JP2019084787A - Fiber-reinforced resin molding, and method for manufacturing fiber-reinforced resin molding - Google Patents

Fiber-reinforced resin molding, and method for manufacturing fiber-reinforced resin molding Download PDF

Info

Publication number
JP2019084787A
JP2019084787A JP2017216295A JP2017216295A JP2019084787A JP 2019084787 A JP2019084787 A JP 2019084787A JP 2017216295 A JP2017216295 A JP 2017216295A JP 2017216295 A JP2017216295 A JP 2017216295A JP 2019084787 A JP2019084787 A JP 2019084787A
Authority
JP
Japan
Prior art keywords
resin
core material
laminate
molded article
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017216295A
Other languages
Japanese (ja)
Other versions
JP7003585B2 (en
Inventor
茂則 廣田
Shigenori Hirota
茂則 廣田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Original Assignee
Toyota Boshoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp filed Critical Toyota Boshoku Corp
Priority to JP2017216295A priority Critical patent/JP7003585B2/en
Publication of JP2019084787A publication Critical patent/JP2019084787A/en
Application granted granted Critical
Publication of JP7003585B2 publication Critical patent/JP7003585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

To provide a fiber-reinforced resin molding having a structure which allows an uncured resin to be easily distributed in manufacture.SOLUTION: A fiber-reinforced resin molding 10 includes: a laminate X having a plate-like core material 11 formed of a foam resin and a pair of sheet-like reinforcement fiber base materials 12a and 12b overlapped on a front face 11a1 and a rear face 11b1 of the core material 11 respectively; and a resin part 13 obtained by curing an uncured resin R impregnating the laminate X. The core material 11 includes: a flow channel 110 that is formed on the front face 11a1 and the rear face 11b1 or inside and flows the uncured resin R in a plane direction; and a supply port 111 which is formed of a pore part connected with the flow channel 110 while penetrating in a thickness direction and supplies the uncured resin R from the outside through a reinforcement fiber base material 12a. The resin part 13 includes a flow channel resin part 130 filling the flow channel 110 and a supply port resin part 131 filling the supply port 111.SELECTED DRAWING: Figure 1

Description

本発明は、繊維強化樹脂成形品、及び繊維強化樹脂成形品の製造方法に関する。   The present invention relates to a fiber-reinforced resin molded article and a method for producing a fiber-reinforced resin molded article.

カーボン繊維やガラス繊維等の補強繊維で強化された樹脂成形品が広く用いられている。このような樹脂成形品の一例として、発泡樹脂からなるコア材の表裏面にシート状の補強繊維基材が重ねられた積層物を、熱硬化性樹脂で固めたものが知られている(例えば、特許文献1参照)。この種の樹脂成形品は、RTM(Resin Transfer Molding)法を利用して成形されており、具体的には、成形型のキャビティ内に上記積層物がセットされた状態で、キャビティ内に未硬化状態の流動性を備えた熱硬化性樹脂が注入され、その樹脂が前記積層物の補強繊維基材等に含浸された状態で熱硬化されることにより、上記樹脂成形品が製造されている。   Resin molded products reinforced with reinforcing fibers such as carbon fibers and glass fibers are widely used. As an example of such a resin molded product, one obtained by solidifying a laminate in which a sheet-like reinforcing fiber base material is superimposed on the front and back surfaces of a core material made of a foamed resin with a thermosetting resin (for example, , Patent Document 1). This type of resin molded product is molded using RTM (Resin Transfer Molding) method, and specifically, in a state where the above-mentioned laminate is set in the cavity of the mold, it is uncured in the cavity The resin molded product is manufactured by injecting a thermosetting resin having the fluidity of the state, and thermosetting the resin in a state in which the resin is impregnated in the reinforcing fiber base and the like of the laminate.

特開平04−224915号公報Unexamined-Japanese-Patent No. 04-224915 gazette

成形型のキャビティ内に熱硬化性樹脂を高い圧力で供給すると、積層物のコア材が潰れてしまう可能性がある。そのため、この種の成形品の製造工程では、樹脂の注入圧力を極力、低く抑えたいという事情があった。しかしながら、樹脂の注入圧力を低く設定すると、積層物中やキャビティ内の隅々に樹脂が行き渡るまでに時間が長くかってしまい、生産効率が低下する。特に、熱硬化性樹脂の粘性が高いと、樹脂が積層物中やキャビティ内の隅々に行き渡るまでに時間がかかってしまう。   If the thermosetting resin is supplied at high pressure into the mold cavity, the core material of the laminate may be crushed. Therefore, in the manufacturing process of this kind of molded product, there is a circumstance that it is desirable to keep the injection pressure of the resin as low as possible. However, if the injection pressure of the resin is set low, it takes a long time for the resin to spread throughout the laminate or in the cavity, which reduces the production efficiency. In particular, when the viscosity of the thermosetting resin is high, it takes time for the resin to spread throughout the laminate or in the cavity.

本発明の目的は、製造時に未硬化状態の樹脂が行き渡り易い構造を備えた繊維強化樹脂成形品等を提供することである。   An object of the present invention is to provide a fiber-reinforced resin molded article or the like having a structure in which uncured resin easily spreads during manufacture.

本発明に係る繊維強化樹脂成形品は、発泡樹脂製の板状のコア材と、前記コア材の表面及び裏面にそれぞれ重ねられる一対のシート状の補強繊維基材とを有する積層体と、前記積層体に含浸された未硬化状態の樹脂が硬化されてなる樹脂部とを備える繊維強化樹脂成形品であって、前記積層体の前記コア材は、前記表面及び裏面に、又は内部に形成され、未硬化状態の前記樹脂を面方向に沿って流す流路と、厚み方向に貫通しつつ、前記流路と繋がる孔部からなり、前記補強繊維基材越しに外部から未硬化状態の前記樹脂が供給される供給口とを有し、前記樹脂部は、前記流路を埋める流路樹脂部と、前記供給口を埋める供給口樹脂部とを有する。   The fiber-reinforced resin molded product according to the present invention comprises a laminate having a plate-like core material made of a foamed resin, and a pair of sheet-like reinforcing fiber substrates respectively superimposed on the front and back surfaces of the core material, It is a fiber reinforced resin molded article provided with the resin part by which the resin of the unhardened state by which the laminated body was impregnated is hardened | cured, Comprising: The said core material of the said laminated body is formed in the said surface and back, or inside. A flow path for flowing the uncured resin along the surface direction, and a hole connected to the flow path while penetrating in the thickness direction, the resin in the uncured state from the outside through the reinforcing fiber base material And the resin portion has a flow path resin portion filling the flow path and a supply port resin portion filling the supply port.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、前記流路として使用される隙間が形成されるように互いに重ねられ、各々が板状をなした一対の単位コア材を有し、前記樹脂部は、前記流路樹脂部として、前記隙間を埋める隙間樹脂部を有するものであってもよい。   In the fiber-reinforced resin molded product, the core members of the laminate are stacked on each other to form a gap used as the flow path, and each has a pair of unit core members in a plate shape. The resin portion may have, as the flow path resin portion, a gap resin portion filling the gap.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、一対の前記単位コア材の間に配され、前記隙間を確保するスペーサ部を有することが好ましい。   In the fiber-reinforced resin molded product, preferably, the core material of the laminate is disposed between a pair of unit core materials and has a spacer portion for securing the gap.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、少なくとも前記裏面に形成され、前記流路として使用される溝を有し、前記樹脂部は、前記流路樹脂部として、前記溝を埋める溝樹脂部を有するものであってもよい。   In the fiber-reinforced resin molded product, the core material of the laminate has at least a groove formed on the back surface and used as the flow path, and the resin portion is the groove as the flow path resin portion. The groove resin portion may be filled with the resin.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、前記内部に形成され、前記流路として使用される空洞部を有し、前記樹脂部は、前記流路樹脂部として、前記空洞部を埋める空洞樹脂部を有するものであってもよい。   In the fiber-reinforced resin molded product, the core material of the laminate has a hollow portion formed in the inside and used as the flow path, and the resin portion is the hollow portion as the flow path resin portion. It may have a hollow resin portion filling the portion.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、前記流路と、一方の前記補強繊維基材に面する表面側又は他方の前記補強繊維基材とを連絡し、未硬化状態の前記樹脂の流れを分岐させる分岐路を有し、前記樹脂部は、前記分岐路を埋める分岐路樹脂部を有することが好ましい。   In the fiber-reinforced resin molded product, the core material of the laminate communicates the flow path with the surface side facing the one reinforcing fiber substrate or the other reinforcing fiber substrate, and is in an uncured state Preferably, the resin portion has a branch path resin portion filling the branch path.

また、本発明に係る繊維強化樹脂成形品は、発泡樹脂製の板状のコア材と、前記コア材の表面及び裏面にそれぞれ重ねられる一対のシート状の補強繊維基材とを有する積層体と、前記積層体に含浸された未硬化状態の樹脂が硬化されてなる樹脂部とを備える繊維強化樹脂成形品であって、前記積層体の前記コア材は、隣り合った端面同士の間に、面方向に沿って延びかつ厚み方向に貫通する長手状の貫通流路が形成されるように、分割された一対の分割コア材を有し、前記樹脂部は、長手状の前記貫通流路を埋める貫通流路樹脂部を有する。   Further, a fiber-reinforced resin molded product according to the present invention comprises a laminate having a plate-like core material made of a foamed resin, and a pair of sheet-like reinforcing fiber substrates respectively superimposed on the surface and the back surface of the core material. A fiber-reinforced resin molded article comprising: a resin portion in which an uncured resin impregnated in the laminate is cured; and the core material of the laminate is between adjacent end faces, The resin portion has a pair of divided core members divided so as to form a longitudinal through channel extending along the surface direction and penetrating in the thickness direction, and the resin portion is formed of the longitudinal through channel. It has a through flow passage resin portion to be filled.

前記繊維強化樹脂成形品において、前記積層体の前記コア材は、厚み方向に貫通する孔部からなり、一方の前記補強繊維基材に面する表面側と、他方の前記補強繊維基材に面する裏面側とを連通する連通路を有し、前記樹脂部は、前記連通路を埋める連通路樹脂部を有することが好ましい。   In the fiber-reinforced resin molded product, the core material of the laminate is composed of a hole penetrating in the thickness direction, and the surface side facing one of the reinforcing fiber base and the other of the reinforcing fiber base are surfaced Preferably, the resin portion has a communication path resin portion filling the communication path.

