JP2019080052A - Material for photoelectric conversion element and photoelectric conversion element - Google Patents

Material for photoelectric conversion element and photoelectric conversion element Download PDF

Info

Publication number
JP2019080052A
JP2019080052A JP2018194467A JP2018194467A JP2019080052A JP 2019080052 A JP2019080052 A JP 2019080052A JP 2018194467 A JP2018194467 A JP 2018194467A JP 2018194467 A JP2018194467 A JP 2018194467A JP 2019080052 A JP2019080052 A JP 2019080052A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
group
conversion element
layer
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018194467A
Other languages
Japanese (ja)
Other versions
JP7128584B2 (en
Inventor
雄太 橋本
Yuta Hashimoto
雄太 橋本
秀典 薬師寺
Hidenori Yakushiji
秀典 薬師寺
祥司 品村
Shoji SHINAMURA
祥司 品村
雄一 貞光
Yuichi Sadamitsu
雄一 貞光
智史 岩田
Satoshi Iwata
智史 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Publication of JP2019080052A publication Critical patent/JP2019080052A/en
Application granted granted Critical
Publication of JP7128584B2 publication Critical patent/JP7128584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

To provide a material for a photoelectric conversion element which is a material of a block layer excellent in hole or electron leak prevention characteristics, hole or electron transport characteristics, heat resistance to process temperature, visible light transparency and the like, and to provide various electronic devices including a photoelectric conversion element containing the photoelectric conversion element material.SOLUTION: The material for photoelectric conversion elements contains a compound represented by the following Formula (1). (In Formula (1), Rand Reach independently represents an aromatic group or a heterocyclic group. One of Xand Xrepresents a sulfur atom or an oxygen atom, and the other represents a methine group.)SELECTED DRAWING: None

Description

本発明は特定構造の有機化合物を含む光電変換素子用材料及び該光電変換素子用材料を含む光電変換素子に関する。   The present invention relates to a material for a photoelectric conversion element containing an organic compound having a specific structure, and a photoelectric conversion element containing the material for a photoelectric conversion element.

近年、フレキシビリティを有すること、大面積化が可能であること、更には安価で高速の印刷法により製造可能なこと等を特徴とする有機エレクトロニクスデバイスへの関心が高まっている。代表的な有機エレクトロニクスデバイスとしては、有機EL素子、有機太陽電池素子、有機光電変換素子及び有機トランジスタ素子等が挙げられるが、これらの中でも有機EL素子は、次世代ディスプレイ用途をメインターゲットとした携帯電話のディスプレイやTVなどへの応用が期待されており、更なる高機能化を目指した開発が継続されている。有機太陽電池素子等はフレキシブルで安価なエネルギー源としての研究開発が、また有機トランジスタ素子等はフレキシブルなディスプレイや安価なIC用途への応用を目的とした研究開発がなされている。   BACKGROUND ART In recent years, there has been increasing interest in organic electronic devices characterized by having flexibility, being able to increase the area, and being able to be manufactured by an inexpensive and high-speed printing method. Representative organic electronic devices include organic EL elements, organic solar cell elements, organic photoelectric conversion elements, organic transistor elements, etc. Among them, organic EL elements are portable devices whose main target is next-generation display applications Applications to telephone displays and TVs are expected, and development aimed at further functional enhancement is continuing. Research and development have been conducted on organic solar cell elements and the like as flexible and inexpensive energy sources, and organic transistor elements and the like have been researched and developed for application to flexible displays and inexpensive IC applications.

有機エレクトロニクスデバイスの開発には、デバイスを構成する各材料の開発が非常に重要であり、そのため各材料の分野では、現在でも有用な材料の検討及び開発が精力的に行われている。その中で、ナフトジチオフェンを母骨格とした化合物も有機エレクトロニクス材料として検討されており、有機トランジスタ(非特許文献1、特許文献1、2)への応用が報告されている。また、ナフトジチオフェン骨格を持つポリマーも有機エレクトロニクス材料に用いられており、有機トランジスタ(非特許文献2)や太陽電池(非特許文献3)へと応用されている。このことよりナフトジチオフェン誘導体は有機エレクトロニクスに好適な分子であると言える。   Development of each material which constitutes a device is very important for development of an organic electronic device, and for this reason, in the field of each material, examination and development of still useful materials are carried out energetically. Among them, a compound having naphthodithiophene as a mother skeleton is also studied as an organic electronic material, and application to an organic transistor (Non-Patent Document 1, Patent Documents 1 and 2) has been reported. In addition, a polymer having a naphthodithiophene skeleton is also used as an organic electronic material, and is applied to an organic transistor (non-patent document 2) and a solar cell (non-patent document 3). From this, it can be said that naphtho dithiophene derivatives are molecules suitable for organic electronics.

一方で、有機光電変換素子は次世代の撮像素子への応用が期待されており、いくつかのグループからその報告がなされている。例えば、キナクリドン誘導体、もしくはキナゾリン誘導体を光電変換素子に用いた例(特許文献3)、キナクリドン誘導体を用いた光電変換素子を撮像素子へ応用した例(特許文献4)、ジケトピロロピロール誘導体を用いた例(特許文献5)、ベンゾジチオフェン誘導体を光電変換素子に用いた例(特許文献6)が挙げられる。一般的に、撮像素子は高コントラスト化及び省電力化を目的として、暗電流を低減させることによって性能が向上すると考えられる。そこで、暗時の光電変換部からのリーク電流を減らす為に、光電変換部と電極部との間に正孔ブロック層または電子ブロック層を挿入する手法が用いられる。   On the other hand, organic photoelectric conversion devices are expected to be applied to next-generation imaging devices, and some groups report such applications. For example, an example using a quinacridone derivative or a quinazoline derivative for a photoelectric conversion element (Patent Document 3), an example applying a photoelectric conversion element using a quinacridone derivative to an imaging device (Patent Document 4), a diketopyrrolopyrrole derivative Examples thereof (Patent Document 5) and examples in which a benzodithiophene derivative is used for a photoelectric conversion element (Patent Document 6) can be given. In general, it is considered that the performance of the imaging device is improved by reducing the dark current for the purpose of achieving high contrast and power saving. Therefore, in order to reduce the leak current from the photoelectric conversion portion in the dark, a method of inserting a hole blocking layer or an electron blocking layer between the photoelectric conversion portion and the electrode portion is used.

デバイスの構成膜中において、電極もしくは導電性を有する膜とそれ以外の膜との界面にそれぞれ配置され、有機エレクトロニクスデバイスの分野では一般に広く用いられる正孔ブロック層及び電子ブロック層は、不必要な正孔もしくは電子の漏れを調整して正孔もしくは電子の逆移動を制御する機能を有する層(膜)であり、デバイスの用途毎の耐熱性、透過波長及び成膜方法等の特性を考慮した上で、材料を選択して用いられるものである。しかしながら、特に光電変換素子用途における材料への要求性能は高く、従来公知の正孔ブロック層及び電子ブロック層用の材料では、リーク電流防止特性、プロセス温度に対する耐熱性及び可視光透明性などの面で、十分な特性を有しているとは言えず、商業的に活用されるに至っていない。   A hole blocking layer and an electron blocking layer which are respectively disposed at the interface between an electrode or a film having conductivity and other films in the component film of the device and which are generally used in the field of organic electronic devices are unnecessary. It is a layer (film) that has the function of controlling the reverse movement of holes or electrons by adjusting the leakage of holes or electrons, and taking into consideration characteristics such as heat resistance, transmission wavelength, and film formation method for each application of the device. Above, the material is selected and used. However, the performance required for materials especially in photoelectric conversion device applications is high, and conventionally known materials for the hole blocking layer and the electron blocking layer have aspects such as leakage current prevention characteristics, heat resistance to process temperature, and visible light transparency. Therefore, it can not be said that it has sufficient characteristics, and has not been used commercially.

