JP2019081861A - Organic/inorganic hybrid glass material - Google Patents

Organic/inorganic hybrid glass material Download PDF

Info

Publication number
JP2019081861A
JP2019081861A JP2017210434A JP2017210434A JP2019081861A JP 2019081861 A JP2019081861 A JP 2019081861A JP 2017210434 A JP2017210434 A JP 2017210434A JP 2017210434 A JP2017210434 A JP 2017210434A JP 2019081861 A JP2019081861 A JP 2019081861A
Authority
JP
Japan
Prior art keywords
organic
inorganic hybrid
glass material
hybrid glass
siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017210434A
Other languages
Japanese (ja)
Other versions
JP6905916B2 (en
Inventor
吉田 幹
Miki Yoshida
幹 吉田
山本 哲
Satoru Yamamoto
哲 山本
徹 西部
Toru Nishibe
徹 西部
貴明 新妻
Takaaki Niitsuma
貴明 新妻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Glass Co Ltd
Original Assignee
Ishizuka Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Glass Co Ltd filed Critical Ishizuka Glass Co Ltd
Priority to JP2017210434A priority Critical patent/JP6905916B2/en
Publication of JP2019081861A publication Critical patent/JP2019081861A/en
Application granted granted Critical
Publication of JP6905916B2 publication Critical patent/JP6905916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Silicon Polymers (AREA)

Abstract

To provide an organic/inorganic hybrid glass material having high heat resistance.SOLUTION: The organic/inorganic hybrid glass material includes a siloxane having a phenyl group. The value of X defined by formula (1) as given below is 0.83 to 0.93. The value of Y defined by formula (2) as given below is 2.45 or more. The number average molecular weight is 2,000 or more. Formula (1) X=M/Mand Formula (2) Y=M/(M+M) (Mis the number of moles of SiO included in the siloxane; Mis the number of moles of organic functional group included in the siloxane; Mis the number of moles of phenyl group included in the siloxane; Mis the number of moles of ethyl group included in the siloxane; and Mis the number of moles of methyl group included in the siloxane.)SELECTED DRAWING: None

Description

本開示は有機無機ハイブリットガラス材料に関する。   The present disclosure relates to organic-inorganic hybrid glass materials.

従来、有機無機ハイブリットガラス材料が知られている。有機無機ハイブリットガラス材料として、特許文献1に開示されたものがある。   Organic-inorganic hybrid glass materials are conventionally known. Patent Document 1 discloses an organic-inorganic hybrid glass material.

特開2005−239498号公報JP, 2005-239498, A

有機無機ハイブリットガラス材料を、高温になる環境で使用することが考えられる。例えば、LEDの周辺部材の材料として、有機無機ハイブリットガラス材料を使用することが考えられる。近年、LEDの発光強度が上がり、LEDの周辺部材は高温になる。   It is conceivable to use the organic-inorganic hybrid glass material in a high temperature environment. For example, it is conceivable to use an organic-inorganic hybrid glass material as a material of a peripheral member of the LED. In recent years, the light emission intensity of the LED is increased, and the peripheral members of the LED become hot.

従来の有機無機ハイブリットガラス材料は耐熱性が低いため、高温になると透明性を失ってしまう。本開示の一局面は、耐熱性が高い有機無機ハイブリットガラス材料を提供することを目的とする。   Conventional organic-inorganic hybrid glass materials have low heat resistance, so they lose transparency at high temperatures. One aspect of the present disclosure is to provide an organic-inorganic hybrid glass material with high heat resistance.