また、本発明に係る繊維強化樹脂成形品の製造方法は、前記何れかに記載の繊維強化樹脂成形品の製造方法であって、前記積層体が収容された成形型のキャビティに、外部から未硬化状態の樹脂が供給されると、前記補強繊維基材越しに前記供給口に未硬化状態の樹脂が供給され、かつ前記樹脂が前記流路に沿って流れる樹脂供給工程とを備える。   The method for producing a fiber-reinforced resin molded article according to the present invention is the method for producing a fiber-reinforced resin molded article according to any one of the above, wherein the cavity of the mold in which the laminate is accommodated is not When the cured resin is supplied, the uncured resin is supplied to the supply port through the reinforcing fiber base material, and the resin flows along the flow path.

また、本発明に係る繊維強化樹脂成形品の製造方法は、前記何れかに記載の繊維強化樹脂成形品の製造方法であって、前記積層体が収容された成形型のキャビティに、外部から未硬化状態の樹脂が供給されると、前記補強繊維基材越しに前記貫通流路に未硬化状態の樹脂が供給され、かつ前記樹脂が前記貫通流路に沿って流れる樹脂供給工程とを備える。   The method for producing a fiber-reinforced resin molded article according to the present invention is the method for producing a fiber-reinforced resin molded article according to any one of the above, wherein the cavity of the mold in which the laminate is accommodated is not When the resin in the cured state is supplied, the resin in the uncured state is supplied to the through flow passage through the reinforcing fiber base material, and the resin supply process in which the resin flows along the through flow passage.

本発明によれば、製造時に未硬化状態の樹脂が行き渡り易い構造を備えた繊維強化樹脂成形品等を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the fiber reinforced resin molded article etc. provided with the structure where resin of an unhardened state spreads easily at the time of manufacture can be provided.

繊維強化樹脂成形品の断面構成を模式的に表した説明図Explanatory drawing which represented the cross-sectional structure of the fiber reinforced resin molded product typically 成形装置の固定金型に、一対の単位コア材からなるコア材と一対の補強繊維基材とからなる積層体がセットされる工程を示す説明図Explanatory drawing which shows the process in which the laminated body which consists of a core material which consists of a pair of unit core material, and a pair of reinforcement fiber base materials is set to the fixed mold of a shaping | molding apparatus 型締め工程において、可動金型が固定金型に向かって近づく様子を示す説明図An explanatory view showing a movable mold approaching a fixed mold in a mold clamping process 型締めされた成形型のキャビティに未硬化状態の樹脂が注入される工程を示す説明図Explanatory drawing which shows the process in which uncured resin is inject | poured into the cavity of the clamped mold. キャビティ内の積層体に、注入孔から供給された樹脂が行き渡る様子を示す説明図An explanatory view showing a state in which the resin supplied from the injection hole spreads over the laminate in the cavity 固定金型から成形品が脱型される工程を示す説明図Explanatory drawing which shows the process in which a molded article is removed from a fixed mold 実施形態2の成形品の断面構成を模式的に表した説明図Explanatory drawing which represented typically the cross-sectional structure of the molded article of Embodiment 2 実施形態2の成形品の製造工程において、キャビティ内の積層体に、注入孔から供給された樹脂が行き渡る様子を示す説明図Explanatory drawing which shows a mode that resin supplied from the injection hole spreads in the laminated body in a cavity in the manufacturing process of the molded article of Embodiment 2. 実施形態3の成形品の断面構成を模式的に表した説明図Explanatory drawing which represented typically the cross-sectional structure of the molded article of Embodiment 3 実施形態3のコア材の斜視図The perspective view of the core material of Embodiment 3 実施形態3の成形品の製造工程において、キャビティ内の積層体に、注入孔から供給された樹脂が行き渡る様子を示す説明図Explanatory drawing which shows a mode that resin supplied from the injection hole spreads in the laminated body in a cavity in the manufacturing process of the molded article of Embodiment 3. 実施形態4の成形品の断面構成を模式的に表した説明図Explanatory drawing which represented typically the cross-sectional structure of the molded article of Embodiment 4 実施形態4の成形品の製造工程において、キャビティ内の積層体に、注入孔から供給された樹脂が行き渡る様子を示す説明図Explanatory drawing which shows a mode that resin supplied from the injection hole spreads in the laminated body in a cavity in the manufacturing process of the molded article of Embodiment 4. 実施形態5の成形品の断面構成を模式的に表した説明図Explanatory drawing which represented the cross-sectional structure of the molded article of Embodiment 5 typically 実施形態5のコア材の平面図Top view of core material of Embodiment 5 実施形態5の成形品の製造工程において、キャビティ内の積層体に、注入孔から供給された樹脂が行き渡る様子を示す説明図Explanatory drawing which shows a mode that resin supplied from the injection hole spreads in the laminated body in a cavity in the manufacturing process of the molded article of Embodiment 5.

<実施形態1>
以下、本発明の実施形態1を、図1〜図6を参照しつつ説明する。本実施形態では、繊維強化樹脂成形品10、及びその製造方法について例示する。先ず、図1を参照しつつ、繊維強化樹脂成形品10について説明する。
First Embodiment
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6. In the present embodiment, a fiber-reinforced resin molded product 10 and a method of manufacturing the same will be exemplified. First, a fiber-reinforced resin molded product 10 will be described with reference to FIG.

〔繊維強化樹脂成形品〕
図1は、繊維強化樹脂成形品(以下、成形品)10の断面構成を模式的に表した説明図である。成形品10は、軽量かつ高剛性であり、車両用シートの一部(例えば、バックボード)として利用される。このような成形品10は、コア材11と、コア材11の表裏面にそれぞれ重ねられる一対のシート状の補強繊維基材12a,12bと、補強繊維基材12a,12b等に含浸された後、硬化される熱硬化性樹脂からなる樹脂部13とを備えている。なお、一対の補強繊維基材12a,12bのうち、補強繊維基材12aは、表面11a1側(図1の上側)に配され、補強繊維基材12bは、裏面11b1側(図1の下側)に配される。
[Fiber-reinforced resin molded products]
FIG. 1 is an explanatory view schematically showing a cross-sectional configuration of a fiber-reinforced resin molded product (hereinafter, molded product) 10. As shown in FIG. The molded article 10 is lightweight and highly rigid, and is used as part of a vehicle seat (for example, a backboard). Such a molded article 10 is impregnated with the core material 11, a pair of sheet-like reinforcing fiber substrates 12a and 12b stacked on the front and back surfaces of the core material 11, and the reinforcing fiber substrates 12a and 12b, etc. And a resin portion 13 made of a thermosetting resin to be cured. Of the pair of reinforcing fiber bases 12a and 12b, the reinforcing fiber base 12a is disposed on the surface 11a1 side (upper side in FIG. 1), and the reinforcing fiber base 12b is on the rear surface 11b1 side (lower side in FIG. 1). Will be distributed).

コア材11は、独立気泡構造を有する合成樹脂製(所謂、発泡樹脂製)の部材である。本実施形態のコア材11は、各々が板状をなした一対の単位コア材11a,11bが積層されたものからなる。一対の単位コア材11a,11bのうち、単位コア材11aは、表側(図1の上側)に配され、単位コア材11bは、裏側(図1の下側)に配される。なお、コア材11は、全体的には、各補強繊維基材12a,12bよりも厚みの大きな板状(層状)をなしている。コア材11(単位コア材11a,11b)に利用される合成樹脂としては、例えば、アクリル樹脂が挙げられる。単位コア材11a,11bは、比較的薄いため、所定の口金(ダイ)を利用した押出成形で製造することができ、コスト的に優れた部材である。   The core member 11 is a member made of a synthetic resin (so-called foamed resin) having a closed cell structure. The core member 11 of the present embodiment is formed by laminating a pair of unit core members 11 a and 11 b each having a plate shape. Of the pair of unit core members 11a and 11b, the unit core members 11a are disposed on the front side (the upper side in FIG. 1), and the unit core members 11b are disposed on the back side (the lower side in FIG. 1). The core material 11 is generally in the form of a plate (layered) having a thickness larger than that of each of the reinforcing fiber bases 12a and 12b. As a synthetic resin utilized for core material 11 (unit core materials 11a and 11b), an acrylic resin is mentioned, for example. Since unit core materials 11a and 11b are relatively thin, they can be manufactured by extrusion using a predetermined die (die), and are members excellent in cost.

厚み方向で重ねられた単位コア材11a,11bの間には、極僅かな隙間110が形成される。この隙間110は、後述するように、成形品10の製造工程において、未硬化状態の樹脂Rを面方向に沿って流す流路110として利用される。そして、この隙間(流路)110は、成形品10の状態において、面状に薄く広がった状態で硬化した、樹脂部13の一部(流路樹脂部の一例である隙間樹脂部)130によって埋められた状態となる。   A very slight gap 110 is formed between the unit core members 11a and 11b overlapped in the thickness direction. The gap 110 is used as a flow path 110 for flowing the uncured resin R along the surface direction in the manufacturing process of the molded product 10 as described later. Then, in the state of the molded product 10, the gap (flow path) 110 is hardened by a thin spread in a planar shape, and a part of the resin portion 13 (gap resin portion which is an example of the flow path resin portion) 130 It will be buried.

また、表側の単位コア材11aには、厚み方向に貫通しつつ、流路(隙間)110と繋がる孔部111からなる供給口111が設けられている。供給口111は、後述するように、成形品10の製造工程において、表側の一方の補強繊維基材12a越しに外部から、未硬化状態の樹脂Rが供給される部分である。なお、供給口111内には、補強繊維基材12a,12bと同種の素材からなる充填材121が充填されている。そのような供給口(孔部)111は、成形品10の状態において、充填材121に含浸された状態で硬化した、樹脂部13の一部(供給口樹脂部)131によって埋められた状態となる。   Moreover, the supply port 111 which consists of the hole 111 connected with the flow path (gap) 110 is provided in the unit core material 11a of front side, penetrating in the thickness direction. The supply port 111 is a portion to which the uncured resin R is supplied from the outside through one reinforcing fiber base 12a on the front side in the manufacturing process of the molded article 10, as described later. A filler 121 made of the same kind of material as the reinforcing fiber base 12a, 12b is filled in the supply port 111. Such a supply port (hole portion) 111 is filled with a part (supply port resin portion) 131 of the resin portion 13 cured in a state of being impregnated with the filler material 121 in the state of the molded product 10 Become.