国際公開第2010/058692号International Publication No. 2010/058692 特許第5284677号公報Patent No. 5284677 特許第4972288号公報Patent No. 4972288 gazette 特許第4945146号公報Patent No. 4945146 特許第5022573号公報Patent No. 50 22 573 国際公開第2017/159684号International Publication No. 2017/159684 特開2008−290963号公報JP 2008-290963 A

J.Am.Chem.Soc.,2011,133(13),5024.J. Am. Chem. Soc., 2011, 133 (13), 5024. J.Am.Chem.Soc.,2011,133(17),6852.J. Am. Chem. Soc., 2011, 133 (17), 6852. J.Am.Chem.Soc.,2013,135(24),8834.J. Am. Chem. Soc., 2013, 135 (24), 8834.

本発明は、この様な状況に鑑みてなされたものであり、正孔又は電子リーク防止特性、正孔又は電子輸送特性、プロセス温度に対する耐熱性、可視光透明性等に優れたブロック層の材料となる光電変換素子用材料、及び該光電変換素子用材料を含む光電変換素子をはじめとする種々のエレクトロニクスデバイスを提供することを目的とする。   The present invention has been made in view of such a situation, and is a material of a block layer excellent in hole or electron leak prevention characteristics, hole or electron transport characteristics, heat resistance to process temperature, visible light transparency, etc. It is an object of the present invention to provide various photoelectric conversion element materials including photoelectric conversion element materials and photoelectric conversion elements including the photoelectric conversion element materials.

本発明者は、上記課題を解決すべく、鋭意努力した結果、特定構造の化合物を含む光電変換素子用材料を光電変換素子に適用することにより前記諸課題を解決することを見出し、本発明を完成するに至った。
即ち、本発明は、下記の通りである。
[1]下記式(1)
MEANS TO SOLVE THE PROBLEM As a result of earnest efforts in order to solve the said subject, this inventor discovers that the said subjects are solved by applying the material for photoelectric conversion elements containing the compound of a specific structure to a photoelectric conversion element, This invention It came to complete.
That is, the present invention is as follows.
[1] The following formula (1)

Figure 2019080052
Figure 2019080052

(式(1)中、R及びRはそれぞれ独立に芳香族基又は複素環基を表す。X及びXのいずれか一方は硫黄原子又は酸素原子を表し、他方はメチン基を表す。)で表される化合物を含有する光電変換素子用材料、
[2]X及びXのいずれか一方が硫黄原子であり、他方がメチン基である前項[1]に記載の光電変換素子用材料、
[3]R及びRがそれぞれ独立に芳香族基である前項[1]又は[2]に記載の光電変換素子用材料。
[4]R及びRがフェニル基である前項[3]に記載の光電変換素子用材料、
[5]R及びRがフェニル基を有するフェニル基である前項[4]に記載の光電変換素子用材料、
[6]前項[1]乃至[5]のいずれか一項に記載の光電変換素子用材料を含む有機薄膜、
[7]前項[6]に記載の有機薄膜を含む光電変換素子、
[8]前項[7]に記載の光電変換素子を複数アレイ状に配置した撮像素子、及び
[9]前項[7]に記載の光電変換素子または前項[8]に記載の撮像素子を含む光センサー。
(In formula (1), R 1 and R 2 each independently represent an aromatic group or a heterocyclic group. Either one of X 1 and X 2 represents a sulfur atom or an oxygen atom, and the other represents a methine group A material for a photoelectric conversion element containing a compound represented by
[2] The material for a photoelectric conversion element according to the above item [1], wherein one of X 1 and X 2 is a sulfur atom, and the other is a methine group,
[3] The photoelectric conversion element material as recited in the aforementioned Item [1] or [2], wherein each of R 1 and R 2 independently is an aromatic group.
[4] The material for a photoelectric conversion element according to the preceding item [3], wherein R 1 and R 2 are a phenyl group,
[5] The material for a photoelectric conversion element according to the above item [4], wherein each of R 1 and R 2 is a phenyl group having a phenyl group,
[6] An organic thin film containing the material for a photoelectric conversion element according to any one of the above [1] to [5],
[7] A photoelectric conversion device comprising the organic thin film according to the preceding item [6],
[8] An imaging device in which a plurality of photoelectric conversion devices according to the previous paragraph [7] are arranged in an array, and [9] a light including the photoelectric conversion device according to the previous paragraph [7] or the imaging device according to the previous paragraph [8] sensor.

特定構造の化合物を含む本発明の光電変換素子用材料を用いることにより、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた光電変換素子を提供することができる。   A photoelectric conversion element excellent in the required characteristics such as the leak prevention property and transportability of holes or electrons, and further the heat resistance and visible light transparency by using the material for photoelectric conversion element of the present invention containing the compound of the specific structure Can be provided.

図1は、本発明の光電変換素子の実施態様を例示した断面図を示す。FIG. 1 shows a cross-sectional view illustrating an embodiment of the photoelectric conversion element of the present invention. 図2は、実施例1及び比較例1で得られた光電変換素子の暗電流−電圧グラフを示す。FIG. 2 shows a dark current-voltage graph of the photoelectric conversion element obtained in Example 1 and Comparative Example 1. 図3は、実施例1及び比較例1で得られた光電変換素子の明電流−電圧グラフを示す。FIG. 3 shows a bright current-voltage graph of the photoelectric conversion element obtained in Example 1 and Comparative Example 1.

本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づくものであるが、本発明はそのような実施態様や具体例に限定されるものではない。   The contents of the present invention will be described in detail. Although the description of the configuration requirements described below is based on typical embodiments and examples of the present invention, the present invention is not limited to such embodiments and examples.

本発明の光電変換素子用材料は、下記式(1)で表される化合物を含有する。   The photoelectric conversion element material of the present invention contains a compound represented by the following formula (1).

Figure 2019080052
Figure 2019080052

上記式(1)中のR及びRはそれぞれ独立に芳香族基又は複素環基を表す。
式(1)のR及びRが表す芳香族基とは、芳香族化合物の芳香環から水素原子を一つ除いた残基である。
式(1)のR及びRが表す芳香族基としては、芳香族化合物の芳香環から水素原子を一つ除いた残基であれば特に限定されず、例えばフェニル基、ビフェニル基、ターフェニル基、クオーターフェニル基、トリル基、インデニル基、ナフチル基、アントリル基、フルオレニル基、ピレニル基、フェナンスニル基及びメスチル基等が挙げられ、フェニル基、ビフェニル基、ターフェニル基、クオーターフェニル基、ナフチル基又はアントリル基が好ましく、フェニル基、ビフェニル基、ターフェニル基又はナフチル基がより好ましい。
R 1 and R 2 in the above formula (1) each independently represent an aromatic group or a heterocyclic group.
The aromatic group represented by R 1 and R 2 in the formula (1) is a residue obtained by removing one hydrogen atom from the aromatic ring of the aromatic compound.
The aromatic group represented by R 1 and R 2 in the formula (1) is not particularly limited as long as it is a residue obtained by removing one hydrogen atom from the aromatic ring of an aromatic compound, and examples thereof include phenyl group, biphenyl group, ter Phenyl group, quarter phenyl group, tolyl group, indenyl group, naphthyl group, anthryl group, fluorenyl group, pyrenyl group, phenanthenyl group, mestil group, etc., and phenyl group, biphenyl group, terphenyl group, quarter phenyl group, naphthyl A group or an anthryl group is preferable, and a phenyl group, a biphenyl group, a terphenyl group or a naphthyl group is more preferable.

