WO2020241716A1 - Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles - Google Patents

Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles Download PDF

Info

Publication number
WO2020241716A1
WO2020241716A1 PCT/JP2020/020996 JP2020020996W WO2020241716A1 WO 2020241716 A1 WO2020241716 A1 WO 2020241716A1 JP 2020020996 W JP2020020996 W JP 2020020996W WO 2020241716 A1 WO2020241716 A1 WO 2020241716A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
alumina
particles
powder
alumina particles
Prior art date
Application number
PCT/JP2020/020996
Other languages
French (fr)
Japanese (ja)
Inventor
修治 佐々木
淳一 中園
将太朗 田上
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2021522835A priority Critical patent/JPWO2020241716A1/ja
Publication of WO2020241716A1 publication Critical patent/WO2020241716A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Definitions

  • the present invention relates to a method for producing alumina powder, a resin composition, heat radiating parts, and coated alumina particles.
  • Patent Document 1 discloses a resin composition containing three kinds of alumina fillers.
  • Patent Document 2 discloses alumina-blended particles containing spherical alumina particles and non-spherical alumina particles, and a resin composition containing the particles.
  • Patent Document 3 describes, as a heat conductive filler, a core made of at least one of alumina and aluminum nitride and a surface layer made of aluminum nitride having a thickness of 1.1 ⁇ m or more formed on the surface of the core.
  • the aluminum nitride-based particles provided are disclosed.
  • Patent Documents 1 and 2 the specific surface area of the alumina particles is high, the average sphericity is low, and the resin contains a distorted shape. Therefore, the resin is thickened when the alumina particles are filled, and the alumina particles are contained in a high proportion. It has a problem that it is difficult to fill with. Therefore, the moldability is low, and the thermal conductivity of the obtained heat-dissipating component is also low.
  • Patent Document 3 aluminum nitride-based particles are obtained by microwave irradiation, but spherical particles cannot be obtained by this manufacturing method. Therefore, as described above, since the aluminum nitride-based particles described in Patent Document 3 also have a poor shape, the resin is thickened when the aluminum nitride-based particles are filled, and it is difficult to highly fill the aluminum nitride-based particles. Has. After all, even if the aluminum nitride based particles described in Patent Document 3 are used, the moldability is low and the thermal conductivity of the obtained heat radiating component is low.
  • the present invention has been made in view of such a problem, and is a specific coated alumina capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of a resin composition containing the resin. It is an object of the present invention to provide an alumina powder containing particles, a resin composition containing the alumina powder, a heat radiating component, and a method for producing coated alumina particles.
  • the present inventors can suppress an increase in viscosity of the alumina powder containing specific coated alumina particles when the resin is filled with the alumina powder, and the alumina powder can be used. It has been found that a resin composition and heat-dissipating parts capable of achieving high thermal conductivity can be obtained by including the mixture, and the present invention has been completed.
  • the present invention is as follows.
  • Alumina powder containing, and the average sphericality of the coated alumina particles is 0.85 or more and 0.97 or less.
  • [3] The alumina powder according to [1] or [2], wherein the proportion of the coated alumina particles having a sphericity of 0.80 or less is 15% or less based on the number of the coated alumina particles.
  • [4] The alumina powder according to any one of [1] to [3], wherein the average particle size of the coated alumina particles is 30 ⁇ m or more and 150 ⁇ m or less, which is measured by a laser diffraction / scattering type particle size distribution measuring machine.
  • [5] The alumina powder according to any one of [1] to [4], wherein the content of aluminum nitride in the coated alumina particles is 10% by mass or more and 40% by mass or less.
  • [6] The alumina powder according to any one of [1] to [5], wherein the total content of alumina and aluminum nitride in the alumina powder is 80% by mass or more.
  • [9] The resin composition according to [8], wherein the resin contains at least one selected from the group consisting of silicone resin, epoxy resin, urethane resin, and acrylic resin.
  • the average particle size of the carbon powder is 30 nm or more and 70 nm or less, the bulk density is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and the specific surface area is 20 m 2 / g or more and 60 m 2 / g.
  • the manufacturing method is as follows.
  • an alumina powder capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of a resin composition containing the resin, a resin composition containing the alumina powder, a heat radiating component, and the like. And a method for producing coated alumina particles can be provided.
  • the present embodiment a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the present embodiment.
  • the alumina powder of the present embodiment contains one or more of the coated alumina particles according to the present embodiment described later.
  • the alumina powder of the present embodiment may contain a filler other than the coated alumina particles, particularly an inorganic filler.
  • the alumina powder of the present embodiment is a filler other than the coated alumina particles and contains a filler other than the inorganic filler, it should be referred to as a simple powder rather than an alumina powder.
  • the alumina powder of the present embodiment contains an inorganic filler other than the coated alumina particles (however, it does not contain a filler other than the inorganic filler), it should be referred to as an inorganic powder.
  • "alumina powder" is used in a concept that includes them.
  • coated alumina particles have alumina particles and a coating layer that covers the alumina particles and contains aluminum nitride, has a projected area circle equivalent diameter of 1 ⁇ m or more and 300 ⁇ m or less by microscopic method, and has an average spherical shape. The degree is 0.85 or more and 0.97 or less.
  • the coated alumina particles according to this embodiment are also simply referred to as “coated alumina particles”.
  • the coated alumina particles are derived from the alumina particles contained in the raw material alumina powder (hereinafter, simply referred to as "raw material alumina powder”) described later.
  • the average sphericity described later is set within a predetermined numerical range, and particularly the resin composition. And the thermal conductivity of heat-dissipating parts is increased.
  • the coating layer may contain an unavoidable component such as aluminum nitride generated in the process of forming the coating layer.
  • the thickness of the coating layer according to the present embodiment is preferably 0.8 ⁇ m or more and 12 ⁇ m or less, and 1.5 ⁇ m or more and 7.5 ⁇ m or less can preferably suppress an increase in viscosity when the resin is filled. Alternatively, it is more preferable because it is possible to further realize high thermal conductivity of the resin composition containing the resin.
  • alumina powder having a coating layer thickness within the above range in the coated alumina particles is used, a heat path can be efficiently formed and heat tends to be sufficiently conducted.
  • the thickness of the coating layer is measured by the method described in Examples.
  • the coated alumina particles according to the present embodiment have a projected area circle equivalent diameter of 1 ⁇ m or more and 300 ⁇ m or less and an average sphericity of 0.85 or more and 0.97 or less according to the following microscopy. If the average sphericity of the coated alumina particles is in the above range, it becomes difficult to thicken the resin when the coated alumina particles are filled.
  • the alumina powder of the present embodiment contains the coated alumina particles, the alumina powder can be filled in the resin at a high ratio. As a result, a heat path can be efficiently and well formed in the resin, and a resin composition having high thermal conductivity and a heat radiating component can be obtained.
  • the average sphericity is preferably 0.87 or more and 0.96 or less, and 0.89 or more and 0.95 or less, from the viewpoint of reducing frictional resistance when filled in resin and increasing the contact area between particles. More preferably.
  • the alumina powder of the present embodiment contains the coated alumina particles having the above average sphericality in the above range, the fluidity of the alumina powder containing the coated alumina particles is further improved in the resin, and the frictional resistance with the resin is further improved. Is reduced, and an increase in viscosity when the resin is filled with alumina powder can be suppressed. Further, the contact between the alumina particles including the coated alumina particles becomes more sufficient, and the contact area becomes larger.
  • the average sphericity is measured, for example, by the following microscopy. That is, the particle image taken by a scanning electron microscope, a transmission electron microscope, or the like is taken into an image analyzer, and the projected area (A) and the peripheral length (PM) of the particles are measured from the photograph. Assuming that the area of a perfect circle having the same peripheral length as the peripheral length (PM) is (B), the sphericity of the particle is A / B.
  • the sphericity of 200 arbitrary particles having a projected area circle-equivalent diameter of 1 ⁇ m or more and 300 ⁇ m or less is obtained as described above, and the arithmetic mean value thereof is taken as the average sphericity.
  • the specific measurement method is as described in the examples.
  • the projected area circle-equivalent diameter refers to the diameter of a perfect circle having the same projected area as the projected area (A) of the particles.
  • the proportion of the coated alumina particles having a sphericity of 0.80 or less in the coated alumina particles according to the present embodiment is preferably 15% or less on a number basis, and 10 on a number basis. More preferably, it is less than%.
  • the fact that the proportion of coated alumina particles having a spherical degree of 0.80 or less is 15% or less based on the number of particles means that coated alumina particles having few coalesced particles or cracked particles that cause thickening when the resin is filled with alumina powder It means that it is an alumina powder containing, and is preferable in that respect. In addition, there is a tendency that wear of the device and the mold can be reduced.
  • the proportion of the coated alumina particles is, for example, 0.5% or more on a number basis.
  • the diameter equivalent to the projected area circle by the microscope method is usually 200 ⁇ m or less.
  • the proportion of the coated alumina particles having a sphericity of more than 0.80 and 0.83 or less in the coated alumina particles according to the present embodiment is 10% or less on a number basis. It is preferably 5% or less on a number basis.
  • the fact that the proportion of coated alumina particles having a spherical degree in the above range is 10% or less means that alumina containing coated alumina particles having less coalesced particles or cracked particles that cause thickening when the resin is filled with alumina powder. It means that it is a powder, which is preferable. In addition, there is a tendency that wear of the device and the mold can be reduced.
  • the proportion of the coated alumina particles is, for example, 0.5% or more on a number basis.
  • the diameter equivalent to the projected area circle by the microscope method is usually 200 ⁇ m or less.
  • the contact between the alumina powders containing the coated alumina particles becomes better, the heat path can be formed efficiently and satisfactorily, and a resin composition having higher thermal conductivity and heat dissipation parts can be obtained.
  • the average particle size is preferably 30 ⁇ m or more and 150 ⁇ m or less, more preferably 30 ⁇ m or more and 130 ⁇ m or less, and 40 ⁇ m or more and 120 ⁇ m or less. More preferably.
  • the average particle size is 30 ⁇ m or more, the heat path can be formed more efficiently in the resin composition and the heat radiating component, and the heat tends to be conducted more sufficiently.
  • the average particle size is 150 ⁇ m or less, the smoothness of the surface of the heat radiating component is further improved, and the thermal resistance at the interface between the heat radiating component and the heat source is reduced, so that the thermal conductivity can be further improved. I tend to be able to do it.
  • the particle size and the average particle size are measured by a laser diffraction / scattering type particle size distribution measuring machine. The specific measurement method is as described in the examples.
  • the content of aluminum nitride in the coated alumina particles according to the present embodiment is preferably 10% by mass or more and 40% by mass or less, and since high thermal conductivity of the resin composition can be further realized, 15% by mass or more and 35% by mass. More preferably, it is less than%.
  • coated alumina particles having an aluminum nitride content within the above range are used, the heat path can be formed more efficiently, and heat tends to be conducted more sufficiently.
  • the content is 10% by mass or more, the coating layer of aluminum nitride becomes thicker, so that the effect of improving the thermal conductivity by coating the aluminum nitride tends to be further enhanced.
  • the content of aluminum nitride is measured by the method described in Examples.
  • the carbon content in the coated alumina particles according to the present embodiment is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.1% by mass or less. preferable.
  • the amount of carbon in the coated alumina particles is, for example, 0.01% by mass or more. When the amount of carbon is in the above range, it tends to have better thermal conductivity, and carbon, which is a conductor, is reduced as much as possible. Therefore, the resin composition has high insulation and thermal conductivity. Objects and heat-dissipating parts can be obtained more effectively and reliably.
  • the amount of carbon in the coated alumina particles is measured by the method described in Examples. Further, the carbon in the coated alumina particles is mainly derived from the carbon powder mixed with the raw material alumina powder. The carbon powder is used when producing the coated alumina particles according to the present embodiment, as described later in the method for producing coated alumina particles.
  • the specific surface area of the coated alumina particles according to the present embodiment it is preferable, 0.03 m 2 / g or more 0.12 m 2 / g or less or less 0.02 m 2 / g or more 0.15 m 2 / g Is more preferable.
  • the specific surface area is within the above range, it is easy to suppress an increase in viscosity when the resin is filled with alumina powder containing specific coated alumina particles, and a resin composition having higher thermal conductivity and heat-dissipating parts can be obtained. It works.
  • the specific surface area is measured by the BET flow method, and the specific measuring method is as described in the examples.
  • the total content of alumina and aluminum nitride is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more. It is preferably 99% by mass or more, and even more preferably 99% by mass or more.
  • the upper limit of the total content is, for example, 100% by mass.
  • Alumina powder having a total content of alumina and aluminum nitride within the above range has a resin composition having higher thermal conductivity because the amount of unavoidable components such as aluminum oxynitride, which tends to obstruct the thermal pathway, is further reduced. There is a tendency to obtain objects and heat-dissipating parts.
  • the total content of alumina and aluminum nitride is measured by the method described in Examples.
  • the alumina powder of the present embodiment preferably has a plurality of peaks in a particle size range of 2 ⁇ m or more and 200 ⁇ m or less in the volume-based frequency particle size distribution by the laser diffraction / scattering method.
  • the alumina powder of the present embodiment is efficiently filled in the resin to form a heat path, high thermal conductivity can be realized, and an increase in the viscosity of the resin composition is suppressed.
  • the peak is the maximum detected in the particle size range obtained by dividing the particle size range of 0.01 ⁇ m or more and 3500 ⁇ m or less into 100 in the volume-based frequency particle size distribution by the laser diffraction / scattering method. Refer to a point.
  • the shoulder is detected by the curvature of the peak given by the second derivative, and has an inflection point in the peak, that is, the presence of more particle components having a specific particle size.
  • the alumina powder of the present embodiment has one or more peaks derived from the coated alumina particles in the particle size range of 0.01 ⁇ m or more and 3500 ⁇ m or less in the volume-based frequency particle size distribution by the laser diffraction scattering method.
  • the alumina powder of the present embodiment has a plurality of peaks derived from the coated alumina particles according to the present embodiment in a particle size range of 0.01 ⁇ m or more and 3500 ⁇ m or less in the volume-based frequency particle size distribution by the laser diffraction / scattering method. You may.
  • Alumina powder having such a particle size distribution can be obtained, for example, by containing two or more kinds of coated alumina particles having one peak in the above particle size range and having different average particle diameters from each other.
  • the alumina powder of the present embodiment may contain a filler other than the coated alumina particles according to the present embodiment.
  • the peak derived from the coated alumina particles according to the present embodiment and the coated alumina thereof are usually found in the particle size range of 0.01 ⁇ m or more and 3500 ⁇ m or less. Two or more peaks will be detected, including peaks derived from fillers other than particles.
  • the filler include an inorganic filler.
  • coated alumina particles other than the coated alumina particles according to the present embodiment alumina particles having no coating layer (that is, uncoated), magnesia, aluminum nitride, silicon nitride, yttrium oxide, boron nitride, calcium oxide. , Iron oxide, and boron oxide.
  • the alumina powder of the present embodiment also contains an inorganic material other than alumina such as aluminum nitride, and thus corresponds to the inorganic powder in that respect.
  • coated alumina particles other than the coated alumina particles include coated alumina particles having an alumina particle and a coating layer for coating the alumina particle, and having a projected area circle equivalent diameter of less than 1 ⁇ m by microscopy.
  • the coating layer in this case include aluminum nitride and silicon nitride.
  • the coated alumina particles other than the coated alumina particles according to the present embodiment the alumina particles and the coating layer for coating the alumina particles are provided, and the projected area circle equivalent diameter by microscopy is 1 ⁇ m or more and 300 ⁇ m or less.
  • the alumina particles include coated alumina particles that do not contain aluminum nitride as the coating layer.
  • the coating layer in this case include silicon nitride.
  • fillers may be fillers surface-treated with a known silane coupling agent or the like.
  • the alumina powder of the present embodiment may contain one or more of these fillers together with the coated alumina particles according to the present embodiment.
  • the content of the coated alumina particles according to the present embodiment is preferably 20% by volume or more and 80% by volume or less, and 25% by volume or more and 75% by volume, based on the total amount of the alumina powder. More preferably, it is less than%.
  • the content of the coated alumina particles is the total amount thereof. To do.
  • the alumina powder according to the present embodiment can further suppress the increase in viscosity when filled in the resin, and the resin composition containing the resin can be highly thermally conductive. It can be realized more.
  • the coated alumina particles according to the present embodiment and the coated alumina particles other than the coated alumina particles according to the present embodiment are used with respect to the total amount of the alumina powder.
  • the total content of the uncoated alumina particles (hereinafter referred to as “coated alumina particles and the like”) is preferably 80% by volume or more and 100% by volume or less, and is 85% by volume or more and 100% by volume or less. Is more preferable. Since the coated alumina particles and the like are contained within the above range, the alumina powder according to the present embodiment has the effect of increasing the thermal conductivity of the resin composition.
  • the alumina powder of the present embodiment preferably has a plurality of peaks, that is, two or more peaks, and more preferably two or more and four or less peaks in a particle size range of 2 ⁇ m or more and 200 ⁇ m or less. It is more preferable to have three peaks. It should be noted that each peak is the first to be detected from the fine particle side (that is, the 0.01 ⁇ m side) in the particle size region where the particle size is 0.01 ⁇ m or more and 3500 ⁇ m or less in the volume-based frequency particle size distribution by the laser diffraction scattering method.
  • a particle having a peak is referred to as a first particle
  • a particle having a second peak is referred to as a second particle
  • a particle having an nth peak in sequence is referred to as an nth particle. That is, the number of detected peaks is n.
  • the particles to be detected may be only the coated alumina particles according to the present embodiment, or may be fillers other than the coated alumina particles, but the fillers other than the coated alumina particles according to the present embodiment may be used.
  • One or more of coated alumina particles and uncoated alumina particles other than the coated alumina particles according to the present embodiment is preferable.
  • the position of the peak derived from the first particle is detected in the particle size range of 3 ⁇ m or more and 15 ⁇ m or less, and the position of the peak derived from the second particle is , It is preferable that the particle size range is 30 ⁇ m or more and 150 ⁇ m or less. Further, it is preferable that the second particles are coated alumina particles according to the present embodiment, and in addition, it is more preferable that the first particles are uncoated alumina particles.
  • the content of the first particles in the alumina powder of the present embodiment is 25% by volume or more and 55% by volume or less, and 30% by volume or more and 50% by volume or less from the viewpoint of suppressing the increase in viscosity of the resin composition. It is preferably 35% by volume or more and 45% by volume or less.
  • the content of the second particles is preferably 45% by volume or more and 75% by volume or less, preferably 50% by volume or more and 70% by volume or less, and 55% by volume or more and 65% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less.
  • the total of the first particle and the second particle is 100% by volume.
  • the average particle size of the first particles is preferably 4.0 ⁇ m or more and 12 ⁇ m or less, and more preferably 5.0 ⁇ m or more and 10 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the average particle size of the second particles is preferably 35 ⁇ m or more and 140 ⁇ m or less, and more preferably 40 ⁇ m or more and 130 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the position of the peak derived from the first particle is detected in the particle size range of 0.3 ⁇ m or more and 1.0 ⁇ m or less, and the position of the peak derived from the second particle is 3.0 ⁇ m. It is preferable that the position of the peak derived from the third particle is detected in the particle size range of 30 ⁇ m or more and 150 ⁇ m or less.
  • the content of the first particles in the alumina powder of the present embodiment is 10% by volume or more and 25% by volume or less, preferably 12% by volume or more and 18% by volume or less, and 13% by volume or more and 17% by volume or less. More preferably.
  • the content of the second particles is 20% by volume or more and 55% by volume or less, preferably 25% by volume or more and 41% by volume or less, and more preferably 30% by volume or more and 39% by volume or less. .. Further, the content of the third particle is 35% by volume or more and 55% by volume or less, preferably 47% by volume or more and 57% by volume or less, and more preferably 48% by volume or more and 53% by volume or less. ..
  • the resin can be filled with alumina powder at a high ratio, which is preferable from the viewpoint of suppressing an increase in the viscosity of the resin composition.
  • the total of the first particle, the second particle, and the third particle is 100% by volume.
  • the average particle size of the first particles is preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.4 ⁇ m or more and 0.9 ⁇ m or less, and 0.5 ⁇ m or more and 0.8 ⁇ m or less. Is more preferable.
  • the average particle size of the first particles is 0.3 ⁇ m or more, the gaps between the particles are efficiently filled, the thermal conductivity can be improved, and the effect of suppressing the increase in viscosity of the resin composition tends to be obtained. is there.
  • the average particle size of the first particles is 1.0 ⁇ m or less, the content of the first particles is about the same as that when the average particle size exceeds 1.0 ⁇ m.
  • the number of particles tends to increase, and the number of thermal paths between particles also tends to increase.
  • the average particle size exceeds 1.0 ⁇ m
  • the number of heat paths between particles tends to decrease.
  • the heat conduction in the first particle is rapid, but the heat conduction in a small number of heat paths becomes rate-determining, and the heat when viewed as a whole powder.
  • Conductivity tends to be low.
  • the average particle size is 1.0 ⁇ m or less, the particle size of each particle is small and the number of heat paths is large, so that heat conduction in the first particle and heat conduction in the heat path between particles can be achieved. Large differences are unlikely to occur, and as a result of high heat conduction uniformity, heat conductivity tends to be high.
  • the average particle size of the second particles is preferably 3.0 ⁇ m or more and 15 ⁇ m or less, more preferably 4.0 ⁇ m or more and 12 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. It is more preferably 0 ⁇ m or more and 10 ⁇ m or less.
  • the average particle size of the second particles is in the above range, the second particles are efficiently filled in the gaps between the particles, the thermal conductivity can be improved, and the effect of suppressing the increase in viscosity of the resin composition is obtained. Tend to be.
  • the average particle size of the third particles is preferably 30 ⁇ m or more and 140 ⁇ m or less, more preferably 35 ⁇ m or more and 135 ⁇ m or less, and 45 ⁇ m or more and 130 ⁇ m or less from the viewpoint of suppressing the increase in viscosity of the resin composition. It is even more preferably 60 ⁇ m or more and 120 ⁇ m or less.
  • the average particle diameter of the third particles is 30 ⁇ m or more, the thermal pathway can be efficiently formed by the contact between the particles, so that the thermal conductivity tends to be improved. Further, the filling rate tends to be increased by reducing the specific surface area of the particles. Further, when the average particle diameter of the third particle is 140 ⁇ m or less, the surface smoothness of the obtained heat radiating component can be maintained, and the contact resistance at the particle interface can be reduced, so that the thermal conductivity Tends to be able to increase.
  • the average sphericity of the first particles is preferably 0.82 or more and 0.94 or less, preferably 0.84, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably 0.92 or less.
  • the average sphericity of the second particles is preferably 0.82 or more and 0.94 or less, preferably 0.84 or more and 0, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably .92 or less.
  • the average sphericity of the third particle is preferably 0.82 or more and 0.94 or less, preferably 0.84 or more and 0, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably .92 or less.
  • the content of the ⁇ crystal phase in the first particles is preferably 80% by mass or more, more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity.
  • the upper limit is, for example, 100% by mass.
  • the content of the ⁇ crystal phase in the second particles is preferably 80% by mass or more, more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity.
  • the upper limit is, for example, 100% by mass.
  • the content of the ⁇ crystal phase in the third particle is preferably 80% by mass or more, and more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity.
  • the upper limit is, for example, 100% by mass.
  • the first particles are preferably uncoated alumina particles from the viewpoint of further improving the fluidity.
  • the second particles include uncoated alumina particles, coated alumina particles other than the coated alumina particles according to the present embodiment, and coated alumina particles according to the present embodiment from the viewpoint of improving fluidity and thermal conductivity. It is preferably present, and more preferably uncoated alumina particles.
  • the third particles are preferably coated alumina particles according to the present embodiment, uncoated alumina particles, and coated alumina particles other than the coated alumina particles according to the present embodiment. More preferably, the coated alumina particles according to the present embodiment. Examples of the uncoated alumina particles include spherical alumina particles.
  • the position of the peak derived from the first particle is detected in the particle size range of 0.05 ⁇ m or more and 0.2 ⁇ m or less, and the position of the peak derived from the second particle is 0.3 ⁇ m or more.
  • the position of the peak derived from the third particle is detected in the particle size range of 1.0 ⁇ m or less, and the position of the peak derived from the third particle is detected in the particle size range of 3.0 ⁇ m or more and 15 ⁇ m or less, and the position of the peak derived from the fourth particle is 30 ⁇ m or more. It is preferable to detect in a particle size range of 150 ⁇ m or less.
  • the position of the peak derived from the first particles is detected in the particle size range of 0.07 ⁇ m or more and 0.1 ⁇ m or less from the viewpoint of suppressing the increase in viscosity of the resin composition, and the second particles.
  • the position of the peak derived from is detected in the particle size range of 0.4 ⁇ m or more and 0.9 ⁇ m or less
  • the position of the peak derived from the third particle is detected in the particle size range of 4.0 ⁇ m or more and 12 ⁇ m or less. It is more preferable that the position of the peak derived from the particles of is detected in the particle size range of 35 ⁇ m or more and 140 ⁇ m or less.
  • the fourth particle is the coated alumina particle according to the present embodiment, and in addition, the first particle, the second particle and the third particle are uncoated alumina particles. preferable.
  • the content of the first particles in the alumina powder of the present embodiment is 0.5% by volume or more and 5.0% by volume or less, and 1.0% by volume or more 4 from the viewpoint of suppressing the increase in viscosity of the resin composition. It is preferably 0.0% by volume or less, and more preferably 1.5% by volume or more and 3.0% by volume or less.
  • the content of the second particles is preferably 9% by volume or more and 20% by volume or less, preferably 11% by volume or more and 18% by volume or less, and 12% by volume or more and 17%. More preferably, it is by volume or less.
  • the content of the third particles is preferably 19% by volume or more and 45% by volume or less, preferably 24% by volume or more and 41% by volume or less, and 29% by volume or more and 39% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less.
  • the content of the fourth particles is preferably 43% by volume or more and 60% by volume or less, preferably 45% by volume or more and 57% by volume or less, and 46% by volume or more and 53% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less.
  • the total of the first particle, the second particle, the third particle, and the fourth particle is 100% by volume.
  • the average particle size of the first particles is preferably 0.05 ⁇ m or more and 0.2 ⁇ m or less, and more preferably 0.07 ⁇ m or more and 0.1 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the average particle size of the second particles is preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less, and more preferably 0.4 ⁇ m or more and 0.9 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the average particle size of the third particles is preferably 3.0 ⁇ m or more and 15 ⁇ m or less, and more preferably 4.0 ⁇ m or more and 12 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the average particle size of the fourth particles is preferably 30 ⁇ m or more and 150 ⁇ m or less, and more preferably 35 ⁇ m or more and 140 ⁇ m or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
  • the total content of all the first to nth particles in the alumina powder is preferably 98% by volume or more, preferably 99% by volume or more, from the viewpoint of improving the thermal conductivity. Is more preferable.
  • the upper limit of the content rate is 100% by volume.
  • a mixture containing raw material alumina powder and carbon powder is calcined at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas.
  • coated alumina particles containing aluminum nitride in the coating layer and having an average sphericity in a predetermined high range can be obtained.
  • the alumina particles of the present embodiment contain the coated alumina particles, thickening can be suppressed, and a resin composition and heat-dissipating parts having high thermal conductivity can be obtained. The details will be described below.
  • the raw material alumina powder and the carbon powder are mixed so as to have a predetermined mixing ratio using a predetermined mixer.
  • the mixing method is not particularly limited as long as the raw material alumina powder and the carbon powder can be uniformly mixed, and either wet mixing or dry mixing may be used. Examples of such a mixing method include ball mill mixing.
  • the mixing ratio of the raw material alumina powder and the carbon powder takes into consideration the mixing ratio of the stoichiometry of the raw material alumina powder and the carbon powder, and from the viewpoint of forming a reaction atmosphere, the carbon powder is based on 100 parts by mass of the raw material alumina powder. It is preferably 10 parts by mass or more and 50 parts by mass or less, and more preferably 15 parts by mass or more and 45 parts by mass or less.
  • the raw material alumina powder for example, various alumina particles having a crystal structure of ⁇ , ⁇ , ⁇ , and ⁇ can be used.
  • the alumina particles are usually spherical.
  • the average sphericity of the alumina particles having a projected area circle equivalent diameter of 1 ⁇ m or more and 300 ⁇ m or less contained in the raw material alumina powder is usually 0.90 or more and 0.91 or more. It is preferably 0.99 or less, and more preferably 0.92 or more and 0.98 or less.
  • the upper limit of the average sphericity is, for example, 1.00. When the average sphericity is in the above range, the mixture of the raw material alumina powder and the carbon powder becomes more uniform, and the reaction is promoted.
  • the average particle size of the raw material alumina powder is preferably 25 ⁇ m or more and 140 ⁇ m or less, preferably 30 ⁇ m or more and 130 ⁇ m or less, because the carbon reduction nitriding reaction is more likely to proceed when the average particle size is larger than that of the carbon powder described later. Is more preferable.
  • the specific surface area of the alumina raw material powder is preferably from 0.03 m 2 / g or more 0.30 m 2 / g, more preferably not more than 0.05 m 2 / g or more 0.25 m 2 / g.
  • the specific surface area is in the above range, the mixture of the raw material alumina powder and the carbon powder becomes more uniform, and the reaction is promoted.
  • the carbon powder according to the present embodiment has an average particle size of 30 nm or more and 70 nm or less, a bulk density of 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and a specific surface area of 20 m 2 / g. It is 60 m 2 / g or less.
  • a large amount of carbon powder adheres to the surface of the alumina particles, and in the reaction between the raw material alumina powder and nitrogen at high temperature, the carbon powder contributes as a spacer and coalesces the alumina particles. Can be suppressed, and coated alumina particles having a high degree of sphere can be suitably produced.
  • the average particle size of the carbon powder is preferably 35 nm or more and 65 nm or less from the viewpoint of improving the effect of preventing coalescence of alumina particles.
  • the bulk density of the carbon powder is preferably 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and preferably 0.12 g / cm 3 or more and 0.18 g / cm 3 or less.
  • the bulk density is measured by the method described in the examples.
  • the specific surface area of the carbon powder is preferably 20 m 2 / g or more and 60 m 2 / g or less, and preferably 25 m 2 / g or more and 55 m 2 / g or less.
  • the specific surface area is within the above range, the effect of preventing coalescence of alumina particles is improved.
  • the total pore volume of the carbon powder is preferably 1 mL / g or more and 4 mL / g or less, and more preferably 1.5 mL / g or more and 3 mL / g or less.
  • the total pore volume is measured by the method described in Examples.
  • Examples of the carbon powder include carbon black such as acetylene black, furnace black, and thermal black, and powdered graphite.
  • carbon black such as acetylene black, furnace black, and thermal black
  • powdered graphite As the carbon powder, acetylene black is preferable from the viewpoint of purity and the like.
  • the mixture is calcined at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas to obtain a first calcined powder.
  • the formation of the coating layer containing aluminum nitride on the surface of the raw material alumina powder proceeds based on the following formula showing the carbon reduction nitriding reaction.
  • the gas reducing atmosphere containing nitrogen gas can be obtained, for example, by using a reducing atmosphere furnace that circulates in a refining apparatus to remove oxygen and water. Further, the gas may contain an unavoidable component such as carbon dioxide gas in addition to nitrogen gas.
  • nitrogen gas When firing the mixture, it is preferable to supply nitrogen gas to the mixture at 1 L / min or more and 10 L / min from the viewpoint of reaction promotion and productivity. More preferably, it is supplied at 3 L / min or more and 7 L / min.
  • the firing temperature in the first step is preferably 1550 ° C. or higher and 1650 ° C. or lower from the viewpoint of controlling the coating layer and the sphericity of the coated alumina particles according to the present embodiment. Further, the firing time is usually 4 hours or more and 12 hours or less in consideration of productivity. The larger the amount of nitrogen gas, the higher the firing temperature, and the longer the firing time, the thicker the coating layer tends to be.
  • the first calcined powder obtained in the first step is further calcined at a temperature of 600 ° C. or higher and 900 ° C. or lower in an air atmosphere to obtain coated alumina particles.
  • the firing temperature in the second step is preferably 650 ° C. or higher and 850 ° C. or lower from the viewpoint of controlling the carbon content of the coated alumina particles according to the present embodiment.
  • the firing time is preferably 2 hours or more and 6 hours or less in consideration of the fact that carbon powder can be efficiently removed.
  • the second step when the first calcined powder is calcined, air is supplied to the first calcined powder at 1 L / min or more and 3 L / min to control the carbon content of the coated alumina particles according to the present embodiment. From the point of view, it is preferable. More preferably, it is supplied at 1.5 L / min or more and 2.5 L / min.
  • the alumina powder according to the present embodiment As the alumina powder according to the present embodiment, one kind of coated alumina particles according to the present embodiment may be used as it is. Further, the alumina powder according to the present embodiment may be obtained by appropriately mixing two or more kinds of coated alumina particles. Further, the alumina powder according to the present embodiment may be obtained by appropriately mixing at least one kind of coated alumina particles according to the present embodiment with other fillers and the like. Examples of the mixing method include ball mill mixing.
  • the resin composition according to the present embodiment contains at least a resin and an alumina powder according to the present embodiment.
  • the resin composition according to the present embodiment can suppress thickening and have high thermal conductivity.
  • thermoplastic resin various polymer compounds such as thermoplastic resin and its oligomers and elastomers can be used.
  • epoxy resin phenol resin, melamine resin, urea resin, unsaturated polyester, urethane resin, acrylic resin, and Fluorine resin
  • polyamides such as polyimide, polyamideimide, and polyetherimide
  • polyesters such as polybutylene terephthalate and polyethylene terephthalate
  • polyphenylene sulfide aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin
  • ABS Acrylonitrile / butadiene / styrene
  • AAS acrylonitrile / acrylic rubber / styrene
  • AES acrylonitrile / ethylene / propylene / diene rubber / styrene
  • EVA ethylene vinyl acetate copolymer
  • silicone resin silicone resin
  • silicone resin epoxy resin, phenol resin, urethane resin, acrylic resin, fluororesin, polyimide, polyphenylene sulfide, polycarbonate, ABS resin, and silicone resin are preferable, and silicone resin and epoxy are preferable from the viewpoint of obtaining high heat dissipation characteristics.
  • Resins, urethane resins, and acrylic resins are more preferred, and silicone resins are even more preferred.
  • the silicone resin it is preferable to use a rubber or gel obtained from a one-component or two-component addition reaction type liquid silicone having an organic group such as a methyl group and a phenyl group.
  • Examples of such rubber or gel include "YE5822A solution / YE5822B solution (trade name)” manufactured by Momentive Performance Materials Japan LLC and "SE1885A solution / SE1885B solution” manufactured by Toray Dow Corning Co., Ltd. Product name) ”and so on.
  • the content of the alumina powder according to the present embodiment is 67% by volume or more and 88% by volume or less with respect to the total amount of the resin composition. It is preferably 71% by volume or more and 85% by volume or less. Since the alumina powder according to the present embodiment is difficult to thicken even when filled in the resin, it is possible to suppress the thickening of the resin composition even if it is contained in the resin composition within the above range. ..
  • the content of the resin according to the present embodiment is 12% by volume or more and 33% by volume or less with respect to the total amount of the resin composition. Is preferable, and more preferably 15% by volume or more and 29% or less.
  • the resin composition of the present embodiment may contain, if necessary, molten silica, crystalline silica, zirconium, calcium silicate, as long as the characteristics of the present embodiment are not impaired.
  • Inorganic fillers such as calcium carbonate, silicon carbide, aluminum nitride, boron nitride, beryllia, and zirconia; nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and phosphate compounds of phosphorus compounds, aromatic condensed phosphates, And flame-retardant compounds such as halogen-containing condensed phosphoric acid ester; may contain additives and the like.
  • Additives include reaction retarders such as dimethyl maleate, curing agents, curing accelerators, flame retardants, flame retardants, colorants, tackifiers, UV absorbers, antioxidants, optical brighteners, and light.
  • Examples thereof include sensitizers, thickeners, lubricants, defoaming agents, surface conditioners, brighteners, and polymerization inhibitors. These components may be used alone or in admixture of two or more. In the resin composition of the present embodiment, the content of other components is usually 0.1% by mass or more and 5% by mass or less, respectively.
  • Examples of the method for producing the resin composition of the present embodiment include a method of sufficiently stirring the resin, the alumina powder, and other components as needed.
  • a predetermined amount of each component is blended with a blender, a Henschel mixer or the like, kneaded with a heating roll, a kneader, a uniaxial or biaxial extruder or the like, cooled, and then pulverized.
  • the heat radiating component according to the present embodiment includes the alumina powder or the resin composition according to the present embodiment.
  • the heat radiating component according to the present embodiment can realize high thermal conductivity, that is, can have high heat radiating property.
  • the heat radiating component include a heat radiating sheet, heat radiating grease, heat radiating spacer, semiconductor encapsulant, and heat radiating paint (heat radiating coating agent).
  • the heat dissipation sheet is usually an insulating heat conductive sheet for removing heat generated from heat-generating electronic components and electronic devices.
  • the heat radiating sheet is not particularly limited as long as it contains the alumina powder or resin composition according to the present embodiment. Examples of the material other than the alumina powder contained in the heat radiating sheet of the present embodiment include silicone rubber.
  • the heat radiating sheet is mainly used by being attached to a heat radiating fin or a metal plate.
  • the heat radiating sheet can be obtained, for example, by molding the alumina powder according to the present embodiment and silicone rubber into a sheet by a solvent casting method, an extrusion film formation, or the like. It is preferable to defoam when forming into a sheet.
  • the thickness of the heat radiating sheet is usually preferably 10 ⁇ m or more and 300 ⁇ m or less.
  • the heat radiating grease is usually applied between the heat generating member and the heat radiating member, and is used to efficiently conduct the heat generated by the heat radiating member to the heat radiating member to promote heat dissipation.
  • the thermal grease is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment.
  • materials other than the alumina powder contained in the thermal paste of the present embodiment include organosilicon compounds such as silicone oil and hydrocarbon-based synthetic oils such as poly ⁇ -olefin oil.
  • the thermal grease can be obtained, for example, by dispersing the alumina powder of the present embodiment in an organosilicon compound or a hydrocarbon-based synthetic oil to make it semi-solid. Further, the thermal grease may be obtained by making this resin composition into a semi-solid state by using a resin composition in which the alumina powder of the present embodiment is dispersed in an organosilicon compound or a hydrocarbon-based synthetic oil. Good.
  • the heat dissipation spacer is usually used to fill the space between the heat-generating electronic components and devices and the case that houses them. By using this heat radiating spacer, the heat generated from the heat-generating electronic component and the electronic device can be directly transferred to the case of the electronic device and radiated.
  • the heat radiating spacer is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment. Examples of the material other than the alumina powder contained in the heat radiating spacer of the present embodiment include silicone rubber.
  • the heat radiating spacer can usually be obtained by the same method as the heat radiating sheet, but its thickness is thicker than that of the heat radiating sheet.
  • the semiconductor encapsulant is used to remove heat generated from electronic components such as semiconductor elements and to protect the electronic components from external stimuli.
  • the semiconductor encapsulant is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment.
  • the alumina powder or resin composition of the present embodiment and various known additives or solvents generally used for encapsulant materials are mixed using a known mixer. Can be manufactured in.
  • a method for adding various components and solvents at the time of mixing generally known methods can be appropriately applied and are not particularly limited.
  • the heat-dissipating paint is applied to mechanical parts, electric products, electric parts, etc. that have a heat source, and is used to improve the heat-dissipating properties of those parts.
  • the heat-dissipating paint is not limited as long as it contains the alumina powder or resin composition of the present embodiment and a solvent. Since the alumina powder of the present embodiment can suppress an increase in viscosity when the resin is filled with the alumina powder, it is possible to maintain a suitable viscosity even in a solvent.
  • Examples of the solvent include water, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, cyclohexanone, ethylbenzene, xylene, methyl methacrylate, and 1-butanol. These solvents can be used alone or in admixture of two or more.
  • examples of mechanical parts include engines, boilers, blowers, and pumps.
  • Examples of electrical products include lighting, solar cell modules, and refrigerators.
  • Examples of the electric component include a circuit board.
  • the stirring speed of the dispersion unit stirrer was 1750 rpm, and there was no ultrasonic mode.
  • the particle size distribution analysis was performed by dividing the particle size range of 0.01 to 3500 ⁇ m into 100 parts. 1.33 was used for the refractive index of water, and 1.768 was used for the refractive index of the alumina particles and the coated alumina particles. In the measured mass-based particle size distribution, the particles having a cumulative mass of 50% were defined as the average particle size. The peak was set as the maximum point detected in the above particle size range.
  • the coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 ⁇ m.
  • the content of aluminum nitride in the coated alumina particles was measured by Rietveld analysis of the powder X-ray diffraction pattern.
  • the coated alumina particles were packed in a sample holder and measured using an X-ray diffractometer (“D8 ADVANCE” (product name) manufactured by Bruker Co., Ltd., detector: LyncEye (product name)).
  • Thickness of coating layer The coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 ⁇ m. As shown in FIG. 1, the thickness of the coating layer in the coated alumina particles was measured by cross-sectional EPMA analysis. First, the coated alumina particles were embedded in a G-2 epoxy resin (manufactured by Gatan), and osmium coating was performed after cross-sectional milling. The coated sample was subjected to N element mapping analysis using an electron probe microanalyzer (JXA-8230 (product name) manufactured by JEOL Ltd.). The accelerating voltage was 15 kV, and the irradiation current was 5 ⁇ 10-8 A.
  • JXA-8230 electron probe microanalyzer
  • the obtained mapping image was taken into an image analyzer (“MacView Ver.4” (trade name) manufactured by Mountech Co., Ltd.), and the thickness of the coating layer was determined.
  • the thickness of 10 points was obtained for one particle, and the arithmetic mean value was taken as the thickness of the coating layer of one particle.
  • the thickness of the coating layer of 200 arbitrary particles obtained in this manner was determined, and the arithmetic mean value thereof was taken as the thickness of the coating layer in the coated alumina particles.
  • the coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 ⁇ m.
  • the specific surface area was measured using HM-Model 1208 manufactured by Macsorb. Prior to the measurement, the coated alumina particles were pretreated by heating at 300 ° C. for 18 minutes in a nitrogen gas atmosphere. A mixed gas of 30% nitrogen and 70% helium was used as the adsorbed gas, and the flow rate was adjusted so that the indicated value of the main body flow meter was 25 ml / min.
  • the total pore volume of the carbon powder was measured by a mercury injection method using a pore distribution measuring device (AutoPore IV 9520 type (trade name) manufactured by Shimadzu Corporation).
  • Total content of alumina and aluminum nitride in alumina powder is a powder X-ray diffraction pattern. It was measured by Rietveld analysis. X-ray diffraction measurement was carried out in the same procedure as the content of aluminum nitride in the alumina powder described above, and based on the obtained X-ray diffraction pattern, quantitative analysis by Rietveld analysis using the analysis software TOPAS was performed to obtain alumina. The content of aluminum nitride was determined.
  • Example 1 In Example 1, as the raw material alumina powder used for producing the coated alumina particles, DAW-90 (product name) manufactured by Denka Co., Ltd. (average sphericity: 0.91, average particle diameter: 91 ⁇ m, specific surface area: 0). .1 m 2 / g) was used. In addition, as acetylene black, which is a carbon powder, HS-100 (product name) manufactured by Denka Co., Ltd. (average particle size: 46 nm, bulk density: 0.15 g / cm 3 , specific surface area: 40 m 2 / g, total fineness. Pore volume: 2.1 mL / g) was used.
  • alumina powder as a raw material and 20 g of carbon powder are mixed by a ball mill, nitrogen gas is supplied at an amount of 7 L / min, and firing is performed in a nitrogen atmosphere under the conditions of a firing temperature of 1650 ° C. and a firing time of 12 hours. (First step). Then, air was supplied at an amount of 2 L / min and calcined in an air atmosphere under the conditions of a firing temperature of 700 ° C. and a firing time of 4 hours to obtain coated alumina particles A.
  • the average sphericity of the coated alumina particles of 1 ⁇ m or more and 300 ⁇ m or less, the ratio of the coated alumina particles having a sphericity of 0.80 or less, the average sphericity, the content of AlN in the whole, and the thickness of the coating layer are determined. The measurements were taken and the results are shown in Table 1.
  • AA-05 product name manufactured by Sumitomo Chemical Co., Ltd. as the ultrafine powder alumina 1 and DAW-07 manufactured by Denka Co., Ltd. as the fine powder alumina 2 in the ratio (volume%) shown in Table 1 (.
  • the product name) was prepared as an alumina powder by blending coated alumina particles A as the coarse powder alumina 3. The physical properties of the obtained alumina powder were evaluated, and the results are shown in Table 1.
  • Example 2 As the raw material alumina powder used for producing the coated alumina particles, DAW-70 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 70 ⁇ m, specific surface area: 0). .1 m 2 / g) was used to produce coated alumina particles B in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1550 ° C. and the firing time was changed to 4 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1. Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles B were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 3 In Example 3, as the raw material alumina powder used for producing the coated alumina particles, DAS-30 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.93, average particle diameter: 30 ⁇ m, specific surface area: 0). Using .2 m 2 / g), coated alumina particles C were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1500 ° C. and the firing time was changed to 4 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1. Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles C were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 4 In Example 4, as the raw material alumina powder used for producing the coated alumina particles, DAW-120 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.91, average particle diameter: 115 ⁇ m, specific surface area: 0). Coated alumina particles D were produced in the same manner as in Example 1 except that 1 m 2 / g) was used. The same measurements as in Example 1 were performed and the results are shown in Table 1. Table 1 shows the same as in Example 1 except that DAW-10 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles D were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 5 coated alumina particles E were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. The same measurements as in Example 1 were performed and the results are shown in Table 1. Alumina powder was obtained by the formulation (volume%) shown in Table 1 in the same manner as in Example 1 except that coated alumina particles E were used as the coarse powder alumina 3. In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 6 As the raw material alumina powder used for producing the coated alumina particles, DAW-45 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 43 ⁇ m, specific surface area: 0). Using .2 m 2 / g), coated alumina particles F were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. and the firing time was changed to 8 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1. Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles F were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 7 As the raw material alumina powder used for producing the coated alumina particles, DAW-70 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 70 ⁇ m, specific surface area: 0).
  • the coated alumina particles G were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. using 1 m 2 / g).
  • the same measurements as in Example 1 were performed and the results are shown in Table 1.
  • Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles G were used as the coarse powder alumina 3.
  • Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 8 As the raw material alumina powder used for producing the coated alumina particles, DAW-120 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.91, average particle diameter: 115 ⁇ m, specific surface area: 0).
  • the coated alumina particles H were produced by the same method as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. using 1 m 2 / g).
  • the same measurements as in Example 1 were performed and the results are shown in Table 1.
  • Table 1 shows the same as in Example 1 except that DAW-10 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles H were used as the coarse powder alumina 3.
  • Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Example 9 Alumina powder was produced and evaluated in the same manner as in Example 7 except that the blending ratio of alumina was changed to the ratio (volume%) shown in Table 1. The results are shown in Table 1.
  • Example 10 Alumina powder was produced and evaluated in the same manner as in Example 7 except that the blending ratio of alumina was changed to the ratio (volume%) shown in Table 1. The results are shown in Table 1.
  • Comparative Example 1 In Comparative Example 1, DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2, and DAW-45 manufactured by Denka Co., Ltd. was used as the coarse powder alumina 3 instead of the coated alumina particles A. (Product name)
  • the formulation (volume) shown in Table 1 is the same as in Example 1 except that (average sphericalness: 0.92, average particle size: 43 ⁇ m, specific surface area: 0.2 m 2 / g) is used. %) To obtain an alumina powder.
  • the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • Comparative Example 2 In Comparative Example 2, as the raw material alumina powder used for producing the coated alumina particles, DAW-45 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 43 ⁇ m, specific surface area: 0). Using .2 m 2 / g), coated alumina particles a were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1650 ° C. and the firing time was changed to 30 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1. The coated alumina particles a did not correspond to the coated alumina particles according to the present embodiment.
  • Example 1 The formulation shown in Table 1 (volume%) was the same as in Example 1 except that DAW-05 manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles a were used as the coarse powder alumina 3. ), Alumina powder was obtained. In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
  • the coated alumina powder of the present invention it is possible to suppress an increase in viscosity when filling the resin, and it is possible to realize high thermal conductivity of the resin composition containing the resin. Therefore, it is particularly useful for applications of heat-dissipating parts such as heat-dissipating sheets, heat-dissipating greases, heat-dissipating spacers, semiconductor encapsulants, and heat-dissipating paints (heat-dissipating coating agents).
  • heat-dissipating parts such as heat-dissipating sheets, heat-dissipating greases, heat-dissipating spacers, semiconductor encapsulants, and heat-dissipating paints (heat-dissipating coating agents).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