また、表側の単位コア材11aは、隙間(流路)110と、表側の一方の補強繊維基材12aに面する表面11a1側とを連絡する分岐路112aを備えている。分岐路112aは、単位コア材11aに複数箇所設けられており、各々が単位コア材11aを厚み方向に貫通する細径の孔部からなる。これに対し、裏側の単位コア材11bは、隙間(流路)110と、裏側の他方の補強繊維基材12bに面する裏面11b側とを連絡する分岐路112bを備えている。分岐路112bは、単位コア材11bに複数箇所設けられており、各々が単位コア材11bを厚み方向に貫通する細径の孔部からなる。本明細書において、分岐路112a,112bをまとめて表現する場合、「分岐路112」とする。分岐路112は、成形品10の状態において、厚み方向に沿って細長く延びた状態で硬化した、樹脂部13の一部(分岐路樹脂部132)によって埋められた状態となる。   Further, the unit core material 11a on the front side includes a branch path 112a that communicates the gap (flow path) 110 with the surface 11a1 side facing the reinforcing fiber base 12a on the front side. The branch paths 112a are provided at a plurality of locations in the unit core material 11a, and each of the branch passages 112a is formed of a small diameter hole that penetrates the unit core material 11a in the thickness direction. On the other hand, the unit core material 11b on the back side is provided with the branch path 112b which connects the clearance gap (flow path) 110 and the back surface 11b side facing the other reinforcing fiber base 12b on the back side. The branch paths 112b are provided at a plurality of locations in the unit core material 11b, and each of the branch passages 112b is a small diameter hole that penetrates the unit core material 11b in the thickness direction. In the present specification, the branch paths 112a and 112b are collectively referred to as "branch path 112". In the state of the molded article 10, the branch path 112 is filled with a part of the resin portion 13 (branch path resin portion 132) which is hardened in a state of being elongated along the thickness direction.

補強繊維基材12は、シート状に加工されたカーボン繊維(炭素繊維)の織物からなる。補強繊維基材12としては、カーボン繊維以外に、ガラス繊維等の他の繊維が利用されてもよいが、高強度を備える等の観点より、カーボン繊維からなる補強繊維基材12が最も好ましい。本実施形態の場合、表側の補強繊維基材12aと、裏側の補強繊維基材12bは、互いに同じ厚みのカーボン繊維の織物からなる。本明細書において、表側の補強繊維基材12aと、裏側の補強繊維基材12bをまとめて表現する場合、「補強繊維基材12」とする。   The reinforcing fiber base 12 is made of a woven fabric of carbon fibers (carbon fibers) processed into a sheet. As the reinforcing fiber base 12, in addition to carbon fibers, other fibers such as glass fibers may be used, but from the viewpoint of providing high strength, the reinforcing fiber base 12 made of carbon fibers is most preferable. In the case of the present embodiment, the reinforcing fiber base 12a on the front side and the reinforcing fiber base 12b on the rear side are made of carbon fiber woven fabric having the same thickness. In the present specification, the reinforcing fiber base 12a on the front side and the reinforcing fiber base 12b on the back side are collectively referred to as "the reinforcing fiber base 12".

図1に示されるように、コア材11は、一対の補強繊維基材12a,12bによって表裏面側から挟まれており、それらは、所謂、サンドイッチ構造となっている。   As shown in FIG. 1, the core material 11 is sandwiched from the front and back sides by a pair of reinforcing fiber bases 12a and 12b, and they have a so-called sandwich structure.

樹脂部13に利用される熱硬化性樹脂としては、RTM法で一般的に用いられるもの(例えば、二液混合型のエポキシ樹脂)が用いられる。なお、熱硬化性樹脂としては、無色透明なものが利用されてもよいし、着色剤が添加されているものが利用されてもよい。   As a thermosetting resin utilized for the resin part 13, what is generally used by RTM method (for example, two-liquid mixing type epoxy resin) is used. In addition, as a thermosetting resin, a colorless and transparent thing may be utilized and what a coloring agent is added may be utilized.

成形品10において、樹脂部13を構成する熱硬化性樹脂の硬化物は、補強繊維基材12の内部のみならず、補強繊維基材12の表面を覆うように形成される。そのため、成形品10において、樹脂部13は、コア材11と一対の補強繊維基材12a,12bからなる積層体の全体を包み込むように形成されている。   In the molded product 10, the cured product of the thermosetting resin that constitutes the resin portion 13 is formed so as to cover the surface of the reinforcing fiber base 12 as well as the inside of the reinforcing fiber base 12. Therefore, in the molded article 10, the resin portion 13 is formed so as to wrap the entire laminate including the core material 11 and the pair of reinforcing fiber bases 12a and 12b.

このような成形品10は、コア材11を含むため、軽量性、及び高剛性を維持しつつ、比較的高価である補強繊維基材12(特に、カーボン繊維製)の使用量を低減することができる。また、コア材11は、流路110、供給口111、及び分岐路112を備えるため、成形品10の製造工程において、樹脂の供給圧力(注入圧力)が比較的、低い場合であっても、成形品10の細部に、未硬化状態の樹脂を行き渡らせ易い。   Since such a molded article 10 includes the core material 11, the amount of use of the relatively expensive reinforcing fiber base 12 (particularly, carbon fiber) is reduced while maintaining the lightness and high rigidity. Can. Further, since the core material 11 includes the flow path 110, the supply port 111, and the branch path 112, even in the process of manufacturing the molded product 10, even when the supply pressure (injection pressure) of the resin is relatively low, It is easy to distribute uncured resin to the details of the molded article 10.

〔繊維強化樹脂成形品の製造方法〕
次いで、図2〜図6を参照しつつ、成形装置20を利用した成形品10の製造方法を説明する。図2は、成形装置20の固定金型31に、一対の単位コア材11a,11bからなるコア材11と一対の補強繊維基材12a,12bとからなる積層体Xがセットされる工程を示す説明図である。
[Method of producing fiber reinforced resin molded article]
Then, the manufacturing method of the molded article 10 using the shaping | molding apparatus 20 is demonstrated, referring FIGS. FIG. 2 shows a process of setting the laminate X composed of the core material 11 composed of the pair of unit core materials 11a and 11b and the pair of reinforcing fiber substrates 12a and 12b in the fixed mold 31 of the molding apparatus 20. FIG.

成形装置20は、一方の分割金型である固定金型31と、他方の分割金型である可動金型32(図3参照)とを有する成形型30を備えている。固定金型31は、成形品10の裏側を形作る成形面31aを備えている。成形面31aは、中央側が凹状に窪んだ形をなしている。図2には、型開き状態の成形型30が示されており、成形面31aが上方を向くように、固定金型31が水平な床面上に配置されている。型開き状態において、固定金型31の上方には、可動金型32が待機しているが、図2では、省略されている。このような型開き状態の固定金型31の成形面31a上に、一対の単位コア材11a,11bからなるコア材11と一対の補強繊維基材12a,12bからなる積層体Xが載せられる(セット工程)。積層体Xは、成形面31aの形状に倣った状態で、固定金型31にセットされる。本実施形態の場合、周縁が立ち上がった状態で、積層体Xが固定金型31の成形面31a上に載せられている。積層体Xは、予め成形面31aの形に倣った形状に成形(プリフォーム)されてもよい。積層体Xを構成する補強繊維基材12a,12bには、予めバインダ(例えば、粉末状の接着剤)が付与されており、そのバインダの作用で、積層体Xが所定形状に保たれている。なお、成形面31aに積層体Xを押し付ける等して成形面31aを利用して積層体Xを賦形してもよい。   The molding apparatus 20 includes a molding die 30 having a fixed die 31 which is one split die and a movable die 32 (see FIG. 3) which is the other split die. The fixed mold 31 is provided with a molding surface 31 a that forms the back side of the molded article 10. The molding surface 31a has a shape in which the center side is concavely recessed. FIG. 2 shows the mold 30 in the mold open state, and the fixed mold 31 is disposed on a horizontal floor surface so that the molding surface 31 a faces upward. In the mold open state, the movable mold 32 stands by above the fixed mold 31, but is omitted in FIG. On the molding surface 31a of the fixed mold 31 in such a mold-opened state, the laminate X composed of the core material 11 composed of the pair of unit core materials 11a and 11b and the pair of reinforcing fiber substrates 12a and 12b is placed ( Set process). The laminated body X is set to the fixed mold 31 in a state in which the shape of the molding surface 31 a is followed. In the case of the present embodiment, the laminated body X is placed on the molding surface 31 a of the fixed mold 31 with the peripheral edge rising. The laminate X may be preformed into a shape that conforms to the shape of the molding surface 31 a in advance. A binder (for example, a powdery adhesive) is applied in advance to the reinforcing fiber bases 12a and 12b constituting the laminate X, and the laminate X is maintained in a predetermined shape by the action of the binder. . The laminate X may be shaped using the molding surface 31 a by pressing the laminate X against the molding surface 31 a or the like.

図2に示されるように、積層体Xのコア材11は、比較的、厚みの小さい単位コア材11a,11bが重ねられたものからなる。また、コア材11は、平面視で、補強繊維基材12a,12bよりも小さく、コア材11の周縁の外側に、補強繊維基材12a,12bの周縁が配された状態となっている。そして、補強繊維基材12a,12bの周縁同士は、コア材11を介さずに、直接、互いに重なった状態となっている。   As shown in FIG. 2, the core material 11 of the laminate X is formed by stacking unit core materials 11 a and 11 b having a relatively small thickness. The core material 11 is smaller than the reinforcing fiber substrates 12a and 12b in a plan view, and the peripheral edges of the reinforcing fiber substrates 12a and 12b are arranged outside the peripheral edge of the core material 11. Then, the peripheral edges of the reinforcing fiber bases 12a and 12b are in a state where they are directly overlapped with each other without interposing the core material 11.

図3は、型締め工程において、可動金型32が固定金型31に向かって近づく様子を示す説明図である。図3に示されるように、固定金型31の上方で待機していた可動金型32が、固定金型31側に向かって近づくように下降することで、成形型30の型締めが行われる(型締め工程)。可動金型32は、油圧シリンダー等を備えた公知の昇降機構(往復機構)(不図示)を利用して昇降駆動する。このような可動金型32には、成形品10の表側を形作る成形面32aが設けられている。成形面32aは、中央側が凸状に盛り上がった形をなしている。成形面32aは、固定金型31側を向く可動金型32の内側(内面側)に設けられている。なお、後述するように、型締め状態の成形型30において、可動金型32の成形面32aと、固定金型31の成形面31aで囲まれた空間が、成形型30のキャビティCとなる。   FIG. 3 is an explanatory view showing the movable mold 32 approaching the fixed mold 31 in the mold clamping process. As shown in FIG. 3, the movable mold 32 waiting above the fixed mold 31 descends so as to approach the fixed mold 31, whereby the mold clamping of the mold 30 is performed. (Clamping process). The movable mold 32 is driven to move up and down using a known lifting mechanism (reciprocation mechanism) (not shown) provided with a hydraulic cylinder or the like. Such a movable mold 32 is provided with a molding surface 32 a that forms the front side of the molded article 10. The molding surface 32a has a shape in which the center side is convexly raised. The molding surface 32 a is provided on the inner side (inner surface side) of the movable mold 32 facing the fixed mold 31. As described later, in the mold 30 in the mold clamped state, a space surrounded by the molding surface 32 a of the movable mold 32 and the molding surface 31 a of the fixed mold 31 becomes the cavity C of the mold 30.