本開示の一局面は、フェニル基を有するシロキサンを含み、以下の式(1)で定義するXの値が0.83以上、0.93以下であり、以下の式(2)で定義するYの値が2.45以上であり、数平均分子量が2000以上である有機無機ハイブリットガラス材料である。
式(1) X=MSiO/MOF
式(2) Y=M/(M+M
(MSiOは前記シロキサンに含まれるSiOのモル数である。MOFは前記シロキサンに含まれる有機官能基のモル数である。Mは前記シロキサンに含まれるフェニル基のモル数である。Mは前記シロキサンに含まれるエチル基のモル数である。Mは前記シロキサンに含まれるメチル基のモル数である。)
本開示の一局面である有機無機ハイブリットガラス材料は、融点及び軟化点が高く、耐熱性が高い。
One aspect of the present disclosure includes a siloxane having a phenyl group, and the value of X defined by the following formula (1) is 0.83 or more and 0.93 or less, and Y defined by the following formula (2) The organic-inorganic hybrid glass material has a value of 2.45 or more and a number average molecular weight of 2000 or more.
Formula (1) X = M SiO / M OF
Formula (2) Y = M p / (M e + M m )
(M SiO is the number of moles of SiO contained in the siloxane. M 2 O is the number of moles of organic functional groups contained in the siloxane. M p is the number of moles of phenyl groups contained in the siloxane. e is the number of moles of ethyl groups contained in the siloxane M m is the number of moles of methyl groups contained in the siloxane)
The organic-inorganic hybrid glass material which is one aspect of the present disclosure has a high melting point and a high softening point and a high heat resistance.

本開示の例示的な実施形態を説明する。
1.有機無機ハイブリットガラス材料の構成
本開示の有機無機ハイブリットガラス材料は、フェニル基を有するシロキサンを含む。フェニル基の少なくとも一部は、例えば、シロキサンを構成するSiに結合している。
An exemplary embodiment of the present disclosure will be described.
1. Configuration of Organic-Inorganic Hybrid Glass Material The organic-inorganic hybrid glass material of the present disclosure includes a siloxane having a phenyl group. At least a part of the phenyl group is, for example, bonded to Si constituting the siloxane.

本開示の有機無機ハイブリットガラス材料において、以下の式(1)で定義するXの値は0.83以上、0.93以下である。
式(1) X=MSiO/MOF
(MSiOは前記シロキサンに含まれるSiOのモル数である。MOFは前記シロキサンに含まれる有機官能基のモル数である。)
SiO、及びMOFは、NMRにより測定された値である。シロキサンに含まれる有機官能基として、例えば、メチル基、エチル基、フェニル基等が挙げられる。有機官能基は、例えば、シロキサンにおける側鎖である。
In the organic-inorganic hybrid glass material of the present disclosure, the value of X defined by the following formula (1) is 0.83 or more and 0.93 or less.
Formula (1) X = M SiO / M OF
(M SiO is the number of moles of SiO contained in the siloxane. M OF is the number of moles of organic functional groups contained in the siloxane.)
M 2 SiO 2 and M OF are values measured by NMR. As an organic functional group contained in siloxane, a methyl group, an ethyl group, a phenyl group etc. are mentioned, for example. The organic functional group is, for example, a side chain in siloxane.

Xの値が0.83以上であることにより、有機無機ハイブリットガラス材料の融点及び軟化点が高くなる。そのため、有機無機ハイブリットガラス材料の耐熱性が高くなる。
Xの値が0.93以下であることにより、Si成分が多くなり過ぎない。その結果、有機無機ハイブリットガラス材料の再溶融性及び透明性が高くなる。再溶融性とは、一旦固化した有機無機ハイブリットガラス材料を加熱したとき、容易に再溶融する特性である。再溶融性が良好である場合、例えば、本開示の有機無機ハイブリットガラス材料を用いて射出成型を行うことができる。
When the value of X is 0.83 or more, the melting point and the softening point of the organic-inorganic hybrid glass material become high. Therefore, the heat resistance of the organic-inorganic hybrid glass material becomes high.
When the value of X is 0.93 or less, the Si component is not too much. As a result, the remeltability and transparency of the organic-inorganic hybrid glass material are enhanced. The remelting property is a property of easily remelting when the organic-inorganic hybrid glass material once solidified is heated. If remeltability is good, for example, injection molding can be performed using the organic-inorganic hybrid glass material of the present disclosure.

