JP2019085446A - Boron nitride-containing resin composition - Google Patents

Boron nitride-containing resin composition Download PDF

Info

Publication number
JP2019085446A
JP2019085446A JP2017212254A JP2017212254A JP2019085446A JP 2019085446 A JP2019085446 A JP 2019085446A JP 2017212254 A JP2017212254 A JP 2017212254A JP 2017212254 A JP2017212254 A JP 2017212254A JP 2019085446 A JP2019085446 A JP 2019085446A
Authority
JP
Japan
Prior art keywords
boron nitride
resin composition
less
nitride particles
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017212254A
Other languages
Japanese (ja)
Other versions
JP6692050B2 (en
Inventor
豪 竹田
Go Takeda
豪 竹田
市川 恒希
Koki Ichikawa
恒希 市川
雅裕 小迫
Masahiro Kosako
雅裕 小迫
政幸 匹田
Masayuki Hikita
政幸 匹田
椋太 中迫
Ryota Nakasako
椋太 中迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu Institute of Technology NUC
Denka Co Ltd
Original Assignee
Kyushu Institute of Technology NUC
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Institute of Technology NUC, Denka Co Ltd filed Critical Kyushu Institute of Technology NUC
Priority to JP2017212254A priority Critical patent/JP6692050B2/en
Publication of JP2019085446A publication Critical patent/JP2019085446A/en
Application granted granted Critical
Publication of JP6692050B2 publication Critical patent/JP6692050B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a resin composition excellent in insulating characteristics.SOLUTION: A resin composition contains scaly boron nitride particles having an average particle size of 3 μm or more and 40 μm or less and spherical boron nitride particles having an average particle size of 0.05 μm or more and 1 μm or less, has an orientation index calculated by X-ray diffraction of the scaly boron nitride of 15 or more and 70 or less, has a content of the scaly boron nitride particles with respect to the whole resin composition of 3 vol% or more and 75 vol% or less, a content of the spherical boron nitride particles with respect to the whole resin composition of 0.3 vol% or more and 30 vol% or less, and a ratio of the spherical boron nitride particles with a particle size of 2 μm or more with respect to the spherical boron nitride particles of 1% or less.SELECTED DRAWING: None

Description

本発明は、絶縁特性に優れた鱗片状窒化ホウ素粒子及び球状窒化ホウ素粒子を含有する熱伝導樹脂組成物に関する。   The present invention relates to a thermally conductive resin composition containing scaly boron nitride particles and spherical boron nitride particles excellent in insulating properties.

近年、電子部材においては、小型化が求められており、それに伴い部材の放熱性ならびに絶縁特性がさらに重要になってきている。絶縁特性としては、絶縁破壊特性と、長期絶縁信頼特性(部分放電特性)が特に重要である。   In recent years, with regard to electronic members, miniaturization has been demanded, and along with that, the heat dissipation and insulation properties of the members have become more important. As insulation characteristics, dielectric breakdown characteristics and long-term insulation reliability characteristics (partial discharge characteristics) are particularly important.

電子部品内に用いるフィラーは数μm〜数十μmの粗粉末と、サブミクロン〜数μmの微粉末とを併用することが多いが、絶縁破壊には特に粗粉末の、部分放電特性には特に微粉末の役割が重要である。   The filler used in the electronic component is often used in combination with a coarse powder of several μm to several tens of μm and a fine powder of submicron to several μm. The role of fine powder is important.

絶縁フィラーとしてはシリカ、アルミナなどが使用されることも多いが、低誘電率であり、かつ高い放熱特性を有する窒化ホウ素粉末が注目されている。   Although silica, alumina or the like is often used as the insulating filler, a boron nitride powder having a low dielectric constant and high heat dissipation characteristics is attracting attention.

窒化ホウ素は、一般的に、ホウ素源(ホウ酸、硼砂等)と窒素源(尿素、メラミン、及びアンモニアなど)を高温で反応させることで得られ(固相法)、通常鱗片状の数〜数十μmの窒化ホウ素粒子が得られる(特許文献1)。   Boron nitride is generally obtained by reacting a boron source (boric acid, borax, etc.) with a nitrogen source (urea, melamine, ammonia, etc.) at a high temperature (solid phase method), usually in the form of flakes Several tens of μm boron nitride particles are obtained (Patent Document 1).

一方、気相合成法では、球状の窒化ホウ素微粉末を得る方法が報告されている(特許文献2、特許文献3、特許文献4)。   On the other hand, in the vapor phase synthesis method, a method of obtaining spherical boron nitride fine powder has been reported (Patent Document 2, Patent Document 3, Patent Document 4).

また特許文献5では、平均粒径0.1〜50μmである顆粒状窒化ホウ素と平均粒径0.1〜30μmである板状窒化ホウ素を熱伝導性充填剤として使用できる熱伝導性シリコーン組成物が開示されている。   Patent Document 5 discloses a thermally conductive silicone composition which can use granular boron nitride having an average particle diameter of 0.1 to 50 μm and plate-like boron nitride having an average particle diameter of 0.1 to 30 μm as a thermally conductive filler. There is.

特開2014−40341号公報JP, 2014-40341, A 特開2000−327312号公報Japanese Patent Laid-Open No. 2000-327312 特開2004−182572号公報Unexamined-Japanese-Patent No. 2004-182572 国際公開2015/122379号International Publication 2015 1222379 特表2016−534161号公報JP 2016-534161 gazette

しかし、上述した特許文献1〜4に記載された従来技術に係る窒化ホウ素粉末をフィラーとして使っても、十分な絶縁特性が得られないという問題がこれまで解決できていなかった。また、特許文献5の熱伝導性シリコーン組成物、例えばその実施例に記載された平均粒径20μmである窒化ホウ素を4.4質量%及び平均粒径0.8μmである窒化ホウ素を8.8質量%含有する熱伝導性シリコーン樹脂組成物では、十分な長期絶縁信頼特性(部分放電特性)を得ることができなかった。   However, even if it used the boron nitride powder based on the prior art described in the patent documents 1-4 mentioned above as a filler, the problem that sufficient insulation characteristics were not obtained could not be solved until now. Further, the thermally conductive silicone composition of Patent Document 5, for example, heat containing 4.4% by mass of boron nitride having an average particle diameter of 20 μm described in the example and 8.8% by mass of boron nitride having an average particle diameter of 0.8 μm In the conductive silicone resin composition, sufficient long-term insulation reliability characteristics (partial discharge characteristics) could not be obtained.