可動金型32は、全体的には、固定金型31の凹状の成形面31aを覆うような蓋状をなしている。このような可動金型32の中央部分には、成形型30内に樹脂を注入するための注入孔(スプルー)33が設けられている。注入孔33は、可動金型32を貫通する形で設けられており、成形型30のキャビティCに連通している。そして、そのような注入孔33には、樹脂供給装置40のノズル41が接続されている。   The movable mold 32 generally has a lid shape so as to cover the concave molding surface 31 a of the fixed mold 31. An injection hole (sprue) 33 for injecting a resin into the mold 30 is provided in the central portion of such a movable mold 32. The injection hole 33 is provided so as to penetrate the movable mold 32 and is in communication with the cavity C of the mold 30. The nozzle 41 of the resin supply device 40 is connected to such an injection hole 33.

樹脂供給装置40は、成形型30のキャビティCに未硬化状態の熱硬化性樹脂を供給する装置である。本実施形態の樹脂供給装置40は、主剤と硬化剤からなる二液混合型のエポキシ樹脂(樹脂R)を成形型30内に供給する。樹脂供給装置40は、主剤と硬化剤とを衝突混合させながら成形型30側へ吐出するミキシングヘッドを備えている。主剤と硬化剤は、それぞれ所定のタンク内に収容されており、各々の圧送ポンプによって正確な配合比でミキシングヘッドに送られる。そして、ミキシングヘッド内で主剤と硬化剤が互いに衝突しながら混ざり合い、それらの混合物からなる未硬化状態のエポキシ樹脂が、ミキシングヘッドの先端にあるノズル41から吐出される。ノズル41から吐出された樹脂は、注入孔33を介してキャビティCに注入される。   The resin supply device 40 is a device for supplying the uncured thermosetting resin to the cavity C of the mold 30. The resin supply device 40 of the present embodiment supplies a two-component mixed epoxy resin (resin R) composed of a main agent and a curing agent into the mold 30. The resin supply device 40 includes a mixing head which discharges the main agent and the curing agent toward the forming die 30 while causing collision mixing. The main agent and the curing agent are respectively contained in predetermined tanks, and are sent to the mixing head at the correct blending ratio by the respective pressure pumps. Then, the main agent and the curing agent collide and mix in the mixing head, and an uncured epoxy resin composed of the mixture is discharged from the nozzle 41 at the tip of the mixing head. The resin discharged from the nozzle 41 is injected into the cavity C via the injection hole 33.

また、可動金型32の内側(内面側)の周縁側には、キャビティCの周縁を取り囲むシール部材34が設けられている。このようなシール部材34が、型締め時に固定金型31と可動金型32との間で挟まれることにより、キャビティCの周りにある可動金型32と固定金型31の間の隙間が密封される。   A seal member 34 surrounding the periphery of the cavity C is provided on the inner peripheral side (inner surface side) of the movable mold 32. When such a seal member 34 is sandwiched between the fixed mold 31 and the movable mold 32 at the time of mold clamping, the gap between the movable mold 32 and the fixed mold 31 around the cavity C is sealed. Be done.

図4は、型締めされた成形型30のキャビティCに未硬化状態の樹脂Rが注入される工程を示す説明図である。図4に示されるように、成形型30が型締めされると、固定金型31の成形面31aと、可動金型32の成形面32aとで囲まれた空間が1つのキャビティCとして形成される。型締めされた成形型30のキャビティCには、積層体Xが収容された状態となっている。   FIG. 4 is an explanatory view showing a process of injecting the uncured resin R into the cavity C of the clamped mold 30. As shown in FIG. 4, when the mold 30 is clamped, a space surrounded by the molding surface 31 a of the fixed mold 31 and the molding surface 32 a of the movable mold 32 is formed as one cavity C. Ru. The laminated body X is accommodated in the cavity C of the mold 30 which is clamped.

型締め後、成形装置20が備える負圧付与機構(不図示)を利用して、キャビティC内のガスが外部に排出され、キャビティC内が負圧状態にされる(負圧付与工程)。成形型30の可動金型32には、貫通孔状の排気孔(不図示)が設けられており、その排気孔を介してキャビティC内のガスが、真空ポンプにより外部へ排出される。   After clamping, the gas in the cavity C is discharged to the outside by using a negative pressure application mechanism (not shown) provided in the molding apparatus 20, and the inside of the cavity C is brought into a negative pressure state (negative pressure application step). The movable mold 32 of the mold 30 is provided with an exhaust hole (not shown) in the form of a through hole, and the gas in the cavity C is exhausted to the outside by the vacuum pump through the exhaust hole.

キャビティC内の負圧が所定の値になったところで、所定の弁装置(不図示)が作動し、排気孔からのガスの排出が停止される。そして、キャビティC内は、気密状態で保たれる。その後、このような状態のキャビティC内に、樹脂供給装置40を利用して未硬化状態の樹脂(エポキシ樹脂)が注入される。本実施形態の場合、樹脂供給装置40の注入圧力は、積層体Xのコア材11が潰れること等を抑制するために、比較的、低圧力(例えば、0.3MPa〜5MPa、好ましくは1MPa以下)に設定される。   When the negative pressure in the cavity C reaches a predetermined value, a predetermined valve device (not shown) is activated to stop the discharge of gas from the exhaust hole. Then, the inside of the cavity C is kept airtight. After that, the uncured resin (epoxy resin) is injected into the cavity C in such a state by using the resin supply device 40. In the case of the present embodiment, the injection pressure of the resin supply device 40 is relatively low (for example, 0.3 MPa to 5 MPa, preferably 1 MPa or less) in order to suppress the core material 11 of the laminate X from being crushed or the like. Set to).

樹脂供給装置40は、主剤と硬化剤とからなる二液混合型のエポキシ樹脂(樹脂R)を、衝突混合させながら、キャビティC内へ注入する(樹脂供給工程)。図5は、キャビティC内の積層体Xに、注入孔33から供給された樹脂Rが行き渡る様子を示す説明図である。図5に示されるように、供給口111の真上に注入孔33が配されるように、積層体XがキャビティC内にセットされている。供給口111は、表側の単位コア材11aを貫通する孔部からなり、平面視で、注入孔33よりも小さな円形状をなしている。供給口111の中には、カーボン繊維の織物からなる充填材121が充填されており、単位コア材11a内に大きな空隙が形成されることが抑制されている。   The resin supply device 40 injects into the cavity C the collision mixing of the two-component mixed epoxy resin (resin R) composed of the main agent and the curing agent (resin supply step). FIG. 5 is an explanatory view showing how the resin R supplied from the injection holes 33 spreads over the laminate X in the cavity C. As shown in FIG. As shown in FIG. 5, the laminate X is set in the cavity C such that the injection hole 33 is disposed right above the supply port 111. The supply port 111 includes a hole penetrating the unit core material 11 a on the front side, and has a circular shape smaller than the injection hole 33 in a plan view. The supply port 111 is filled with a filler 121 made of carbon fiber woven fabric, and formation of a large void in the unit core material 11 a is suppressed.

注入孔33から供給された樹脂Rは、キャビティC内において、表側の補強繊維基材12a越しに、コア材11の供給口111に供給される。補強繊維基材12aは、カーボン繊維の織物からなるため、多孔質状であり、未硬化状態の樹脂Rを含浸し易く、しかも樹脂Rを通過させ易い。なお、注入孔33から供給された樹脂Rの一部は、コア材11の表面に沿いつつ、表側の補強繊維基材11の内部を面方向に広がるように移動する。   In the cavity C, the resin R supplied from the injection hole 33 is supplied to the supply port 111 of the core material 11 through the reinforcing fiber base 12a on the front side. Since the reinforcing fiber base 12a is made of carbon fiber woven fabric, it is porous and can be easily impregnated with the uncured resin R, and can easily pass the resin R. A part of the resin R supplied from the injection hole 33 moves along the surface of the core material 11 so as to spread in the surface direction inside the reinforcing fiber base 11 on the front side.

供給口111に供給された樹脂Rは、供給口111と繋がる単位コア材11a,11bの間の隙間(流路)110に供給される。隙間110に供給された樹脂Rは、面状に広がるように隙間110内を移動する。隙間110内を移動する際に、樹脂Rの一部は、単位コア材11a,11bに設けられている各分岐路112(112a,112b)に浸入し、表側の補強繊維基材12aや、裏側の補強繊維基材12aにそれぞれ供給される。注入孔33に樹脂Rが供給され続け、キャビティC内が樹脂で埋め尽くされると、積層体Xの表側の補強繊維基材12a及び裏側の補強繊維基材12bは、それぞれ樹脂Rに含浸された状態となる。また、積層体X内に樹脂Rを行き渡らせるための流路として利用された、コア材11の隙間110、供給口111及び分岐路112は、何れも樹脂Rで埋められた状態となっている。   The resin R supplied to the supply port 111 is supplied to the gap (flow path) 110 between the unit core members 11 a and 11 b connected to the supply port 111. The resin R supplied to the gap 110 moves in the gap 110 so as to spread in a plane. When moving in the gap 110, a part of the resin R infiltrates into the branch paths 112 (112a and 112b) provided in the unit core members 11a and 11b, and the reinforcing fiber base 12a on the front side and the back side Are respectively supplied to the reinforcing fiber base 12a. When the resin R is continuously supplied to the injection hole 33 and the cavity C is filled with the resin, the reinforcing fiber base 12a on the front side of the laminate X and the reinforcing fiber base 12b on the rear side are impregnated with the resin R, respectively. It becomes a state. In addition, the gap 110, the supply port 111, and the branch path 112 of the core material 11, which are used as a flow path for spreading the resin R in the laminate X, are all filled with the resin R. .

積層体Xのコア材11は独立気泡構造の発泡樹脂からなるため、コア材11に未硬化状態の樹脂Rを積極的に含浸させることはできないものの、上記のようにコア材11に供給口111、隙間(流路)110及び分岐路112を設けることで、コア材11と各補強繊維基材12a,12bとの間等に、効率よく樹脂Rを行き渡らせることができる。   Since the core material 11 of the laminate X is made of a foamed resin having a closed cell structure, although the core material 11 can not be positively impregnated with the uncured resin R, as described above, the supply port 111 is provided. By providing the gap (flow passage) 110 and the branch passage 112, the resin R can be efficiently spread between the core material 11 and the respective reinforcing fiber bases 12a and 12b.