The purpose of the present invention is to provide alumina particles which are capable of suppressing an increase in viscosity when included in a resin, and which make a resin composition containing the resin highly heat conductive. An alumina powder according to the present invention contains coated alumina particles that each comprise an alumina particle and a coating layer coating the alumina particle, and that each have a projected area equivalent circle diameter of 1 µm or greater as determined by microscopy. The coating layer contains aluminum nitride, and the average sphericity of the coated alumina particles is 0.85 to 0.97.

Description

アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法Manufacturing method of alumina powder, resin composition, heat dissipation parts, and coated alumina particles
 本発明は、アルミナ粉末、樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法に関する。 The present invention relates to a method for producing alumina powder, a resin composition, heat radiating parts, and coated alumina particles.
 近年、電気機器の小型化及び高性能化が進行している。小型化及び高性能化に伴い、電気機器を構成する電子部品の実装密度が高くなってきており、電子部品から発生する熱を効果的に放出させる必要性が高まっている。 In recent years, the miniaturization and high performance of electrical equipment have been progressing. With the miniaturization and higher performance, the mounting density of electronic components constituting electric devices is increasing, and the need to effectively dissipate heat generated from electronic components is increasing.
 また、環境負荷の抑制が可能な電気自動車などのパワーデバイス用途においては、電子部品に高電圧が印加されたり、あるいは大電流が流れたりすることがある。この場合、高い熱量が発生し、発生する高い熱量に対処するために、従来よりも効果的に熱を放出させる要求が高まってきている。このような要求に対応するための技術として、例えば、特許文献1には、3種類のアルミナフィラーを含んでなる樹脂組成物が開示されている。また、特許文献2には、球状アルミナ粒子と非球状アルミナ粒子とを含むアルミナ配合粒子と、この粒子を含む樹脂組成物が開示されている。更に、特許文献3には、熱伝導性フィラーとして、アルミナ及び酸窒化アルミニウムの少なくとも一方からなるコアと、前記コアの表面に形成された厚さ1.1μm以上の窒化アルミニウムからなる表面層とを備える窒化アルミニウム系粒子が開示されている。 In addition, in power device applications such as electric vehicles that can suppress the environmental load, a high voltage may be applied to electronic components or a large current may flow. In this case, a high amount of heat is generated, and in order to deal with the high amount of heat generated, there is an increasing demand for more effectively releasing heat than before. As a technique for meeting such a demand, for example, Patent Document 1 discloses a resin composition containing three kinds of alumina fillers. Further, Patent Document 2 discloses alumina-blended particles containing spherical alumina particles and non-spherical alumina particles, and a resin composition containing the particles. Further, Patent Document 3 describes, as a heat conductive filler, a core made of at least one of alumina and aluminum nitride and a surface layer made of aluminum nitride having a thickness of 1.1 μm or more formed on the surface of the core. The aluminum nitride-based particles provided are disclosed.
特開2009-164093号公報Japanese Unexamined Patent Publication No. 2009-164093 特開2009-274929号公報JP-A-2009-274929 特開2012-41253号公報Japanese Unexamined Patent Publication No. 2012-41253
 しかしながら、特許文献1及び2では、アルミナ粒子の比表面積が高く、平均球形度が低く歪な形状を含む等の理由により、樹脂にアルミナ粒子を充填する際に増粘し、アルミナ粒子を高い割合で充填することが難しいという問題を有する。そのため、成形性が低く、また、得られる放熱部品の熱伝導率も低くなる。 However, in Patent Documents 1 and 2, the specific surface area of the alumina particles is high, the average sphericity is low, and the resin contains a distorted shape. Therefore, the resin is thickened when the alumina particles are filled, and the alumina particles are contained in a high proportion. It has a problem that it is difficult to fill with. Therefore, the moldability is low, and the thermal conductivity of the obtained heat-dissipating component is also low.
 また、特許文献3では、窒化アルミニウム系粒子をマイクロ波照射により得ているが、この製法では、球状の粒子を得ることができない。よって、上記のとおり、特許文献3に記載の窒化アルミニウム系粒子においても形状が悪いため、樹脂に窒化アルミニウム系粒子を充填する際に増粘し、窒化アルミニウム系粒子の高充填が難しいとの問題を有する。結局、特許文献3に記載の窒化アルミニウム系粒子を用いても、成形性が低く、また、得られる放熱部品の熱伝導率が低くなる。 Further, in Patent Document 3, aluminum nitride-based particles are obtained by microwave irradiation, but spherical particles cannot be obtained by this manufacturing method. Therefore, as described above, since the aluminum nitride-based particles described in Patent Document 3 also have a poor shape, the resin is thickened when the aluminum nitride-based particles are filled, and it is difficult to highly fill the aluminum nitride-based particles. Has. After all, even if the aluminum nitride based particles described in Patent Document 3 are used, the moldability is low and the thermal conductivity of the obtained heat radiating component is low.
 本発明は、このような課題に鑑みてなされたものであり、樹脂に充填する際に粘度上昇を抑制でき、かつ、その樹脂を含む樹脂組成物の高熱伝導化を実現できる、特定の被覆アルミナ粒子を含むアルミナ粉末、並びにそのアルミナ粉末を含む樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法の提供を目的とする。 The present invention has been made in view of such a problem, and is a specific coated alumina capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of a resin composition containing the resin. It is an object of the present invention to provide an alumina powder containing particles, a resin composition containing the alumina powder, a heat radiating component, and a method for producing coated alumina particles.
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、特定の被覆アルミナ粒子を含むアルミナ粉末が、樹脂への充填の際に粘度上昇を抑制でき、かつ、そのアルミナ粉末を含むことにより高熱伝導化を実現できる樹脂組成物及び放熱部品を得ることができることを見出し、本発明を完成するに至った。 As a result of diligent research to achieve the above object, the present inventors can suppress an increase in viscosity of the alumina powder containing specific coated alumina particles when the resin is filled with the alumina powder, and the alumina powder can be used. It has been found that a resin composition and heat-dissipating parts capable of achieving high thermal conductivity can be obtained by including the mixture, and the present invention has been completed.
 すなわち、本発明は以下のとおりである。
 [1]
 アルミナ粒子と、前記アルミナ粒子を被覆する被覆層とを有し、顕微鏡法による投影面積円相当径が1μm以上300μm以下である被覆アルミナ粒子を含有するアルミナ粉末であって、前記被覆層は窒化アルミニウムを含み、前記被覆アルミナ粒子の平均球形度が0.85以上0.97以下である、アルミナ粉末。
 [2]
 前記アルミナ粉末は、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が2μm以上200μm以下の粒度域に、複数のピークを有する、[1]に記載のアルミナ粉末。
 [3]
 前記被覆アルミナ粒子において、球形度が0.80以下である被覆アルミナ粒子の割合が個数基準で15%以下である、[1]又は[2]に記載のアルミナ粉末。
 [4]
 レーザー回折散乱式粒度分布測定機によって測定された、前記被覆アルミナ粒子の平均粒子径が30μm以上150μm以下である、[1]~[3]のいずれかに記載のアルミナ粉末。
 [5]
 前記被覆アルミナ粒子中の窒化アルミニウムの含有率が10質量%以上40質量%以下である、[1]~[4]のいずれかに記載のアルミナ粉末。
That is, the present invention is as follows.
[1]
Alumina powder containing alumina particles and a coating layer for coating the alumina particles, and having a projected area circle equivalent diameter of 1 μm or more and 300 μm or less by microscopy, wherein the coating layer is aluminum nitride. Alumina powder containing, and the average sphericality of the coated alumina particles is 0.85 or more and 0.97 or less.
[2]
The alumina powder according to [1], wherein the alumina powder has a plurality of peaks in a particle size range of 2 μm or more and 200 μm or less in a volume-based frequency particle size distribution by a laser diffraction / scattering method.
[3]
The alumina powder according to [1] or [2], wherein the proportion of the coated alumina particles having a sphericity of 0.80 or less is 15% or less based on the number of the coated alumina particles.
[4]
The alumina powder according to any one of [1] to [3], wherein the average particle size of the coated alumina particles is 30 μm or more and 150 μm or less, which is measured by a laser diffraction / scattering type particle size distribution measuring machine.
[5]
The alumina powder according to any one of [1] to [4], wherein the content of aluminum nitride in the coated alumina particles is 10% by mass or more and 40% by mass or less.
 [6]
 前記アルミナ粉末中の、アルミナと窒化アルミニウムとの合計の含有率が80質量%以上である、[1]~[5]のいずれかに記載のアルミナ粉末。
 [7]
 前記被覆アルミナ粒子中の炭素量が0.3質量%以下である、[1]~[6]のいずれかに記載のアルミナ粉末。
 [8]
 樹脂と、[1]~[7]のいずれかに記載のアルミナ粉末とを含む、樹脂組成物。
 [9]
 前記樹脂が、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、及びアクリル樹脂からなる群より選ばれる少なくも1種を含む、[8]に記載の樹脂組成物。
[6]
The alumina powder according to any one of [1] to [5], wherein the total content of alumina and aluminum nitride in the alumina powder is 80% by mass or more.
[7]
The alumina powder according to any one of [1] to [6], wherein the amount of carbon in the coated alumina particles is 0.3% by mass or less.
[8]
A resin composition containing a resin and the alumina powder according to any one of [1] to [7].
[9]
The resin composition according to [8], wherein the resin contains at least one selected from the group consisting of silicone resin, epoxy resin, urethane resin, and acrylic resin.
 [10]
 [1]~[7]のいずれかに記載のアルミナ粉末、又は[8]若しくは[9]に記載の樹脂組成物を含む、放熱部品。
 [11]
 [1]に記載の被覆アルミナ粉末の製造方法であって、原料のアルミナ粉末と炭素粉末とを含む混合物を、窒素ガスを含む還元雰囲気下にて、1500℃以上1700℃以下の温度で焼成して、第1焼成粉末を得る第1工程と、前記第1焼成粉末を、大気雰囲気下にて、600℃以上900℃以下の温度で更に焼成して前記被覆アルミナ粒子を得る第2工程と、を含み、前記炭素粉末の平均粒子径が30nm以上70nm以下であり、かさ密度が0.10g/cm以上0.20g/cm以下であり、比表面積が20m/g以上60m/g以下である、製造方法。
[10]
A heat-dissipating component containing the alumina powder according to any one of [1] to [7] or the resin composition according to [8] or [9].
[11]
The method for producing a coated alumina powder according to [1], wherein a mixture containing the raw material alumina powder and carbon powder is calcined at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas. The first step of obtaining the first calcined powder and the second step of further calcining the first calcined powder at a temperature of 600 ° C. or higher and 900 ° C. or lower in an air atmosphere to obtain the coated alumina particles. The average particle size of the carbon powder is 30 nm or more and 70 nm or less, the bulk density is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and the specific surface area is 20 m 2 / g or more and 60 m 2 / g. The manufacturing method is as follows.
 本発明によれば、樹脂に充填する際に粘度上昇を抑制でき、かつ、その樹脂を含む樹脂組成物の高熱伝導化を実現できるアルミナ粉末、並びにそのアルミナ粉末を含む樹脂組成物、放熱部品、及び被覆アルミナ粒子の製造方法を提供することができる。 According to the present invention, an alumina powder capable of suppressing an increase in viscosity when filled in a resin and realizing high thermal conductivity of a resin composition containing the resin, a resin composition containing the alumina powder, a heat radiating component, and the like. And a method for producing coated alumina particles can be provided.
本実施形態に係る被覆アルミナ粒子の断面EPMA分析の画像である。It is an image of the cross-sectional EPMA analysis of the coated alumina particles according to this embodiment.
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。 Hereinafter, a mode for carrying out the present invention (hereinafter, simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and the present invention is not limited to the present embodiment.
[アルミナ粉末]
 本実施形態のアルミナ粉末は、後述する本実施形態に係る被覆アルミナ粒子の1種又は2種以上を含む。本実施形態のアルミナ粉末は、後述のように、上記被覆アルミナ粒子以外のフィラー、特に無機フィラーを含んでもよい。本実施形態のアルミナ粉末は、上記被覆アルミナ粒子以外のフィラーであって、無機フィラー以外のフィラーを含む場合は、アルミナ粉末というよりも単なる粉末と称されるべきである。また、本実施形態のアルミナ粉末は、上記被覆アルミナ粒子以外の無機フィラーを含む場合(ただし、無機フィラー以外のフィラーを含まない。)は、無機粉末と称されるべきである。ただし、本明細書において、「アルミナ粉末」は、それらを包含する概念で用いられる。
[Alumina powder]
The alumina powder of the present embodiment contains one or more of the coated alumina particles according to the present embodiment described later. As will be described later, the alumina powder of the present embodiment may contain a filler other than the coated alumina particles, particularly an inorganic filler. When the alumina powder of the present embodiment is a filler other than the coated alumina particles and contains a filler other than the inorganic filler, it should be referred to as a simple powder rather than an alumina powder. Further, when the alumina powder of the present embodiment contains an inorganic filler other than the coated alumina particles (however, it does not contain a filler other than the inorganic filler), it should be referred to as an inorganic powder. However, in the present specification, "alumina powder" is used in a concept that includes them.
(被覆アルミナ粒子)
 本実施形態に係る被覆アルミナ粒子は、アルミナ粒子と、そのアルミナ粒子を被覆し、窒化アルミニウムを含む被覆層とを有し、顕微鏡法による投影面積円相当径が1μm以上300μm以下であり、平均球形度は0.85以上0.97以下である。以下、特に説明しない限り、本実施形態に係る被覆アルミナ粒子を単に「被覆アルミナ粒子」ともいう。
(Coated alumina particles)
The coated alumina particles according to the present embodiment have alumina particles and a coating layer that covers the alumina particles and contains aluminum nitride, has a projected area circle equivalent diameter of 1 μm or more and 300 μm or less by microscopic method, and has an average spherical shape. The degree is 0.85 or more and 0.97 or less. Hereinafter, unless otherwise specified, the coated alumina particles according to this embodiment are also simply referred to as “coated alumina particles”.
 被覆アルミナ粒子は、後述する原料のアルミナ粉末(以下、単に「原料アルミナ粉末」という。)に含まれるアルミナ粒子に由来する。 The coated alumina particles are derived from the alumina particles contained in the raw material alumina powder (hereinafter, simply referred to as "raw material alumina powder") described later.
 被覆層に窒化アルミニウムを含む被覆アルミナ粒子を含む本実施形態のアルミナ粉末を樹脂組成物及び放熱部品に用いることにより、後述の平均球形度を所定の数値範囲にすることと相まって、特に樹脂組成物及び放熱部品の熱伝導性が高くなる。なお、被覆層は、被覆層を生成する過程で生じる酸窒化アルミニウムなどの不可避成分を含んでいてもよい。 By using the alumina powder of the present embodiment containing the coated alumina particles containing aluminum nitride in the coating layer for the resin composition and the heat radiating component, the average sphericity described later is set within a predetermined numerical range, and particularly the resin composition. And the thermal conductivity of heat-dissipating parts is increased. The coating layer may contain an unavoidable component such as aluminum nitride generated in the process of forming the coating layer.
 本実施形態に係る被覆層の厚さは、0.8μm以上12μm以下であることが好ましく、1.5μm以上7.5μm以下であることが、樹脂に充填する際に粘度上昇を好適に抑制でき、あるいは、その樹脂を含む樹脂組成物の高熱伝導化をより実現できるため、より好ましい。被覆アルミナ粒子における被覆層の厚さが上記範囲内にあるアルミナ粉末を用いると、熱経路を効率的に形成でき、熱を十分に伝導させることができる傾向にある。被覆層の厚さは、実施例に記載の方法で測定される。 The thickness of the coating layer according to the present embodiment is preferably 0.8 μm or more and 12 μm or less, and 1.5 μm or more and 7.5 μm or less can preferably suppress an increase in viscosity when the resin is filled. Alternatively, it is more preferable because it is possible to further realize high thermal conductivity of the resin composition containing the resin. When alumina powder having a coating layer thickness within the above range in the coated alumina particles is used, a heat path can be efficiently formed and heat tends to be sufficiently conducted. The thickness of the coating layer is measured by the method described in Examples.
 本実施形態に係る被覆アルミナ粒子は、下記の顕微鏡法による投影面積円相当径が1μm以上300μm以下であり、平均球形度が0.85以上0.97以下である。被覆アルミナ粒子の平均球形度が上記範囲にあるような球状であると、樹脂に被覆アルミナ粒子を充填する際に増粘しにくくなる。本実施形態のアルミナ粉末が、この被覆アルミナ粒子を含むことで、高い割合でアルミナ粉末を樹脂に充填することが可能となる。その結果、樹脂中において熱経路を効率よく良好に形成でき、高熱伝導性の樹脂組成物及び放熱部品を得ることができる。その平均球形度は、樹脂に充填した際の摩擦抵抗低下、及び粒子同士の接触面積増加の点から、0.87以上0.96以下であることが好ましく、0.89以上0.95以下であることがより好ましい。本実施形態のアルミナ粉末が、上記範囲にある上記平均球形度を有する被覆アルミナ粒子を含むことにより、樹脂中において、被覆アルミナ粒子を含むアルミナ粉末の流動性をより向上させ、樹脂との摩擦抵抗が低下し、樹脂にアルミナ粉末を充填する際の粘度上昇を抑制することができる。また、被覆アルミナ粒子を含むアルミナ粒子同士の接触がより十分になり、接触面積が大きくなる結果、熱経路を効率よく形成できるため、より高熱伝導性の樹脂組成物及び放熱部品を得ることができる傾向にある。平均球形度は、例えば、下記の顕微鏡法により測定される。すなわち、走査型電子顕微鏡、及び透過型電子顕微鏡等にて撮影した粒子像を画像解析装置に取り込み、写真から粒子の投影面積(A)と周囲長(PM)を測定する。その周囲長(PM)と同一の周囲長を持つ真円の面積を(B)とすると、その粒子の球形度はA/Bとなる。よって、試料の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)となる。投影面積円相当径が1μm以上300μm以下である任意の粒子200個の球形度を上記のようにして求め、その相加平均値を平均球形度とする。なお、具体的な測定方法は、実施例に記載のとおりである。また、投影面積円相当径は、粒子の投影面積(A)と同一の投影面積を持つ真円の直径を指す。 The coated alumina particles according to the present embodiment have a projected area circle equivalent diameter of 1 μm or more and 300 μm or less and an average sphericity of 0.85 or more and 0.97 or less according to the following microscopy. If the average sphericity of the coated alumina particles is in the above range, it becomes difficult to thicken the resin when the coated alumina particles are filled. When the alumina powder of the present embodiment contains the coated alumina particles, the alumina powder can be filled in the resin at a high ratio. As a result, a heat path can be efficiently and well formed in the resin, and a resin composition having high thermal conductivity and a heat radiating component can be obtained. The average sphericity is preferably 0.87 or more and 0.96 or less, and 0.89 or more and 0.95 or less, from the viewpoint of reducing frictional resistance when filled in resin and increasing the contact area between particles. More preferably. When the alumina powder of the present embodiment contains the coated alumina particles having the above average sphericality in the above range, the fluidity of the alumina powder containing the coated alumina particles is further improved in the resin, and the frictional resistance with the resin is further improved. Is reduced, and an increase in viscosity when the resin is filled with alumina powder can be suppressed. Further, the contact between the alumina particles including the coated alumina particles becomes more sufficient, and the contact area becomes larger. As a result, the heat path can be efficiently formed, so that a resin composition having higher thermal conductivity and a heat radiating component can be obtained. There is a tendency. The average sphericity is measured, for example, by the following microscopy. That is, the particle image taken by a scanning electron microscope, a transmission electron microscope, or the like is taken into an image analyzer, and the projected area (A) and the peripheral length (PM) of the particles are measured from the photograph. Assuming that the area of a perfect circle having the same peripheral length as the peripheral length (PM) is (B), the sphericity of the particle is A / B. Therefore, assuming a perfect circle having the same peripheral length as the peripheral length (PM) of the sample, PM = 2πr and B = πr 2 , so B = π × (PM / 2π) 2 and the individual particles The sphericity is sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles having a projected area circle-equivalent diameter of 1 μm or more and 300 μm or less is obtained as described above, and the arithmetic mean value thereof is taken as the average sphericity. The specific measurement method is as described in the examples. The projected area circle-equivalent diameter refers to the diameter of a perfect circle having the same projected area as the projected area (A) of the particles.
 本実施形態のアルミナ粉末は、本実施形態に係る被覆アルミナ粒子において、球形度が0.80以下である被覆アルミナ粒子の割合が、個数基準で15%以下であることが好ましく、個数基準で10%以下であることがより好ましい。球形度が0.80以下である被覆アルミナ粒子の割合が個数基準で15%以下ということは、樹脂にアルミナ粉末を充填する際に増粘を引き起こす合着粒子や割れ粒子が少ない被覆アルミナ粒子を含むアルミナ粉末であることを意味し、その点で好ましい。また、装置及び金型の摩耗を低減できる傾向にある。その被覆アルミナ粒子の割合は、例えば、個数基準で0.5%以上である。また、顕微鏡法による投影面積円相当径は、通常、200μm以下である。 In the alumina powder of the present embodiment, the proportion of the coated alumina particles having a sphericity of 0.80 or less in the coated alumina particles according to the present embodiment is preferably 15% or less on a number basis, and 10 on a number basis. More preferably, it is less than%. The fact that the proportion of coated alumina particles having a spherical degree of 0.80 or less is 15% or less based on the number of particles means that coated alumina particles having few coalesced particles or cracked particles that cause thickening when the resin is filled with alumina powder It means that it is an alumina powder containing, and is preferable in that respect. In addition, there is a tendency that wear of the device and the mold can be reduced. The proportion of the coated alumina particles is, for example, 0.5% or more on a number basis. The diameter equivalent to the projected area circle by the microscope method is usually 200 μm or less.
 本実施形態のアルミナ粉末は、本実施形態に係る被覆アルミナ粒子において、球形度が0.80を超えて0.83以下である被覆アルミナ粒子の割合が、個数基準で10%以下であることが好ましく、個数基準で5%以下であることがより好ましい。球形度が上記範囲にある被覆アルミナ粒子の割合が10%以下であるということは、樹脂にアルミナ粉末を充填する際に増粘を引き起こす合着粒子や割れ粒子がより少ない被覆アルミナ粒子を含むアルミナ粉末であることを意味し、その点で好ましい。また、装置及び金型の摩耗を低減できる傾向にある。その被覆アルミナ粒子の割合は、例えば、個数基準で0.5%以上である。また、顕微鏡法による投影面積円相当径は、通常、200μm以下である。 In the alumina powder of the present embodiment, the proportion of the coated alumina particles having a sphericity of more than 0.80 and 0.83 or less in the coated alumina particles according to the present embodiment is 10% or less on a number basis. It is preferably 5% or less on a number basis. The fact that the proportion of coated alumina particles having a spherical degree in the above range is 10% or less means that alumina containing coated alumina particles having less coalesced particles or cracked particles that cause thickening when the resin is filled with alumina powder. It means that it is a powder, which is preferable. In addition, there is a tendency that wear of the device and the mold can be reduced. The proportion of the coated alumina particles is, for example, 0.5% or more on a number basis. The diameter equivalent to the projected area circle by the microscope method is usually 200 μm or less.