式(1)のR及びRが表す芳香族基は置換基を有していてもよい。
式(1)のR及びRが表す芳香族基が有する置換基に制限はないが、例えばアルキル基、アルコキシ基、芳香族基、複素環基、ハロゲン原子、ヒドロキシル基、メルカプト基、ニトロ基、アルキル置換アミノ基、アリール置換アミノ基、非置換アミノ基(NH基)、シアノ基、イソシアノ基等が好ましく、アルキル基、芳香族基、複素環基、ハロゲン原子がより好ましく、芳香族基、複素環基がさらに好ましい。
The aromatic group represented by R 1 and R 2 in Formula (1) may have a substituent.
The substituent which the aromatic group represented by R 1 and R 2 of Formula (1) has is not limited, and examples thereof include an alkyl group, an alkoxy group, an aromatic group, a heterocyclic group, a halogen atom, a hydroxyl group, a mercapto group, and nitro Group, alkyl substituted amino group, aryl substituted amino group, unsubstituted amino group (NH 2 group), cyano group, isocyano group and the like are preferable, and alkyl group, aromatic group, heterocyclic group and halogen atom are more preferable, and aromatic Groups and heterocyclic groups are more preferred.

式(1)のR及びRが表す芳香族基が有する置換基としてのアルキル基の具体例としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、t−ブチル基、n−ペンチル基、iso−ペンチル基、t−ペンチル基、sec−ペンチル基、n−ヘキシル基、iso−ヘキシル基、n−ヘプチル基、sec−ヘプチル基、n−オクチル基、n−ノニル基、sec−ノニル基、n−デシル基、n−ウンデシル基、n−ドデシル基、n−トリデシル基、n−テトラデシル基、n−ペンタデシル基、n−ヘキサデシル基、n−ヘプタデシル基、n−オクタデシル基、n−ノナデシル基及びn−エイコシル基等の炭素数1乃至20のアルキル基であることが好ましく、炭素数1乃至12のアルキル基であることがより好ましく、炭素数1乃至6のアルキル基であることが更に好ましく、炭素数1乃至4のアルキル基であることが特に好ましい。 Specific examples of the alkyl group as a substituent which the aromatic group represented by R 1 and R 2 of Formula (1) has include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, an n-butyl group, iso-butyl group, t-butyl group, n-pentyl group, iso-pentyl group, t-pentyl group, sec-pentyl group, n-hexyl group, iso-hexyl group, n-heptyl group, sec-heptyl group, n-octyl group, n-nonyl group, sec-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, It is preferable that it is a C1-C20 alkyl group such as n-heptadecyl group, n-octadecyl group, n-nonadecyl group and n-eicosyl group, and is an alkyl group having 1 to 12 carbon atoms More preferably in, more preferably an alkyl group having 1 to 6 carbon atoms, and particularly preferably an alkyl group having 1 to 4 carbon atoms.

式(1)のR及びRが表す芳香族基が有する置換基としてのアルコキシ基とは、酸素原子とアルキル基が結合した置換基であり、アルコキシ基が有するアルキル基の具体例としては、例えば式(1)のR及びRが表す芳香族基が有する置換基としてのアルキル基の項に記載したアルキル基と同じものが挙げられ、好ましいものも同じものが挙げられる。 The alkoxy group as a substituent that the aromatic group represented by R 1 and R 2 in Formula (1) has is a substituent in which an oxygen atom and an alkyl group are bonded, and specific examples of the alkyl group that the alkoxy group has For example, the same one as the alkyl group described in the section of the alkyl group as a substituent which the aromatic group represented by R 1 and R 2 of the formula (1) has is mentioned, and preferable ones are also mentioned.

式(1)のR及びRが表す芳香族基が有する置換基としての芳香族基の具体例としては、式(1)のR及びRが表す芳香族基の項に記載した芳香族基と同じものが挙げられ、好ましいものも同じものが挙げられる。
式(1)のR及びRが表す芳香族基が有する置換基としての複素環基の具体例としては、式(1)のR及びRが表す複素環基の項に記載した複素環基と同じものが挙げられ、好ましいものも同じものが挙げられる。
式(1)のR及びRが表す芳香族基が有する置換基としてのハロゲン原子の具体例としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子又は塩素原子が好ましく、フッ素原子がより好ましい。
式(1)のR及びRが表す芳香族基が有する置換基としてのアルキル置換アミノ基は、モノアルキル置換アミノ基及びジアルキル置換アミノ基の何れにも制限されず、これらアルキル置換アミノ基におけるアルキル基としては、例えば式(1)のR及びRが表す芳香族基が有する置換基としてのアルキル基の項に記載したアルキル基と同じものが挙げられ、好ましいものも同じものが挙げられる。
Specific examples of the aromatic group as a substituent which the aromatic group represented by R 1 and R 2 of Formula (1) has are described in the section of the aromatic group represented by R 1 and R 2 of Formula (1) The same thing as an aromatic group is mentioned, and a preferable thing is also mentioned.
Specific examples of the heterocyclic group as a substituent which the aromatic group represented by R 1 and R 2 of Formula (1) has are described in the section of the heterocyclic group represented by R 1 and R 2 of Formula (1) The same thing as a heterocyclic group is mentioned, A preferable thing is also mentioned.
Specific examples of the halogen atom as the substituents of the aromatic group represented by R 1 and R 2 of formula (1), a fluorine atom, a chlorine atom, a bromine atom and an iodine atom, a fluorine atom or a chlorine atom Preferably, a fluorine atom is more preferable.
The alkyl-substituted amino group as a substituent which the aromatic group represented by R 1 and R 2 of Formula (1) has is not limited to any of a monoalkyl-substituted amino group and a dialkyl-substituted amino group, and these alkyl-substituted amino groups Examples of the alkyl group in the above include the same as the alkyl group described in the section of the alkyl group as a substituent which the aromatic group represented by R 1 and R 2 in Formula (1) has, and preferred examples are also the same It can be mentioned.

式(1)のR及びRが表す芳香族基が有する置換基としてのアリール置換アミノ基は、モノアリール置換アミノ基及びジアリール置換アミノ基の何れにも制限されず、これらアリール置換アミノ基におけるアリール基としては、例えば式(1)のR及びRが表す芳香族基が有する置換基としての芳香族基および複素環基の項に記載した芳香族基および複素環基と同じものが挙げられ、好ましいものも同じものが挙げられる。
式(1)のR及びRが表す芳香族基が有する置換基としては、芳香族基又は複素環基が好ましい。尚、式(1)のR及びRが表す芳香族基が有する置換基としての芳香族基及び複素環基は置換基を有していてもよく、該有していてもよい置換基としては式(1)のR及びRが表す芳香族基が有する置換基と同じものが挙げられ、好ましいものも同じものが挙げられる。
The aryl-substituted amino group as a substituent that the aromatic group represented by R 1 and R 2 of Formula (1) has is not limited to either a monoaryl-substituted amino group or a diaryl-substituted amino group, and these aryl-substituted amino groups Examples of the aryl group in the same group as the aromatic group and heterocyclic group described in the item of the aromatic group and the heterocyclic group as a substituent which the aromatic group represented by R 1 and R 2 in formula (1) has And preferred ones are also the same.
The substituents of the aromatic group represented by R 1 and R 2 of formula (1), an aromatic group or a heterocyclic group. The aromatic group and heterocyclic group may have a substituent, organic and may have substituents as substituents of the aromatic group represented by R 1 and R 2 of formula (1) As the same ones as the substituents which the aromatic group represented by R 1 and R 2 of the formula (1) has, the same ones can be mentioned as preferable ones.