本発明者らは、特定のミクロンオーダーの平均粒径を有する鱗片状窒化ホウ素粉末と、特定のナノ〜サブミクロンオーダーの平均粒径を有する球状窒化ホウ素粉末とを所定の比率で以って混合し、かつそのうちの粒径2μm以上の球状窒化ホウ素粒子の比率を少なく抑えるとともに、その配向性、分散性を制御してフィラーとして用いることで、樹脂組成物に従来にない水準まで向上した絶縁特性を与えられることを見出し、本発明を完成するに至った。   The present inventors have mixed scaly boron nitride powder having an average particle diameter of a specific micron order and spherical boron nitride powder having an average particle diameter of a specific nano to submicron region in a predetermined ratio. In addition, the ratio of spherical boron nitride particles having a particle diameter of 2 μm or more is suppressed to a low level, and the orientation and dispersibility thereof are controlled to be used as a filler, thereby improving the insulation properties to a level not conventionally found in resin compositions. The present invention has been completed.

すなわち、本発明は以下を提供できる。   That is, the present invention can provide the following.

(1)
平均粒径が3μm以上40μm以下の鱗片状窒化ホウ素粒子と、
平均粒径0.05μm以上1μm以下の球状窒化ホウ素粒子と
を含有する樹脂組成物であって、
鱗片状窒化ホウ素のX線回折から算出される配向性指数が15以上70以下であり、
樹脂組成物全体に対する鱗片状窒化ホウ素粒子の含有量が3体積%以上75体積%以下であり、
樹脂組成物全体に対する球状窒化ホウ素粒子の含有量が0.3体積%以上30体積%以下であり、かつ
球状窒化ホウ素粒子全体に対する粒径2μm以上の球状窒化ホウ素粒子の割合が1%以下である 樹脂組成物。
(1)
Scaly boron nitride particles having an average particle diameter of 3 μm to 40 μm,
Spherical boron nitride particles having an average particle diameter of 0.05 μm or more and 1 μm or less
A resin composition containing
The orientation index calculated from X-ray diffraction of scaly boron nitride is 15 or more and 70 or less,
The content of scaly boron nitride particles with respect to the entire resin composition is 3% by volume or more and 75% by volume or less,
The resin composition has a content of spherical boron nitride particles of 0.3% to 30% by volume with respect to the entire resin composition, and a ratio of spherical boron nitride particles having a particle diameter of 2 μm or more to the entire spherical boron nitride particles is 1% or less object.

(2)
(1)に記載の樹脂組成物を用いた絶縁部材。
(2)
The insulation member using the resin composition as described in (1).

(3)
絶縁破壊強度が、65kV/mm以上である(1)に記載の樹脂組成物または(2)に記載の絶縁部材。
(3)
The resin composition according to (1) or the insulating member according to (2), wherein the dielectric breakdown strength is 65 kV / mm or more.

本発明を用いることにより、絶縁特性に優れた樹脂組成物を提供することができる。   By using the present invention, a resin composition having excellent insulation properties can be provided.

本発明の実施形態に係る樹脂組成物の調製に使用できる鱗片状窒化ホウ素粉末は、上記の特許文献1に記載の固相法などの当該技術分野で通常用いられる方法で調製するか、あるいは市販の鱗片状窒化ホウ素粉末を使用すればよい(例えばデンカ株式会社製のGPグレード)。   The scaly boron nitride powder that can be used to prepare the resin composition according to the embodiment of the present invention is prepared by a method commonly used in the art such as the solid phase method described in Patent Document 1 above, or is commercially available. The scaly boron nitride powder may be used (for example, GP grade manufactured by Denka Co., Ltd.).

また本発明の実施形態に係る樹脂組成物の調製に使用できる球状窒化ホウ素粉末の製造方法は、従来の六方晶窒化ホウ素の製造方法である固相法ではなく、不活性ガス気流中で、管状炉を用いて、揮発したホウ酸アルコキシドと、アンモニアを原料とし、いわゆる気相合成を行った後(焼成条件1)、次に、抵抗加熱炉で焼成を行い(焼成条件2)、そして最後に、この焼成物を窒化ホウ素製のルツボに入れ、誘導加熱炉で焼成して窒化ホウ素粉末を生成する(焼成条件3)ことを含むものとするのが好ましい。また、絶縁特性を向上させるために樹脂組成物中の球状窒化ホウ素粒子の分散性を制御することが望ましい。   In addition, the method for producing spherical boron nitride powder that can be used for preparation of the resin composition according to the embodiment of the present invention is not a solid phase method which is a conventional method for producing hexagonal boron nitride, but a tubular in inert gas flow. After using the furnace to perform so-called gas phase synthesis using boric acid alkoxide volatilized and ammonia as raw materials (firing condition 1), next, firing in a resistance heating furnace (firing condition 2) and finally Preferably, the fired product is put in a crucible made of boron nitride and fired in an induction heating furnace to form a boron nitride powder (firing condition 3). In addition, it is desirable to control the dispersibility of the spherical boron nitride particles in the resin composition in order to improve the insulating properties.

球状窒化ホウ素粉末の好ましい製造方法においては、上記のとおり、焼成条件が3段階ある。このうちの焼成条件1は750℃以上2,200℃以下の温度であるのが好ましい。温度が750℃未満では気相合成が起きず好ましくない。また温度が2,200℃を超えると焼成に多量の電気を用いてしまうためコストがかかり、製造上好ましくない。また焼成条件1における反応時間は、30秒以内とすることが好ましく、20秒以内とすることがより好ましい。   In the preferred method for producing spherical boron nitride powder, as described above, there are three stages of firing conditions. Among these, the firing condition 1 is preferably a temperature of 750 ° C. or more and 2,200 ° C. or less. If the temperature is less than 750 ° C., gas phase synthesis does not occur, which is not preferable. Further, if the temperature exceeds 2,200 ° C., a large amount of electricity is used for firing, which is costly and not preferable in production. Further, the reaction time under the firing condition 1 is preferably within 30 seconds, and more preferably within 20 seconds.