Xの値は、例えば、有機無機ハイブリットガラス材料の原料に含まれる有機官能基の量を調整することや、有機無機ハイブリットガラス材料の数平均分子量を調整することにより制御することができる。原料に含まれる有機官能基の量が多いほど、Xは小さくなる。有機無機ハイブリットガラス材料の数平均分子量が大きいほど、Xは大きくなる。   The value of X can be controlled, for example, by adjusting the amount of the organic functional group contained in the raw material of the organic-inorganic hybrid glass material or adjusting the number average molecular weight of the organic-inorganic hybrid glass material. As the amount of the organic functional group contained in the raw material is larger, X is smaller. As the number average molecular weight of the organic-inorganic hybrid glass material is larger, X is larger.

本開示の有機無機ハイブリットガラス材料において、以下の式(2)で定義するYの値は2.45以上である。
式(2) Y=M/(M+M
(Mは前記シロキサンに含まれるフェニル基のモル数である。Mは前記シロキサンに含まれるエチル基のモル数である。Mは前記シロキサンに含まれるメチル基のモル数である。)
、M、及びMは、FT−IRの透過法により測定された値である。Yの値が2.45以上であることにより、有機無機ハイブリットガラス材料は熱硬化しにくく、再溶融性が高くなる。Yの値は、例えば、有機無機ハイブリットガラス材料の原料に含まれるフェニル基、メチル基、エチル基の量を調整することにより制御することができる。
In the organic-inorganic hybrid glass material of the present disclosure, the value of Y defined by the following formula (2) is 2.45 or more.
Formula (2) Y = M p / (M e + M m )
(M p is the number of moles of phenyl groups contained in the siloxane. M e is the number of moles of ethyl groups contained in the siloxane. M m is the number of moles of methyl groups contained in the siloxane.)
M p , M e , and M m are values measured by the transmission method of FT-IR. When the value of Y is 2.45 or more, the organic-inorganic hybrid glass material is difficult to be thermally cured and the remelting property becomes high. The value of Y can be controlled, for example, by adjusting the amount of phenyl group, methyl group and ethyl group contained in the raw material of the organic-inorganic hybrid glass material.

本開示の有機無機ハイブリットガラス材料の数平均分子量は2000以上である。そのため、有機無機ハイブリットガラス材料の融点及び軟化点が高くなる。
本開示の有機無機ハイブリットガラス材料の可視光透過率は、85%以上であることが好ましい。可視光透過率が85%以上である場合、透明性が必要である用途に、本開示の有機無機ハイブリットガラス材料を用いることができる。本開示の有機無機ハイブリットガラス材料の可視光透過率は、200℃で1000時間加熱した後でも、85%以上であることが好ましい。その場合、透明性及び耐熱性が必要である用途に、本開示の有機無機ハイブリットガラス材料を用いることができる。
The number average molecular weight of the organic-inorganic hybrid glass material of the present disclosure is 2000 or more. Therefore, the melting point and the softening point of the organic-inorganic hybrid glass material become high.
The visible light transmittance of the organic-inorganic hybrid glass material of the present disclosure is preferably 85% or more. When the visible light transmittance is 85% or more, the organic-inorganic hybrid glass material of the present disclosure can be used in applications where transparency is required. The visible light transmittance of the organic-inorganic hybrid glass material of the present disclosure is preferably 85% or more even after heating at 200 ° C. for 1000 hours. In that case, the organic-inorganic hybrid glass material of the present disclosure can be used for applications that require transparency and heat resistance.

本開示の有機無機ハイブリットガラス材料の可視光透過率を85%以上とする方法として、例えば、前記式(1)で表されるXの値を小さくする方法が挙げられる。
本開示の有機無機ハイブリットガラス材料の可視光透過率を、200℃で1000時間加熱した後でも、85%以上とする方法として、例えば、前記式(1)で表されるXの値を小さくする方法が挙げられる。
As a method of setting the visible light transmittance of the organic-inorganic hybrid glass material of the present disclosure to 85% or more, for example, a method of reducing the value of X represented by the formula (1) can be mentioned.
As a method of making the visible light transmittance of the organic-inorganic hybrid glass material of the present disclosure 85% or more even after heating at 200 ° C. for 1000 hours, for example, reducing the value of X represented by the formula (1) The method is mentioned.