式(1)のR及びRが表す複素環基とは、複素環化合物の複素環から水素原子を一つ除いた残基である。
式(1)のR及びRが表す複素環基としては、複素環化合物の複素環から水素原子を一つ除いた残基であれば特に限定されず、例えばフラニル基、チエニル基、チエノチエニル基、ピロリル基、イミダゾリル基、N−メチルイミダゾリル基、チアゾリル基、オキサゾリル基、ピリジル基、ピラジル基、ピリミジル基、キノリル基、インドリル基、ベンゾピラジル基、ベンゾピリミジル基、ベンゾチエニル基、ナフトチエニル基、ベンゾフラニル基、ベンゾチアゾリル基、ピリジノチアゾリル基、ベンゾイミダゾリル基、ピリジノイミダゾリル基、N−メチルベンゾイミダゾリル基、ピリジノ−N−メチルイミダゾリル基、ベンゾオキサゾリル基、ピリジノオキサゾリル基、ベンゾチアジアゾリル基、ピリジノチアジアゾリル基、ベンゾオキサジアゾリル基、ピリジノオキサジアゾリル基、カルバゾリル基、フェノキサジニル基及びフェノチアジニル基等が挙げられ、チエニル基、チエノチエニル基、ベンゾチエニル基、ナフトチエニル基、ベンゾフラニル基又はピリジル基が好ましく、チエニル基、ベンゾチエニル基、ナフトチエニル基又はベンゾフラニル基がより好ましい。
式(1)のR及びRが表す複素環基は置換基を有していてもよく、該有していてもよい置換基としては式(1)のR及びRが表す芳香族基が有する置換基と同じものが挙げられ、好ましいものも同じものが挙げられる。
また、上記の好ましい態様において、RとRが同一であることが好ましい。
The heterocyclic group represented by R 1 and R 2 in the formula (1) is a residue obtained by removing one hydrogen atom from the heterocyclic ring of the heterocyclic compound.
The heterocyclic group represented by R 1 and R 2 in the formula (1) is not particularly limited as long as it is a residue obtained by removing one hydrogen atom from the heterocyclic ring of the heterocyclic compound, for example, a furanyl group, a thienyl group, a thienothienyl Group, pyrrolyl group, imidazolyl group, N-methylimidazolyl group, thiazolyl group, oxazolyl group, pyridyl group, pyrazyl group, pyrimidyl group, quinolyl group, indolyl group, benzopyrazyl group, benzopyrimidyl group, benzothienyl group, naphthothenyl group, benzofuranyl group , Benzothiazolyl group, pyridino thiazolyl group, benzoimidazolyl group, pyridino imidazolyl group, N-methylbenzoimidazolyl group, pyridino-N-methylimidazolyl group, benzooxazolyl group, pyridino oxazolyl group, benzothiadiazolyl Group, pyridinothiadiazolyl group, benzo Thiaxyl group, thienothienyl group, benzothienyl group, naphthothienyl group, benzofuranyl group or pyridyl group are preferable, thienyl group, benzothienyl group, and the like. Groups, naphthothienyl groups or benzofuranyl groups are more preferred.
Heterocyclic group represented by R 1 and R 2 of formula (1) may have a substituent, an aromatic Examples of the organic and each may be a substituent represented by R 1 and R 2 of formula (1) The same thing as the substituent which a group group has is mentioned, and a preferable thing is also mentioned.
Further, in the above-mentioned preferred embodiment, R 1 and R 2 are preferably the same.

式(1)中のX及びXのいずれか一方は硫黄原子又は酸素原子を表し、他方はメチン基を表す。即ち、式(1)で表される化合物は、下記式(1−1)又は(1−2)のいずれかで表される化合物を表す。 One of X 1 and X 2 in the formula (1) represents a sulfur atom or an oxygen atom, and the other represents a methine group. That is, the compound represented by Formula (1) represents the compound represented by either following formula (1-1) or (1-2).

Figure 2019080052
Figure 2019080052

式(1−1)及び(1−2)中、R、R、X及びXは式(1)におけるR、R、X及びXと同じ意味を表す。 In the formula (1-1) and (1-2), R 1, R 2, X 1 and X 2 are as defined R 1, R 2, X 1 and X 2 in Formula (1).

式(1−1)で表される化合物は、特許文献1及び非特許文献1に開示された公知の方法等により合成することができる。例えば、原料としてナフタレン誘導体(A)を用いて、ジクロロジエチニルナフタレン誘導体(B)を合成し、引き続き環化反応を行う以下のスキームに示したフローで所望の化合物を得ることが可能である。   The compound represented by Formula (1-1) can be synthesized by a known method disclosed in Patent Document 1 and Non-Patent Document 1, and the like. For example, it is possible to synthesize a dichlorodiethynyl naphthalene derivative (B) using a naphthalene derivative (A) as a raw material, and subsequently obtain a desired compound by the flow shown in the following scheme in which a cyclization reaction is performed.

Figure 2019080052
Figure 2019080052

式(1−2)で表される化合物は、特許文献1及び非特許文献1に開示された公知の方法などにより合成することができる。例えば、原料としてナフタレン誘導体(C)を用いて、ジブロモジエチニルナフタレン誘導体(D)を合成し、引き続き環化反応を行う以下のスキームに示したフローで所望の化合物を得ることが可能である。   The compound represented by Formula (1-2) can be synthesized by a known method disclosed in Patent Document 1 and Non-Patent Document 1, and the like. For example, it is possible to synthesize a dibromodiethynyl naphthalene derivative (D) using a naphthalene derivative (C) as a raw material, and subsequently obtain a desired compound by the flow shown in the following scheme in which a cyclization reaction is performed.

Figure 2019080052
Figure 2019080052

上記式(1)で表される化合物の精製方法は、特に限定されず、再結晶、カラムクロマトグラフィー、及び真空昇華精製等の公知の方法が採用できる。また必要に応じてこれらの方法を組み合わせることができる。   The purification method of the compound represented by the above formula (1) is not particularly limited, and known methods such as recrystallization, column chromatography and vacuum sublimation purification can be adopted. Moreover, these methods can be combined as needed.

以下に、上記式(1)で表される化合物の具体例を例示するが、本発明の光電変換素子用材料が含有する式(1)で表される化合物はこれらの具体例に限定されるものではない。   Although the specific example of a compound represented by the said Formula (1) is illustrated below, the compound represented by Formula (1) which the material for photoelectric conversion elements of this invention contains is limited to these specific examples. It is not a thing.

Figure 2019080052
Figure 2019080052
Figure 2019080052
Figure 2019080052

Figure 2019080052
Figure 2019080052
Figure 2019080052
Figure 2019080052

Figure 2019080052
Figure 2019080052
Figure 2019080052
Figure 2019080052

Figure 2019080052
Figure 2019080052
Figure 2019080052
Figure 2019080052

本発明の光電変換素子用材料中の式(1)で表される化合物の含有量は、光電変換素子用材料を用いる用途において必要とされる性能が発現する限り特に限定されないが、通常は50質量%以上であり、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましい。
本発明の光電変換素子用材料には、式(1)で表される化合物以外の化合物(例えば式(1)で表される化合物以外の光電変換素子用材料等)や添加剤等を併用してもよい。併用し得る化合物や添加剤等は、光電変換素子用材料を用いる用途において必要とされる性能が発現する限り特に限定されない。
The content of the compound represented by the formula (1) in the material for a photoelectric conversion element of the present invention is not particularly limited as long as the performance required in the application using the material for a photoelectric conversion element is exhibited. It is 80 mass% or more, 90 mass% or more is more preferable, 95 mass% or more is still more preferable.
In the photoelectric conversion element material of the present invention, a compound other than the compound represented by Formula (1) (for example, a photoelectric conversion element material other than the compound represented by Formula (1), etc.), additives, etc. are used in combination May be The compound which can be used together, an additive, etc. are not specifically limited as long as the performance required in the use which uses a photoelectric conversion element material expresses.