 本実施形態に係る被覆アルミナ粒子は、被覆アルミナ粒子を含むアルミナ粉末同士の接触がより良好となり、熱経路を効率よく良好に形成でき、より高熱伝導性の樹脂組成物及び放熱部品を得ることができる傾向にあり、更に樹脂組成物とした際の表面平滑性の観点から、平均粒子径が30μm以上150μm以下であることが好ましく、30μm以上130μm以下であることがより好ましく、40μm以上120μm以下であることがより好ましい。平均粒子径が30μm以上であると、樹脂組成物及び放熱部品中において、熱経路をより効率的に形成でき、熱をより十分に伝導させることができる傾向にある。また、平均粒子径が150μm以下であると、放熱部品における表面の平滑性が更に向上し、放熱部品と熱源との界面における熱抵抗が減少するため、熱伝導率をより十分に向上させることができる傾向にある。なお、本実施形態において、粒子径及び平均粒子径は、レーザー回折散乱式粒度分布測定機によって測定される。具体的な測定方法は、実施例に記載のとおりである。 With the coated alumina particles according to the present embodiment, the contact between the alumina powders containing the coated alumina particles becomes better, the heat path can be formed efficiently and satisfactorily, and a resin composition having higher thermal conductivity and heat dissipation parts can be obtained. From the viewpoint of surface smoothness when the resin composition is formed, the average particle size is preferably 30 μm or more and 150 μm or less, more preferably 30 μm or more and 130 μm or less, and 40 μm or more and 120 μm or less. More preferably. When the average particle size is 30 μm or more, the heat path can be formed more efficiently in the resin composition and the heat radiating component, and the heat tends to be conducted more sufficiently. Further, when the average particle size is 150 μm or less, the smoothness of the surface of the heat radiating component is further improved, and the thermal resistance at the interface between the heat radiating component and the heat source is reduced, so that the thermal conductivity can be further improved. I tend to be able to do it. In the present embodiment, the particle size and the average particle size are measured by a laser diffraction / scattering type particle size distribution measuring machine. The specific measurement method is as described in the examples.
 本実施形態に係る被覆アルミナ粒子中の窒化アルミニウムの含有率は、10質量%以上40質量%以下であることが好ましく、樹脂組成物の高熱伝導化をより実現できるため、15質量%以上35質量%以下であることがより好ましい。窒化アルミニウムの含有率が上記範囲内にある被覆アルミナ粒子を用いると、熱経路をより効率的に形成でき、熱をより十分に伝導させることができる傾向にある。その含有率が10質量%以上であると、窒化アルミニウムの被覆層がより厚くなるため、窒化アルミニウムを被覆したことによる熱導電率向上の効果が更に高まる傾向にある。その含有率が40質量%以下であると、被覆層の微小な凹凸を一層少なくできるため、樹脂組成物及び放熱部品の成形性が更に向上し、放熱部品において空隙をより低減できる傾向にある。窒化アルミニウムの含有率は、実施例に記載の方法で測定される。 The content of aluminum nitride in the coated alumina particles according to the present embodiment is preferably 10% by mass or more and 40% by mass or less, and since high thermal conductivity of the resin composition can be further realized, 15% by mass or more and 35% by mass. More preferably, it is less than%. When coated alumina particles having an aluminum nitride content within the above range are used, the heat path can be formed more efficiently, and heat tends to be conducted more sufficiently. When the content is 10% by mass or more, the coating layer of aluminum nitride becomes thicker, so that the effect of improving the thermal conductivity by coating the aluminum nitride tends to be further enhanced. When the content is 40% by mass or less, the fine irregularities of the coating layer can be further reduced, so that the moldability of the resin composition and the heat radiating component is further improved, and the voids in the heat radiating component tend to be further reduced. The content of aluminum nitride is measured by the method described in Examples.
 本実施形態に係る被覆アルミナ粒子中の炭素量は、0.3質量%以下であることが好ましく、0.2質量%以下であることがより好ましく、0.1質量%以下であることが更に好ましい。また、その被覆アルミナ粒子中の炭素量は、例えば、0.01質量%以上である。炭素量が上記範囲にあることにより、より良好な熱伝導性を有する傾向にあり、導電物である炭素を可能な限り低減させている点から、高い絶縁性、及び熱伝導率を有する樹脂組成物及び放熱部品をより有効かつ確実に得ることができる。被覆アルミナ粒子中の炭素量は、実施例に記載の方法で測定される。また、被覆アルミナ粒子中の炭素は、主として、原料アルミナ粉末と混合する炭素粉末に由来する。炭素粉末は、後述の被覆アルミナ粒子の製造方法にて説明するとおり、本実施形態に係る被覆アルミナ粒子を製造する際に用いられる。 The carbon content in the coated alumina particles according to the present embodiment is preferably 0.3% by mass or less, more preferably 0.2% by mass or less, and further preferably 0.1% by mass or less. preferable. The amount of carbon in the coated alumina particles is, for example, 0.01% by mass or more. When the amount of carbon is in the above range, it tends to have better thermal conductivity, and carbon, which is a conductor, is reduced as much as possible. Therefore, the resin composition has high insulation and thermal conductivity. Objects and heat-dissipating parts can be obtained more effectively and reliably. The amount of carbon in the coated alumina particles is measured by the method described in Examples. Further, the carbon in the coated alumina particles is mainly derived from the carbon powder mixed with the raw material alumina powder. The carbon powder is used when producing the coated alumina particles according to the present embodiment, as described later in the method for producing coated alumina particles.
 本実施形態に係る被覆アルミナ粒子の比表面積は、0.02m/g以上0.15m/g以下であることが好ましく、0.03m/g以上0.12m/g以下であることがより好ましい。比表面積が、上記範囲にあると、樹脂に特定の被覆アルミナ粒子を含むアルミナ粉末を充填する際の粘度上昇を抑制しやすく、より高熱伝導性の樹脂組成物及び放熱部品を得ることができるという効果を奏する。なお、本実施形態において、比表面積はBET流動法により測定され、具体的な測定方法は、実施例に記載のとおりである。 The specific surface area of the coated alumina particles according to the present embodiment, it is preferable, 0.03 m 2 / g or more 0.12 m 2 / g or less or less 0.02 m 2 / g or more 0.15 m 2 / g Is more preferable. When the specific surface area is within the above range, it is easy to suppress an increase in viscosity when the resin is filled with alumina powder containing specific coated alumina particles, and a resin composition having higher thermal conductivity and heat-dissipating parts can be obtained. It works. In this embodiment, the specific surface area is measured by the BET flow method, and the specific measuring method is as described in the examples.
(アルミナ粉末)
 本実施形態のアルミナ粉末において、アルミナと窒化アルミニウムとの合計の含有率は、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、99質量%以上であることが更により好ましい。その合計の含有率の上限は、例えば、100質量%である。アルミナと窒化アルミニウムとの合計の含有率が上記範囲内にあるアルミナ粉末は、熱経路を阻害する傾向にある酸窒化アルミニウムなどの不可避成分が更に少なくなっているため、より高熱伝導性の樹脂組成物及び放熱部品を得ることができる傾向にある。アルミナと窒化アルミニウムとの合計の含有率は、実施例に記載の方法で測定される。
(Alumina powder)
In the alumina powder of the present embodiment, the total content of alumina and aluminum nitride is preferably 80% by mass or more, more preferably 85% by mass or more, and further preferably 90% by mass or more. It is preferably 99% by mass or more, and even more preferably 99% by mass or more. The upper limit of the total content is, for example, 100% by mass. Alumina powder having a total content of alumina and aluminum nitride within the above range has a resin composition having higher thermal conductivity because the amount of unavoidable components such as aluminum oxynitride, which tends to obstruct the thermal pathway, is further reduced. There is a tendency to obtain objects and heat-dissipating parts. The total content of alumina and aluminum nitride is measured by the method described in Examples.
 本実施形態のアルミナ粉末は、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が2μm以上200μm以下の粒度域に、複数のピークを有することが好ましい。これにより、本実施形態のアルミナ粉末が樹脂に効率よく充填されることで熱経路を形成でき、高熱伝導化が実現でき、更に樹脂組成物の粘度上昇が抑制される。ここで、本実施形態において、ピークとは、レーザー回折散乱法による体積基準頻度粒度分布において、0.01μm以上3500μm以下の粒径範囲を100に分割して、その粒径範囲に検出される極大点を称する。また、検出されるピークにおいて、ショルダーがある場合には、そのショルダーもピークとしてカウントする。ショルダーとは、二次微分係数から与えられるピークの曲率で検出され、ピーク中に変曲点を有すること、すなわち、特定粒径の粒子成分がより多く存在することを意味する。 The alumina powder of the present embodiment preferably has a plurality of peaks in a particle size range of 2 μm or more and 200 μm or less in the volume-based frequency particle size distribution by the laser diffraction / scattering method. As a result, the alumina powder of the present embodiment is efficiently filled in the resin to form a heat path, high thermal conductivity can be realized, and an increase in the viscosity of the resin composition is suppressed. Here, in the present embodiment, the peak is the maximum detected in the particle size range obtained by dividing the particle size range of 0.01 μm or more and 3500 μm or less into 100 in the volume-based frequency particle size distribution by the laser diffraction / scattering method. Refer to a point. In addition, if there is a shoulder in the detected peak, that shoulder is also counted as a peak. The shoulder is detected by the curvature of the peak given by the second derivative, and has an inflection point in the peak, that is, the presence of more particle components having a specific particle size.
 本実施形態のアルミナ粉末は、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が0.01μm以上3500μm以下の粒度域に、被覆アルミナ粒子に由来するピークを1つ以上有することになる。本実施形態のアルミナ粉末は、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が0.01μm以上3500μm以下の粒度域に、本実施形態に係る被覆アルミナ粒子に由来する複数のピークを有してもよい。 The alumina powder of the present embodiment has one or more peaks derived from the coated alumina particles in the particle size range of 0.01 μm or more and 3500 μm or less in the volume-based frequency particle size distribution by the laser diffraction scattering method. The alumina powder of the present embodiment has a plurality of peaks derived from the coated alumina particles according to the present embodiment in a particle size range of 0.01 μm or more and 3500 μm or less in the volume-based frequency particle size distribution by the laser diffraction / scattering method. You may.
 このような粒度分布を有するアルミナ粉末は、例えば、それぞれ上記の粒度域に1つのピークを有し、かつ互いに平均粒子径の異なる2種以上の被覆アルミナ粒子を含むことで得られる。 Alumina powder having such a particle size distribution can be obtained, for example, by containing two or more kinds of coated alumina particles having one peak in the above particle size range and having different average particle diameters from each other.
 更に、本実施形態のアルミナ粉末には、本実施形態に係る被覆アルミナ粒子以外のフィラーを含んでもよい。この場合においても、通常、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が0.01μm以上3500μm以下の粒度域に、本実施形態に係る被覆アルミナ粒子に由来するピークと、その被覆アルミナ粒子以外のフィラーに由来するピークとの、2つ以上のピークが検出されることになる。フィラーとしては、例えば、無機フィラーが挙げられる。具体的には、本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子、被覆層を有しない(すなわち、未被覆の)アルミナ粒子、マグネシア、窒化アルミニウム、窒化ケイ素、酸化イットリウム、窒化ホウ素、酸化カルシウム、酸化鉄、及び酸化ホウ素が挙げられる。なお、本実施形態のアルミナ粉末は、上述のように、窒化アルミニウムを始めとするアルミナ以外の無機材料も含むものであるので、その点では、無機粉末に相当するものである。 Further, the alumina powder of the present embodiment may contain a filler other than the coated alumina particles according to the present embodiment. Even in this case, in the volume-based frequency particle size distribution by the laser diffraction / scattering method, the peak derived from the coated alumina particles according to the present embodiment and the coated alumina thereof are usually found in the particle size range of 0.01 μm or more and 3500 μm or less. Two or more peaks will be detected, including peaks derived from fillers other than particles. Examples of the filler include an inorganic filler. Specifically, coated alumina particles other than the coated alumina particles according to the present embodiment, alumina particles having no coating layer (that is, uncoated), magnesia, aluminum nitride, silicon nitride, yttrium oxide, boron nitride, calcium oxide. , Iron oxide, and boron oxide. As described above, the alumina powder of the present embodiment also contains an inorganic material other than alumina such as aluminum nitride, and thus corresponds to the inorganic powder in that respect.
 被覆アルミナ粒子以外の被覆アルミナ粒子としては、例えば、アルミナ粒子と、そのアルミナ粒子を被覆する被覆層とを有し、顕微鏡法による投影面積円相当径が1μm未満である被覆アルミナ粒子が挙げられる。この場合の被覆層としては、例えば、窒化アルミニウム、及び窒化ケイ素が挙げられる。 Examples of the coated alumina particles other than the coated alumina particles include coated alumina particles having an alumina particle and a coating layer for coating the alumina particle, and having a projected area circle equivalent diameter of less than 1 μm by microscopy. Examples of the coating layer in this case include aluminum nitride and silicon nitride.
 また、本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子として、アルミナ粒子と、そのアルミナ粒子を被覆する被覆層とを有し、顕微鏡法による投影面積円相当径が1μm以上300μm以下である被覆アルミナ粒子であって、被覆層として窒化アルミニウムを含まない被覆アルミナ粒子が挙げられる。この場合の被覆層としては、例えば、窒化ケイ素が挙げられる。 Further, as the coated alumina particles other than the coated alumina particles according to the present embodiment, the alumina particles and the coating layer for coating the alumina particles are provided, and the projected area circle equivalent diameter by microscopy is 1 μm or more and 300 μm or less. Examples of the alumina particles include coated alumina particles that do not contain aluminum nitride as the coating layer. Examples of the coating layer in this case include silicon nitride.
 これらのフィラーは、公知のシランカップリング剤などを用いて表面処理されたフィラーであってもよい。
 本実施形態のアルミナ粉末には、本実施形態に係る被覆アルミナ粒子と共に、これらのフィラーが1種又は2種以上含まれていてもよい。
These fillers may be fillers surface-treated with a known silane coupling agent or the like.
The alumina powder of the present embodiment may contain one or more of these fillers together with the coated alumina particles according to the present embodiment.
 本実施形態のアルミナ粉末において、そのアルミナ粉末の全量に対して、本実施形態に係る被覆アルミナ粒子の含有量が、20体積%以上80体積%以下であることが好ましく、25体積%以上75体積%以下であることがより好ましい。なお、本実施形態において、アルミナ粉末中に、互いに平均粒子径の異なる2種以上の本実施形態に係る被覆アルミナ粒子を含む場合には、その被覆アルミナ粒子の含有量は、これらの合計量とする。上記の範囲内で被覆アルミナ粒子が含まれることにより、本実施形態に係るアルミナ粉末は、樹脂に充填する際に粘度上昇をより抑制でき、かつ、その樹脂を含む樹脂組成物の高熱伝導化をより実現できる。 In the alumina powder of the present embodiment, the content of the coated alumina particles according to the present embodiment is preferably 20% by volume or more and 80% by volume or less, and 25% by volume or more and 75% by volume, based on the total amount of the alumina powder. More preferably, it is less than%. In the present embodiment, when the alumina powder contains two or more kinds of coated alumina particles according to the present embodiment having different average particle diameters, the content of the coated alumina particles is the total amount thereof. To do. By containing the coated alumina particles within the above range, the alumina powder according to the present embodiment can further suppress the increase in viscosity when filled in the resin, and the resin composition containing the resin can be highly thermally conductive. It can be realized more.
 また、本実施形態のアルミナ粉末において、熱伝導率向上の点から、そのアルミナ粉末の全量に対して、本実施形態に係る被覆アルミナ粒子、本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子、及び未被覆のアルミナ粒子(以下、「被覆アルミナ粒子等」と称す。)の合計の含有量が、80体積%以上100体積%以下であることが好ましく、85体積%以上100体積%以下であることがより好ましい。上記の範囲内で被覆アルミナ粒子等が含まれることにより、本実施形態に係るアルミナ粉末は、樹脂組成物の高熱伝導化の効果を奏する。 Further, in the alumina powder of the present embodiment, from the viewpoint of improving the thermal conductivity, the coated alumina particles according to the present embodiment and the coated alumina particles other than the coated alumina particles according to the present embodiment are used with respect to the total amount of the alumina powder. The total content of the uncoated alumina particles (hereinafter referred to as “coated alumina particles and the like”) is preferably 80% by volume or more and 100% by volume or less, and is 85% by volume or more and 100% by volume or less. Is more preferable. Since the coated alumina particles and the like are contained within the above range, the alumina powder according to the present embodiment has the effect of increasing the thermal conductivity of the resin composition.
 本実施形態のアルミナ粉末は、粒子径が2μm以上200μm以下の粒度域に、上述のように、複数、すなわち2以上のピークを有することが好ましく、2以上4以下のピークを有することがより好ましく、3つのピークを有することが更に好ましい。なお、それぞれのピークについて、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が0.01μm以上3500μm以下の粒度域における微粒側(すなわち、0.01μm側)から、検出される1番目のピークを有する粒子を第1の粒子、2番目のピークを有する粒子を第2の粒子として、順次n番目のピークを有する粒子を第nの粒子とする。すなわち、検出されるピーク数はnとなる。検出される粒子は、本実施形態に係る被覆アルミナ粒子だけであってもよく、それに加えてその被覆アルミナ粒子以外のフィラーであってもよいが、本実施形態に係る被覆アルミナ粒子以外のフィラーは、本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子及び未被覆のアルミナ粒子のうちの1種以上であることが好ましい。 As described above, the alumina powder of the present embodiment preferably has a plurality of peaks, that is, two or more peaks, and more preferably two or more and four or less peaks in a particle size range of 2 μm or more and 200 μm or less. It is more preferable to have three peaks. It should be noted that each peak is the first to be detected from the fine particle side (that is, the 0.01 μm side) in the particle size region where the particle size is 0.01 μm or more and 3500 μm or less in the volume-based frequency particle size distribution by the laser diffraction scattering method. A particle having a peak is referred to as a first particle, a particle having a second peak is referred to as a second particle, and a particle having an nth peak in sequence is referred to as an nth particle. That is, the number of detected peaks is n. The particles to be detected may be only the coated alumina particles according to the present embodiment, or may be fillers other than the coated alumina particles, but the fillers other than the coated alumina particles according to the present embodiment may be used. , One or more of coated alumina particles and uncoated alumina particles other than the coated alumina particles according to the present embodiment is preferable.
 本実施形態のアルミナ粉末では、ピーク数nが2の場合、第1の粒子に由来するピークの位置は、3μm以上15μm以下の粒度域に検出され、第2の粒子に由来するピークの位置は、30μm以上150μm以下の粒度域に検出されることが好ましい。また、第2の粒子が本実施形態に係る被覆アルミナ粒子であることが好ましく、それに加えて、第1の粒子が未被覆のアルミナ粒子であることがより好ましい。
 本実施形態のアルミナ粉末における第1の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、25体積%以上55体積%以下であり、30体積%以上50体積%以下であることが好ましく、35体積%以上45体積%以下であることがより好ましい。第2の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、45体積%以上75体積%以下であり、50体積%以上70体積%以下であることが好ましく、55体積%以上65体積%以下であることがより好ましい。なお、第1の粒子と第2の粒子との合計を100体積%とする。
 また、第1の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、4.0μm以上12μm以下であることが好ましく、5.0μm以上10μm以下であることがより好ましい。第2の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、35μm以上140μm以下であることが好ましく、40μm以上130μm以下であることがより好ましい。
In the alumina powder of the present embodiment, when the number of peaks n is 2, the position of the peak derived from the first particle is detected in the particle size range of 3 μm or more and 15 μm or less, and the position of the peak derived from the second particle is , It is preferable that the particle size range is 30 μm or more and 150 μm or less. Further, it is preferable that the second particles are coated alumina particles according to the present embodiment, and in addition, it is more preferable that the first particles are uncoated alumina particles.
The content of the first particles in the alumina powder of the present embodiment is 25% by volume or more and 55% by volume or less, and 30% by volume or more and 50% by volume or less from the viewpoint of suppressing the increase in viscosity of the resin composition. It is preferably 35% by volume or more and 45% by volume or less. The content of the second particles is preferably 45% by volume or more and 75% by volume or less, preferably 50% by volume or more and 70% by volume or less, and 55% by volume or more and 65% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less. The total of the first particle and the second particle is 100% by volume.
The average particle size of the first particles is preferably 4.0 μm or more and 12 μm or less, and more preferably 5.0 μm or more and 10 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. The average particle size of the second particles is preferably 35 μm or more and 140 μm or less, and more preferably 40 μm or more and 130 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
 ピーク数nが3の場合、第1の粒子に由来するピークの位置は、0.3μm以上1.0μm以下の粒度域に検出され、第2の粒子に由来するピークの位置は、3.0μm以上15μm以下の粒度域に検出され、第3の粒子に由来するピークの位置は、30μm以上150μm以下の粒度域に検出されることが好ましい。
 本実施形態のアルミナ粉末における第1の粒子の含有率は、10体積%以上25体積%以下であり、12体積%以上18体積%以下であることが好ましく、13体積%以上17体積%以下であることがより好ましい。また、第2の粒子の含有率は、20体積%以上55体積%以下であり、25体積%以上41体積%以下であることが好ましく、30体積%以上39体積%以下であることがより好ましい。更に、第3の粒子の含有率は、35体積%以上55体積%以下であり、47体積%以上57体積%以下であることが好ましく、48体積%以上53体積%以下であることがより好ましい。各粒子の含有率を上記範囲にすると、樹脂にアルミナ粉末を高い割合で充填でき、更に樹脂組成物の粘度上昇抑制の観点から、好ましい。なお、第1の粒子と、第2の粒子と、第3の粒子との合計を100体積%とする。
When the number of peaks n is 3, the position of the peak derived from the first particle is detected in the particle size range of 0.3 μm or more and 1.0 μm or less, and the position of the peak derived from the second particle is 3.0 μm. It is preferable that the position of the peak derived from the third particle is detected in the particle size range of 30 μm or more and 150 μm or less.
The content of the first particles in the alumina powder of the present embodiment is 10% by volume or more and 25% by volume or less, preferably 12% by volume or more and 18% by volume or less, and 13% by volume or more and 17% by volume or less. More preferably. The content of the second particles is 20% by volume or more and 55% by volume or less, preferably 25% by volume or more and 41% by volume or less, and more preferably 30% by volume or more and 39% by volume or less. .. Further, the content of the third particle is 35% by volume or more and 55% by volume or less, preferably 47% by volume or more and 57% by volume or less, and more preferably 48% by volume or more and 53% by volume or less. .. When the content of each particle is within the above range, the resin can be filled with alumina powder at a high ratio, which is preferable from the viewpoint of suppressing an increase in the viscosity of the resin composition. The total of the first particle, the second particle, and the third particle is 100% by volume.