未硬化状態である液状の樹脂R(エポキシ樹脂)は、粘性が低いため(例えば、数mPa・s〜数100mPa・s程度)、樹脂の注入圧力が低くても、積層体Xに含浸され易い。つまり、エポキシ樹脂は隙間110や分岐路112等の小さなスペースでも移動することができる。   The uncured liquid resin R (epoxy resin) is easily impregnated with the laminate X even if the injection pressure of the resin is low because the viscosity is low (for example, about several mPa · s to several 100 mPa · s) . That is, the epoxy resin can move even in a small space such as the gap 110 or the branch passage 112.

成形型30のキャビティC内が樹脂Rで充填された後、樹脂Rの吐出が停止され、その後、キャビティC内が保圧(保圧工程)される。そして、キャビティC内が保圧された状態で、成形型30内の樹脂Rの硬化が行われる(硬化工程)。成形型30には、図示されない加熱装置(ヒーター等)が備えられており、その加熱装置により成形型30が加熱されることで、キャビティC内の樹脂Rの硬化が行われる。   After the inside of the cavity C of the mold 30 is filled with the resin R, the discharge of the resin R is stopped, and thereafter, the inside of the cavity C is held (pressure holding process). Then, in a state where the pressure in the cavity C is held, curing of the resin R in the mold 30 is performed (curing step). The mold 30 is provided with a heating device (a heater or the like) not shown, and the resin R in the cavity C is cured by heating the mold 30 by the heating device.

隙間110内の樹脂Rが硬化すると、隙間樹脂部130(流路樹脂部の一例、図1参照)となり、供給口111内の樹脂Rが硬化すると、供給口樹脂部131(図1参照)となり、分岐路112内の樹脂Rが硬化すると、分岐路樹脂部132(図1参照)となる。その後、成形型30が型開きされる(型開き工程)。型開きの際、可動金型32が固定金型31から離れるように上昇する。   When the resin R in the gap 110 is cured, it becomes a gap resin portion 130 (an example of a flow path resin portion, see FIG. 1), and when the resin R in the supply port 111 cures, it becomes a supply port resin portion 131 (see FIG. 1). When the resin R in the branch passage 112 is cured, it becomes a branch passage resin portion 132 (see FIG. 1). Thereafter, the mold 30 is opened (mold opening process). At the time of mold opening, the movable mold 32 ascends away from the fixed mold 31.

図6は、固定金型31から成形品10が脱型される工程(脱型工程)を示す説明図である。型開き後、固定金型31の成形面31a上に残された成形品10が、成形面31aから取り外される。このようにして、成形装置20を利用して、成形品10が製造される。   FIG. 6 is an explanatory view showing a process (demolding process) in which the molded product 10 is demolded from the fixed mold 31. As shown in FIG. After the mold is opened, the molded product 10 left on the molding surface 31 a of the fixed mold 31 is removed from the molding surface 31 a. Thus, the molded article 10 is manufactured using the molding apparatus 20.

以上のように、コア材11の内部に、未硬化状態の樹脂Rを平面方向に通す流路(隙間110)を形成することで、成形品10の外観に影響を与えることなく、キャビティC内及び積層体X内に樹脂Rを行き渡らせることができる。樹脂Rの注入圧力が低圧の場合や、樹脂Rの粘度が高い場合でも、短時間で成形型のキャビティC内に樹脂Rを隅々まで行き渡らせることができる。   As described above, by forming the flow path (the gap 110) for passing the uncured resin R in the planar direction inside the core material 11, the inside of the cavity C is not affected without affecting the appearance of the molded article 10. And the resin R can be distributed in the laminate X. Even when the injection pressure of the resin R is low or the viscosity of the resin R is high, it is possible to spread the resin R in the cavity C of the mold in a short time.

<実施形態2>
次いで、本発明の実施形態2を、図7及び図8を参照しつつ説明する。図7は、実施形態2の成形品10Aの断面構成を模式的に表した説明図であり、図8は、実施形態2の成形品10Aの製造工程において、キャビティC内の積層体XAに、注入孔33から供給された樹脂Rが行き渡る様子を示す説明図である。なお、実施形態2以降の各実施形態では、上記実施形態1の成形品10と同じ構成については、実施形態1と同じ符号を付し、その詳細説明は適宜、省略する。
Second Embodiment
Next, Embodiment 2 of the present invention will be described with reference to FIGS. 7 and 8. FIG. 7 is an explanatory view schematically showing the cross-sectional configuration of the molded article 10A of the second embodiment. FIG. 8 is a view showing the laminate XA in the cavity C in the manufacturing process of the molded article 10A of the second embodiment. It is explanatory drawing which shows a mode that resin R supplied from the injection hole 33 spreads. In the second and subsequent embodiments, the same components as those of the molded article 10 of the first embodiment are given the same reference numerals as the first embodiment, and the detailed description thereof will be omitted as appropriate.

本実施形態の成形品10Aは、図7に示されるように、コア材11Aと、コア材11Aの表面11Aa1及び裏面11Ab1に重ねられる一対の補強繊維基材12a、12bと、補強繊維基材12a,12b等に含浸された後、硬化される熱硬化性樹脂(エポキシ樹脂)からなる樹脂部13Aとを備えている。コア材11Aは、一対の単位コア部材11Aa,11Abが重ねられたものからなり、それらの間の隙間110Aが、未硬化状態の樹脂Rを通す流路となっている。   The molded article 10A of this embodiment, as shown in FIG. 7, includes a core material 11A, a pair of reinforcing fiber substrates 12a and 12b stacked on the surface 11Aa1 and the back surface 11Ab of the core material 11A, and a reinforcing fiber substrate 12a. , 12b, and the like, and is provided with a resin portion 13A made of a thermosetting resin (epoxy resin) to be cured. The core member 11A is formed by overlapping a pair of unit core members 11Aa and 11Ab, and a gap 110A between them is a flow path through which the uncured resin R is passed.

本実施形態の場合、表側の単位コア部材11Aaの内面側(裏側の補強繊維基材12bと対向する面側)には、スペーサ部113Aが複数個設けられている。スペーサ部113Aは、単位コア部材11aの内面から凸状に盛り上がった形を成しており、そのようなスペーサ部113Aにより、単位コア部材11Aa,11Abの間に隙間110Aが形成され易くなっている。このような隙間110Aは、樹脂部13Aの一部である隙間樹脂部(流路樹脂部の一例)130Aで埋められている。   In the case of the present embodiment, a plurality of spacer portions 113A are provided on the inner surface side (surface side facing the reinforcing fiber base 12b on the back side) of the unit core member 11Aa on the front side. The spacer portion 113A has a convex shape protruding from the inner surface of the unit core member 11a, and the gap 110A is easily formed between the unit core members 11Aa and 11Ab by such a spacer portion 113A. . Such a gap 110A is filled with a gap resin portion (an example of a flow path resin portion) 130A which is a part of the resin portion 13A.

コア材11Aを構成する表側の単位コア部材11Aaには、実施形態1と同様、充填材121Aが充填された供給口111Aが形成されている。そして、その供給口111Aは、樹脂部13Aの一部である供給口樹脂部131Aで埋められている。また、各単位コア部材11Aa,11Abには、実施形態1と同様、複数の分岐路112Aが形成されている。そして、各分岐路112Aは、樹脂部13Aの一部である分岐路樹脂部132Aで埋められている。   As in the first embodiment, a supply port 111A filled with a filler material 121A is formed in the unit core member 11Aa on the front side of the core material 11A. The supply port 111A is filled with a supply port resin portion 131A which is a part of the resin portion 13A. Further, as in the first embodiment, a plurality of branch paths 112A are formed in each unit core member 11Aa and 11Ab. Each branch path 112A is filled with a branch path resin portion 132A which is a part of the resin portion 13A.

図8に示されるように、積層体XAがセットされた成形型のキャビティC内に、注入孔33より未硬化状態(液状)の樹脂Rが供給されると、その樹脂Rは、実施形態1と同様、表側の補強繊維基材12a越しに、積層体XA内に供給される。そして、補強繊維基材12aを通って供給口111Aに供給された樹脂Rは、隙間110A内で面状に広がるように移動しつつ、その途中で各分岐路112Aに分配される。特に、本実施形態の場合、隙間110Aがスペーサ部113Aにより確実に確保されるため、樹脂Rが、隙間110A内を面状に広がるように移動し易い。そのため、本実施形態では、未硬化状態の樹脂Rを、キャビティC内及び積層体XA内(特に、各補強繊維基材12a,12b等)に、効率よく行き渡らせることができる。   As shown in FIG. 8, when the resin R in the uncured state (liquid state) is supplied from the injection hole 33 into the cavity C of the mold in which the laminate XA is set, the resin R is manufactured according to the first embodiment. Similarly to the above, it is supplied into the laminate XA through the reinforcing fiber base 12a on the front side. Then, the resin R supplied to the supply port 111A through the reinforcing fiber base 12a moves in a planar manner in the gap 110A, and is distributed to the branch paths 112A in the middle thereof. In particular, in the case of the present embodiment, since the gap 110A is reliably secured by the spacer portion 113A, the resin R easily moves so as to spread in a planar manner in the gap 110A. Therefore, in the present embodiment, the resin R in the uncured state can be efficiently spread in the cavity C and in the laminate XA (in particular, each reinforcing fiber base 12a, 12b, etc.).

<実施形態3>
次いで、本発明の実施形態3を、図9〜図11を参照しつつ説明する。図9は、実施形態3の成形品10Bの断面構成を模式的に表した説明図であり、図10は、実施形態3のコア材11Bの斜視図であり、図11は、実施形態3の成形品10Bの製造工程において、キャビティC内の積層体XBに、注入孔33から供給された樹脂Rが行き渡る様子を示す説明図である。
Embodiment 3
Next, Embodiment 3 of the present invention will be described with reference to FIGS. 9 to 11. FIG. 9 is an explanatory view schematically showing a cross-sectional configuration of a molded article 10B of the third embodiment, FIG. 10 is a perspective view of a core material 11B of the third embodiment, and FIG. It is an explanatory view showing signs that resin R supplied from injection hole 33 spreads over layered product XB in cavity C in a manufacturing process of molded article 10B.