焼成条件2の温度は1,000℃以上1,600℃以下、及び焼成条件3の温度は1,800℃〜2,200℃とするのが好ましい。焼成条件2における反応時間は、1時間以上とすることが好ましく、1〜10時間の範囲とすることがより好ましく、1〜6時間の範囲とすることがさらに好ましい。当該反応時間が1時間未満であると、十分に球状になった窒化ホウ素粒子が得られないことがある。また、焼成条件1、2については管状炉として抵抗加熱方式の電気炉を、また焼成条件3については管状炉として誘導加熱方式の電気炉をそれぞれ用いることができる。   It is preferable that the temperature of the baking condition 2 sets it as 1,000 degreeC or more and 1,600 degreeC or less, and the temperature of the baking condition 3 sets it as 1,800 degreeC to 2,200 degreeC. The reaction time under firing condition 2 is preferably 1 hour or more, more preferably in the range of 1 to 10 hours, and still more preferably in the range of 1 to 6 hours. If the reaction time is less than 1 hour, sometimes sufficiently spherical boron nitride particles can not be obtained. In addition, for firing conditions 1 and 2, an electric furnace of resistance heating type can be used as a tubular furnace, and for firing condition 3, an electric furnace of induction heating type can be used as a tubular furnace.

また高純度、高結晶性を得られるようにするため、焼成条件3では窒素雰囲気下、1,800℃〜2,200℃の温度で焼成することがより好ましい。焼成条件3における反応時間は、0.5時間以上とすることが好ましく、0.5〜8時間の範囲とすることがより好ましく、0.5〜6時間の範囲とすることがさらに好ましい。当該反応時間が0.5時間未満であると、得られる窒化ホウ素粉末の純度が低くなってしまうことがある。   Moreover, in order to obtain high purity and high crystallinity, it is more preferable to bake at a temperature of 1,800 ° C. to 2,200 ° C. in a nitrogen atmosphere under baking condition 3. The reaction time under firing condition 3 is preferably 0.5 hours or more, more preferably 0.5 to 8 hours, and still more preferably 0.5 to 6 hours. If the reaction time is less than 0.5 hours, the purity of the obtained boron nitride powder may be lowered.

本発明の実施形態で使用できる鱗片状窒化ホウ素粉末の平均粒径は、3μm〜40μmが好ましく、4〜30μmがより好ましい。平均粒径が3μm未満では、絶縁破壊電圧の向上が認められず好ましくない。また平均粒径が40μmを超える鱗片状粒子を得るには焼成を高温にしさらに焼成時間を長時間にする必要があり、製造コストが大きくなり好ましくない。なお本明細書においては、鱗片状窒化ホウ素粉末の平均粒径とは、当該鱗片状窒化ホウ素粉末を後述するようにレーザー回折散乱法にかけて得られる平均粒径のことと定義する。   3 micrometers-40 micrometers are preferable, and, as for the average particle diameter of scale-like boron nitride powder which can be used by embodiment of this invention, 4-30 micrometers is more preferable. If the average particle size is less than 3 μm, the dielectric breakdown voltage is not improved, which is not preferable. Further, in order to obtain scale-like particles having an average particle size of more than 40 μm, it is necessary to raise the temperature of firing and further to extend the firing time, which is not preferable because the production cost becomes large. In the present specification, the average particle diameter of the scaly boron nitride powder is defined as the average particle diameter obtained by subjecting the scaly boron nitride powder to the laser diffraction scattering method as described later.

本発明の実施形態に係る樹脂組成物の総体積に対して、鱗片状窒化ホウ素粒子の含有量は、3体積%〜75体積%が好ましく、4体積%〜70体積%がより好ましい。当該含有量が3体積%未満では、絶縁破壊電圧の向上が認められず、75体積%を超えると樹脂への充填が困難になる。なお絶縁破壊強度は、65kV/mm以上であるのが好ましく、より好ましくは70kV/mm以上、さらに好ましくは75kV/mm以上である。   The content of the scaly boron nitride particles is preferably 3% by volume to 75% by volume, and more preferably 4% by volume to 70% by volume, with respect to the total volume of the resin composition according to the embodiment of the present invention. If the content is less than 3% by volume, no improvement in the dielectric breakdown voltage is observed, and if it exceeds 75% by volume, the filling of the resin becomes difficult. The dielectric breakdown strength is preferably 65 kV / mm or more, more preferably 70 kV / mm or more, and still more preferably 75 kV / mm or more.

本発明の実施形態に係る樹脂組成物に含まれる鱗片状窒化ホウ素粒子の配向性指数は、15〜70が好ましい。配向性指数が15未満では、配向が不十分であり、絶縁破壊電圧の向上が認められず好ましくない。配向性指数が70を超えると熱伝導率の点で不利となりやはり好ましくない。   The orientation index of the scaly boron nitride particles contained in the resin composition according to the embodiment of the present invention is preferably 15 to 70. If the orientation index is less than 15, the orientation is insufficient, and the improvement of the dielectric breakdown voltage is not observed, which is not preferable. When the orientation index exceeds 70, it is disadvantageous in terms of thermal conductivity, which is also not preferable.

本発明の球状窒化ホウ素粉末の平均粒径は、0.05μm〜1.0μmが好ましい。0.05μm未満では、樹脂と混練した際、凝集が起こりやすく絶縁破壊特性、部分放電特性共に低下しやすく好ましくない。一方、1.0μmを超えると部分放電特性に対する効果が低下するため好ましくない。   The average particle diameter of the spherical boron nitride powder of the present invention is preferably 0.05 μm to 1.0 μm. If the thickness is less than 0.05 μm, aggregation tends to easily occur when kneading with a resin, and both the dielectric breakdown characteristics and the partial discharge characteristics are apt to deteriorate. On the other hand, if it exceeds 1.0 μm, the effect on the partial discharge characteristics is reduced, which is not preferable.