 この場合、第1の粒子の平均粒子径は、0.3μm以上1.0μm以下であることが好ましく、0.4μm以上0.9μm以下であることがより好ましく、0.5μm以上0.8μm以下であることがより好ましい。第1の粒子の平均粒子径が0.3μm以上であることで、粒子間の間隙に効率よく充填され、熱伝導性を向上でき、更に樹脂組成物の粘度上昇抑制の効果が得られる傾向にある。また、第1の粒子の平均粒子径が1.0μm以下であることで、平均粒子径が1.0μmを超える場合と比較して、第1の粒子の含有量が同程度の場合には、粒子の数が多くなり粒子間の熱経路の数も増える傾向にある。その一方で、平均粒子径が1.0μmを超える場合、粒子間の熱経路の数は減る傾向にある。また、平均粒子径が1.0μmを超える場合、第1の粒子内での熱伝導は速やかであるが、数の少ない熱経路での熱伝導が律速になり、粉末全体で見た場合の熱伝導性は低くなる傾向にある。しかしながら、平均粒子径が1.0μm以下の場合、個々の粒子の粒径は小さく、かつ熱経路の数は多いので、第1の粒子内での熱伝導と粒子間の熱経路における熱伝導に大きな差異が生じにくく、熱伝導の均一性が高くなる結果、熱伝導性が高くなる傾向にある。 In this case, the average particle size of the first particles is preferably 0.3 μm or more and 1.0 μm or less, more preferably 0.4 μm or more and 0.9 μm or less, and 0.5 μm or more and 0.8 μm or less. Is more preferable. When the average particle size of the first particles is 0.3 μm or more, the gaps between the particles are efficiently filled, the thermal conductivity can be improved, and the effect of suppressing the increase in viscosity of the resin composition tends to be obtained. is there. Further, when the average particle size of the first particles is 1.0 μm or less, the content of the first particles is about the same as that when the average particle size exceeds 1.0 μm. The number of particles tends to increase, and the number of thermal paths between particles also tends to increase. On the other hand, when the average particle size exceeds 1.0 μm, the number of heat paths between particles tends to decrease. Further, when the average particle size exceeds 1.0 μm, the heat conduction in the first particle is rapid, but the heat conduction in a small number of heat paths becomes rate-determining, and the heat when viewed as a whole powder. Conductivity tends to be low. However, when the average particle size is 1.0 μm or less, the particle size of each particle is small and the number of heat paths is large, so that heat conduction in the first particle and heat conduction in the heat path between particles can be achieved. Large differences are unlikely to occur, and as a result of high heat conduction uniformity, heat conductivity tends to be high.
 また、第2の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、3.0μm以上15μm以下であることが好ましく、4.0μm以上12μm以下であることがより好ましく、5.0μm以上10μm以下であることが更に好ましい。第2の粒子の平均粒子径が上記範囲にあることで、第2の粒子が粒子間の間隙に効率よく充填され、熱伝導性を向上でき、更に樹脂組成物の粘度上昇抑制の効果が得られる傾向にある。 Further, the average particle size of the second particles is preferably 3.0 μm or more and 15 μm or less, more preferably 4.0 μm or more and 12 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. It is more preferably 0 μm or more and 10 μm or less. When the average particle size of the second particles is in the above range, the second particles are efficiently filled in the gaps between the particles, the thermal conductivity can be improved, and the effect of suppressing the increase in viscosity of the resin composition is obtained. Tend to be.
 第3の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、30μm以上140μm以下であることが好ましく、35μm以上135μm以下であることがより好ましく、45μm以上130μm以下であることが更に好ましく、60μm以上120μm以下であることが更により好ましい。第3の粒子の平均粒子径が30μm以上であることで、粒子同士の接触により熱経路を効率的に形成することができるため熱伝導性を向上することができる傾向にある。更に、粒子の比表面積が小さくなることで充填率を高めることができる傾向にある。また、第3の粒子の平均粒子径が140μm以下であることで、得られる放熱部品の表面平滑性を保つことができ、更に、粒子界面の接触抵抗を低下させることができるため、熱伝導性を高めることができる傾向にある。 The average particle size of the third particles is preferably 30 μm or more and 140 μm or less, more preferably 35 μm or more and 135 μm or less, and 45 μm or more and 130 μm or less from the viewpoint of suppressing the increase in viscosity of the resin composition. It is even more preferably 60 μm or more and 120 μm or less. When the average particle diameter of the third particles is 30 μm or more, the thermal pathway can be efficiently formed by the contact between the particles, so that the thermal conductivity tends to be improved. Further, the filling rate tends to be increased by reducing the specific surface area of the particles. Further, when the average particle diameter of the third particle is 140 μm or less, the surface smoothness of the obtained heat radiating component can be maintained, and the contact resistance at the particle interface can be reduced, so that the thermal conductivity Tends to be able to increase.
 また、第1の粒子の平均球形度は、樹脂に充填した際の摩擦抵抗低下、及び粒子同士の接触面積増加の点から、0.82以上0.94以下であることが好ましく、0.84以上0.92以下であることがより好ましい。
 第2の粒子の平均球形度は、樹脂に充填した際の摩擦抵抗低下、及び粒子同士の接触面積増加の点から、0.82以上0.94以下であることが好ましく、0.84以上0.92以下であることがより好ましい。
 第3の粒子の平均球形度は、樹脂に充填した際の摩擦抵抗低下、及び粒子同士の接触面積増加の点から、0.82以上0.94以下であることが好ましく、0.84以上0.92以下であることがより好ましい。
Further, the average sphericity of the first particles is preferably 0.82 or more and 0.94 or less, preferably 0.84, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably 0.92 or less.
The average sphericity of the second particles is preferably 0.82 or more and 0.94 or less, preferably 0.84 or more and 0, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably .92 or less.
The average sphericity of the third particle is preferably 0.82 or more and 0.94 or less, preferably 0.84 or more and 0, from the viewpoint of reducing the frictional resistance when filled in the resin and increasing the contact area between the particles. It is more preferably .92 or less.
 第1の粒子におけるα結晶相の含有率は、熱伝導率向上の点から、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。上限は、例えば100質量%である。
 第2の粒子におけるα結晶相の含有率は、熱伝導率向上の点から、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。上限は、例えば100質量%である。
 第3の粒子におけるα結晶相の含有率は、熱伝導率向上の点から、80質量%以上であることが好ましく、90質量%以上であることがより好ましい。上限は、例えば100質量%である。
The content of the α crystal phase in the first particles is preferably 80% by mass or more, more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity. The upper limit is, for example, 100% by mass.
The content of the α crystal phase in the second particles is preferably 80% by mass or more, more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity. The upper limit is, for example, 100% by mass.
The content of the α crystal phase in the third particle is preferably 80% by mass or more, and more preferably 90% by mass or more, from the viewpoint of improving the thermal conductivity. The upper limit is, for example, 100% by mass.
 本実施形態において、第1の粒子としては、流動性をより向上させる観点から、未被覆のアルミナ粒子であることが好ましい。
 第2の粒子としては、流動性、及び熱伝導率を向上させる観点から、未被覆のアルミナ粒子、本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子、及び本実施形態に係る被覆アルミナ粒子であることが好ましく、未被覆のアルミナ粒子であることがより好ましい。
 第3の粒子としては、熱伝導率向上の観点から、本実施形態に係る被覆アルミナ粒子、未被覆のアルミナ粒子、及び本実施形態に係る被覆アルミナ粒子以外の被覆アルミナ粒子であることが好ましく、本実施形態に係る被覆アルミナ粒子であることがより好ましい。
 未被覆のアルミナ粒子としては、例えば、球状アルミナ粒子が挙げられる。
In the present embodiment, the first particles are preferably uncoated alumina particles from the viewpoint of further improving the fluidity.
The second particles include uncoated alumina particles, coated alumina particles other than the coated alumina particles according to the present embodiment, and coated alumina particles according to the present embodiment from the viewpoint of improving fluidity and thermal conductivity. It is preferably present, and more preferably uncoated alumina particles.
From the viewpoint of improving the thermal conductivity, the third particles are preferably coated alumina particles according to the present embodiment, uncoated alumina particles, and coated alumina particles other than the coated alumina particles according to the present embodiment. More preferably, the coated alumina particles according to the present embodiment.
Examples of the uncoated alumina particles include spherical alumina particles.
 ピーク数nが4場合、第1の粒子に由来するピークの位置は、0.05μm以上0.2μm以下の粒度域に検出され、第2の粒子に由来するピークの位置は、0.3μm以上1.0μm以下の粒度域に検出され、第3の粒子に由来するピークの位置は、3.0μm以上15μm以下の粒度域に検出され、第4の粒子に由来するピークの位置は、30μm以上150μm以下の粒度域に検出されることが好ましい。本実施形態のアルミナ粉末では、樹脂組成物の粘度上昇抑制の点から、第1の粒子に由来するピークの位置が、0.07μm以上0.1μm以下の粒度域に検出され、第2の粒子に由来するピークの位置が、0.4μm以上0.9μm以下の粒度域に検出され、第3の粒子に由来するピークの位置が、4.0μm以上12μm以下の粒度域に検出され、第4の粒子に由来するピークの位置が、35μm以上140μm以下の粒度域に検出されることが、より好ましい。また、第4の粒子が本実施形態に係る被覆アルミナ粒子であることが好ましく、それに加えて、第1の粒子、第2の粒子及び第3の粒子が未被覆のアルミナ粒子であることがより好ましい。 When the number of peaks n is 4, the position of the peak derived from the first particle is detected in the particle size range of 0.05 μm or more and 0.2 μm or less, and the position of the peak derived from the second particle is 0.3 μm or more. The position of the peak derived from the third particle is detected in the particle size range of 1.0 μm or less, and the position of the peak derived from the third particle is detected in the particle size range of 3.0 μm or more and 15 μm or less, and the position of the peak derived from the fourth particle is 30 μm or more. It is preferable to detect in a particle size range of 150 μm or less. In the alumina powder of the present embodiment, the position of the peak derived from the first particles is detected in the particle size range of 0.07 μm or more and 0.1 μm or less from the viewpoint of suppressing the increase in viscosity of the resin composition, and the second particles. The position of the peak derived from is detected in the particle size range of 0.4 μm or more and 0.9 μm or less, and the position of the peak derived from the third particle is detected in the particle size range of 4.0 μm or more and 12 μm or less. It is more preferable that the position of the peak derived from the particles of is detected in the particle size range of 35 μm or more and 140 μm or less. Further, it is preferable that the fourth particle is the coated alumina particle according to the present embodiment, and in addition, the first particle, the second particle and the third particle are uncoated alumina particles. preferable.
 本実施形態のアルミナ粉末中における第1の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、0.5体積%以上5.0体積%以下であり、1.0体積%以上4.0体積%以下であることが好ましく、1.5体積%以上3.0体積%以下であることがより好ましい。第2の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、9体積%以上20体積%以下であり、11体積%以上18体積%以下であることが好ましく、12体積%以上17体積%以下であることがより好ましい。第3の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、19体積%以上45体積%以下であり、24体積%以上41体積%以下であることが好ましく、29体積%以上39体積%以下であることがより好ましい。第4の粒子の含有率は、樹脂組成物の粘度上昇抑制の観点から、43体積%以上60体積%以下であり、45体積%以上57体積%以下であることが好ましく、46体積%以上53体積%以下であることがより好ましい。なお、第1の粒子と、第2の粒子と、第3の粒子と、第4の粒子との合計を100体積%とする。 The content of the first particles in the alumina powder of the present embodiment is 0.5% by volume or more and 5.0% by volume or less, and 1.0% by volume or more 4 from the viewpoint of suppressing the increase in viscosity of the resin composition. It is preferably 0.0% by volume or less, and more preferably 1.5% by volume or more and 3.0% by volume or less. From the viewpoint of suppressing the increase in viscosity of the resin composition, the content of the second particles is preferably 9% by volume or more and 20% by volume or less, preferably 11% by volume or more and 18% by volume or less, and 12% by volume or more and 17%. More preferably, it is by volume or less. The content of the third particles is preferably 19% by volume or more and 45% by volume or less, preferably 24% by volume or more and 41% by volume or less, and 29% by volume or more and 39% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less. The content of the fourth particles is preferably 43% by volume or more and 60% by volume or less, preferably 45% by volume or more and 57% by volume or less, and 46% by volume or more and 53% by volume, from the viewpoint of suppressing the increase in viscosity of the resin composition. More preferably, it is by volume or less. The total of the first particle, the second particle, the third particle, and the fourth particle is 100% by volume.
 また、第1の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、0.05μm以上0.2μm以下であることが好ましく、0.07μm以上0.1μm以下であることがより好ましい。第2の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、0.3μm以上1.0μm以下であることが好ましく、0.4μm以上0.9μm以下であることがより好ましい。第3粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、3.0μm以上15μm以下であることが好ましく、4.0μm以上12μm以下であることがより好ましい。第4の粒子の平均粒子径は、樹脂組成物の粘度上昇抑制の観点から、30μm以上150μm以下であることが好ましく、35μm以上140μm以下であることがより好ましい。 Further, the average particle size of the first particles is preferably 0.05 μm or more and 0.2 μm or less, and more preferably 0.07 μm or more and 0.1 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. preferable. The average particle size of the second particles is preferably 0.3 μm or more and 1.0 μm or less, and more preferably 0.4 μm or more and 0.9 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. The average particle size of the third particles is preferably 3.0 μm or more and 15 μm or less, and more preferably 4.0 μm or more and 12 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition. The average particle size of the fourth particles is preferably 30 μm or more and 150 μm or less, and more preferably 35 μm or more and 140 μm or less, from the viewpoint of suppressing the increase in viscosity of the resin composition.
 本実施形態において、アルミナ粉末中における、第1~第nの粒子の全ての合計の含有率は、熱伝導率向上の観点から、98体積%以上であることが好ましく、99体積%以上であることがより好ましい。なお、含有率の上限は、100体積%である。 In the present embodiment, the total content of all the first to nth particles in the alumina powder is preferably 98% by volume or more, preferably 99% by volume or more, from the viewpoint of improving the thermal conductivity. Is more preferable. The upper limit of the content rate is 100% by volume.
(被覆アルミナ粒子の製造方法)
 本実施形態に係る被覆アルミナ粒子の製造方法は、例えば、原料アルミナ粉末と炭素粉末とを含む混合物を、窒素ガスを含む還元雰囲気下にて、1500℃以上1700℃以下の温度で焼成して、第1焼成粉末を得る第1工程と、第1焼成粉末を、大気雰囲気下にて、600℃以上900℃以下の温度で更に焼成して本実施形態に係る被覆アルミナ粒子を得る第2工程と、を含む工程を用いることで得られる。この製造方法により、被覆層に窒化アルミニウムを含み、しかも、平均球形度が所定の高い範囲である被覆アルミナ粒子が得られる。本実施形態のアルミナ粒子が、この被覆アルミナ粒子を含むことにより、増粘を抑制でき、高い熱伝導性を有する樹脂組成物及び放熱部品が得られる。以下、詳述する。
(Manufacturing method of coated alumina particles)
In the method for producing coated alumina particles according to the present embodiment, for example, a mixture containing raw material alumina powder and carbon powder is calcined at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas. The first step of obtaining the first calcined powder and the second step of further calcining the first calcined powder at a temperature of 600 ° C. or higher and 900 ° C. or lower in an air atmosphere to obtain coated alumina particles according to the present embodiment. It is obtained by using a step including. By this production method, coated alumina particles containing aluminum nitride in the coating layer and having an average sphericity in a predetermined high range can be obtained. When the alumina particles of the present embodiment contain the coated alumina particles, thickening can be suppressed, and a resin composition and heat-dissipating parts having high thermal conductivity can be obtained. The details will be described below.
 第1工程において、まず、所定の混合機を用いて、原料アルミナ粉末と炭素粉末とを所定の混合比となるように混合する。混合方法は、原料アルミナ粉末と炭素粉末とを均一に混合できれば特に限定されず、湿式混合及び乾式混合のいずれを用いてもよい。このような混合方法としては、例えば、ボールミル混合が挙げられる。原料アルミナ粉末と炭素粉末との混合比は、原料アルミナ粉末と炭素粉末との化学量論の混合比を考慮し、反応雰囲気の形成の点から、原料アルミナ粉末100質量部に対して、炭素粉末10質量部以上50質量部以下であることが好ましく、15質量部以上45質量部以下であることがより好ましい。 In the first step, first, the raw material alumina powder and the carbon powder are mixed so as to have a predetermined mixing ratio using a predetermined mixer. The mixing method is not particularly limited as long as the raw material alumina powder and the carbon powder can be uniformly mixed, and either wet mixing or dry mixing may be used. Examples of such a mixing method include ball mill mixing. The mixing ratio of the raw material alumina powder and the carbon powder takes into consideration the mixing ratio of the stoichiometry of the raw material alumina powder and the carbon powder, and from the viewpoint of forming a reaction atmosphere, the carbon powder is based on 100 parts by mass of the raw material alumina powder. It is preferably 10 parts by mass or more and 50 parts by mass or less, and more preferably 15 parts by mass or more and 45 parts by mass or less.
 原料アルミナ粉末としては、例えば、α、γ、θ、及びηの結晶構造をもつ種々のアルミナ粒子を用いることができる。そのアルミナ粒子は、通常球状である。具体的には、原料アルミナ粉末中に含まれる、上記顕微鏡法による投影面積円相当径が1μm以上300μm以下であるアルミナ粒子の平均球形度が、通常、0.90以上であり、0.91以上0.99以下であることが好ましく、0.92以上0.98以下であることがより好ましい。その平均球形度の上限は、例えば、1.00である。平均球形度が上記範囲にあることにより、原料アルミナ粉末と炭素粉末の混合がより均一になり、反応が促進されるという効果を奏する。 As the raw material alumina powder, for example, various alumina particles having a crystal structure of α, γ, θ, and η can be used. The alumina particles are usually spherical. Specifically, the average sphericity of the alumina particles having a projected area circle equivalent diameter of 1 μm or more and 300 μm or less contained in the raw material alumina powder is usually 0.90 or more and 0.91 or more. It is preferably 0.99 or less, and more preferably 0.92 or more and 0.98 or less. The upper limit of the average sphericity is, for example, 1.00. When the average sphericity is in the above range, the mixture of the raw material alumina powder and the carbon powder becomes more uniform, and the reaction is promoted.
 原料アルミナ粉末の平均粒子径は、後述する炭素粉末よりも平均粒子径が大きいと、上記の炭素還元窒化反応がより進行しやすい点から、25μm以上140μm以下であることが好ましく、30μm以上130μm以下であることがより好ましい。 The average particle size of the raw material alumina powder is preferably 25 μm or more and 140 μm or less, preferably 30 μm or more and 130 μm or less, because the carbon reduction nitriding reaction is more likely to proceed when the average particle size is larger than that of the carbon powder described later. Is more preferable.
 原料アルミナ粉末の比表面積は、0.03m/g以上0.30m/g以下であることが好ましく、0.05m/g以上0.25m/g以下であることがより好ましい。比表面積が、上記範囲にあると、原料アルミナ粉末と炭素粉末の混合がより均一になり、反応が促進されるという効果を奏する。 The specific surface area of the alumina raw material powder is preferably from 0.03 m 2 / g or more 0.30 m 2 / g, more preferably not more than 0.05 m 2 / g or more 0.25 m 2 / g. When the specific surface area is in the above range, the mixture of the raw material alumina powder and the carbon powder becomes more uniform, and the reaction is promoted.
 本実施形態に係る炭素粉末は、平均粒子径が、30nm以上70nm以下であり、かさ密度が、0.10g/cm以上0.20g/cm以下であり、比表面積が、20m/g以上60m/g以下である。このような炭素粉末を用いることで、炭素粉末がアルミナ粒子の表面に多く付着し、また、高温における原料アルミナ粉末と窒素との反応において、炭素粉末がスペーサーとして寄与してアルミナ粒子同士の合着を抑制でき、球形度の高い被覆アルミナ粒子を好適に製造することができる。 The carbon powder according to the present embodiment has an average particle size of 30 nm or more and 70 nm or less, a bulk density of 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and a specific surface area of 20 m 2 / g. It is 60 m 2 / g or less. By using such carbon powder, a large amount of carbon powder adheres to the surface of the alumina particles, and in the reaction between the raw material alumina powder and nitrogen at high temperature, the carbon powder contributes as a spacer and coalesces the alumina particles. Can be suppressed, and coated alumina particles having a high degree of sphere can be suitably produced.
 炭素粉末の平均粒子径は、アルミナ粒子同士の合着防止効果の向上という観点から、35nm以上65nm以下であることが好ましい。 The average particle size of the carbon powder is preferably 35 nm or more and 65 nm or less from the viewpoint of improving the effect of preventing coalescence of alumina particles.
 また、炭素粉末のかさ密度は、0.10g/cm以上0.20g/cm以下であり、0.12g/cm以上0.18g/cm以下であることが好ましい。かさ密度が、上記範囲にあると、炭素粉末がアルミナ粒子の表面により均一に付着し、反応が促進されるという効果を奏する。なお、本実施形態において、かさ密度は実施例に記載の方法で測定される。 The bulk density of the carbon powder is preferably 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and preferably 0.12 g / cm 3 or more and 0.18 g / cm 3 or less. When the bulk density is in the above range, the carbon powder adheres more uniformly to the surface of the alumina particles, and the reaction is promoted. In this embodiment, the bulk density is measured by the method described in the examples.
 更に、炭素粉末の比表面積は、20m/g以上60m/g以下であり、25m/g以上55m/g以下であることが好ましい。比表面積が、上記範囲にあると、アルミナ粒子同士の合着防止効果の向上という効果を奏する。 Further, the specific surface area of the carbon powder is preferably 20 m 2 / g or more and 60 m 2 / g or less, and preferably 25 m 2 / g or more and 55 m 2 / g or less. When the specific surface area is within the above range, the effect of preventing coalescence of alumina particles is improved.
 炭素粉末は、全細孔容積が1mL/g以上4mL/g以下であることが好ましく、1.5mL/g以上3mL/g以下であることがより好ましい。全細孔容積が、上記範囲にあると、窒素ガスが炭素内に侵入しやすくなり、炭素粉末中で、上記の炭素還元窒化反応がより進行しやすくなる。なお、本実施形態において、全細孔容積は実施例に記載の方法で測定される。 The total pore volume of the carbon powder is preferably 1 mL / g or more and 4 mL / g or less, and more preferably 1.5 mL / g or more and 3 mL / g or less. When the total pore volume is in the above range, nitrogen gas easily penetrates into carbon, and the above carbon reduction nitriding reaction is more likely to proceed in the carbon powder. In this embodiment, the total pore volume is measured by the method described in Examples.
 炭素粉末としては、例えば、アセチレンブラック、ファーネスブラック、及びサーマルブラックなどのカーボンブラック、及び粉末黒鉛が挙げられる。炭素粉末としては、純度などの点から、アセチレンブラックが好ましい。 Examples of the carbon powder include carbon black such as acetylene black, furnace black, and thermal black, and powdered graphite. As the carbon powder, acetylene black is preferable from the viewpoint of purity and the like.
 第1工程では、上記混合物を、窒素ガスを含む還元雰囲気下にて、1500℃以上1700℃以下の温度で焼成して、第1焼成粉末を得る。なお、原料アルミナ粉末の表面における窒化アルミニウムを含む被覆層の生成は、炭素還元窒化反応を示す下記の式に基づいて進行する。
   Al+3C+N→2AlN+3CO