本開示の有機無機ハイブリットガラス材料の融点は180℃以上であることが好ましい。融点が180℃以上である場合、耐熱性が必要である用途に、本開示の有機無機ハイブリットガラス材料を使用することができる。耐熱性が必要である用途として、例えば、LEDの周辺部材等が挙げられる。有機無機ハイブリットガラス材料の融点を180℃以上にする方法として、例えば、前記式(1)で表されるXの値を大きくする方法、有機無機ハイブリットガラス材料の数平均分子量を大きくする方法等が挙げられる。   The melting point of the organic-inorganic hybrid glass material of the present disclosure is preferably 180 ° C. or higher. When the melting point is 180 ° C. or higher, the organic-inorganic hybrid glass material of the present disclosure can be used in applications where heat resistance is required. Examples of applications that require heat resistance include peripheral members of LEDs. As a method of setting the melting point of the organic-inorganic hybrid glass material to 180 ° C. or higher, for example, a method of increasing the value of X represented by the formula (1), a method of increasing the number average molecular weight of the organic-inorganic hybrid glass material, etc. It can be mentioned.

本開示の有機無機ハイブリットガラス材料は、例えば、フェニル基を有する金属アルコキシドを含む原料を脱水縮合反応させて製造することができる。フェニル基を有する金属アルコキシドとして、例えば、フェニルトリエトキシシラン、ジメトキシジフェニルシラン等が挙げられる。本開示の有機無機ハイブリットガラス材料は、例えば、封止剤、接着剤等の用途に使用することができる。   The organic-inorganic hybrid glass material of the present disclosure can be produced, for example, by subjecting a raw material containing a metal alkoxide having a phenyl group to a dehydration condensation reaction. Examples of the metal alkoxide having a phenyl group include phenyltriethoxysilane and dimethoxydiphenylsilane. The organic-inorganic hybrid glass material of the present disclosure can be used, for example, in applications such as sealing agents and adhesives.

2.有機無機ハイブリットガラス材料が奏する効果
(1A)本開示の有機無機ハイブリットガラス材料は、融点及び軟化点が高く、耐熱性が高い。
2. Effect of Organic-Inorganic Hybrid Glass Material (1A) The organic-inorganic hybrid glass material of the present disclosure has a high melting point and a high softening point, and a high heat resistance.

(1B)本開示の有機無機ハイブリットガラス材料は、再溶融性及び透明性が高い。
(1C)本開示の有機無機ハイブリットガラス材料を用いて射出成型を行うことができる。そのため、本開示の有機無機ハイブリットガラス材料を用いて、複雑形状物を容易に製造することができる。複雑形状物として、例えば、レンズ形状、ダンベル形状等が挙げられる。
(1B) The organic-inorganic hybrid glass material of the present disclosure has high remeltability and transparency.
(1C) Injection molding can be performed using the organic-inorganic hybrid glass material of the present disclosure. Therefore, complex shapes can be easily manufactured using the organic-inorganic hybrid glass material of the present disclosure. Examples of complex shaped objects include lens shapes and dumbbell shapes.

3.実施例
(1)有機無機ハイブリットガラス材料の製造
以下の方法で実施例1〜7、比較例1〜6の有機無機ハイブリットガラス材料を製造した。まず、表1に示す各原料を混合し、常圧において、70℃の温度となるように加熱した。
3. Example (1) Production of Organic-Inorganic Hybrid Glass Material The organic-inorganic hybrid glass material of Examples 1 to 7 and Comparative Examples 1 to 6 was produced by the following method. First, each raw material shown in Table 1 was mixed, and it heated so that it might become the temperature of 70 degreeC under a normal pressure.