本発明の実施形態に係る樹脂組成物の総体積に対して、球状窒化ホウ素粒子の含有量は、0.3体積%〜30体積%が好ましく、0.4体積%〜28体積%がより好ましく、0.5体積%〜25体積%がさらに好ましい。当該含有量が0.3体積%未満では、部分放電特性が十分向上せず、一方、30体積%を超えると樹脂への充填が困難になる。   The content of the spherical boron nitride particles is preferably 0.3% by volume to 30% by volume, more preferably 0.4% by volume to 28% by volume, with respect to the total volume of the resin composition according to the embodiment of the present invention -25 vol% is more preferred. If the content is less than 0.3% by volume, the partial discharge characteristics are not sufficiently improved, while if it exceeds 30% by volume, the filling of the resin becomes difficult.

また樹脂組成物に含まれている球状窒化ホウ素粒子全体に対して、粒径2μm以上である球状窒化ホウ素粒子の割合は、1%以下であることが好ましく、より好ましくは0.9%以下、さらに好ましくは0.7%以下、とりわけ好ましくは0.5%以下とすることができる。当該割合が1%を超えると、部分放電特性が劣る問題が生じる。なお、典型的には粒径2μm以上である球状窒化ホウ素粒子は凝集粒子であると考えられる。   The ratio of spherical boron nitride particles having a particle diameter of 2 μm or more to the whole spherical boron nitride particles contained in the resin composition is preferably 1% or less, more preferably 0.9% or less, and further preferably May be 0.7% or less, particularly preferably 0.5% or less. When the ratio exceeds 1%, there arises a problem that the partial discharge characteristics are inferior. In addition, it is considered that spherical boron nitride particles that are typically 2 μm or more in particle diameter are aggregated particles.

窒化ホウ素粉末の形態が球状であるか鱗片状であるかは電子顕微鏡観察により判断ができる。本明細書においては、一次粒子の平均円形度が0.8以上のものを球状窒化ホウ素粉末、平均円形度が0.8未満のものを鱗片状窒化ホウ素粉末であると定義する。より好ましくは、平均粒径が1μm以下で、かつ平均円形度は0.8以上のものを球状窒化ホウ素粉末と考えることができる。   Whether the form of the boron nitride powder is spherical or scaly can be determined by electron microscopic observation. In the present specification, a primary particle having an average circularity of 0.8 or more is defined as a spherical boron nitride powder, and one having an average circularity of less than 0.8 is defined as a scaly boron nitride powder. More preferably, those having an average particle diameter of 1 μm or less and an average circularity of 0.8 or more can be considered as spherical boron nitride powder.

本発明の実施形態に係る樹脂組成物に使用する樹脂は、放熱性を要する用途に使うことを考慮すると、熱伝導樹脂であることが好ましい。熱伝導樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、シリコーンゴム、アクリル樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリアミド(例えば、ポリイミド、ポリアミドイミド、ポリエーテルイミド等)、ポリエステル(例えば、ポリブチレンテレフタレート、ポリエチレンテレフタレート等)、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等を用いることができる。   The resin used for the resin composition according to the embodiment of the present invention is preferably a heat conductive resin in consideration of use for applications requiring heat dissipation. As the heat conductive resin, for example, epoxy resin, silicone resin, silicone rubber, acrylic resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluorine resin, polyamide (for example, polyimide, polyamide imide, polyether imide etc.), Polyester (eg, polybutylene terephthalate, polyethylene terephthalate etc.), polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber styrene) ) Resin, AES (acrylonitrile ethylene propylene diene rubber-styrene) resin, etc. can be used.

<測定方法>
鱗片状窒化ホウ素粉末と球状窒化ホウ素粉末について、以下に示す測定方法で分析を行った。
<Measurement method>
The scaly boron nitride powder and the spherical boron nitride powder were analyzed by the measurement method described below.

(1)平均粒径:測定にはベックマンコールター社製のレーザー回折散乱法粒度分布測定装置「LS−13 320」を用いた。得られる平均粒径は体積統計値による平均値である。なお、平均粒径が100nm未満の場合はMALVERN社製の動的光散乱測定装置「ゼータサイザー Nano ZS」を用いた。 (1) Average particle size: For measurement, a particle size distribution measuring apparatus by laser diffraction scattering method “LS-13 320” manufactured by Beckman Coulter, Inc. was used. The average particle size obtained is an average value by volumetric statistics. When the average particle size was less than 100 nm, a dynamic light scattering measurement apparatus "Zetasizer Nano ZS" manufactured by MALVERN was used.

(2)配向性指数:配向性指数の測定にはX線回折装置を用い(リガク社製の「Ultima IV」)2θ=10°〜70°の範囲で測定し、2θ=27°付近((002)面)の回折線の強度I002、2θ=41°付近((100)面)の回折線の強度I100を求めた。配向性指数は窒化ホウ素のX線回折のピーク強度比より、
配向性指数=I002/I100
として算出した。なお、2θ=27°付近には鱗片状窒化ホウ素と球状窒化ホウ素の2種の回折線が確認されることがあるが、本明細書においては鱗片状窒化ホウ素に相当する高角側のシャープな回折線を用いて算出を行うこととした。
(2) Orientation index: Measurement of the orientation index is carried out using an X-ray diffractometer ("Ultima IV" manufactured by RIGAKU CO., LTD.) In the range of 2θ = 10 ° to 70 °, around 2θ = 27 ° (( The intensity I 002 of the diffraction line of the ( 002 ) plane) and the intensity I 100 of the diffraction line near 2θ = 41 ° ((100) plane) were determined. The orientation index is determined by the peak intensity ratio of boron nitride X-ray diffraction:
Orientation index = I 002 / I 100
Calculated as Although two types of diffraction lines of scaly boron nitride and spherical boron nitride may be confirmed near 2θ = 27 °, sharp diffraction on the high angle side corresponding to scaly boron nitride is made in the present specification. Calculations were made using lines.