 窒素ガスを含むガス還元雰囲気は、例えば、リファイニング装置に循環させて酸素及び水分を除去するような還元雰囲気炉を用いることで得られる。また、ガスとしては、窒素ガスの他に、二酸化炭素ガスなどの不可避成分が含まれていてもよい。
In the first step, the mixture is calcined at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas to obtain a first calcined powder. The formation of the coating layer containing aluminum nitride on the surface of the raw material alumina powder proceeds based on the following formula showing the carbon reduction nitriding reaction.
Al 2 O 3 + 3C + N 2 → 2AlN + 3CO
The gas reducing atmosphere containing nitrogen gas can be obtained, for example, by using a reducing atmosphere furnace that circulates in a refining apparatus to remove oxygen and water. Further, the gas may contain an unavoidable component such as carbon dioxide gas in addition to nitrogen gas.
 混合物の焼成の際に、混合物に、窒素ガスを1L/分以上10L/分で供給することが、反応促進性と生産性との点から、好ましい。より好ましくは、3L/分以上7L/分で供給することである。 When firing the mixture, it is preferable to supply nitrogen gas to the mixture at 1 L / min or more and 10 L / min from the viewpoint of reaction promotion and productivity. More preferably, it is supplied at 3 L / min or more and 7 L / min.
 第1工程における焼成温度は、本実施形態に係る被覆アルミナ粒子の被覆層と球形度とを制御する点から、1550℃以上1650℃以下であることが好ましい。また、焼成時間は、生産性を考慮すると、通常、4時間以上12時間以下である。なお、窒素ガス量が多く、焼成温度が高く、及び焼成時間が長いほど、被覆層が厚くなる傾向にある。 The firing temperature in the first step is preferably 1550 ° C. or higher and 1650 ° C. or lower from the viewpoint of controlling the coating layer and the sphericity of the coated alumina particles according to the present embodiment. Further, the firing time is usually 4 hours or more and 12 hours or less in consideration of productivity. The larger the amount of nitrogen gas, the higher the firing temperature, and the longer the firing time, the thicker the coating layer tends to be.
 第2工程では、第1工程で得られた第1焼成粉末を、大気雰囲気下にて、600℃以上900℃以下の温度で更に焼成して被覆アルミナ粒子を得る。第2工程において、第1焼成粉末を焼成することで、残存する炭素粉末を除去することができ、本実施形態に係る被覆アルミナ粒子を得ることができる。
 第2工程における焼成温度は、本実施形態に係る被覆アルミナ粒子の炭素量制御の点から、650℃以上850℃以下であることが好ましい。また、焼成時間は、効率的に炭素粉末を除去できる点を考慮すると、2時間以上6時間以下であることが好ましい。
In the second step, the first calcined powder obtained in the first step is further calcined at a temperature of 600 ° C. or higher and 900 ° C. or lower in an air atmosphere to obtain coated alumina particles. By firing the first fired powder in the second step, the remaining carbon powder can be removed, and the coated alumina particles according to the present embodiment can be obtained.
The firing temperature in the second step is preferably 650 ° C. or higher and 850 ° C. or lower from the viewpoint of controlling the carbon content of the coated alumina particles according to the present embodiment. Further, the firing time is preferably 2 hours or more and 6 hours or less in consideration of the fact that carbon powder can be efficiently removed.
 また、第2工程では、第1焼成粉末を焼成する際に、第1焼成粉末に、空気を1L/分以上3L/分で供給することが、本実施形態に係る被覆アルミナ粒子の炭素量制御の点から、好ましい。より好ましくは、1.5L/分以上2.5L/分で供給することである。 Further, in the second step, when the first calcined powder is calcined, air is supplied to the first calcined powder at 1 L / min or more and 3 L / min to control the carbon content of the coated alumina particles according to the present embodiment. From the point of view, it is preferable. More preferably, it is supplied at 1.5 L / min or more and 2.5 L / min.
(アルミナ粉末の製造方法)
 本実施形態に係るアルミナ粉末は、本実施形態に係る被覆アルミナ粒子1種をそのまま用いてもよい。また、本実施形態に係るアルミナ粉末は、2種以上の被覆アルミナ粒子を適宜混合することで得られてもよい。さらに、本実施形態に係るアルミナ粉末は、本実施形態に係る被覆アルミナ粒子の少なくとも1種と、それ以外のフィラー等とを適宜混合することで得られてもよい。混合方法としては、例えば、ボールミル混合が挙げられる。
(Alumina powder manufacturing method)
As the alumina powder according to the present embodiment, one kind of coated alumina particles according to the present embodiment may be used as it is. Further, the alumina powder according to the present embodiment may be obtained by appropriately mixing two or more kinds of coated alumina particles. Further, the alumina powder according to the present embodiment may be obtained by appropriately mixing at least one kind of coated alumina particles according to the present embodiment with other fillers and the like. Examples of the mixing method include ball mill mixing.
[樹脂組成物及びその製造方法]
 本実施形態に係る樹脂組成物は、少なくとも、樹脂と、本実施形態に係るアルミナ粉末とを含む。本実施形態に係る樹脂組成物は、上記アルミナ粉末を含むことにより、増粘を抑制できると共に高い熱伝導性を有することが可能となる。
[Resin composition and method for producing the same]
The resin composition according to the present embodiment contains at least a resin and an alumina powder according to the present embodiment. By containing the above alumina powder, the resin composition according to the present embodiment can suppress thickening and have high thermal conductivity.
(樹脂)
 樹脂としては、熱可塑性樹脂及びそのオリゴマー、エラストマー類等の種々の高分子化合物を用いることでき、例えば、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、ウレタン樹脂、アクリル樹脂、及びフッ素樹脂;ポリイミド、ポリアミドイミド、及びポリエーテルイミド等のポリアミド;ポリブチレンテレフタレート、及びポリエチレンテレフタレート等のポリエステル;ポリフェニレンスルフィド、芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、AAS(アクリロニトリル・アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム・スチレン)樹脂、EVA(エチレン酢酸ビニル共重合体)樹脂、及びシリコーン樹脂等を用いることができる。これらの樹脂は、1種単独で、又は2種以上を適宜混合して用いることができる。
(resin)
As the resin, various polymer compounds such as thermoplastic resin and its oligomers and elastomers can be used. For example, epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, urethane resin, acrylic resin, and Fluorine resin; polyamides such as polyimide, polyamideimide, and polyetherimide; polyesters such as polybutylene terephthalate and polyethylene terephthalate; polyphenylene sulfide, aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS (Acrylonitrile / butadiene / styrene) resin, AAS (acrylonitrile / acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, EVA (ethylene vinyl acetate copolymer) resin, silicone resin, etc. Can be used. These resins can be used alone or in admixture of two or more.
 これらの樹脂の中でも、高放熱特性が得られる点から、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、アクリル樹脂、フッ素樹脂、ポリイミド、ポリフェニレンスルフィド、ポリカーボネート、ABS樹脂、及びシリコーン樹脂が好ましく、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、及びアクリル樹脂がより好ましく、シリコーン樹脂が更に好ましい。
 シリコーン樹脂としては、メチル基及びフェニル基などの有機基を有する一液型または二液型付加反応型液状シリコーンから得られるゴム又はゲルを用いることが好ましい。このようなゴム又はゲルとしては、例えば、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製の「YE5822A液/YE5822B液(商品名)」、及び東レ・ダウコーニング社製の「SE1885A液/SE1885B液(商品名)」などを挙げることができる。
Among these resins, epoxy resin, phenol resin, urethane resin, acrylic resin, fluororesin, polyimide, polyphenylene sulfide, polycarbonate, ABS resin, and silicone resin are preferable, and silicone resin and epoxy are preferable from the viewpoint of obtaining high heat dissipation characteristics. Resins, urethane resins, and acrylic resins are more preferred, and silicone resins are even more preferred.
As the silicone resin, it is preferable to use a rubber or gel obtained from a one-component or two-component addition reaction type liquid silicone having an organic group such as a methyl group and a phenyl group. Examples of such rubber or gel include "YE5822A solution / YE5822B solution (trade name)" manufactured by Momentive Performance Materials Japan LLC and "SE1885A solution / SE1885B solution" manufactured by Toray Dow Corning Co., Ltd. Product name) ”and so on.
(アルミナ粉末及び樹脂の含有量)
 本実施形態の樹脂組成物において、熱伝導率向上の点から、その樹脂組成物の全量に対して、本実施形態に係るアルミナ粉末の含有量が67体積%以上88体積%以下であることが好ましく、71体積%以上85体積%以下であることがより好ましい。本実施形態に係るアルミナ粉末は、樹脂に充填しても増粘し難いので、上記の範囲内で樹脂組成物中に含まれても、樹脂組成物の増粘を抑制することが可能である。
(Contents of alumina powder and resin)
In the resin composition of the present embodiment, from the viewpoint of improving the thermal conductivity, the content of the alumina powder according to the present embodiment is 67% by volume or more and 88% by volume or less with respect to the total amount of the resin composition. It is preferably 71% by volume or more and 85% by volume or less. Since the alumina powder according to the present embodiment is difficult to thicken even when filled in the resin, it is possible to suppress the thickening of the resin composition even if it is contained in the resin composition within the above range. ..
 本実施形態の樹脂組成物において、樹脂組成物の成形性の点から、その樹脂組成物の全量に対して、本実施形態に係る樹脂の含有量が12体積%以上33体積%以下であることが好ましく、15体積%以上29%以下であることがより好ましい。 In the resin composition of the present embodiment, from the viewpoint of moldability of the resin composition, the content of the resin according to the present embodiment is 12% by volume or more and 33% by volume or less with respect to the total amount of the resin composition. Is preferable, and more preferably 15% by volume or more and 29% or less.
(その他の成分)
 本実施形態の樹脂組成物には、本実施形態の特性が損なわれない範囲において、本実施形態に係るアルミナ粉末及び樹脂以外に、必要に応じて、溶融シリカ、結晶シリカ、ジルコン、珪酸カルシウム、炭酸カルシウム、炭化珪素、窒化アルミ、窒化ホウ素、ベリリア、及びジルコニア等の無機フィラー;メラミン及びベンゾグアナミン等の窒素含有化合物、オキサジン環含有化合物、及びリン系化合物のホスフェート化合物、芳香族縮合リン酸エステル、及び含ハロゲン縮合リン酸エステル等の難燃性の化合物;添加剤等を含んでもよい。添加剤としては、マレイン酸ジメチル等の反応遅延剤、硬化剤、硬化促進剤、難燃助剤、難燃剤、着色剤、粘着付与剤、紫外線吸収剤、酸化防止剤、蛍光増白剤、光増感剤、増粘剤、滑剤、消泡剤、表面調整剤、光沢剤、及び重合禁止剤等が挙げられる。これらの成分は、1種単独で、又は2種以上を適宜混合して用いることができる。本実施形態の樹脂組成物において、その他の成分の含有率は、通常、それぞれ0.1質量%以上5質量%以下である。
(Other ingredients)
In addition to the alumina powder and the resin according to the present embodiment, the resin composition of the present embodiment may contain, if necessary, molten silica, crystalline silica, zirconium, calcium silicate, as long as the characteristics of the present embodiment are not impaired. Inorganic fillers such as calcium carbonate, silicon carbide, aluminum nitride, boron nitride, beryllia, and zirconia; nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and phosphate compounds of phosphorus compounds, aromatic condensed phosphates, And flame-retardant compounds such as halogen-containing condensed phosphoric acid ester; may contain additives and the like. Additives include reaction retarders such as dimethyl maleate, curing agents, curing accelerators, flame retardants, flame retardants, colorants, tackifiers, UV absorbers, antioxidants, optical brighteners, and light. Examples thereof include sensitizers, thickeners, lubricants, defoaming agents, surface conditioners, brighteners, and polymerization inhibitors. These components may be used alone or in admixture of two or more. In the resin composition of the present embodiment, the content of other components is usually 0.1% by mass or more and 5% by mass or less, respectively.
(樹脂組成物の製造方法)
 本実施形態の樹脂組成物の製造方法は、例えば、樹脂と、アルミナ粉末と、必要に応じてその他の成分を十分に攪拌して得る方法が挙げられる。本実施形態の樹脂組成物は、例えば、各成分の所定量を、ブレンダー及びヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、及び一軸又は二軸押し出し機等によって混練し、冷却後、粉砕することによって製造することができる。
(Manufacturing method of resin composition)
Examples of the method for producing the resin composition of the present embodiment include a method of sufficiently stirring the resin, the alumina powder, and other components as needed. In the resin composition of the present embodiment, for example, a predetermined amount of each component is blended with a blender, a Henschel mixer or the like, kneaded with a heating roll, a kneader, a uniaxial or biaxial extruder or the like, cooled, and then pulverized. Can be manufactured by
[放熱部品]
 本実施形態に係る放熱部品は、本実施形態に係るアルミナ粉末又は樹脂組成物を含む。本実施形態に係る放熱部品は、上記アルミナ粉末又は樹脂組成物を用いることで、高い熱伝導性を実現できる、すなわち、高い放熱性を有することができる。放熱部品としては、例えば、放熱シート、放熱グリース、放熱スペーサー、半導体封止材、及び放熱塗料(放熱コート剤)が挙げられる。
[Heat dissipation parts]
The heat radiating component according to the present embodiment includes the alumina powder or the resin composition according to the present embodiment. By using the above alumina powder or resin composition, the heat radiating component according to the present embodiment can realize high thermal conductivity, that is, can have high heat radiating property. Examples of the heat radiating component include a heat radiating sheet, heat radiating grease, heat radiating spacer, semiconductor encapsulant, and heat radiating paint (heat radiating coating agent).
 放熱シートは、通常、発熱性電子部品及び電子デバイス等から発生した熱を除去するための絶縁性の熱伝導性シートである。放熱シートは、本実施形態に係るアルミナ粉末又は樹脂組成物を含むものであれば特に限定されない。本実施形態の放熱シートに含まれるアルミナ粉末以外の材料としては、例えば、シリコーンゴムが挙げられる。放熱シートは、主として、放熱フィン又は金属板に取り付けて用いられる。放熱シートは、例えば、本実施形態に係るアルミナ粉末と、シリコーンゴムとを、溶剤キャスト法、及び押し出し成膜等の方法でシート状に成形することにより得ることができる。シート状に成形する際に、脱泡することが好ましい。放熱シートの厚さとしては、通常10μm以上300μm以下であることが好ましい。 The heat dissipation sheet is usually an insulating heat conductive sheet for removing heat generated from heat-generating electronic components and electronic devices. The heat radiating sheet is not particularly limited as long as it contains the alumina powder or resin composition according to the present embodiment. Examples of the material other than the alumina powder contained in the heat radiating sheet of the present embodiment include silicone rubber. The heat radiating sheet is mainly used by being attached to a heat radiating fin or a metal plate. The heat radiating sheet can be obtained, for example, by molding the alumina powder according to the present embodiment and silicone rubber into a sheet by a solvent casting method, an extrusion film formation, or the like. It is preferable to defoam when forming into a sheet. The thickness of the heat radiating sheet is usually preferably 10 μm or more and 300 μm or less.
 放熱グリースは、通常、発熱部材と放熱部材との間に塗布され、放熱部材で発生した熱を放熱部材へ効率的に伝導して、放熱を促進するために用いられる。放熱グリースは、本実施形態のアルミナ粉末又は樹脂組成物を含むものであれば特に限定されない。本実施形態の放熱グリースに含まれるアルミナ粉末以外の材料としては、例えば、シリコーンオイル等の有機ケイ素化合物、及びポリα-オレフィンオイル等の炭化水素系合成油が挙げられる。放熱グリースは、例えば、有機ケイ素化合物又は炭化水素系合成油に、本実施形態のアルミナ粉末を分散させて、半固体状にすることで得られる。また、放熱グリースは、有機ケイ素化合物又は炭化水素系合成油に、本実施形態のアルミナ粉末を分散させた樹脂組成物を用いて、この樹脂組成物を半固体状にすることで得られてもよい。 The heat radiating grease is usually applied between the heat generating member and the heat radiating member, and is used to efficiently conduct the heat generated by the heat radiating member to the heat radiating member to promote heat dissipation. The thermal grease is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment. Examples of materials other than the alumina powder contained in the thermal paste of the present embodiment include organosilicon compounds such as silicone oil and hydrocarbon-based synthetic oils such as poly α-olefin oil. The thermal grease can be obtained, for example, by dispersing the alumina powder of the present embodiment in an organosilicon compound or a hydrocarbon-based synthetic oil to make it semi-solid. Further, the thermal grease may be obtained by making this resin composition into a semi-solid state by using a resin composition in which the alumina powder of the present embodiment is dispersed in an organosilicon compound or a hydrocarbon-based synthetic oil. Good.
 放熱スペーサーは、通常、発熱性電子部品及び電子デバイスと、それらを収容するケースとの間の空間を埋めるために使われる。この放熱スペーサーを用いることにより、発熱性電子部品及び電子デバイス等から発生した熱を電子機器のケース等に直接伝熱し、放熱することができる。放熱スペーサーは、本実施形態のアルミナ粉末又は樹脂組成物を含むものであれば特に限定されない。本実施形態の放熱スペーサーに含まれるアルミナ粉末以外の材料としては、例えば、シリコーンゴムが挙げられる。放熱スペーサーは、通常、放熱シートと同様の方法により得ることができるが、その厚さは、放熱シートよりも厚い。 The heat dissipation spacer is usually used to fill the space between the heat-generating electronic components and devices and the case that houses them. By using this heat radiating spacer, the heat generated from the heat-generating electronic component and the electronic device can be directly transferred to the case of the electronic device and radiated. The heat radiating spacer is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment. Examples of the material other than the alumina powder contained in the heat radiating spacer of the present embodiment include silicone rubber. The heat radiating spacer can usually be obtained by the same method as the heat radiating sheet, but its thickness is thicker than that of the heat radiating sheet.
 半導体封止材は、半導体素子などの電子部品から発生した熱を除去し、かつ、電子部品を外部刺激から保護するために用いられる。半導体封止材は、本実施形態のアルミナ粉末又は樹脂組成物を含むものであれば特に限定されない。半導体封止材は、例えば、本実施形態のアルミナ粉末又は樹脂組成物と、封止材料用途で一般的に用いられる各種公知の添加剤又は溶媒等とを、公知のミキサーを用いて混合することで製造することができる。混合の際の各種成分、溶媒の添加方法は、一般に公知の方法を適宜適用でき、特に限定されない。 The semiconductor encapsulant is used to remove heat generated from electronic components such as semiconductor elements and to protect the electronic components from external stimuli. The semiconductor encapsulant is not particularly limited as long as it contains the alumina powder or resin composition of the present embodiment. For the semiconductor encapsulant, for example, the alumina powder or resin composition of the present embodiment and various known additives or solvents generally used for encapsulant materials are mixed using a known mixer. Can be manufactured in. As a method for adding various components and solvents at the time of mixing, generally known methods can be appropriately applied and are not particularly limited.
 放熱塗料は、熱源を有する機械部品、電気製品、及び電気部品などに塗布して、それらの部品等の放熱性を高めるために用いられる。放熱塗料は、本実施形態のアルミナ粉末又は樹脂組成物と、溶剤とを含むものであれば限定されない。本実施形態のアルミナ粉末は、樹脂にアルミナ粉末を充填する際に粘度上昇を抑制できるため、溶剤中でも好適な粘度を維持することができる。溶剤としては、例えば、水、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル、シクロヘキサノン、エチルベンゼン、キシレン、メタクリル酸メチル、及び1-ブタノールが挙げられる。これらの溶剤は、1種単独で、又は2種以上を適宜混合して用いることができる。また、機械部品としては、例えば、エンジン、ボイラー、ブロワー、及びポンプが挙げられる。電気製品としては、例えば、照明、太陽電池モジュール、及び冷蔵庫が挙げられる。電気部品としては、例えば、回路基板が挙げられる。 The heat-dissipating paint is applied to mechanical parts, electric products, electric parts, etc. that have a heat source, and is used to improve the heat-dissipating properties of those parts. The heat-dissipating paint is not limited as long as it contains the alumina powder or resin composition of the present embodiment and a solvent. Since the alumina powder of the present embodiment can suppress an increase in viscosity when the resin is filled with the alumina powder, it is possible to maintain a suitable viscosity even in a solvent. Examples of the solvent include water, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate, cyclohexanone, ethylbenzene, xylene, methyl methacrylate, and 1-butanol. These solvents can be used alone or in admixture of two or more. Further, examples of mechanical parts include engines, boilers, blowers, and pumps. Examples of electrical products include lighting, solar cell modules, and refrigerators. Examples of the electric component include a circuit board.
 以下に実施例及び比較例を示し、本発明を詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 Examples and comparative examples are shown below to explain the present invention in detail, but the present invention is not limited to these examples.
〔評価方法〕
(1)被覆アルミナ粒子における平均球形度、及び割合
 アルミナ粉末から目開き53μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて被覆アルミナ粒子を分取した。
 上記の顕微鏡法のとおり、走査型電子顕微鏡(日本電子社製JSM-6301F型)にて撮影した粒子像を画像解析装置(マウンテック社製「MacView Ver.4」(商品名))に取り込み、写真から粒子の投影面積(A)と周囲長(PM)を測定した。それらの値を用いて、個々の粒子の球形度及びその割合を求め、また、個々の粒子の球形度の相加平均値を平均球形度とした。なお、参考として、本実施形態に係る被覆アルミナ粒子のSEM像(500倍)を図1に示した。
〔Evaluation methods〕
(1) Average Spherical Degree and Ratio of Coated Alumina Particles The coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 μm.
As described in the above microscope method, the particle image taken by a scanning electron microscope (JSM-6301F type manufactured by JEOL Ltd.) is taken into an image analyzer (“MacView Ver.4” (trade name) manufactured by Mountech Co., Ltd.) and photographed. The projected area (A) and the peripheral length (PM) of the particles were measured from. Using these values, the sphericity of each particle and its ratio were obtained, and the arithmetic mean value of the sphericity of each particle was taken as the average sphericity. For reference, an SEM image (500 times) of the coated alumina particles according to this embodiment is shown in FIG.
(2)平均粒子径及び粒度分布(ピーク数)
 平均粒子径及び粒度分布(ピーク数)は、レーザー回折光散乱法粒度分布測定装置(マルバーン社製、製品名「マスターサイザー3000」、湿式分散ユニット:Hydro MV装着)により測定した。測定に際して、溶媒には水を用い、前処理として2分間、トミー精工社製の超音波発生器UD-200(超微量チップTP-040装着)(製品名)を用いて200Wの出力をかけて分散処理した。分散処理後の粒子を、レーザー散乱強度が10~15%になるように分散ユニットに滴下した。分散ユニットスターラーの撹拌速度は1750rpm、超音波モードは無しとした。粒度分布の解析は粒子径0.01~3500μmの範囲を100分割にして行った。水の屈折率には1.33を用い、アルミナ粒子、及び被覆アルミナ粒子の屈折率には1.768を用いた。測定した質量基準の粒度分布において、累積質量が50%となる粒子を平均粒子径とした。また、ピークは、上記の粒径範囲に検出される極大点とした。
(2) Average particle size and particle size distribution (number of peaks)
The average particle size and particle size distribution (number of peaks) were measured by a laser diffraction light scattering method particle size distribution measuring device (manufactured by Malvern, product name "Mastersizer 3000", wet dispersion unit: Hydro MV mounted). In the measurement, water was used as the solvent, and 200 W output was applied for 2 minutes as a pretreatment using the ultrasonic generator UD-200 (with ultratrace chip TP-040) (product name) manufactured by Tomy Seiko. Distributed processing was performed. The particles after the dispersion treatment were dropped onto the dispersion unit so that the laser scattering intensity was 10 to 15%. The stirring speed of the dispersion unit stirrer was 1750 rpm, and there was no ultrasonic mode. The particle size distribution analysis was performed by dividing the particle size range of 0.01 to 3500 μm into 100 parts. 1.33 was used for the refractive index of water, and 1.768 was used for the refractive index of the alumina particles and the coated alumina particles. In the measured mass-based particle size distribution, the particles having a cumulative mass of 50% were defined as the average particle size. The peak was set as the maximum point detected in the above particle size range.