本実施形態の成形品10Bは、図9に示されるように、コア材11Bと、コア材11Bの表面11B1及び裏面11B2に重ねられる一対の補強繊維基材12a,12bと、補強繊維基材12a,12b等に含浸された後、硬化される熱硬化性樹脂(エポキシ樹脂)からなる樹脂部13Bとを備えている。コア材11Bは、一枚の発泡樹脂製の板材からなる。コア材11Bには、表側の補強繊維基材12a越しに未硬化状態の樹脂Rが供給される貫通孔状の供給口111Bが設けられている。この供給口111B内には、図9に示されるように、実施形態1等と同様、カーボン繊維の織物からなる充填材121Bが充填されている。そして、成形品10Bの状態において、充填材121Bが充填された供給口111B内は、樹脂部13Bの一部である供給口樹脂部131Bで埋められている。また、コア材11Bの裏面11B2には、供給口11Bと接続しつつ、面方向に沿って延びる形で複数の溝110Bが設けられている。溝110Bは、未硬化状態の樹脂Rを通す流路であり、特に、コア材11Bの裏面11B2に樹脂Rが行き渡り易いように設けられている。   As shown in FIG. 9, a molded article 10B according to the present embodiment includes a core 11B, a pair of reinforcing fiber bases 12a and 12b stacked on a front surface 11B1 and a back surface 11B2 of the core 11B, and a reinforcing fiber base 12a. , 12b and the like, and is provided with a resin portion 13B made of a thermosetting resin (epoxy resin) to be cured. The core material 11B is made of a sheet of foam resin. The core material 11B is provided with a through-hole-shaped supply port 111B through which the uncured resin R is supplied through the reinforcing fiber base 12a on the front side. In the supply port 111B, as shown in FIG. 9, a filler 121B made of carbon fiber woven fabric is filled as in the first embodiment and the like. Then, in the state of the molded product 10B, the inside of the supply port 111B filled with the filler 121B is filled with the supply port resin portion 131B which is a part of the resin portion 13B. Further, on the back surface 11B2 of the core member 11B, a plurality of grooves 110B are provided so as to extend along the surface direction while being connected to the supply port 11B. The groove 110B is a flow path through which the resin R in the uncured state passes, and in particular, the resin R is provided on the back surface 11B2 of the core material 11B so as to easily spread.

また、成形品10Bの状態において、溝110Bは、樹脂部13Bの一部である溝樹脂部130Bで埋められている。また、コア材11Bには、厚み方向に貫通する形で設けられた複数の分岐路112Bが設けられている。各分岐路112Bは、裏面11B2側の溝110Bと表面11B1側とを連通する。そして、成形品10Bの状態において、各分岐路112Bは、樹脂部13Bの一部である分岐路樹脂部132Bで埋められている。   Further, in the state of the molded product 10B, the groove 110B is filled with the groove resin portion 130B which is a part of the resin portion 13B. Further, the core member 11B is provided with a plurality of branch paths 112B provided to penetrate in the thickness direction. Each branch path 112B communicates the groove 110B on the back surface 11B2 side with the surface 11B1 side. Then, in the state of the molded product 10B, each branch path 112B is filled with a branch path resin portion 132B which is a part of the resin portion 13B.

図11に示されるように、積層体XBがセットされた成形型のキャビティC内に、注入孔33より未硬化状態(液状)の樹脂Rが供給されると、その樹脂Rは、実施形態1と同様、表側の補強繊維基材12a越しに、積層体XB内に供給される。そして、補強繊維基材12aを通って供給口111Bに供給された樹脂Rは、裏側の補強繊維基材12bに含浸されながら、溝110Bに導かれつつ、コア材11Bの裏面11B2を覆うように面状に広がる。また、注入孔33より供給された樹脂Rの一部は、コア材11Bの表面11B1に沿う形で、表側の補強繊維基材12aに含浸されつつ面状に広がる。   As shown in FIG. 11, when the resin R in the uncured state (liquid state) is supplied from the injection hole 33 into the cavity C of the mold in which the laminate XB is set, the resin R is manufactured according to the first embodiment. Similarly to the above, it is supplied into the laminate XB through the reinforcing fiber base 12a on the front side. Then, the resin R supplied to the supply port 111B through the reinforcing fiber base 12a is introduced to the groove 110B while being impregnated into the reinforcing fiber base 12b on the back side so as to cover the back surface 11B2 of the core material 11B. Spread in a plane. Further, a part of the resin R supplied from the injection hole 33 spreads in a planar manner while being impregnated in the reinforcing fiber base 12a on the front side in a form along the surface 11B1 of the core material 11B.

本実施形態のように、コア材11Bに供給口111B、溝110B、及び分岐路112Bを設けることで、未硬化状態の樹脂Rを、キャビティC内及び積層体XB内(特に、各補強繊維基材12a,12b等)に効率よく行き渡らせることができる。   As in the present embodiment, by providing the supply port 111B, the groove 110B, and the branch path 112B in the core material 11B, the resin R in an uncured state can be contained in the cavity C and in the laminate XB (in particular, each reinforcing fiber group Material (12a, 12b, etc.) can be efficiently distributed.

<実施形態4>
次いで、本発明の実施形態4を、図12及び図13を参照しつつ説明する。図12は、実施形態4の成形品10Cの断面構成を模式的に表した説明図であり、図13は、実施形態4の成形品10Cの製造工程において、キャビティC内の積層体XCに、注入孔33から供給された樹脂Rが行き渡る様子を示す説明図である。
Fourth Embodiment
Next, Embodiment 4 of the present invention will be described with reference to FIGS. 12 and 13. FIG. 12 is an explanatory view schematically showing a cross-sectional configuration of a molded article 10C of the fourth embodiment, and FIG. 13 is a manufacturing process of the molded article 10C of the fourth embodiment. It is explanatory drawing which shows a mode that resin R supplied from the injection hole 33 spreads.

本実施形態の成形品10Cは、図12に示されるように、コア材11Cと、コア材11Cの表面11C1及び裏面11C2に重ねられる一対の補強繊維基材12a,12bと、補強繊維基材12a,12b等に含浸された後、硬化される熱硬化樹脂(エポキシ樹脂)からなる樹脂部13Cとを備えている。コア材11Cは、一枚の発泡樹脂製の板材からなり、コア材11Cには、表側の補強繊維基材12a越しに未硬化状態の樹脂が供給される貫通孔状の供給口111Cが設けられている。この供給口111C内には、図12に示されるように、実施形態1等と同様、カーボン繊維の織物からなる充填材121Cが充填されている。そして、充填材121Cが充填された供給口111C内は、樹脂部13Cの一部である供給口樹脂部131Cで埋められている。   Molded article 10C of this embodiment, as shown in FIG. 12, includes core material 11C, a pair of reinforcing fiber substrates 12a and 12b stacked on surface 11C1 and back surface 11C2 of core material 11C, and reinforcing fiber substrate 12a. , 12b and the like, and is provided with a resin portion 13C made of a thermosetting resin (epoxy resin) to be cured. The core material 11C is formed of a sheet of foamed resin plate material, and the core material 11C is provided with a through hole-like supply port 111C to which uncured resin is supplied through the reinforcing fiber base 12a on the front side. ing. In the supply port 111C, as shown in FIG. 12, a filler 121C made of carbon fiber woven fabric is filled as in the first embodiment and the like. The inside of the supply port 111C in which the filler 121C is filled is filled with the supply port resin portion 131C which is a part of the resin portion 13C.

コア材11Cの内部には、供給口11Bと接続しつつ、面方向に沿って延びる空洞部110Cが設けられている。空洞部110Cは、未硬化状態の樹脂Rを通す流路であり、コア材11C内に複数設けられている。また、コア材11Cには、空洞部110Cと、コア材11Cの表面11C1側又は裏面11C2側とを連絡し、空洞部10C内を流れる樹脂Rの流れを分岐させる分岐路112Cが複数設けられている。成形品10Cの状態において、空洞部110C内は、樹脂部13Cの一部である空洞樹脂部130Cで埋められ、また、各分岐路112C内は、樹脂部13Cの一部である分岐路樹脂部132Cで埋められている。   Inside the core material 11C, a hollow portion 110C extending along the surface direction is provided while being connected to the supply port 11B. The hollow portion 110C is a flow path through which the resin R in an uncured state passes, and a plurality of hollow portions 110C are provided in the core material 11C. Further, the core member 11C is provided with a plurality of branch paths 112C that connect the hollow portion 110C and the surface 11C1 side or the back surface 11C2 side of the core member 11C and branch the flow of the resin R flowing in the hollow portion 10C. There is. In the state of the molded product 10C, the inside of the hollow portion 110C is filled with the hollow resin portion 130C which is a part of the resin portion 13C, and the inside of each branch path 112C is a branch path resin portion which is a part of the resin portion 13C. Filled with 132C.

図13に示されるように、積層体XCがセットされた成形型のキャビティC内に、注入孔33より未硬化状態(液状)の樹脂Rが供給されると、その樹脂Rは、実施形態1と同様、表側の補強繊維基材12a越しに、積層体XC内の供給口111Cに供給される。そして、補強繊維基材12aを通って供給口111Cに供給された樹脂Rの一部は、空洞部130C内に浸入し、更に、空洞部130Cに沿って面方向へ移動する。空洞部130C内を流れる樹脂Rは、適宜、分岐路112Cで分岐されるため、コア材11Cの表面11C1側及び裏面11C2側に、それぞれ樹脂Rが行き渡る。また、供給口111Cから裏側の補強繊維基材11bに供給された樹脂Rは、コア材11Cの裏面11C2に沿う形で、裏側の補強繊維基材12bに含浸されつつ面状に広がる。また、注入孔33より供給された樹脂Rの一部は、コア材11Cの表面11C1に沿う形で、表側の補強繊維基材12aに含浸されつつ面状に広がる。   As shown in FIG. 13, when the resin R in the uncured state (liquid state) is supplied from the injection hole 33 into the cavity C of the mold in which the laminate XC is set, the resin R is manufactured according to the first embodiment. Similarly to the above, it is supplied to the supply port 111C in the laminate XC through the reinforcing fiber base 12a on the front side. Then, a part of the resin R supplied to the supply port 111C through the reinforcing fiber base 12a intrudes into the hollow portion 130C, and further moves in the surface direction along the hollow portion 130C. Since the resin R flowing in the hollow portion 130C is appropriately branched at the branch path 112C, the resin R spreads on the surface 11C1 side and the back surface 11C2 side of the core material 11C. Further, the resin R supplied from the supply port 111C to the reinforcing fiber base 11b on the back side spreads in a planar manner while being impregnated in the reinforcing fiber base 12b on the back side along the back surface 11C2 of the core material 11C. In addition, a part of the resin R supplied from the injection hole 33 spreads in a planar manner while being impregnated into the reinforcing fiber base 12a on the front side, along the surface 11C1 of the core material 11C.