(3)粒径2μm以上の球状BN粒子量:粒径2μm以上の球状BN粒子量は、下記の手法で測定した。すなわち作製した樹脂組成物をCP(クロスセクションポリッシャー)法により加工して断面を露出させ、試料台に固定した後にオスミウムコーティングを行った。その後に断面を走査型電子顕微鏡(例えば日本電子社製「JSM−6010LA」)を用いて観察倍率2,000倍〜10,000倍で観察し、画像を得た。得られた画像のうちから球状窒化ホウ素粒子1,000粒子を抽出し、そのうちで球状窒化ホウ素からなる粒子が2μm以上の凝集粒子となっていたものを粒径2μm以上の球状BN粒子として存在割合を算出して評価した。なお当該画像の処理には、「A像くん」(旭化成エンジニアリング社製)や「Mac−View Ver.4.0」(マウンテック社製)などを使用することができ、その際の画像の倍率は例えば1000倍、画像解析の画素数は例えば1510万画素とすることができる。 (3) Amount of spherical BN particles having a particle diameter of 2 μm or more: The amount of spherical BN particles having a particle diameter of 2 μm or more was measured by the following method. That is, the prepared resin composition was processed by a CP (cross section polisher) method to expose a cross section, and after fixing on a sample table, osmium coating was performed. Thereafter, the cross section was observed using a scanning electron microscope (for example, "JSM-6010LA" manufactured by Nippon Denshi Co., Ltd.) at an observation magnification of 2,000 times to 10,000 times to obtain an image. From the obtained image, 1,000 spherical boron nitride particles are extracted, and among them, spherical boron nitride particles having aggregated particles of 2 μm or more are present as spherical BN particles having a particle diameter of 2 μm or more. Was calculated and evaluated. In addition, "A image kun" (made by Asahi Kasei Engineering Co., Ltd.) and "Mac-View Ver. For example, the number of pixels of the image analysis can be set to, for example, 15.1 million pixels by 1000 times.

(4)絶縁破壊強度評価:絶縁破壊強度は下記の手法で測定した。すなわち、作製した樹脂組成物試料をムサシインテック社製IP-55D絶縁油試験機に入れ、フッ素系液体(スリーエムジャパン社製の「フロリナート(商標)」)中、球状電極間に固定し、初期電圧12kVまでは3kV/secで昇圧し、((絶縁破壊した電圧値)-1)kVを絶縁破壊値とし、試料の厚みで除した値を絶縁破壊強度(kV/mm)とした。絶縁破壊強度としては65kV/mm以上を合格値とし、70kV/mm以上であった場合を好ましいものと、75kV/mm以上であった場合をとりわけ好ましいものとして認定した。 (4) Evaluation of dielectric breakdown strength: The dielectric breakdown strength was measured by the following method. That is, the prepared resin composition sample is placed in an IP-55D insulating oil tester manufactured by Musashi Intech Co., Ltd., fixed between spherical electrodes in a fluorine-based liquid ("Fluorinert (trademark)" manufactured by 3M Japan), and initial voltage The pressure was increased at 3 kV / sec up to 12 kV, ((voltage value at which dielectric breakdown occurred)-1) kV was taken as the dielectric breakdown value, and the value divided by the thickness of the sample was taken as the dielectric breakdown strength (kV / mm). As dielectric breakdown strength, 65 kV / mm or more was taken as the pass value, and the case where it was 70 kV / mm or more was recognized as preferable when it was 75 kV / mm or more as preferable.

(5)部分放電侵食体積評価:部分放電侵食体積は下記の手法で測定した。すなわち、作製した樹脂組成物試料を直径10mmの半球電極および直径25mmの平面電極に固定して、低周波発信器(KENWOOD社製「AG-204D」)と交直両用高圧アンプリファイア(TREK社製「20/20C-HS」)を用いて、大気下中、周波数1kHz、電圧5kVrmsの条件で24時間電圧を印加した。試験後の試料の表面粗さ評価をワンショット3D形状測定機(キーエンス社製「VR-3000」)を用い3D画像を取得し、侵食体積(mm3)を評価した。部分放電侵食体積としては1.3mm3以下を合格値とした。 (5) Partial discharge erosion volume evaluation: The partial discharge erosion volume was measured by the following method. That is, the produced resin composition sample is fixed to a hemispherical electrode having a diameter of 10 mm and a flat electrode having a diameter of 25 mm, and a low frequency transmitter ("AG-204D" manufactured by KENWOOD Co., Ltd.) and a high-pressure amplifier for AC / DC dual use (manufactured by TREK Co.) A voltage was applied for 24 hours under the conditions of a frequency of 1 kHz and a voltage of 5 kV rms in the atmosphere using 20/20 C-HS "). The surface roughness of the sample after the test was evaluated using a one-shot 3D shape measuring machine ("VR-3000" manufactured by Keyence Corporation) to obtain a 3D image, and the erosion volume (mm 3 ) was evaluated. As partial discharge erosion volume, 1.3 mm 3 or less was taken as the pass value.

以下、本発明について、実施例及び比較例により、詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in detail by way of Examples and Comparative Examples, but the present invention is not limited thereto.

[実施例1]
実施例1の樹脂組成物は、以下のように作製した。
Example 1
The resin composition of Example 1 was produced as follows.

<鱗片状窒化ホウ素粉末>
鱗片状窒化ホウ素粉末としてはデンカ株式会社製GPグレード(平均粒径7μm)を用いた。
<Flaky Boron Nitride Powder>
As scale-like boron nitride powder, GP grade (average particle diameter 7 μm) manufactured by Denka Co., Ltd. was used.

<球状窒化ホウ素粉末>
球状窒化ホウ素粉末は以下のプロセスを用いて合成を行った。
<Spherical boron nitride powder>
Spherical boron nitride powder was synthesized using the following process.

(焼成条件1)
炉心管を抵抗加熱炉に設置し温度1,000℃に加熱した。ホウ酸トリメチル(多摩化学株式会社製「TMB-R」)を窒素バブリングにより導入管を通して炉心管に導入し、一方、アンモニアガス(純度99.9%以上)も、導入管を経由して炉心管に導入した。導入されたホウ酸トリメチルとアンモニアはモル比1:1.2であった。炉内で気相反応し、反応時間10秒で合成することにより白色粉末を生成した。生成した白色粉末を回収した。
(Firing condition 1)
The core tube was placed in a resistance heating furnace and heated to a temperature of 1,000 ° C. Trimethyl borate (“TMB-R” manufactured by Tama Chemical Co., Ltd.) is introduced into the core pipe through the introduction pipe by nitrogen bubbling, while ammonia gas (purity 99.9% or more) is also introduced into the core pipe via the introduction pipe did. The trimethyl borate and ammonia introduced had a molar ratio of 1: 1.2. A gas phase reaction was carried out in a furnace, and a white powder was produced by synthesizing at a reaction time of 10 seconds. The resulting white powder was collected.