(3)被覆アルミナ粒子中の窒化アルミニウムの含有率
 アルミナ粉末から目開き53μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて被覆アルミナ粒子を分取した。
 被覆アルミナ粒子中の窒化アルミニウムの含有率(以下、「AlN含有率」とも称す)は、粉末X線回折パターンのリートベルト解析により測定した。被覆アルミナ粒子をサンプルホルダに詰め、X線回折装置(ブルカー社製「D8 ADVANCE」(製品名)、検出器:LynxEye(製品名))を用いて測定した。測定条件は、X線源:CuKα(λ=1.5406Å)、測定法:連続スキャン法、スキャン速度:0.017°/2.0sec、管電圧:45kV、管電流:360mA、発散スリット:0.5°、ソーラースリット:4°、測定範囲:2θ=10~70°とした。得られたX線回折パターンを基に、解析ソフトTOPASを用いたリートベルト解析による定量分析によって窒化アルミニウムの含有率を求めた。
(3) Content of Aluminum Nitride in Coated Alumina Particles The coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 μm.
The content of aluminum nitride in the coated alumina particles (hereinafter, also referred to as “AlN content”) was measured by Rietveld analysis of the powder X-ray diffraction pattern. The coated alumina particles were packed in a sample holder and measured using an X-ray diffractometer (“D8 ADVANCE” (product name) manufactured by Bruker Co., Ltd., detector: LyncEye (product name)). The measurement conditions are X-ray source: CuKα (λ = 1.5406Å), measurement method: continuous scanning method, scanning speed: 0.017 ° / 2.0sec, tube voltage: 45kV, tube current: 360mA, divergence slit: 0. 5.5 °, solar slit: 4 °, measurement range: 2θ = 10 to 70 °. Based on the obtained X-ray diffraction pattern, the content of aluminum nitride was determined by quantitative analysis by Rietveld analysis using analysis software TOPAS.
(4)炭素量
 アルミナ粉末から目開き53μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて被覆アルミナ粒子を分取した。
 その後、炭素/硫黄同時分析計(LECO社製CS-444LS型(商品名))を用いて、被覆アルミナ粒子中における炭素量を測定し、検量線法にて、炭素量を定量した。具体的には、まず、日本鉄鋼標準試料の63炭素鋼を標準物質として検量線を求めた。その後、実施例及び比較例で得られた被覆アルミナ粒子0.3gを助燃剤である金属鉄(LECO社製「IRON CHIP」(製品名))、及び金属タングステン(LECO社製「CECOCEL II」(製品名))と共に、酸素雰囲気下で、炭素含有物が完全に分解し、全炭素がCOに変換されるまで酸化燃焼し、生成したCO量を赤外検出器で測定して、炭素量を求めた。
(4) Carbon Amount Coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 μm.
Then, the carbon amount in the coated alumina particles was measured using a carbon / sulfur simultaneous analyzer (CS-444LS type (trade name) manufactured by LECO), and the carbon amount was quantified by a calibration curve method. Specifically, first, a calibration curve was obtained using 63 carbon steel, which is a standard sample of Japanese steel, as a standard substance. After that, 0.3 g of the coated alumina particles obtained in Examples and Comparative Examples were used as a combustion improver for metallic iron (“IRON CHIP” (product name) manufactured by LECO) and metallic tungsten (“CECOCEL II” manufactured by LECO). along with the product name)), in an oxygen atmosphere, a carbon-containing material is completely degraded, and oxidative combustion until all carbon is converted into CO 2, the generated amount of CO 2 as measured by infrared detector, carbon I asked for the amount.
(5)被覆層の厚さ
 アルミナ粉末から目開き53μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて被覆アルミナ粒子を分取した。
 図1に示すとおり、被覆アルミナ粒子における被覆層の厚さは、断面EPMA分析により測定した。まず、被覆アルミナ粒子をG-2エポキシ樹脂(Gatan社製)に包埋し、断面ミリング後にオスミウムコーティングを行った。コーティング後のサンプルを電子線マイクロアナライザー(日本電子社製JXA-8230(製品名))を用い、N元素のマッピング分析を行った。加速電圧は15kVとし、照射電流は5×10-8Aとした。得られたマッピング画像を画像解析装置(マウンテック社製「MacView Ver.4」(商品名))に取り込み、被覆層の厚さを求めた。1つの粒子に対し、10箇所の厚さを求め、その相加平均値を1つの粒子の被覆層の厚さとした。このようにして得られた任意の粒子200個の被覆層の厚さを求め、その相加平均値を被覆アルミナ粒子における被覆層の厚さとした。
(5) Thickness of coating layer The coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 μm.
As shown in FIG. 1, the thickness of the coating layer in the coated alumina particles was measured by cross-sectional EPMA analysis. First, the coated alumina particles were embedded in a G-2 epoxy resin (manufactured by Gatan), and osmium coating was performed after cross-sectional milling. The coated sample was subjected to N element mapping analysis using an electron probe microanalyzer (JXA-8230 (product name) manufactured by JEOL Ltd.). The accelerating voltage was 15 kV, and the irradiation current was 5 × 10-8 A. The obtained mapping image was taken into an image analyzer (“MacView Ver.4” (trade name) manufactured by Mountech Co., Ltd.), and the thickness of the coating layer was determined. The thickness of 10 points was obtained for one particle, and the arithmetic mean value was taken as the thickness of the coating layer of one particle. The thickness of the coating layer of 200 arbitrary particles obtained in this manner was determined, and the arithmetic mean value thereof was taken as the thickness of the coating layer in the coated alumina particles.
(6)比表面積
 アルミナ粉末から目開き53μmのJIS規格のステンレス製試験用篩を用いた篩上品を用いて被覆アルミナ粒子を分取した。
 比表面積の測定は、Macsorb社製HM-モデル1208を用いて行った。測定に先立ち、窒素ガス雰囲気中で300℃、18分間加熱して被覆アルミナ粒子の前処理を行った。なお、吸着ガスには、窒素30%、ヘリウム70%の混合ガスを用い、本体流量計の指示値が25ml/minになるように流量を調整した。
(6) Specific Surface Area The coated alumina particles were separated from the alumina powder using a sieve product using a JIS standard stainless steel test sieve having a mesh size of 53 μm.
The specific surface area was measured using HM-Model 1208 manufactured by Macsorb. Prior to the measurement, the coated alumina particles were pretreated by heating at 300 ° C. for 18 minutes in a nitrogen gas atmosphere. A mixed gas of 30% nitrogen and 70% helium was used as the adsorbed gas, and the flow rate was adjusted so that the indicated value of the main body flow meter was 25 ml / min.
(7)かさ密度
 炭素粉末のかさ密度は、JIS K 5101-12-2に準拠して測定した。
(7) Bulk Density The bulk density of the carbon powder was measured according to JIS K 5101-12-2.
(8)全細孔容積
 炭素粉末の全細孔容積は、細孔分布測定装置(島津製作所社製AutoPore IV 9520型(商品名))を用いた水銀圧入法によって測定した。
(8) Total Pore Volume The total pore volume of the carbon powder was measured by a mercury injection method using a pore distribution measuring device (AutoPore IV 9520 type (trade name) manufactured by Shimadzu Corporation).
(9)アルミナ粉末中のアルミナと窒化アルミニウムとの合計の含有率
 アルミナ粉末中のアルミナと窒化アルミニウムとの合計の含有率(以下、「合計含有率」とも称す。)は、粉末X線回折パターンのリートベルト解析により測定した。上述したアルミナ粉末中の窒化アルミニウムの含有率と同様の手順でX線回折測定を実施し、得られたX線回折パターンを基に、解析ソフトTOPASを用いたリートベルト解析による定量分析によってアルミナと窒化アルミニウムの含有率を求めた。
(9) Total content of alumina and aluminum nitride in alumina powder The total content of alumina and aluminum nitride in alumina powder (hereinafter, also referred to as “total content”) is a powder X-ray diffraction pattern. It was measured by Rietveld analysis. X-ray diffraction measurement was carried out in the same procedure as the content of aluminum nitride in the alumina powder described above, and based on the obtained X-ray diffraction pattern, quantitative analysis by Rietveld analysis using the analysis software TOPAS was performed to obtain alumina. The content of aluminum nitride was determined.
(10)粘度
 実施例及び比較例にて得られたアルミナ粉末をシリコーンオイル(信越化学工業社製「KF96-100cs」(製品名))に、アルミナ粉末の充填率が75vol%となるように投入した。これを自転・公転ミキサー(シンキー社製「あわとり練太郎 ARE-310」(製品名))を用いて回転数2200rpmで30秒間混合後、真空脱泡して樹脂組成物を得た。得られた樹脂組成物をレオメーター(AntonーPaar社製「MCR102」(製品名))を用いせん断粘度を測定した。測定条件は、温度:30℃、プレート:φ25mmパラレルプレート、ギャップ:1mmとした。せん断速度は0.01s-1から10s-1まで連続的に変化させながら測定し、5s-1の時の粘度を読み取った。
(10) Viscosity The alumina powders obtained in Examples and Comparative Examples were added to silicone oil (“KF96-100cs” (product name) manufactured by Shin-Etsu Chemical Co., Ltd.) so that the filling rate of the alumina powder was 75 vol%. did. This was mixed for 30 seconds at a rotation speed of 2200 rpm using a rotation / revolution mixer (“Awatori Rentaro ARE-310” (product name) manufactured by Shinky Co., Ltd.), and then vacuum defoamed to obtain a resin composition. The shear viscosity of the obtained resin composition was measured using a rheometer (“MCR102” (product name) manufactured by Antonio-Par). The measurement conditions were temperature: 30 ° C., plate: φ25 mm parallel plate, gap: 1 mm. Shear rate measured while continuously changing from 0.01s -1 to 10s -1, was read viscosity at a 5s -1.
(11)熱伝導率
 実施例及び比較例にて得られたアルミナ粉末をシリコーン樹脂(東レ・ダウコーニング社製SE-1885A液、及びB液)に、アルミナ粉末の充填率が80vol%になるように投入した。これを撹拌混合後、真空脱泡し厚さ3mmに加工後、120℃、5時間加熱し樹脂組成物を得た。得られた樹脂組成物を熱伝導率測定装置(日立テクノロジーアンドサービス社製樹脂材料熱抵抗測定装置「TRM-046RHHT」(製品名))を用い、ASTM D5470に準拠した定常法で熱伝導率を測定した。樹脂組成物は幅10mm×10mmに加工し、2Nの荷重をかけながら測定を実施した。
(11) Thermal conductivity The alumina powders obtained in Examples and Comparative Examples were mixed with silicone resin (SE-1885A solution and B solution manufactured by Toray Dow Corning Co., Ltd.) so that the filling rate of the alumina powder was 80 vol%. I put it in. This was stirred and mixed, vacuum defoamed, processed to a thickness of 3 mm, and heated at 120 ° C. for 5 hours to obtain a resin composition. The obtained resin composition is subjected to thermal conductivity by a steady-state method based on ASTM D5470 using a thermal conductivity measuring device (Hitachi Technology and Service Co., Ltd. resin material thermal resistance measuring device "TRM-046RHHT" (product name)). It was measured. The resin composition was processed into a width of 10 mm × 10 mm, and measurement was carried out while applying a load of 2N.
[実施例1]
 実施例1では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-90(製品名)(平均球形度:0.91、平均粒子径:91μm、比表面積:0.1m2/g)を用いた。
 また、炭素粉末であるアセチレンブラックとして、デンカ(株)社製HS-100(製品名)(平均粒子径:46nm、かさ密度:0.15g/cm3、比表面積:40m2/g、全細孔容積:2.1mL/g)を用いた。
 原料のアルミナ粉末50gと、炭素粉末20gとをボールミルにて混合し、窒素ガスを7L/minの量で供給し、窒素雰囲気中にて、焼成温度1650℃、及び焼成時間12時間の条件で焼成した(第1工程)。その後、空気を2L/minの量で供給し、大気雰囲気中にて、焼成温度700℃、及び焼成時間4時間の条件で焼成し、被覆アルミナ粒子Aを得た。被覆アルミナ粒子Aについて、1μm以上300μm以下の被覆アルミナ粒子の平均球形度、球形度が0.80以下の被覆アルミナ粒子の割合、平均球形度、全体に対するAlNの含有率、被覆層の厚さを測定し、結果を表1に示した。
 表1に示す割合(体積%)で、超微粉のアルミナ1として、住友化学(株)社製AA-05(製品名)を、微粉のアルミナ2として、デンカ(株)社製DAW-07(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Aを配合し、アルミナ粉末とした。得られたアルミナ粉末の物性を評価し、結果を表1に示した。
[Example 1]
In Example 1, as the raw material alumina powder used for producing the coated alumina particles, DAW-90 (product name) manufactured by Denka Co., Ltd. (average sphericity: 0.91, average particle diameter: 91 μm, specific surface area: 0). .1 m 2 / g) was used.
In addition, as acetylene black, which is a carbon powder, HS-100 (product name) manufactured by Denka Co., Ltd. (average particle size: 46 nm, bulk density: 0.15 g / cm 3 , specific surface area: 40 m 2 / g, total fineness. Pore volume: 2.1 mL / g) was used.
50 g of alumina powder as a raw material and 20 g of carbon powder are mixed by a ball mill, nitrogen gas is supplied at an amount of 7 L / min, and firing is performed in a nitrogen atmosphere under the conditions of a firing temperature of 1650 ° C. and a firing time of 12 hours. (First step). Then, air was supplied at an amount of 2 L / min and calcined in an air atmosphere under the conditions of a firing temperature of 700 ° C. and a firing time of 4 hours to obtain coated alumina particles A. Regarding the coated alumina particles A, the average sphericity of the coated alumina particles of 1 μm or more and 300 μm or less, the ratio of the coated alumina particles having a sphericity of 0.80 or less, the average sphericity, the content of AlN in the whole, and the thickness of the coating layer are determined. The measurements were taken and the results are shown in Table 1.
AA-05 (product name) manufactured by Sumitomo Chemical Co., Ltd. as the ultrafine powder alumina 1 and DAW-07 manufactured by Denka Co., Ltd. as the fine powder alumina 2 in the ratio (volume%) shown in Table 1 (. The product name) was prepared as an alumina powder by blending coated alumina particles A as the coarse powder alumina 3. The physical properties of the obtained alumina powder were evaluated, and the results are shown in Table 1.
[実施例2]
 実施例2では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-70(製品名)(平均球形度:0.92、平均粒子径:70μm、比表面積:0.1m2/g)を用い、第1工程の焼成温度を1550℃、焼成時間を4時間に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Bを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-05(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Bを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 2]
In Example 2, as the raw material alumina powder used for producing the coated alumina particles, DAW-70 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 70 μm, specific surface area: 0). .1 m 2 / g) was used to produce coated alumina particles B in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1550 ° C. and the firing time was changed to 4 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles B were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例3]
 実施例3では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAS-30(製品名)(平均球形度:0.93、平均粒子径:30μm、比表面積:0.2m2/g)を用い、第1工程の焼成温度を1500℃、焼成時間を4時間に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Cを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-05(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Cを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 3]
In Example 3, as the raw material alumina powder used for producing the coated alumina particles, DAS-30 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.93, average particle diameter: 30 μm, specific surface area: 0). Using .2 m 2 / g), coated alumina particles C were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1500 ° C. and the firing time was changed to 4 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles C were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例4]
 実施例4では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-120(製品名)(平均球形度:0.91、平均粒子径:115μm、比表面積:0.1m2/g)を用いた以外は、実施例1と同様の方法で被覆アルミナ粒子Dを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-10(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Dを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 4]
In Example 4, as the raw material alumina powder used for producing the coated alumina particles, DAW-120 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.91, average particle diameter: 115 μm, specific surface area: 0). Coated alumina particles D were produced in the same manner as in Example 1 except that 1 m 2 / g) was used. The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-10 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles D were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例5]
 実施例5では、第1工程の焼成温度を1600℃に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Eを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 粗粉のアルミナ3として、被覆アルミナ粒子Eを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 5]
In Example 5, coated alumina particles E were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. The same measurements as in Example 1 were performed and the results are shown in Table 1.
Alumina powder was obtained by the formulation (volume%) shown in Table 1 in the same manner as in Example 1 except that coated alumina particles E were used as the coarse powder alumina 3. In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例6]
 実施例6では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-45(製品名)(平均球形度:0.92、平均粒子径:43μm、比表面積:0.2m2/g)を用い、第1工程の焼成温度を1600℃、焼成時間を8時間に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Fを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-05(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Fを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 6]
In Example 6, as the raw material alumina powder used for producing the coated alumina particles, DAW-45 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 43 μm, specific surface area: 0). Using .2 m 2 / g), coated alumina particles F were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. and the firing time was changed to 8 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles F were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例7]
 実施例7では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-70(製品名)(平均球形度:0.92、平均粒子径:70μm、比表面積:0.1m2/g)を用い、第1工程の焼成温度を1600℃に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Gを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-05(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Gを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 7]
In Example 7, as the raw material alumina powder used for producing the coated alumina particles, DAW-70 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 70 μm, specific surface area: 0). The coated alumina particles G were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. using 1 m 2 / g). The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles G were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例8]
 実施例8では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-120(製品名)(平均球形度:0.91、平均粒子径:115μm、比表面積:0.1m2/g)を用い、第1工程の焼成温度を1600℃に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子Hを製造した。実施例1と同様の測定を行い、結果を表1に示した。
 微粉のアルミナ2として、デンカ(株)社製DAW-10(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Hを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Example 8]
In Example 8, as the raw material alumina powder used for producing the coated alumina particles, DAW-120 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.91, average particle diameter: 115 μm, specific surface area: 0). The coated alumina particles H were produced by the same method as in Example 1 except that the firing temperature in the first step was changed to 1600 ° C. using 1 m 2 / g). The same measurements as in Example 1 were performed and the results are shown in Table 1.
Table 1 shows the same as in Example 1 except that DAW-10 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles H were used as the coarse powder alumina 3. Alumina powder was obtained by compounding (% by volume). In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[実施例9]
 アルミナの配合比を表1に示す割合(体積%)に変更した以外は、実施例7と同様にして、アルミナ粉末を製造し、評価した。結果を表1に示した。
[Example 9]
Alumina powder was produced and evaluated in the same manner as in Example 7 except that the blending ratio of alumina was changed to the ratio (volume%) shown in Table 1. The results are shown in Table 1.
[実施例10]
 アルミナの配合比を表1に示す割合(体積%)に変更した以外は、実施例7と同様にして、アルミナ粉末を製造し評価した。結果を表1に示した。
[Example 10]
Alumina powder was produced and evaluated in the same manner as in Example 7 except that the blending ratio of alumina was changed to the ratio (volume%) shown in Table 1. The results are shown in Table 1.
[比較例1]
 比較例1では、微粉のアルミナ2として、デンカ(株)社製DAW-05(製品名)を、粗粉のアルミナ3として、被覆アルミナ粒子Aの代わりに、デンカ(株)社製DAW-45(製品名)(平均球形度:0.92、平均粒子径:43μm、比表面積:0.2m2/g)を用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Comparative Example 1]
In Comparative Example 1, DAW-05 (product name) manufactured by Denka Co., Ltd. was used as the fine powder alumina 2, and DAW-45 manufactured by Denka Co., Ltd. was used as the coarse powder alumina 3 instead of the coated alumina particles A. (Product name) The formulation (volume) shown in Table 1 is the same as in Example 1 except that (average sphericalness: 0.92, average particle size: 43 μm, specific surface area: 0.2 m 2 / g) is used. %) To obtain an alumina powder. In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
[比較例2]
 比較例2では、被覆アルミナ粒子の製造に用いる原料のアルミナ粉末として、デンカ(株)社製DAW-45(製品名)(平均球形度:0.92、平均粒子径:43μm、比表面積:0.2m2/g)を用い、第1工程の焼成温度を1650℃、焼成時間を30時間に変更した以外は、実施例1と同様の方法で被覆アルミナ粒子aを製造した。実施例1と同様の測定を行い、結果を表1に示した。被覆アルミナ粒子aは本実施形態に係る被覆アルミナ粒子に該当しなかった。
 微粉のアルミナ2として、デンカ(株)社製DAW-05を、粗粉のアルミナ3として、被覆アルミナ粒子aを用いた以外は、実施例1と同様にして、表1に示す配合(体積%)にて、アルミナ粉末を得た。また、実施例1と同様の測定を行い、結果を表1に示した。
[Comparative Example 2]
In Comparative Example 2, as the raw material alumina powder used for producing the coated alumina particles, DAW-45 (product name) manufactured by Denka Co., Ltd. (average sphericalness: 0.92, average particle diameter: 43 μm, specific surface area: 0). Using .2 m 2 / g), coated alumina particles a were produced in the same manner as in Example 1 except that the firing temperature in the first step was changed to 1650 ° C. and the firing time was changed to 30 hours. The same measurements as in Example 1 were performed and the results are shown in Table 1. The coated alumina particles a did not correspond to the coated alumina particles according to the present embodiment.
The formulation shown in Table 1 (volume%) was the same as in Example 1 except that DAW-05 manufactured by Denka Co., Ltd. was used as the fine powder alumina 2 and coated alumina particles a were used as the coarse powder alumina 3. ), Alumina powder was obtained. In addition, the same measurements as in Example 1 were performed, and the results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本出願は、2019月5月30日出願の日本特許出願(特願2019-101604)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on May 30, 2019 (Japanese Patent Application No. 2019-101604), the contents of which are incorporated herein by reference.
 本発明の被覆アルミナ粉末によれば、樹脂に充填する際に粘度上昇を抑制でき、かつ、その樹脂を含む樹脂組成物の高熱伝導化を実現できる。そのため、例えば、放熱シート、放熱グリース、放熱スペーサー、半導体封止材、及び放熱塗料(放熱コート剤)等の放熱部品の用途に特に有用である。 According to the coated alumina powder of the present invention, it is possible to suppress an increase in viscosity when filling the resin, and it is possible to realize high thermal conductivity of the resin composition containing the resin. Therefore, it is particularly useful for applications of heat-dissipating parts such as heat-dissipating sheets, heat-dissipating greases, heat-dissipating spacers, semiconductor encapsulants, and heat-dissipating paints (heat-dissipating coating agents).