Figure 2019081861
表1に示す各原料の量の単位はmmol又はmolである。表1において、PhTESはフェニルトリエトキシシランである。DMDPhSはジメトキシジフェニルシランである。ETMSはエチルトリメトキシシランである。KC89Sは、信越化学工業株式会社製のオルガノシロキサンオリゴマーであり、化学式(1)に示す化合物である。この化合物は末端に2個以上のアルコキシ基を含む。化学式(1)においてnは3又は4である。TEOSはオルトケイ酸テトラエチルである。KBM9659は、信越シリコーン社製のトリス−(トリメトキシシリルプロピル)イソシアヌレートである。
Figure 2019081861
The unit of the amount of each raw material shown in Table 1 is mmol or mol. In Table 1, PhTES is phenyltriethoxysilane. DMDPhS is dimethoxydiphenylsilane. ETMS is ethyltrimethoxysilane. KC89S is an organosiloxane oligomer manufactured by Shin-Etsu Chemical Co., Ltd., and is a compound represented by the chemical formula (1). This compound contains 2 or more alkoxy groups at the end. In the chemical formula (1), n is 3 or 4. TEOS is tetraethyl orthosilicate. KBM 9659 is a tris- (trimethoxysilylpropyl) isocyanurate manufactured by Shin-Etsu Silicone.

Figure 2019081861
次に、混合された原料を、高真空において、150℃の温度となるように加熱した。次に、高真空において、250℃の温度となるように加熱した。以上の工程により、実施例1〜7、比較例1〜6の有機無機ハイブリットガラス材料が完成した。上記表1に、それぞれの有機無機ハイブリットガラス材料におけるX、Yの値を示す。
Figure 2019081861
The mixed raw materials were then heated to a temperature of 150 ° C. under high vacuum. Next, it was heated to a temperature of 250 ° C. in a high vacuum. The organic-inorganic hybrid glass materials of Examples 1 to 7 and Comparative Examples 1 to 6 were completed by the above steps. Table 1 shows the values of X and Y in the respective organic-inorganic hybrid glass materials.

(2)有機無機ハイブリットガラス材料の評価
製造した実施例1〜7、比較例1〜6の有機無機ハイブリットガラス材料のそれぞれについて、軟化温度及び数平均分子量を測定した。測定結果を上記表1に示す。
(2) Evaluation of organic-inorganic hybrid glass material The softening temperature and the number average molecular weight of each of the manufactured organic-inorganic hybrid glass materials of Examples 1 to 7 and Comparative Examples 1 to 6 were measured. The measurement results are shown in Table 1 above.

また、実施例1〜7、比較例1〜6の有機無機ハイブリットガラス材料のそれぞれについて、透明性と、再溶融性と、射出成型性とを評価した。透明性は、以下のように評価した。有機無機ハイブリットガラス材料の可視光透過率を測定した。可視光透過率の値が85%以上であれば透明性を○と評価し、85%未満であれば透明性を×と評価した。   Moreover, transparency, remeltability, and injection moldability were evaluated for each of the organic-inorganic hybrid glass materials of Examples 1 to 7 and Comparative Examples 1 to 6. Transparency was evaluated as follows. The visible light transmittance of the organic-inorganic hybrid glass material was measured. When the value of the visible light transmittance was 85% or more, the transparency was evaluated as ○, and when it was less than 85%, the transparency was evaluated as x.

再溶融性は、以下のように評価した。まず、有機無機ハイブリットガラス材料を粉砕した。次に、粉砕された有機無機ハイブリットガラス材料を加熱し、それが溶融すれば、再溶融性を○と評価した。加熱しても溶融しなければ、再溶融性を×と評価した。   The remeltability was evaluated as follows. First, the organic-inorganic hybrid glass material was crushed. Next, the pulverized organic-inorganic hybrid glass material was heated, and when it was melted, the remelting property was evaluated as ○. If it did not melt even if it heated, remeltability was evaluated as x.