(焼成条件2)
焼成条件1で回収した白色粉末を窒化ホウ素製ルツボに充填し、抵抗加熱炉にセットした後、窒素、アンモニア混合雰囲気で、温度1,350℃、5時間加熱し、焼成終了後、冷却し、焼成物を回収した。
(Firing condition 2)
The white powder recovered under firing condition 1 is filled in a crucible made of boron nitride and set in a resistance heating furnace, then heated at 1,350 ° C. for 5 hours in a mixed atmosphere of nitrogen and ammonia, cooled after completion of firing. The fired product was recovered.

(焼成条件3)
焼成条件2で得られた焼成物を窒化ホウ素製ルツボに入れ、誘導加熱炉で窒素雰囲気下、2,000℃、4時間焼成を行い、窒化ホウ素粉末を得た。
(Firing condition 3)
The fired product obtained under firing condition 2 was put into a boron nitride crucible, and fired at 2,000 ° C. for 4 hours in a nitrogen atmosphere in an induction heating furnace to obtain a boron nitride powder.

上記で得られた窒化ホウ素粉末を電子顕微鏡で観察し、球状窒化ホウ素粉末であり、その平均粒径が0.5μmであることが確認された。   The boron nitride powder obtained above was observed with an electron microscope, and it was confirmed that it was spherical boron nitride powder and that its average particle size was 0.5 μm.

<樹脂組成物作製条件>
樹脂としてエポキシ主剤と硬化剤を用い、エポキシ主剤として、三菱化学社製EP816Aを用い、硬化剤として三菱化学社製EK113を主剤に対して質量30%の比率で用いた。この樹脂に対し、上記の鱗片状窒化ホウ素粉末を10体積%、球状窒化ホウ素粉末を1体積%添加し、自転公転式高速回転ミキサー(シンキー社製 ARV310)を用い大気中2,000rpmで20分混合し、硬化剤を添加し真空中1,500rpmで5分混合した。混合後のスラリーを厚み0.5mmの金型に流し込み成型を行った。スラリー流し込み後30分後に硬化作業に入り、70℃の温度で15分真空脱泡させた後、一次硬化70℃3時間、二次硬化120℃3時間の硬化条件で硬化を行い、実施例1に係る樹脂組成物を得た。得られた樹脂組成物の含有する粒径2.0μm以上の球状窒化ホウ素粒子の比率を、上述した手法により測定したところ、0.1%であった。
<Resin composition preparation conditions>
An epoxy main agent and a curing agent were used as the resin, EP816A manufactured by Mitsubishi Chemical Corp. was used as the epoxy main agent, and EK113 manufactured by Mitsubishi Chemical Corp. was used as the curing agent at a ratio of 30% by mass to the main agent. To this resin, 10% by volume of the above scaly boron nitride powder and 1% by volume of spherical boron nitride powder are added, and mixed for 20 minutes at 2,000 rpm in the air using an autorotation revolution type high-speed rotary mixer (ARV310 manufactured by Shinky Co., Ltd.) The hardener was added and mixed in vacuum at 1,500 rpm for 5 minutes. The mixed slurry was poured into a 0.5 mm-thick mold and molded. After 30 minutes after pouring the slurry, the curing operation was started, and after degassing in vacuum at a temperature of 70 ° C. for 15 minutes, the primary curing was performed at 70 ° C. for 3 hours and the secondary curing at 120 ° C. for 3 hours. The resin composition according to The ratio of spherical boron nitride particles having a particle diameter of 2.0 μm or more contained in the obtained resin composition was measured by the above-described method to be 0.1%.

[実施例2]
実施例2は、鱗片状窒化ホウ素および球状窒化ホウ素の含有量をそれぞれ4.5体積%、0.5体積%に変更した以外は実施例1と同様の条件で、樹脂組成物を作製した。
Example 2
Example 2 produced the resin composition on the conditions similar to Example 1 except having changed content of scale-like boron nitride and spherical boron nitride into 4.5 volume% and 0.5 volume%, respectively.

[実施例3]
実施例3は、鱗片状窒化ホウ素の含有量を65体積%にした以外は、実施例1と同様の条件で、樹脂組成物を作製した。
[Example 3]
Example 3 produced the resin composition on the conditions similar to Example 1 except content of scaly boron nitride having been 65 volume%.

[実施例4]
実施例4は、球状窒化ホウ素の含有量を25体積%にした以外は、実施例1と同様の条件で、樹脂組成物を作製した。
Example 4
Example 4 produced the resin composition on the conditions similar to Example 1 except having made content of spherical boron nitride 25 volume%.

[実施例5]
実施例5は、鱗片状窒化ホウ素をデンカ株式会社製HGP(平均粒径4μm)に代えた以外は、実施例1と同様の条件で、樹脂組成物を作製した。
[Example 5]
Example 5 produced the resin composition on the conditions similar to Example 1 except having replaced scaly-like boron nitride by Denka Co., Ltd. HGP (average particle diameter 4 micrometers).

[実施例6]
実施例6は、鱗片状窒化ホウ素をデンカ株式会社製XGP(平均粒径30μm)に変更した以外は実施例1と同様の条件で作製を行い、樹脂組成物を作製した。
[Example 6]
Example 6 was produced under the same conditions as in Example 1 except that scaly boron nitride was changed to XGP (average particle diameter 30 μm) manufactured by Denka Co., Ltd., to produce a resin composition.

[実施例7]
実施例7は、球状窒化ホウ素粉末の製造における焼成条件1に関し、ホウ酸トリメチルとアンモニアの導入量をモル比1:9にした以外は、実施例1と同様の条件で樹脂組成物を作製した。球状窒化ホウ素粉末の平均粒径は0.1μmであった。
[Example 7]
Example 7 produced the resin composition on the conditions similar to Example 1 except having set the introduction ratio of trimethyl borate and ammonia to 1: 9 molar ratio regarding baking condition 1 in manufacture of spherical boron nitride powder. . The average particle diameter of the spherical boron nitride powder was 0.1 μm.