Claims (11)

  1.  アルミナ粒子と、前記アルミナ粒子を被覆する被覆層とを有し、顕微鏡法による投影面積円相当径が1μm以上300μm以下である被覆アルミナ粒子を含有するアルミナ粉末であって、
     前記被覆層は窒化アルミニウムを含み、
     前記被覆アルミナ粒子の平均球形度が0.85以上0.97以下である、
    アルミナ粉末。
    An alumina powder containing alumina particles and a coating layer covering the alumina particles, and having a projected area circle equivalent diameter of 1 μm or more and 300 μm or less by microscopy.
    The coating layer contains aluminum nitride and contains
    The average sphericity of the coated alumina particles is 0.85 or more and 0.97 or less.
    Alumina powder.
  2.  前記アルミナ粉末は、レーザー回折散乱法による体積基準頻度粒度分布において、粒子径が2μm以上200μm以下の粒度域に、複数のピークを有する、請求項1に記載のアルミナ粉末。 The alumina powder according to claim 1, wherein the alumina powder has a plurality of peaks in a particle size range of 2 μm or more and 200 μm or less in a volume-based frequency particle size distribution by a laser diffraction / scattering method.
  3.  前記被覆アルミナ粒子において、球形度が0.80以下である被覆アルミナ粒子の割合が個数基準で15%以下である、請求項1又は2に記載のアルミナ粉末。 The alumina powder according to claim 1 or 2, wherein the proportion of the coated alumina particles having a sphericity of 0.80 or less is 15% or less based on the number of the coated alumina particles.
  4.  レーザー回折散乱式粒度分布測定機によって測定された、前記被覆アルミナ粒子の平均粒子径が30μm以上150μm以下である、請求項1~3のいずれか一項に記載のアルミナ粉末。 The alumina powder according to any one of claims 1 to 3, wherein the average particle size of the coated alumina particles is 30 μm or more and 150 μm or less, which is measured by a laser diffraction / scattering type particle size distribution measuring machine.
  5.  前記被覆アルミナ粒子中の窒化アルミニウムの含有率が10質量%以上40質量%以下である、請求項1~4のいずれか一項に記載のアルミナ粉末。 The alumina powder according to any one of claims 1 to 4, wherein the content of aluminum nitride in the coated alumina particles is 10% by mass or more and 40% by mass or less.
  6.  前記アルミナ粉末中の、アルミナと窒化アルミニウムとの合計の含有率が80質量%以上である、請求項1~5のいずれか一項に記載のアルミナ粉末。 The alumina powder according to any one of claims 1 to 5, wherein the total content of alumina and aluminum nitride in the alumina powder is 80% by mass or more.
  7.  前記被覆アルミナ粒子中の炭素量が0.3質量%以下である、請求項1~6のいずれか一項に記載のアルミナ粉末。 The alumina powder according to any one of claims 1 to 6, wherein the amount of carbon in the coated alumina particles is 0.3% by mass or less.
  8.  樹脂と、請求項1~7のいずれか一項に記載のアルミナ粉末とを含む、樹脂組成物。 A resin composition containing a resin and the alumina powder according to any one of claims 1 to 7.
  9.  前記樹脂が、シリコーン樹脂、エポキシ樹脂、ウレタン樹脂、及びアクリル樹脂からなる群より選ばれる少なくも1種を含む、請求項8に記載の樹脂組成物。 The resin composition according to claim 8, wherein the resin contains at least one selected from the group consisting of silicone resin, epoxy resin, urethane resin, and acrylic resin.
  10.  請求項1~7のいずれか一項に記載のアルミナ粉末、又は請求項8若しくは9に記載の樹脂組成物を含む、放熱部品。 A heat-dissipating component containing the alumina powder according to any one of claims 1 to 7 or the resin composition according to claim 8 or 9.
  11.  請求項1に記載の被覆アルミナ粒子の製造方法であって、
     原料のアルミナ粉末と炭素粉末とを含む混合物を、窒素ガスを含む還元雰囲気下にて、1500℃以上1700℃以下の温度で焼成して、第1焼成粉末を得る第1工程と、
     前記第1焼成粉末を、大気雰囲気下にて、600℃以上900℃以下の温度で更に焼成して前記被覆アルミナ粒子を得る第2工程と、を含み、
     前記炭素粉末の平均粒子径が30nm以上70nm以下であり、かさ密度が0.10g/cm以上0.20g/cm以下であり、比表面積が20m/g以上60m/g以下である、製造方法。
    The method for producing coated alumina particles according to claim 1.
    The first step of obtaining a first calcined powder by calcining a mixture containing the raw material alumina powder and carbon powder at a temperature of 1500 ° C. or higher and 1700 ° C. or lower in a reducing atmosphere containing nitrogen gas.
    The first step of calcining the first calcined powder in an air atmosphere at a temperature of 600 ° C. or higher and 900 ° C. or lower to obtain the coated alumina particles is included.
    The average particle size of the carbon powder is 30 nm or more and 70 nm or less, the bulk density is 0.10 g / cm 3 or more and 0.20 g / cm 3 or less, and the specific surface area is 20 m 2 / g or more and 60 m 2 / g or less. ,Production method.
PCT/JP2020/020996 2019-05-30 2020-05-27 Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles WO2020241716A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021522835A JPWO2020241716A1 (en) 2019-05-30 2020-05-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-101604 2019-05-30
JP2019101604 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241716A1 true WO2020241716A1 (en) 2020-12-03

