisting of iron or steel base metal and copper alloy material
JPS60197834A (en) * 1984-03-17 1985-10-07 Ngk Insulators Ltd Cladding material of iron or steel base alloy and copper alloy material
JPS61235527A (en) * 1985-03-26 1986-10-20 Nippon Steel Corp Copper alloy for preventing fouling of marine life

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60197833A (en) * 1984-03-17 1985-10-07 Ngk Insulators Ltd Clad material consisting of iron or steel base metal and copper alloy material
JPS60197834A (en) * 1984-03-17 1985-10-07 Ngk Insulators Ltd Cladding material of iron or steel base alloy and copper alloy material
JPS61235527A (en) * 1985-03-26 1986-10-20 Nippon Steel Corp Copper alloy for preventing fouling of marine life

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TOISHI INFO, C7060(白銅)の成分、物性|引張強さ、耐力、曲げ、硬度などの規格値, JPN7022000082, 14 January 2011 (2011-01-14), JP, ISSN: 0004801594 *
村上盛紀、堀口哲、矢吹彰広、松村昌信: "銅合金—海生生物防汚性にも耐食性にも優れた銅合金—", 材料と環境, vol. 52, no. 11, JPN6021023285, 15 November 2003 (2003-11-15), pages 613 - 617, ISSN: 0004801593 *
村上盛紀、矢吹彰広、松村昌信: "銅合金の流れ誘起局部腐食に及ぼすNiおよびBeの影響—海生生物防汚性にも耐食性にも優れた銅合金—", 材料と環境, vol. 52, no. 10, JPN6021023286, 15 October 2003 (2003-10-15), ISSN: 0004801592 *

Also Published As

Publication number Publication date
JP7249617B2 (en) 2023-03-31

Similar Documents

Publication Publication Date Title
CN101273148B (en) Fusion curingprocess article and copper alloy material for fusion curingprocess and manufacturing method thereof
CN100543162C (en) The works that in seawater, uses, the wire that constitutes this works or bar-shaped Cu alloy material and manufacture method thereof
Farina et al. Comparative corrosion behaviour of different Sn-based solder alloys
JP2016084489A (en) Weld joint for ship excellent in corrosion resistance
JP2019136753A (en) Cobalt-nickel alloy material, continuous casting mold using same and method for manufacturing same
Ma et al. Optimization design of environmental-friendly Cu-Fe laser cladding coating for self-grown microchannel in a marine corrosive environment
CN105264101B (en) Acid bronze alloy
JPS5941430A (en) Antifouling metallic material
JP2019085628A (en) Nickel copper alloy preventing adhesion of marine organism, and manufacturing method therefor
JPWO2015156313A1 (en) Plated steel sheet
KR20210127991A (en) plated steel
JP2017052984A (en) Ni-P PLATING FILM AND SCALE AND METHOD FOR SUPPRESSING ADHESION OF SESSILE ANIMAL
Perander Light metals 2021
US5415836A (en) Antifouling structure and method
CN107475562B (en) A kind of sea water resistance erosion processing copper alloy and preparation method thereof
JP6973117B2 (en) Steel for mooring chains and mooring chains
TWI316555B (en)
US529620A (en) Composition of metal and method of making same
CN102477501B (en) Atmospheric corrosion resisting industrial pure Sn and application thereof
JP2023158870A (en) Construction capable of preventing adhesion of marine organisms thereto
JP5901229B2 (en) Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger
CN108060327A (en) A kind of ship B30 material preparation methods
Rollins CORROSION RESISTANCE OF NON‐FERROUS CASTINGS
JP2017179401A (en) Copper alloy for water supply member
Mckay NICKEL AND CORROSION-RESISTING NICKEL ALLOYS

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220404

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220425

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220426

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220624

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220628

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220802

C302 Record of communication

Free format text: JAPANESE INTERMEDIATE CODE: C302

Effective date: 20220805

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221004

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221114

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230124

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20230221

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230313

R150 Certificate of patent or registration of utility model

Ref document number: 7249617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150