本発明の有機薄膜は、本発明の光電変換素子用材料を含有する。
本発明の有機薄膜は、一般的な乾式成膜法や湿式成膜法により作製することができる。具体的には真空プロセスである抵抗加熱蒸着、電子ビーム蒸着、スパッタリング及び分子積層法、溶液プロセスであるキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング並びにスプレーコーティング等のコーティング法、インクジェット印刷、スクリーン印刷、オフセット印刷並びに凸版印刷等の印刷法、及びマイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等が挙げられる。
一般的に光電変換素子用材料は、加工の容易性という観点から化合物を溶液状態で塗布するようなプロセスで用い得ることが望ましいが、有機膜を積層するような有機エレクトロニクスデバイスの場合、塗布溶液が下層の有機膜を侵す恐れがあることから不向きである。
The organic thin film of the present invention contains the material for a photoelectric conversion element of the present invention.
The organic thin film of the present invention can be produced by a general dry film forming method or a wet film forming method. Specifically, vacuum processes such as resistance heating evaporation, electron beam evaporation, sputtering and molecular lamination, solution processes casting, spin coating, dip coating, blade coating, wire bar coating, wire coating, spray coating, etc., inkjet printing Printing methods such as screen printing, offset printing and letterpress printing, and methods of soft lithography such as microcontact printing.
In general, it is desirable that the photoelectric conversion element material can be used in a process of applying a compound in a solution state from the viewpoint of ease of processing, but in the case of an organic electronic device such as laminating an organic film, a coating solution Is not suitable because it may attack the underlying organic film.

この様な多層積層構造を実現するためには、乾式成膜法、例えば抵抗加熱蒸着の様な蒸着プロセスで使用可能な材料を用いることが適切である。したがって、蒸着可能な光電変換素子用材料が好ましい。   In order to realize such a multilayer laminated structure, it is appropriate to use a material that can be used in a dry deposition method, for example, a deposition process such as resistance heating deposition. Therefore, the material for photoelectric conversion elements which can be deposited is preferable.

各層の成膜には上記の手法を複数組み合わせた方法を採用してもよい。各層の厚みは、それぞれの物質の抵抗値・電荷移動度にもよるので限定することはできないが、通常は0.5乃至5000nmの範囲であり、好ましくは1乃至1000nmの範囲、より好ましくは5乃至500nmの範囲である。   You may employ | adopt the method which combined multiple said methods for film-forming of each layer. The thickness of each layer depends on the resistance value / charge mobility of each material and can not be limited, but is usually in the range of 0.5 to 5000 nm, preferably in the range of 1 to 1000 nm, more preferably 5 To 500 nm.

〔有機エレクトロニクスデバイス〕
本発明の光電変換素子は本発明の有機薄膜を含む。光電変換素子は、対向する一対の電極膜間に光電変換部(膜)を配置した素子であって、電極膜の上方から光が光電変換部に入射されるものである。光電変換部は前記の入射光に応じて電子と正孔を発生するものであり、半導体により前記電荷に応じた信号が読み出され、光電変換膜部の吸収波長に応じた入射光量を示す素子である。光が入射しない側の電極膜には読み出しのためのトランジスタが接続される場合もある。光電変換素子がアレイ状に多数配置されている場合、入射光量に加え入射位置情報をも示すため、撮像素子となる。又、より光源近くに配置された光電変換素子が、光源側から見てその背後に配置された光電変換素子の吸収波長を遮蔽しない(透過する)場合は、複数の光電変換素子を積層して用いてもよい。
[Organic electronics device]
The photoelectric conversion element of the present invention comprises the organic thin film of the present invention. The photoelectric conversion element is an element in which a photoelectric conversion portion (film) is disposed between a pair of opposing electrode films, and light is incident on the photoelectric conversion portion from above the electrode film. The photoelectric conversion unit generates electrons and holes in response to the incident light, and a signal corresponding to the charge is read by the semiconductor, and an element showing an incident light amount in accordance with the absorption wavelength of the photoelectric conversion film unit. It is. There are also cases where a transistor for readout is connected to the electrode film on the side where light does not enter. When a large number of photoelectric conversion elements are arranged in the form of an array, in addition to the amount of incident light, incident position information is also displayed, and thus the image sensor is obtained. When the photoelectric conversion element arranged closer to the light source does not block (transmit) the absorption wavelength of the photoelectric conversion element arranged behind it as viewed from the light source side, a plurality of photoelectric conversion elements are stacked. You may use.

本発明の光電変換素子は、前記式(1)で表される化合物を上記光電変換部の構成材料として用いたものである。
光電変換部は、光電変換層と、電子輸送層、正孔輸送層、電子ブロック層、正孔ブロック層、結晶化防止層及び層間接触改良層等から成る群より選択される一種又は複数種の光電変換層以外の有機薄膜層とから成ることが多い。特に電子輸送層、正孔輸送層、電子ブロック層及び正孔ブロック層を以下ではキャリアブロック層とも表す。本発明の化合物はキャリアブロック層以外にも用いることもできるが、キャリアブロック層の有機薄膜層として用いることが好ましい。キャリアブロック層は前記式(1)で表される化合物のみで構成されていてもよいが、前記式(1)で表される化合物以外に、公知のブロック材料やその他を含んでいてもよい。
The photoelectric conversion element of the present invention uses the compound represented by the formula (1) as a constituent material of the photoelectric conversion unit.
The photoelectric conversion portion is one or more selected from the group consisting of a photoelectric conversion layer, an electron transport layer, a hole transport layer, an electron block layer, a hole block layer, a crystallization prevention layer, an interlayer contact improvement layer, etc. It often comprises an organic thin film layer other than the photoelectric conversion layer. In particular, the electron transport layer, the hole transport layer, the electron block layer and the hole block layer are hereinafter also referred to as a carrier block layer. The compound of the present invention can be used in addition to the carrier block layer, but is preferably used as an organic thin film layer of the carrier block layer. The carrier block layer may be composed only of the compound represented by the formula (1), but may contain known block materials and others in addition to the compound represented by the formula (1).