[実施例8]
実施例8は、球状窒化ホウ素粉末の製造における焼成条件1に関し、加熱温度を820℃にした以外は実施例1と同様の条件で、樹脂組成物を作製した。球状窒化ホウ素粉末の平均粒径は0.9μmであった。
[Example 8]
Example 8 manufactured the resin composition on the conditions similar to Example 1 except the heating temperature having been 820 degreeC regarding baking conditions 1 in manufacture of spherical boron nitride powder. The average particle diameter of the spherical boron nitride powder was 0.9 μm.

[実施例9]
実施例9は、樹脂組成物作製時に、スラリーを流し込んだ10分後に硬化作業に入ったこと以外は実施例1と同様に作製した。
[Example 9]
Example 9 was produced in the same manner as Example 1 except that the curing operation was started 10 minutes after pouring the slurry at the time of production of the resin composition.

[実施例10]
実施例10は、樹脂組成物作製時に、スラリーを流し込んだ60分後に硬化作業に入ったこと以外は実施例1と同様に作製した。
[Example 10]
Example 10 was prepared in the same manner as Example 1 except that the curing operation was started 60 minutes after the slurry was poured into the resin composition.

[実施例11]
実施例11は、樹脂組成物作製時に自転公転式高速回転ミキサー(シンキー社製 ARV310)を用い大気中1,000rpmで10分混合し、硬化剤を添加し真空中1,000rpmで5分混合した以外は実施例1と同様に作製した。
[Example 11]
Example 11 was mixed at 1,000 rpm in the air for 10 minutes using a rotation-revolution type high-speed rotational mixer (ARV 310 manufactured by Shinky) at the time of resin composition preparation, and a curing agent was added and mixed for 5 minutes in 1,000 rpm. It was prepared in the same manner as Example 1.

[比較例1]
比較例1は、窒化ホウ素を用いず樹脂のみを使ったこと以外は、実施例1と同様の条件にて樹脂組成物を硬化・作製した。
Comparative Example 1
The comparative example 1 hardened | cured and produced the resin composition on the conditions similar to Example 1 except having used only resin without using boron nitride.

[比較例2]
比較例2は、樹脂組成物作製時に自転公転式高速回転ミキサー(シンキー社製 ARV310)を用い大気中300rpmで5分混合し、硬化剤を添加し真空中300rpmで5分混合した以外は実施例1と同様に作製した。
Comparative Example 2
Comparative Example 2 is an example except that mixing was performed for 5 minutes in air at 300 rpm using a rotation-revolution type high-speed rotational mixer (ARV 310 manufactured by Shinky) at the time of resin composition preparation, and a curing agent was added and mixed for 5 minutes in vacuum at 300 rpm. It produced similarly to 1.

[比較例3]
比較例3は、鱗片状窒化ホウ素粉末をデンカ株式会社製SP3-7(平均粒径2μm)に代えた以外は、実施例1と同様の条件で、樹脂組成物を作製した。
Comparative Example 3
In Comparative Example 3, a resin composition was produced under the same conditions as Example 1, except that the scaly boron nitride powder was replaced with SP3-7 (average particle diameter: 2 μm) manufactured by Denka Co., Ltd.

[比較例4]
比較例4は、鱗片状窒化ホウ素の含有量を2.5体積%にした以外は、実施例1と同様の条件で、樹脂組成物を作製した。
Comparative Example 4
The comparative example 4 produced the resin composition on the conditions similar to Example 1 except content of scale-like boron nitride having been 2.5 volume%.

[比較例5]
比較例5は、球状窒化ホウ素の含有量を0.1体積%にした以外は、実施例1と同様の条件で、樹脂組成物を作製した。
Comparative Example 5
The comparative example 5 produced the resin composition on the conditions similar to Example 1 except having made content of spherical boron nitride 0.1 volume%.

[比較例6]
比較例6は、鱗片状窒化ホウ素の含有量を80体積%にした以外は、実施例1と同様の条件で行ったが、窒化ホウ素含有量が多すぎたために評価に値する樹脂組成物は作製できなかった。
Comparative Example 6
Comparative Example 6 was carried out under the same conditions as Example 1 except that the content of scaly boron nitride was changed to 80% by volume, but a resin composition worthy of evaluation because the content of boron nitride was too large was produced could not.

[比較例7]
比較例7は、球状状窒化ホウ素の含有量を35体積%にした以外は、実施例1と同様の条件で行ったが、窒化ホウ素含有量が多すぎたために評価に値する樹脂組成物は作製できなかった。
Comparative Example 7
Comparative Example 7 was carried out under the same conditions as Example 1 except that the content of spherical boron nitride was 35% by volume, but a resin composition worthy of evaluation was produced because the content of boron nitride was too large. could not.

[比較例8]
比較例8は、樹脂組成物作製時に作製したスラリーを流し込み直後に硬化作業に入ったこと以外は実施例1と同様に作製した。
Comparative Example 8
Comparative Example 8 was produced in the same manner as Example 1 except that the curing operation was started immediately after pouring the slurry produced at the time of production of the resin composition.

[比較例9]
比較例9は、球状窒化ホウ素粉末の代わりにアルミナ粉末(デンカ株式会社製ASFP-20、平均粒径0.5μm)を用いたこと以外は実施例1と同様に作製した。
Comparative Example 9
Comparative Example 9 was produced in the same manner as Example 1 except that alumina powder (ASFP-20 manufactured by Denka Co., average particle diameter 0.5 μm) was used instead of spherical boron nitride powder.

[比較例10]
比較例10は、球状窒化ホウ素粉末の代わりにシリカ粉末(デンカ株式会社製SFP-20M、平均粒径0.5μm)を用いたこと以外は実施例1と同様に作製した。
Comparative Example 10
Comparative Example 10 was prepared in the same manner as Example 1 except that silica powder (SFP-20M manufactured by Denka Co., average particle diameter 0.5 μm) was used instead of spherical boron nitride powder.

以上の条件、測定・評価結果を下記の表にまとめた。   The above conditions, measurement and evaluation results are summarized in the following table.

本発明の実施形態に係る樹脂組成物は、絶縁性に優れるため、絶縁部材等に幅広く使用することができる。   Since the resin composition according to the embodiment of the present invention is excellent in insulation, it can be widely used for insulation members and the like.