Family

ID=73552366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020996 WO2020241716A1 (en) 2019-05-30 2020-05-27 Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles

Country Status (3)

Country Link
JP (1) JPWO2020241716A1 (en)
TW (1) TWI736292B (en)
WO (1) WO2020241716A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149379B1 (en) * 2021-06-11 2022-10-06 株式会社Maruwa Spherical aluminum nitride powder and its production method
WO2023013441A1 (en) * 2021-08-05 2023-02-09 株式会社トクヤマ Composition and filler mixture
WO2023067982A1 (en) * 2021-10-20 2023-04-27 日立Astemo株式会社 Heat dissipation material and electronic device
WO2024029463A1 (en) * 2022-08-04 2024-02-08 住友化学株式会社 Ceramic powder, resin composition and method for producing ceramic powder

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162555A (en) * 2003-12-04 2005-06-23 Tokuyama Corp Spherical aluminum nitride and its manufacturing method
WO2011093488A1 (en) * 2010-01-29 2011-08-04 株式会社トクヤマ Process for production of spherical aluminum nitride powder, and spherical aluminum nitride powder produced by the process
JP2017114706A (en) * 2015-12-22 2017-06-29 株式会社Maruwa Aluminum nitride powder for filler, aluminum nitride powder for sub-filler and manufacturing method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162555A (en) * 2003-12-04 2005-06-23 Tokuyama Corp Spherical aluminum nitride and its manufacturing method
WO2011093488A1 (en) * 2010-01-29 2011-08-04 株式会社トクヤマ Process for production of spherical aluminum nitride powder, and spherical aluminum nitride powder produced by the process
JP2017114706A (en) * 2015-12-22 2017-06-29 株式会社Maruwa Aluminum nitride powder for filler, aluminum nitride powder for sub-filler and manufacturing method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7149379B1 (en) * 2021-06-11 2022-10-06 株式会社Maruwa Spherical aluminum nitride powder and its production method
WO2023013441A1 (en) * 2021-08-05 2023-02-09 株式会社トクヤマ Composition and filler mixture
WO2023067982A1 (en) * 2021-10-20 2023-04-27 日立Astemo株式会社 Heat dissipation material and electronic device
WO2024029463A1 (en) * 2022-08-04 2024-02-08 住友化学株式会社 Ceramic powder, resin composition and method for producing ceramic powder

Also Published As

Publication number Publication date
TWI736292B (en) 2021-08-11
TW202104084A (en) 2021-02-01
JPWO2020241716A1 (en) 2020-12-03

Similar Documents

Publication Publication Date Title
WO2020241716A1 (en) Alumina powder, resin composition, heat dissipating component, and method for producing coated alumina particles
JP5875525B2 (en) Method for producing aluminum nitride powder
TW202031763A (en) Filler composition, silicone resin composition, and heat dissipation component
WO2021200491A1 (en) Alumina powder, resin composition, and heat dissipation component
WO2021200490A1 (en) Alumina powder, resin composition, and heat dissipation component
EP4215488A1 (en) Magnesium oxide powder, filler composition, resin composition and heat dissipating component
TW202140675A (en) Carbon-containing alumina powder, resin composition, heat dissipation component, and method for producing carbon-containing alumina powder
WO2022059659A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat dissipating component
WO2022059660A1 (en) Magnesium oxide powder, filler composition, resin composition, and heat-dissipating member
CN113226983B (en) Aluminum nitride particles
KR20230075447A (en) Spherical alumina powder, resin composition, heat dissipation material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815298

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522835

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20815298

Country of ref document: EP

Kind code of ref document: A1