本発明の光電変換素子に用いられる電極膜は、後述する光電変換部に含まれる光電変換層が正孔輸送性を有する場合や光電変換層以外の有機薄膜層が正孔輸送性を有する正孔輸送層である場合には、該光電変換層やその他の有機薄膜層から正孔を取り出してこれを捕集する役割を果たし、又光電変換部に含まれる光電変換層が電子輸送性を有する場合や、有機薄膜層が電子輸送性を有する電子輸送層である場合には、該光電変換層やその他の有機薄膜層から電子を取り出して、これを吐出する役割を果たすものである。よって、電極膜として用い得る材料は、ある程度の導電性を有するものであれば特に限定されないが、隣接する光電変換層やその他の有機薄膜層との密着性や電子親和力、イオン化ポテンシャル、安定性等を考慮して選択することが好ましい。電極膜として用い得る材料としては、例えば、酸化錫(NESA)、酸化インジウム、酸化錫インジウム(ITO)及び酸化亜鉛インジウム(IZO)等の導電性金属酸化物;金、銀、白金、クロム、アルミニウム、鉄、コバルト、ニッケル及びタングステン等の金属:ヨウ化銅及び硫化銅等の無機導電性物質:ポリチオフェン、ポリピロール及びポリアニリン等の導電性ポリマー:炭素等が挙げられる。これらの材料は、必要により複数を混合して用いてもよいし、複数を2層以上に積層して用いてもよい。電極膜に用いる材料の導電性も、光電変換素子の受光を必要以上に妨げなければ特に限定されないが、光電変換素子の信号強度や、消費電力の観点から出来るだけ高いことが好ましい。例えばシート抵抗値が300Ω/□以下の導電性を有するITO膜であれば、電極膜として充分機能するが、数Ω/□程度の導電性を有するITO膜を備えた基板の市販品も入手可能となっていることから、この様な高い導電性を有する基板を使用することが望ましい。ITO膜(電極膜)の厚さは導電性を考慮して任意に選択することができるが、通常5乃至500nm、好ましくは10乃至300nm程度である。ITOなどの膜を形成する方法としては、従来公知の蒸着法、電子線ビーム法、スパッタリング法、化学反応法及び塗布法等が挙げられる。基板上に設けられたITO膜には必要に応じUV−オゾン処理やプラズマ処理等を施してもよい。   The electrode film used for the photoelectric conversion element of the present invention has a hole transportability when the photoelectric conversion layer contained in the photoelectric conversion portion described later has a hole transportability, or a hole transportability in the organic thin film layer other than the photoelectric conversion layer. When it is a transport layer, it plays a role of taking out holes from the photoelectric conversion layer and other organic thin film layers and collecting the holes, and when the photoelectric conversion layer included in the photoelectric conversion portion has electron transportability When the organic thin film layer is an electron transporting layer having an electron transporting property, it plays a role of taking out electrons from the photoelectric conversion layer and the other organic thin film layer and discharging the electrons. Therefore, the material that can be used as the electrode film is not particularly limited as long as it has a certain degree of conductivity, but adhesion to adjacent photoelectric conversion layers and other organic thin film layers, electron affinity, ionization potential, stability, etc. It is preferable to select in consideration of As a material which can be used as an electrode film, for example, conductive metal oxides such as tin oxide (NESA), indium oxide, indium tin oxide (ITO) and zinc indium oxide (IZO); gold, silver, platinum, chromium, aluminum Metals such as iron, cobalt, nickel and tungsten: Inorganic conductive substances such as copper iodide and copper sulfide: Conductive polymers such as polythiophene, polypyrrole and polyaniline: Carbon and the like. A plurality of these materials may be mixed and used as needed, and a plurality of these materials may be stacked and used in two or more layers. The conductivity of the material used for the electrode film is not particularly limited as long as the light reception of the photoelectric conversion element is not disturbed more than necessary, but it is preferable that it is as high as possible from the viewpoint of signal strength of the photoelectric conversion element and power consumption. For example, an ITO film having a sheet resistance value of 300 ohms / square or less functions sufficiently as an electrode film, but a commercially available substrate having an ITO film having a conductivity of several ohms / square or so is also available. Therefore, it is desirable to use a substrate having such high conductivity. The thickness of the ITO film (electrode film) can be arbitrarily selected in consideration of the conductivity, but it is usually 5 to 500 nm, preferably about 10 to 300 nm. Examples of the method for forming a film such as ITO include a conventionally known vapor deposition method, an electron beam method, a sputtering method, a chemical reaction method, a coating method and the like. The ITO film provided on the substrate may be subjected to UV-ozone treatment, plasma treatment or the like as required.

電極膜のうち、少なくとも光が入射する側の何れか一方に用いられる透明電極膜の材料としては、ITO、IZO、SnO、ATO(アンチモンドープ酸化スズ)、ZnO、AZO(Alドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、TiO及びFTO(フッ素ドープ酸化スズ)等が挙げられる。光電変換層の吸収ピーク波長における透明電極膜を介して入射した光の透過率は、60%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることが特に好ましい。 The material of the transparent electrode film used for at least one of the electrode films on the light incident side includes ITO, IZO, SnO 2 , ATO (antimony-doped tin oxide), ZnO, AZO (Al-doped zinc oxide) GZO (gallium-doped zinc oxide), TiO 2 and FTO (fluorine-doped tin oxide), and the like. The transmittance of light incident through the transparent electrode film at the absorption peak wavelength of the photoelectric conversion layer is preferably 60% or more, more preferably 80% or more, and particularly preferably 95% or more .

又、検出する波長の異なる光電変換層を複数積層する場合、それぞれの光電変換層の間に用いられる電極膜(これは上記した一対の電極膜以外の電極膜である)は、それぞれの光電変換層が検出する光以外の波長の光を透過させる必要があり、該電極膜には入射光の90%以上を透過する材料を用いることが好ましく、95%以上の光を透過する材料を用いることがより好ましい。   In addition, in the case where a plurality of photoelectric conversion layers having different wavelengths to be detected are stacked, an electrode film (which is an electrode film other than the pair of electrode films described above) used between each photoelectric conversion layer It is necessary to transmit light of wavelengths other than the light detected by the layer, and it is preferable to use a material that transmits 90% or more of incident light for the electrode film, and use a material that transmits 95% or more of light Is more preferred.

電極膜はプラズマフリーで作製することが好ましい。プラズマフリーでこれらの電極膜を作成することにより、電極膜が設けられる基板にプラズマが与える影響が低減され、光電変換素子の光電変換特性を良好にすることができる。ここで、プラズマフリーとは、電極膜の成膜時にプラズマが発生しないか、又はプラズマ発生源から基板までの距離が2cm以上、好ましくは10cm以上、更に好ましくは20cm以上であり、基板に到達するプラズマが減ぜられるような状態を意味する。   The electrode film is preferably made plasma free. By forming these electrode films without using plasma, the influence of plasma on the substrate on which the electrode film is provided can be reduced, and the photoelectric conversion characteristics of the photoelectric conversion element can be improved. Here, plasma-free means that no plasma is generated during deposition of the electrode film, or the distance from the plasma source to the substrate is 2 cm or more, preferably 10 cm or more, more preferably 20 cm or more, and reaches the substrate It means that the plasma can be reduced.

電極膜の成膜時にプラズマが発生しない装置としては、例えば、電子線蒸着装置(EB蒸着装置)やパルスレーザー蒸着装置等が挙げられる。EB蒸着装置を用いて透明電極膜の成膜を行う方法をEB蒸着法と称し、パルスレーザー蒸着装置を用いて透明電極膜の成膜を行う方法をパルスレーザー蒸着法と称する。   As an apparatus which plasma does not generate | occur | produce at the time of film-forming of an electrode film, an electron beam vapor deposition apparatus (EB vapor deposition apparatus), a pulse laser vapor deposition apparatus, etc. are mentioned, for example. A method of forming a transparent electrode film using an EB vapor deposition apparatus is referred to as EB vapor deposition, and a method of forming a transparent electrode film using a pulsed laser vapor deposition apparatus is referred to as pulsed laser vapor deposition.

成膜中プラズマを減ずることが出来るような状態を実現できる装置(以下、プラズマフリーである成膜装置という)としては、例えば、対向ターゲット式スパッタ装置やアークプラズマ蒸着装置等が考えられる。   As an apparatus capable of realizing a state capable of reducing plasma during film formation (hereinafter, referred to as a film forming apparatus which is free from plasma), for example, a facing target sputtering apparatus, an arc plasma deposition apparatus, etc. can be considered.