Claims (3)

平均粒径が3μm以上40μm以下の鱗片状窒化ホウ素粒子と、
平均粒径0.05μm以上1μm以下の球状窒化ホウ素粒子と
を含有する樹脂組成物であって、
鱗片状窒化ホウ素のX線回折から算出される配向性指数が15以上70以下であり、
樹脂組成物全体に対する鱗片状窒化ホウ素粒子の含有量が3体積%以上75体積%以下であり、
樹脂組成物全体に対する球状窒化ホウ素粒子の含有量が0.3体積%以上30体積%以下であり、かつ
球状窒化ホウ素粒子全体に対する粒径2μm以上の球状窒化ホウ素粒子の割合が1%以下である樹脂組成物。
Scaly boron nitride particles having an average particle diameter of 3 μm to 40 μm,
A resin composition comprising spherical boron nitride particles having an average particle diameter of 0.05 μm or more and 1 μm or less,
The orientation index calculated from X-ray diffraction of scaly boron nitride is 15 or more and 70 or less,
The content of scaly boron nitride particles with respect to the entire resin composition is 3% by volume or more and 75% by volume or less,
A resin composition in which the content of spherical boron nitride particles is 0.3% to 30% by volume based on the whole resin composition, and the ratio of spherical boron nitride particles having a particle diameter of 2 μm or more to the whole spherical boron nitride particles is 1% or less object.
請求項1に記載の樹脂組成物を用いた絶縁部材。   An insulating member using the resin composition according to claim 1. 絶縁破壊強度が、65kV/mm以上であることを特徴とする、請求項1に記載の樹脂組成物または請求項2に記載の絶縁部材。   The resin composition according to claim 1 or the insulating member according to claim 2, wherein the dielectric breakdown strength is 65 kV / mm or more.
JP2017212254A 2017-11-01 2017-11-01 Boron nitride-containing resin composition Active JP6692050B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017212254A JP6692050B2 (en) 2017-11-01 2017-11-01 Boron nitride-containing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017212254A JP6692050B2 (en) 2017-11-01 2017-11-01 Boron nitride-containing resin composition

Publications (2)

Publication Number Publication Date
JP2019085446A true JP2019085446A (en) 2019-06-06
JP6692050B2 JP6692050B2 (en) 2020-05-13

Family

ID=66762482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017212254A Active JP6692050B2 (en) 2017-11-01 2017-11-01 Boron nitride-containing resin composition

Country Status (1)

Country Link
JP (1) JP6692050B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217851A1 (en) 2019-04-26 2020-10-29 デンカ株式会社 Electronic component module and silicon nitride circuit substrate
WO2021100817A1 (en) * 2019-11-21 2021-05-27 デンカ株式会社 Boron nitride particles and resin composition
WO2021100816A1 (en) * 2019-11-21 2021-05-27 デンカ株式会社 Boron nitride particles and resin composition
WO2021111909A1 (en) * 2019-12-06 2021-06-10 デンカ株式会社 Boron nitride particles and method for manufacturing same
WO2021111910A1 (en) * 2019-12-06 2021-06-10 デンカ株式会社 Boron nitride particles, and method for producing same
JP2021181381A (en) * 2020-05-18 2021-11-25 株式会社Adeka Inorganic powder composition, resin composition containing the same and heat radiation material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217851A1 (en) 2019-04-26 2020-10-29 デンカ株式会社 Electronic component module and silicon nitride circuit substrate
WO2021100817A1 (en) * 2019-11-21 2021-05-27 デンカ株式会社 Boron nitride particles and resin composition
WO2021100816A1 (en) * 2019-11-21 2021-05-27 デンカ株式会社 Boron nitride particles and resin composition
WO2021111909A1 (en) * 2019-12-06 2021-06-10 デンカ株式会社 Boron nitride particles and method for manufacturing same
WO2021111910A1 (en) * 2019-12-06 2021-06-10 デンカ株式会社 Boron nitride particles, and method for producing same
CN114728789A (en) * 2019-12-06 2022-07-08 电化株式会社 Boron nitride particles and method for producing same
CN114728789B (en) * 2019-12-06 2024-04-30 电化株式会社 Boron nitride particles and method for producing same
JP2021181381A (en) * 2020-05-18 2021-11-25 株式会社Adeka Inorganic powder composition, resin composition containing the same and heat radiation material

Also Published As

Publication number Publication date
JP6692050B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6692050B2 (en) Boron nitride-containing resin composition
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
CN111212811B (en) Boron nitride powder, method for producing same, and heat-dissipating member using same
KR102560615B1 (en) Thermally conductive resin composition
TWI598291B (en) Hexagonal boron nitride powder, a method for producing the same, a resin composition and a resin sheet
JP6467650B2 (en) Spherical boron nitride fine particles and production method thereof
US10752503B2 (en) Spherical boron nitride fine powder, method for manufacturing same and thermally conductive resin composition using same
JP2017165609A (en) Primary particle aggregate of hexagonal boron nitride, resin composition and application of the same
JP2019073409A (en) Method for producing bulk boron nitride powder and heat radiation member using the same
CN113631506A (en) Bulk boron nitride particles, heat conductive resin composition, and heat dissipating member
WO2020241716A1 (en) Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles
CN107459775B (en) A kind of epoxy resins insulation heat-conductive composite material and preparation method thereof
JP5615475B2 (en) Manufacturing method of insulation material for all-solid-state transformer
WO2021100816A1 (en) Boron nitride particles and resin composition
CN113614033B (en) Block-shaped boron nitride particles, heat-conductive resin composition, and heat-dissipating member
JP7124249B1 (en) Heat-dissipating sheet and method for manufacturing heat-dissipating sheet
WO2021193764A1 (en) Boron nitride particle and resin composition and container comprising same
WO2021100817A1 (en) Boron nitride particles and resin composition
WO2021100808A1 (en) Boron nitride particles and resin composition
WO2021111909A1 (en) Boron nitride particles and method for manufacturing same
TW202300445A (en) Boron nitride powder and resin composition
JP2023054801A (en) Composite material, heat releasing material and method for manufacturing heat releasing material
JP2023041753A (en) Boron nitride particles, resin composition, and method for producing resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200326

R150 Certificate of patent or registration of utility model

Ref document number: 6692050

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250