射出成型装置の実機において、有機無機ハイブリットガラス材料を用いて射出成型を試みた。その結果、射出成型が可能であれば、射出成型性を○と評価し、射出成型が不可能であれば、射出成型性を×と評価した。評価結果を上記表1に示す。   In an actual injection molding machine, injection molding was attempted using an organic-inorganic hybrid glass material. As a result, when the injection molding was possible, the injection moldability was evaluated as ○, and when the injection molding was impossible, the injection moldability was evaluated as ×. The evaluation results are shown in Table 1 above.

4.他の実施形態
以上、本開示の実施形態について説明したが、本開示は上述の実施形態に限定されることなく、種々変形して実施することができる。
4. Other Embodiments Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and can be variously modified and implemented.

(1)上記各実施形態における1つの構成要素が有する機能を複数の構成要素に分担させたり、複数の構成要素が有する機能を1つの構成要素に発揮させたりしてもよい。また、上記各実施形態の構成の一部を省略してもよい。また、上記各実施形態の構成の少なくとも一部を、他の上記実施形態の構成に対して付加、置換等してもよい。なお、特許請求の範囲に記載の文言から特定される技術思想に含まれるあらゆる態様が本開示の実施形態である。   (1) The function of one component in each of the above embodiments may be shared by a plurality of components, or the function of a plurality of components may be exhibited by one component. In addition, part of the configuration of each of the above embodiments may be omitted. In addition, at least a part of the configuration of each of the above-described embodiments may be added to or replaced with the configuration of the other above-described embodiments. In addition, all the aspects contained in the technical thought specified from the wording as described in a claim are an embodiment of this indication.

(2)上述した有機無機ハイブリットガラス材料の他、当該有機無機ハイブリットガラス材料を構成要素とする製品、有機無機ハイブリットガラス材料の製造方法等、種々の形態で本開示を実現することもできる。   (2) In addition to the organic-inorganic hybrid glass material described above, the present disclosure can also be realized in various forms such as a product having the organic-inorganic hybrid glass material as a component, a method of producing the organic-inorganic hybrid glass material, and the like.

Claims (3)

フェニル基を有するシロキサンを含み、
以下の式(1)で定義するXの値が0.83以上、0.93以下であり、
以下の式(2)で定義するYの値が2.45以上であり、
数平均分子量が2000以上である有機無機ハイブリットガラス材料。
式(1) X=MSiO/MOF
式(2) Y=M/(M+M
(MSiOは前記シロキサンに含まれるSiOのモル数である。MOFは前記シロキサンに含まれる有機官能基のモル数である。Mは前記シロキサンに含まれるフェニル基のモル数である。Mは前記シロキサンに含まれるエチル基のモル数である。Mは前記シロキサンに含まれるメチル基のモル数である。)
Containing siloxanes having a phenyl group,
The value of X defined by the following equation (1) is 0.83 or more and 0.93 or less,
The value of Y defined by the following equation (2) is 2.45 or more,
Organic-inorganic hybrid glass material having a number average molecular weight of 2000 or more.
Formula (1) X = M SiO / M OF
Formula (2) Y = M p / (M e + M m )
(M SiO is the number of moles of SiO contained in the siloxane. M 2 O is the number of moles of organic functional groups contained in the siloxane. M p is the number of moles of phenyl groups contained in the siloxane. e is the number of moles of ethyl groups contained in the siloxane M m is the number of moles of methyl groups contained in the siloxane)
請求項1に記載の有機無機ハイブリットガラス材料であって、
可視光透過率が85%以上である有機無機ハイブリットガラス材料。
The organic-inorganic hybrid glass material according to claim 1, wherein
Organic-inorganic hybrid glass material having a visible light transmittance of 85% or more.
請求項1又は2に記載の有機無機ハイブリットガラス材料であって、
融点が180℃以上である有機無機ハイブリットガラス材料。
The organic-inorganic hybrid glass material according to claim 1 or 2,
Organic-inorganic hybrid glass material having a melting point of 180 ° C. or higher.
JP2017210434A 2017-10-31 2017-10-31 Organic Inorganic Hybrid Glass Material Active JP6905916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210434A JP6905916B2 (en) 2017-10-31 2017-10-31 Organic Inorganic Hybrid Glass Material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210434A JP6905916B2 (en) 2017-10-31 2017-10-31 Organic Inorganic Hybrid Glass Material