透明導電膜を電極膜(例えば第一の導電膜)とした場合、DCショート、あるいはリーク電流の増大が生じる場合がある。この原因の一つは、光電変換層に発生する微細なクラックがTCO(Transparent Conductive Oxide)などの緻密な膜によって被覆され、透明導電膜とは反対側の電極膜との間の導通が増すためと考えられる。そのため、Alなど膜質が比較して劣る材料を電極に用いた場合、リーク電流の増大は生じにくい。電極膜の膜厚を、光電変換層の膜厚(クラックの深さ)に応じて制御することにより、リーク電流の増大を抑制することができる。   When the transparent conductive film is an electrode film (for example, the first conductive film), DC shorting or an increase in leak current may occur. One of the causes is that fine cracks generated in the photoelectric conversion layer are covered with a dense film such as TCO (Transparent Conductive Oxide) and the conduction between the transparent conductive film and the electrode film on the opposite side is increased. it is conceivable that. Therefore, when a material such as Al, which is inferior in film quality, is used for the electrode, the increase of the leak current hardly occurs. By controlling the film thickness of the electrode film in accordance with the film thickness (depth of the crack) of the photoelectric conversion layer, it is possible to suppress an increase in leak current.

通常、導電膜を所定の値より薄くすると、急激な抵抗値の増加が起こる。本実施形態の光センサー用光電変換素子における導電膜のシート抵抗は、通常100乃至10000Ω/□であり、膜厚の自由度が大きい。又、透明導電膜が薄いほど吸収する光の量が少なくなり、一般に光透過率が高くなる。光透過率が高くなると、光電変換層で吸収される光が増加して光電変換能が向上するため非常に好ましい。   Usually, when the conductive film is thinner than a predetermined value, a sharp increase in resistance occurs. The sheet resistance of the conductive film in the photoelectric conversion element for an optical sensor of the present embodiment is usually 100 to 10000 Ω / □, and the degree of freedom of film thickness is large. In addition, the thinner the transparent conductive film, the smaller the amount of light absorbed, and generally the higher the light transmittance. When the light transmittance is high, the light absorbed by the photoelectric conversion layer is increased to improve the photoelectric conversion ability, which is very preferable.

本発明の光電変換素子が有する光電変換部は、光電変換層、キャリアブロック層およびそれ以外の有機薄膜層を含む。光電変換部を構成する光電変換層には一般的に有機半導体膜が用いられるが、その有機半導体膜は一層、もしくは複数の層であっても良く、一層の場合は、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)が用いられる。一方、複数の層である場合は、2乃至10層程度であり、P型有機半導体膜、N型有機半導体膜、又はそれらの混合膜(バルクヘテロ構造)のいずれかを積層した構造であり、層間にバッファ層が挿入されていても良い。   The photoelectric conversion part which the photoelectric conversion element of the present invention has includes a photoelectric conversion layer, a carrier block layer, and other organic thin film layers. Although an organic semiconductor film is generally used for the photoelectric conversion layer constituting the photoelectric conversion portion, the organic semiconductor film may be a single layer or a plurality of layers, and in the case of one layer, a P-type organic semiconductor film, An N-type organic semiconductor film or a mixed film thereof (bulk heterostructure) is used. On the other hand, in the case of a plurality of layers, it is about 2 to 10 layers, and has a structure in which any of a P-type organic semiconductor film, an N-type organic semiconductor film, or a mixed film thereof (bulk heterostructure) is stacked. A buffer layer may be inserted in

光電変換層の有機半導体膜には、吸収する波長帯に応じ、トリアリールアミン化合物、ベンジジン化合物、ピラゾリン化合物、スチリルアミン化合物、ヒドラゾン化合物、トリフェニルメタン化合物、カルバゾール化合物、ポリシラン化合物、チオフェン化合物、フタロシアニン化合物、シアニン化合物、メロシアニン化合物、オキソノール化合物、ポリアミン化合物、インドール化合物、ピロール化合物、ピラゾール化合物、ポリアリーレン化合物、カルバゾール誘導体、ナフタレン誘導体、アントラセン誘導体、クリセン誘導体、フェナントレン誘導体、ペンタセン誘導体、フェニルブタジエン誘導体、スチリル誘導体、キノリン誘導体、テトラセン誘導体、ピレン誘導体、ペリレン誘導体、フルオランテン誘導体、キナクリドン誘導体、クマリン誘導体、ポルフィリン誘導体、フラーレン誘導体や金属錯体(Ir錯体、Pt錯体、Eu錯体など)等を用いることができる。   In the organic semiconductor film of the photoelectric conversion layer, a triarylamine compound, a benzidine compound, a pyrazoline compound, a styrylamine compound, a hydrazone compound, a triphenylmethane compound, a carbazole compound, a polysilane compound, a thiophene compound, a phthalocyanine according to a wavelength band to be absorbed. Compound, cyanine compound, merocyanine compound, oxonol compound, polyamine compound, indole compound, pyrrole compound, pyrazole compound, polyarylene compound, carbazole derivative, naphthalene derivative, anthracene derivative, chrysene derivative, phenanthrene derivative, pentacene derivative, phenylbutadiene derivative, styryl Derivative, quinoline derivative, tetracene derivative, pyrene derivative, perylene derivative, fluoranthene derivative, quinacridone derivative Coumarin derivatives, porphyrin derivatives, fullerene derivatives and metal complexes (Ir complexes, Pt complexes, Eu complexes, etc.), or the like can be used.

本発明の電子輸送層は、光電変換層で発生した電子を電極膜へ輸送する役割と、電子輸送先の電極膜から光電変換層に正孔が移動するのをブロックする役割とを果たす。正孔輸送層は、発生した正孔を光電変換層から電極膜へ輸送する役割と、正孔輸送先の電極膜から光電変換層に電子が移動するのをブロックする役割とを果たす。電子ブロック層は、電極膜から光電変換層への電子の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する役割を果たす。正孔ブロック層は、電極膜から光電変換層への正孔の移動を妨げ、光電変換層内での再結合を防ぎ、暗電流を低減する機能を有する。
正孔ブロック層は正孔阻止性物質を単独又は二種類以上を積層する、又は混合することにより形成される。正孔阻止性物質としては、正孔が電極から素子外部に流出するのを阻止することができる化合物であれば限定されない。正孔ブロック層に使用することができる化合物としては、上記式(1)で表される化合物の他に、バソフェナントロリン及びバソキュプロイン等のフェナントロリン誘導体、シロール誘導体、キノリノール誘導体金属錯体、オキサジアゾール誘導体、オキサゾール誘導体、キノリン誘導体などが挙げられ、これらのうち、一種又は二種以上を用いることができる。
The electron transport layer of the present invention plays a role of transporting electrons generated in the photoelectric conversion layer to the electrode film and a role of blocking migration of holes from the electrode film of the electron transport destination to the photoelectric conversion layer. The hole transport layer plays a role of transporting generated holes from the photoelectric conversion layer to the electrode film and a role of blocking transfer of electrons from the electrode film of the hole transport destination to the photoelectric conversion layer. The electron blocking layer prevents the movement of electrons from the electrode film to the photoelectric conversion layer, prevents recombination in the photoelectric conversion layer, and plays a role in reducing dark current. The hole blocking layer has a function of blocking movement of holes from the electrode film to the photoelectric conversion layer, preventing recombination in the photoelectric conversion layer, and reducing dark current.
The hole blocking layer is formed by laminating or mixing hole blocking substances singly or in combination of two or more. The hole blocking substance is not limited as long as it is a compound capable of blocking the flow of holes from the electrode to the outside of the device. Examples of compounds that can be used in the hole blocking layer include phenanthroline derivatives such as vasophenanthroline and vasocuproin, silole derivatives, quinolinol derivative metal complexes, oxadiazole derivatives, in addition to the compounds represented by the above formula (1). An oxazole derivative, a quinoline derivative, etc. are mentioned, 1 or 2 types or more can be used among these.