本実施形態のように、コア材11Cに供給口11C、空洞部110C、及び分岐路112Cを設けることで、未硬化状態の樹脂Rを、キャビティC内及び積層体XC内(特に、各補強繊維基材12a,12b等)に効率よく行き渡らせることができる。   As in the present embodiment, by providing the supply port 11C, the hollow portion 110C, and the branch path 112C in the core member 11C, the resin R in an uncured state is placed in the cavity C and in the laminate XC (in particular, each reinforcing fiber It can be efficiently distributed to the base materials 12a, 12b, etc.).

<実施形態5>
次いで、本発明の実施形態5を、図14〜図16を参照しつつ説明する。図14は、実施形態5の成形品10Dの断面構成を模式的に表した説明図であり、図15は、実施形態5のコア材14Dの平面図であり、図16は、実施形態5の成形品10Dの製造工程において、キャビティC内の積層体XDに、注入孔33から供給された樹脂Rが行き渡る様子を示す説明図である。
Fifth Embodiment
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 14 is an explanatory view schematically showing a cross-sectional configuration of a molded article 10D of the fifth embodiment, FIG. 15 is a plan view of a core member 14D of the fifth embodiment, and FIG. It is an explanatory view showing signs that resin R supplied from injection hole 33 spreads over layered product XD in cavity C in a manufacturing process of molded article 10D.

本実施形態の成形品10Dは、図14に示されるように、コア材11Dと、コア材11Dの表面11D1及び裏面11D2に重ねられる一対の補強繊維基材12a,12bと、補強繊維基材12a,12b等に含浸された後、硬化される熱硬化性樹脂(エポキシ樹脂)からなる樹脂部13Dとを備えている。コア材11Dは、面方向で分割された一対の分割コア材11Da,11Dbからなる。分割コア材11Da,11Dbは、それぞれ、発泡樹脂製の板材からなり、それらが隣り合った端面11D3,11D4同士の間に、面方向に沿って延びかつ厚み方向に貫通する長手状の貫通流路113Dが形成される。貫通流路113Dは、製造過程において、未硬化状態の樹脂Rを面方向に沿って通す流路ある。各端面11D3,11D4はそれぞれ長手状をなしており、それらの両端部に、それぞれ各端面11D3,11D4から突出した凸部115Dが設けられている。貫通流路113Dは、各端面11D3,11D4と、各凸部114Dとで囲まれた部分からなる。   As shown in FIG. 14, a molded article 10D of the present embodiment includes a core 11D, a pair of reinforcing fiber bases 12a and 12b stacked on the surface 11D1 and the back 11D2 of the core 11D, and a reinforcing fiber base 12a. , 12b, and the like, and is provided with a resin portion 13D made of a thermosetting resin (epoxy resin) to be cured. Core material 11D consists of a pair of division core materials 11Da and 11Db divided in the surface direction. Each of the divided core members 11Da and 11Db is a plate made of a foamed resin, and is a longitudinal through flow passage extending along the surface direction and penetrating in the thickness direction between the end surfaces 11D3 and 11D4 adjacent to each other. 113D is formed. The through flow passage 113D is a flow passage for passing the uncured resin R along the surface direction in the manufacturing process. Each of the end surfaces 11D3 and 11D4 has a longitudinal shape, and a convex portion 115D protruding from each of the end surfaces 11D3 and 11D4 is provided at each end of the end surfaces 11D3 and 11D4. The through flow passage 113D is composed of a portion surrounded by the end surfaces 11D3 and 11D4 and the convex portions 114D.

貫通流路113D内には、図14及び図15に示されるように、カーボン繊維の織物からなる充填材123Dが充填されている。そして、充填材123Dが充填された貫通流路113D内は、樹脂部13Dの一部である貫通流路樹脂部133Dで埋められている。また、コア材11D(分割コア材11Da,11Db)には、厚み方向に貫通する孔部からなり、表面11D1側と裏面11D2側とを連通する連通路114Dが形成されている。連通路114Dは、各分割コア材11Da,11Dbにそれぞれ複数設けられている。成形品10Dの状態において、各分割コア材11Da、11Dbには、樹脂部13Dの一部である連通路樹脂部134Dで埋められている。   In the through flow passage 113D, as shown in FIGS. 14 and 15, a filler 123D made of a woven fabric of carbon fibers is filled. The inside of the through flow passage 113D filled with the filler 123D is filled with the through flow passage resin portion 133D which is a part of the resin portion 13D. Further, in the core member 11D (the divided core members 11Da and 11Db), a communication passage 114D is formed which is a hole penetrating in the thickness direction and which communicates the surface 11D1 side and the back surface 11D2 side. A plurality of communication paths 114D are provided in each of the divided core members 11Da and 11Db. In the state of the molded product 10D, the divided core members 11Da and 11Db are filled with the communication passage resin portion 134D which is a part of the resin portion 13D.

図16に示されるように、積層体XDがセットされた成形型のキャビティC内に、注入孔33より未硬化状態(液状)の樹脂Rが供給されると、その樹脂Rは、表側の補強繊維基材12a越しに、積層体XD内の貫通流路113Dに供給される。そして、貫通流路113Dに供給された樹脂Rは、貫通流路113Dの長手方向等に沿って移動する。貫通流路113D内に浸入した樹脂Rの一部は、コア材11Dの裏面11D2に沿いつつ、裏側の補強繊維基材12bに含浸された状態で、面状に広がる。注入孔33より供給された樹脂Rの一部は、コア材11Dの表面11D1に沿う形で、表側の補強繊維基材12aに含浸されつつ面状に広がる。また、コア材11Dの表面11D1側の樹脂Rの一部は、連通路114Dを介して裏面側11D2側へ移動する。場合によっては、裏面11D2側の樹脂Rの一部が、表面11D1側へ移動する。   As shown in FIG. 16, when the resin R in the uncured state (liquid state) is supplied from the injection hole 33 into the cavity C of the mold in which the laminate XD is set, the resin R is reinforced on the front side. It supplies to penetration channel 113D in layered product XD through textiles substrate 12a. Then, the resin R supplied to the through flow passage 113D moves along the longitudinal direction and the like of the through flow passage 113D. A part of the resin R that has infiltrated into the through flow passage 113D spreads in a planar manner in a state in which the reinforcing fiber base 12b on the back side is impregnated along the back surface 11D2 of the core material 11D. A part of the resin R supplied from the injection hole 33 spreads in a planar manner while being impregnated into the reinforcing fiber base 12a on the front side, along the surface 11D1 of the core material 11D. In addition, a part of the resin R on the surface 11D1 side of the core material 11D moves to the back surface side 11D2 through the communication passage 114D. In some cases, part of the resin R on the back surface 11D2 side moves to the front surface 11D1 side.

本実施形態のように、分割コア材11Da,11Dbを組み合わせてコア材11Dに貫通流路113Dを形成することで、未硬化状態の樹脂Rを、キャビティC内及び積層体XD内(特に、各補強繊維基材12a,12b等)に効率よく行き渡らせることができる。特に、コア材11D(分割コア材11Da,11Db)に、複数の連通路114Dが形成されることで、更に、樹脂Rを効率よく行き渡らせることができる。   As in the present embodiment, by forming the through flow passage 113D in the core member 11D by combining the divided core members 11Da and 11Db, the resin R in an uncured state can be formed in the cavity C and in the laminate XD (in particular, The reinforcing fiber base 12a, 12b, etc.) can be efficiently distributed. In particular, by forming the plurality of communication paths 114D in the core material 11D (the divided core materials 11Da and 11Db), the resin R can be efficiently spread further.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
Other Embodiments
The present invention is not limited to the embodiments described above with reference to the drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態1では、コア材が一対(2つ)の単位コア材を重ねたものが使用されていたが、本発明はこれに限られず、例えば、3つ以上の単位コア材を重ねたものを、コア材として使用されてもよい。   (1) In the first embodiment, the core material is a stack of a pair of (two) unit core materials. However, the present invention is not limited thereto. For example, three or more unit core materials may be used. A pile may be used as a core material.

(2)上記実施形態1では、同程度の厚みの単位コア材が使用されていたが、本発明の目的を損なわない限り、互いに厚みが異なる単位コア材が使用されてもよい。   (2) Although the unit core material of comparable thickness was used in the said Embodiment 1, as long as the objective of this invention is not impaired, unit core materials from which thickness mutually differs may be used.

(3)上記実施形態2において、スペーサ部は、表側の単位コア材の一部から形成されていたが、他の実施形態においては、裏側の単位コア材の一部をスペーサ部として用いてもよいし、双方の単位コア材の一部をスペーサ部として用いてもよい。また、場合によっては、単位コア材とは別の部材を、スペーサ部として利用してもよい。   (3) In the second embodiment, the spacer portion is formed of a part of the unit core material on the front side, but in another embodiment, even if a part of the unit core material on the back side is used as a spacer portion Alternatively, part of both unit core materials may be used as the spacer portion. Also, in some cases, a member other than the unit core material may be used as the spacer portion.

(4)上記実施形態3において、溝は、コア材の裏面側に設けられていたが、他の実施形態においては、更にコア材の表面側に設けられていてもよい。なお、溝は、少なくともコア材の裏面に形成されることが好ましい。   (4) In the third embodiment, the groove is provided on the back surface side of the core material, but in another embodiment, the groove may be further provided on the surface side of the core material. Preferably, the groove is formed at least on the back surface of the core material.

(5)上記実施形態5において、貫通流路を形成するための凸部は、隣り合った一対の分割コア材のうち、一方の分割コア材のみに形成されてもよく、貫通流路が形成されれば特に制限はない。   (5) In the fifth embodiment, the convex portion for forming the through flow passage may be formed only in one of the divided core members of the pair of adjacent divided core members, and the through flow passage is formed. There is no particular limitation if it is done.

(6)他の実施形態においては、ウレタン樹脂、フェノール樹脂等の熱硬化性樹脂を利用して、成形品を製造してもよい。   (6) In another embodiment, a molded article may be manufactured using a thermosetting resin such as a urethane resin or a phenol resin.