Publications (2)

Publication Number Publication Date
JP2019081861A true JP2019081861A (en) 2019-05-30
JP6905916B2 JP6905916B2 (en) 2021-07-21

Family

ID=66670168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210434A Active JP6905916B2 (en) 2017-10-31 2017-10-31 Organic Inorganic Hybrid Glass Material

Country Status (1)

Country Link
JP (1) JP6905916B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239214A (en) * 1992-02-25 1993-09-17 Toray Dow Corning Silicone Co Ltd Production of alkoxylated silicone resin
JP2004300416A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material and method for producing the same
JP2005239498A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its production method
JP2006342308A (en) * 2005-06-10 2006-12-21 Dow Corning Toray Co Ltd Method for purification of silicone resin
JP2008019395A (en) * 2006-07-14 2008-01-31 Central Glass Co Ltd Organic/inorganic hybrid glassy substance and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05239214A (en) * 1992-02-25 1993-09-17 Toray Dow Corning Silicone Co Ltd Production of alkoxylated silicone resin
JP2004300416A (en) * 2003-03-14 2004-10-28 Central Glass Co Ltd Organic-inorganic hybrid glassy material and method for producing the same
JP2005239498A (en) * 2004-02-27 2005-09-08 Central Glass Co Ltd Organic-inorganic hybrid glassy material and its production method
JP2006342308A (en) * 2005-06-10 2006-12-21 Dow Corning Toray Co Ltd Method for purification of silicone resin
JP2008019395A (en) * 2006-07-14 2008-01-31 Central Glass Co Ltd Organic/inorganic hybrid glassy substance and its manufacturing method

Also Published As

Publication number Publication date
JP6905916B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP4697405B2 (en) Silicone resin composition for lens molding and silicone lens
JP5105305B2 (en) Addition-curing silicone resin composition and silicone lens using the same
KR101565762B1 (en) Curable organopolysiloxane composition and cured product thereof
CN102558872B (en) Curable organopolysiloxane composition and process for producing the same
TWI447176B (en) Curable polyorganosiloxane composition
JP4801320B2 (en) Addition reaction curable organopolysiloxane resin composition
KR100902852B1 (en) Silicone Lens and Silicone Resin Composition for Molding Lens
KR101267306B1 (en) Curable organopolysiloxane resin composition and optical part molded therefrom
JP5819787B2 (en) Curable silicone resin composition
JP2006328102A (en) Silicone resin composition for molding lens and silicone lens
JP6761491B2 (en) Curable Compositions, Curables and How to Use Curable Compositions
CN101070429B (en) Heat-curable silicone composition
KR102550073B1 (en) Flame-retardant polyorganosiloxane composition, flame-retardant cured product, optical member, lens or cover for light source, and molding method
JPWO2013141360A1 (en) Curable composition, cured product and method of using curable composition
CN106462056A (en) Imprinting process of hot-melt type curable silicone composition for optical devices
TWI515263B (en) A hardened silicone oxygen composition for optical lenses
JP2009185226A (en) Heat curable silicone composition and molded product using the same for optical member
CN104169368A (en) Silicone resin composition, cured silicone resin, and sealed optical semiconductor element
JP6046898B2 (en) Curable composition, cured product and method of using curable composition
CN103951984A (en) Solidifiable silicon resin composition and optical semiconductor device using same
KR101454798B1 (en) Siloxane cross linker for sealing material of light emitting diode
TWI688588B (en) Organopolysiloxane, method of producing thereof, and curable silicone composition
JP6905916B2 (en) Organic Inorganic Hybrid Glass Material
US11124649B1 (en) Curable resin composition, cured product of same and semiconductor device
CN106256854A (en) Hardening resin composition, optical element and optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210628

R150 Certificate of patent or registration of utility model

Ref document number: 6905916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250