10…繊維強化樹脂成形品(成形品)、11…コア材、110…流路(隙間)、111…供給口、112…分岐路、12a,12b…補強繊維基材、13…樹脂部、130…流路樹脂部(隙間樹脂部)、131…供給口樹脂部、132…分岐路樹脂部、20…成形装置、30…成形型、31…固定金型(分割金型)、31a…成形面、32…可動金型(分割金型)、32a…成形面、40…樹脂供給装置、C…キャビティ、R…未硬化状態の樹脂、X…積層体   DESCRIPTION OF SYMBOLS 10 ... Fiber reinforced resin molded product (molded product), 11 ... Core material, 110 ... Flow path (gap), 111 ... Supply port, 112 ... Branch path, 12a, 12b ... Reinforcing fiber base material, 13 ... Resin part, 130 ... flow path resin portion (gap resin portion), 131 ... supply port resin portion, 132 ... branch path resin portion, 20 ... molding apparatus, 30 ... molding mold, 31 ... fixed mold (division mold), 31 a ... molding surface , 32: movable mold (divided mold), 32a: molding surface, 40: resin supply device, C: cavity, R: uncured resin, X: laminate

Claims (10)

発泡樹脂製の板状のコア材と、前記コア材の表面及び裏面にそれぞれ重ねられる一対のシート状の補強繊維基材とを有する積層体と、
前記積層体に含浸された未硬化状態の樹脂が硬化されてなる樹脂部とを備える繊維強化樹脂成形品であって、
前記積層体の前記コア材は、前記表面及び裏面に、又は内部に形成され、未硬化状態の前記樹脂を面方向に沿って流す流路と、厚み方向に貫通しつつ、前記流路と繋がる孔部からなり、前記補強繊維基材越しに外部から未硬化状態の前記樹脂が供給される供給口とを有し、
前記樹脂部は、前記流路を埋める流路樹脂部と、前記供給口を埋める供給口樹脂部とを有する繊維強化樹脂成形品。
A laminate having a plate-like core material made of a foamed resin, and a pair of sheet-like reinforcing fiber substrates respectively superimposed on the front and back surfaces of the core material;
It is a fiber reinforced resin molded article provided with the resin part by which the resin of the unhardened state by which the said laminated body was impregnated are hardened | cured,
The core material of the laminate is formed on the front surface and the back surface, or in the inside, and is connected to the flow path while passing through the flow path of the uncured resin along the surface direction and in the thickness direction And a supply port which comprises a hole and through which the uncured resin is supplied from the outside through the reinforcing fiber base,
The said resin part is a fiber reinforced resin molded article which has the flow-path resin part which fills the said flow path, and the supply port resin part which fills the said supply port.
前記積層体の前記コア材は、前記流路として使用される隙間が形成されるように互いに重ねられ、各々が板状をなした一対の単位コア材を有し、
前記樹脂部は、前記流路樹脂部として、前記隙間を埋める隙間樹脂部を有する請求項1に記載の繊維強化樹脂成形品。
The core members of the laminate are stacked on each other so as to form a gap used as the flow path, and each of the core members has a pair of unit core members in a plate shape,
The fiber reinforced resin molded article according to claim 1, wherein the resin portion has a gap resin portion filling the gap as the flow path resin portion.
前記積層体の前記コア材は、一対の前記単位コア材の間に配され、前記隙間を確保するスペーサ部を有する請求項2に記載の繊維強化樹脂成形品。   The fiber reinforced resin molded article according to claim 2, wherein the core material of the laminate is disposed between a pair of the unit core materials and has a spacer portion for securing the gap. 前記積層体の前記コア材は、少なくとも前記裏面に形成され、前記流路として使用される溝を有し、
前記樹脂部は、前記流路樹脂部として、前記溝を埋める溝樹脂部を有する請求項1に記載の繊維強化樹脂成形品。
The core material of the laminate has at least a groove formed on the back surface and used as the flow path,
The fiber reinforced resin molded article according to claim 1, wherein the resin portion has a groove resin portion filling the groove as the flow path resin portion.
前記積層体の前記コア材は、前記内部に形成され、前記流路として使用される空洞部を有し、
前記樹脂部は、前記流路樹脂部として、前記空洞部を埋める空洞樹脂部を有する請求項1に記載の繊維強化樹脂成形品。
The core material of the laminate has a hollow portion formed in the interior and used as the flow path,
The fiber reinforced resin molded article according to claim 1, wherein the resin portion has a hollow resin portion filling the hollow portion as the flow path resin portion.
前記積層体の前記コア材は、前記流路と、一方の前記補強繊維基材に面する表面側又は他方の前記補強繊維基材とを連絡し、未硬化状態の前記樹脂の流れを分岐させる分岐路を有し、
前記樹脂部は、前記分岐路を埋める分岐路樹脂部を有する請求項1〜請求項5の何れか一項に記載の繊維強化樹脂成形品。
The core material of the laminate connects the flow path and the surface side facing the reinforcing fiber base on one side or the other reinforcing fiber base, and branches the flow of the uncured resin. With a fork
The fiber reinforced resin molded article according to any one of claims 1 to 5, wherein the resin portion has a branch path resin portion filling the branch path.
発泡樹脂製の板状のコア材と、前記コア材の表面及び裏面にそれぞれ重ねられる一対のシート状の補強繊維基材とを有する積層体と、
前記積層体を包みつつ前記積層体に含浸された未硬化状態の樹脂が硬化されてなる樹脂部とを備える繊維強化樹脂成形品であって、
前記積層体の前記コア材は、隣り合った端面同士の間に、面方向に沿って延びかつ厚み方向に貫通する長手状の貫通流路が形成されるように、分割された一対の分割コア材を有し、
前記樹脂部は、長手状の前記貫通流路を埋める貫通流路樹脂部を有する繊維強化樹脂成形品。
A laminate having a plate-like core material made of a foamed resin, and a pair of sheet-like reinforcing fiber substrates respectively superimposed on the front and back surfaces of the core material;
A fiber reinforced resin molded article comprising: a resin portion obtained by curing an uncured resin impregnated in the laminate while wrapping the laminate.
The core material of the laminated body is a pair of divided cores divided such that a longitudinal through channel extending along the surface direction and penetrating in the thickness direction is formed between the adjacent end faces. Have material,
The said resin part is a fiber reinforced resin molded article which has a penetration flow path resin part which fills the longitudinal-like said penetration flow path.
前記積層体の前記コア材は、厚み方向に貫通する孔部からなり、一方の前記補強繊維基材に面する表面側と、他方の前記補強繊維基材に面する裏面側とを連通する連通路を有し、
前記樹脂部は、前記連通路を埋める連通路樹脂部を有する請求項7に記載の繊維強化樹脂成形品。
The core material of the laminate includes a hole penetrating in the thickness direction, and a series connecting the surface side facing one of the reinforcing fiber base and the back side facing the other reinforcing fiber base Have a passage,
The fiber reinforced resin molded article according to claim 7, wherein the resin portion has a communication path resin portion filling the communication path.
請求項1〜請求項6の何れか一項に記載の繊維強化樹脂成形品の製造方法であって、
前記積層体が収容された成形型のキャビティに、外部から未硬化状態の樹脂が供給されると、前記補強繊維基材越しに前記供給口に未硬化状態の樹脂が供給され、かつ前記樹脂が前記流路に沿って流れる樹脂供給工程とを備える繊維強化樹脂成形品の製造方法。
A method of producing a fiber-reinforced resin molded article according to any one of claims 1 to 6,
When an uncured resin is supplied from the outside to the cavity of the mold in which the laminate is accommodated, the uncured resin is supplied to the supply port through the reinforcing fiber substrate, and the resin is And a resin supply step flowing along the flow path.
請求項7又は請求項8に記載の繊維強化樹脂成形品の製造方法であって、
前記積層体が収容された成形型のキャビティに、外部から未硬化状態の樹脂が供給されると、前記補強繊維基材越しに前記貫通流路に未硬化状態の樹脂が供給され、かつ前記樹脂が前記貫通流路に沿って流れる樹脂供給工程とを備える繊維強化樹脂成形品の製造方法。
A method of producing a fiber-reinforced resin molded article according to claim 7 or 8, wherein
When the uncured resin is supplied from the outside to the cavity of the mold in which the laminate is accommodated, the uncured resin is supplied to the through flow path through the reinforcing fiber base material, and the resin And a resin supply step of flowing along the through flow passage.
JP2017216295A 2017-11-09 2017-11-09 Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product Active JP7003585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017216295A JP7003585B2 (en) 2017-11-09 2017-11-09 Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017216295A JP7003585B2 (en) 2017-11-09 2017-11-09 Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2019084787A true JP2019084787A (en) 2019-06-06
JP7003585B2 JP7003585B2 (en) 2022-02-10

Family

ID=66763833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017216295A Active JP7003585B2 (en) 2017-11-09 2017-11-09 Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP7003585B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619741A (en) * 2022-03-31 2022-06-14 沈新华 Reinforced plate and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043171A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Frp structure and its manufacture
JP2001260238A (en) * 2000-03-15 2001-09-25 Toray Ind Inc Rtm molding method and frp molding

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000043171A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Frp structure and its manufacture
JP2001260238A (en) * 2000-03-15 2001-09-25 Toray Ind Inc Rtm molding method and frp molding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114619741A (en) * 2022-03-31 2022-06-14 沈新华 Reinforced plate and preparation method thereof
CN114619741B (en) * 2022-03-31 2023-08-25 沈新华 Reinforced board and preparation method thereof

Also Published As

Publication number Publication date
JP7003585B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
US10501190B2 (en) Method for homogenous thermoplastic seat back assembly
JP5693296B2 (en) RTM molding device, RTM molding method, and semi-molded body
US8017054B1 (en) Systems and methods for fabricating composite fiberglass laminate articles
KR101151966B1 (en) Rtm molding method and device
KR101256688B1 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
US10576700B2 (en) Method for producing a fiber-reinforced plastic molded article
WO2010058803A1 (en) Method for producing fiber-reinforced composite material and apparatus for producing fiber-reinforced composite material
CN107530985A (en) The preparation method of fibre-reinforced composite article, gained composite article and application thereof
US20130079434A1 (en) Process for manufacturing a part made of a composite having a hollow core
JP7003585B2 (en) Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product
KR102174301B1 (en) Manufacturing method of sandwich panel and sandwich panel manufacturing by the same
US20110309547A1 (en) Device for making a part of a composite material by resin-transfer moulding
CN104589662A (en) Core mold shell lamination molding method for carbon fiber bicycle parts and molding structure thereof
JP7003584B2 (en) Manufacturing method of fiber reinforced resin molded product and fiber reinforced resin molded product
KR101974677B1 (en) Method for manufacturing fiber-reinforced resin
JP2001007625A (en) Radome for antenna and forming method
CN115384128A (en) Wave-absorbing honeycomb material and preparation method thereof
CN106507742B (en) A kind of method of manufacture composite material hollow cap strip
JP4644920B2 (en) Method for manufacturing FRP structure
JP6237889B2 (en) Manufacturing method of fiber reinforced material
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
KR101199412B1 (en) Manufacturing method of a flexible composite bogie frame of a bogie for a railway vehicle using Resin Transfer Moulding
KR101494896B1 (en) Sandwich type composite panel having aluminum process for producing
JP2018047577A (en) Method for molding composite material
JP2019084788A (en) Molding apparatus, and method for manufacturing fiber reinforced resin molded product

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R151 Written notification of patent or utility model registration

Ref document number: 7003585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151