図1に本発明の光電変換素子の代表的な素子構造を示すが、本発明はこの構造に限定されるものではない。図1の態様例においては、1が絶縁部、2が一方の電極膜、3が電子ブロック層、4が光電変換層、5が正孔ブロック層、6が他方の電極膜、7が絶縁基材又は他の光電変換素子をそれぞれ表す。図中には読み出し用のトランジスタを記載していないが、2又は6の電極膜と接続されていればよく、更には光電変換層4が透明であれば、光が入射する側とは反対側の電極膜の外側に成膜されていてもよい。光電変換素子への光の入射は、光電変換層4を除く構成要素が、光電変換層の主たる吸収波長の光を入射することを極度に阻害することがなければ、上部若しくは下部からの何れからでもよい。   Although the typical element structure of the photoelectric conversion element of this invention is shown in FIG. 1, this invention is not limited to this structure. In the embodiment of FIG. 1, 1 is an insulating portion, 2 is one electrode film, 3 is an electron blocking layer, 4 is a photoelectric conversion layer, 5 is a hole blocking layer, 6 is the other electrode film, 7 is an insulating group Material or other photoelectric conversion element respectively. Although a transistor for reading is not shown in the drawing, it may be connected to the electrode film of 2 or 6, and further, if the photoelectric conversion layer 4 is transparent, the side opposite to the light incident side The film may be formed on the outside of the electrode film. The incidence of light on the photoelectric conversion element can be made from any of the upper and lower parts as long as the components excluding the photoelectric conversion layer 4 do not extremely inhibit the incidence of light of the main absorption wavelength of the photoelectric conversion layer. May be.

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの例に限定され
るものではない。
実施例中に記載のブロック層は正孔ブロック層及び電子ブロック層のいずれでも良い。
実施例及び比較例の光電変換素子の作製は蒸着機で行い、大気下で電流電圧の印加測定を行った。作製した光電変換素子は窒素雰囲気のグローブボックス内で密閉式のボトル型計測チャンバー(エイエルエステクノロジー社製)に光電変換素子を設置し、電流電圧の印加測定を行った。電流電圧の印加測定は、半導体パラメータアナライザ4200−SCS(ケースレーインスツルメンツ社)を用いて行った。入射光の照射は、PVL−3300(朝日分光社製)を用い、照射光波長550nm、照射光半値幅20nmにて行った。実施例中の明暗比は光照射を行った場合の電流値を暗所での電流値で割ったものを示す。
Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.
The blocking layer described in the examples may be either a hole blocking layer or an electron blocking layer.
Preparation of the photoelectric conversion element of an Example and a comparative example was performed with a vapor deposition machine, and the application measurement of the current voltage was performed under air | atmosphere. The produced photoelectric conversion element installed the photoelectric conversion element in a closed bottle type measurement chamber (manufactured by AEL S Technology Co., Ltd.) in a glove box under a nitrogen atmosphere, and applied voltage was measured. The application measurement of the current voltage was performed using semiconductor parameter analyzer 4200-SCS (Keithley Instruments). Irradiation of incident light was performed by irradiation light wavelength 550nm and irradiation light half width 20 nm using PVL-3300 (made by Asahi Spectroscopic). The contrast ratio in the examples indicates the current value in the case of light irradiation divided by the current value in the dark.

実施例1( 光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、2,7−ビス(1,1’−ビフェニル−4−イル)ナフト[1,2−b:5,6−b’]ジチオフェン(上記具体例において、No.2で表される化合物)を、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、本発明の光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.77×10−11A/cmであった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は1.14×10−5A/cmであった。透明導電ガラス側に5V電圧印加したときの明暗比は6.4×10であった。
Example 1 (Fabrication of photoelectric conversion element and evaluation thereof)
2,7-Bis (1,1'-biphenyl-4-yl) naphtho [1,2-b: 5,6-b '] on an ITO transparent conductive glass (Diomatec Co., Ltd., ITO film thickness 150 nm) Dithiophene (the compound represented by No. 2 in the above specific example) was deposited to a thickness of 50 nm by resistance heating vacuum evaporation as a block layer. Next, on the block layer, quinacridone was vacuum deposited to 100 nm as a photoelectric conversion layer. Finally, 100 nm of aluminum was deposited as an electrode on the photoelectric conversion layer in a vacuum to form a photoelectric conversion element of the present invention. When a voltage of 5 V was applied to ITO and aluminum as electrodes, the current in the dark was 1.77 × 10 −11 A / cm 2 . Moreover, the electric current at the time of applying the voltage of 5 V to the transparent conductive glass side and performing light irradiation was 1.14 * 10 < -5 > A / cm < 2 >. The contrast ratio was 6.4 × 10 5 when a voltage of 5 V was applied to the transparent conductive glass side.

実施例2( 光電変換素子の作製およびその評価)
ブロック層として2,7−ビス(1,1’−ビフェニル−4−イル)ナフト[2,1−b:6,5−b’]ジチオフェン(上記具体例において、No.37で表される化合物)を用いたこと以外は実施例1に準じて光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は2.74×10−11A/cmであった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は4.46×10−5A/cmであった。透明導電ガラス側に5V電圧印加したときの明暗比は4.5×10であった。
Example 2 (Production of photoelectric conversion element and evaluation thereof)
2,7-bis (1,1′-biphenyl-4-yl) naphtho [2,1-b: 6,5-b ′] dithiophene as the block layer (the compound represented by No. 37 in the above specific example) The photoelectric conversion element was produced according to Example 1 except having used it. When a voltage of 5 V was applied to ITO and aluminum as electrodes, the current in the dark was 2.74 × 10 −11 A / cm 2 . Moreover, the electric current at the time of applying the voltage of 5 V to the transparent conductive glass side and performing light irradiation was 4.46 * 10 < -5 > A / cm < 2 >. The contrast ratio was 4.5 × 10 5 when a voltage of 5 V was applied to the transparent conductive glass side.

実施例3( 光電変換素子の作製およびその評価)
ブロック層として2,7−ビス([1,1’:3’,1’’−ターフェニル]−4−イル)ナフト[1,2−b:5,6−b’]ジチオフェン(上記具体例において、No.11で表される化合物)を用いたこと以外は実施例1に準じて光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は1.46×10−11A/cmであった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は3.68×10−5A/cmであった。透明導電ガラス側に5V電圧印加したときの明暗比は2.5×10であった。
Example 3 (Fabrication of photoelectric conversion element and evaluation thereof)
2,7-bis ([1,1 ′: 3 ′, 1 ′ ′-terphenyl] -4-yl) naphtho [1,2-b: 5,6-b ′] dithiophene as the block layer A photoelectric conversion element was produced according to Example 1 except that the compound represented by No. 11 was used. When a voltage of 5 V was applied with ITO and aluminum as electrodes, the current in the dark was 1.46 × 10 −11 A / cm 2 . Moreover, the electric current at the time of applying the voltage of 5 V to the transparent conductive glass side and performing light irradiation was 3.68 * 10 < -5 > A / cm < 2 >. The contrast ratio was 2.5 × 10 5 when a voltage of 5 V was applied to the transparent conductive glass side.

比較例1(比較用の 光電変換素子の作製およびその評価)
ITO透明導電ガラス(ジオマテック(株)製、ITO膜厚150nm)に、トリス(8−キノリノラト)アルミニウムを、ブロック層として抵抗加熱真空蒸着により50nm成膜した。次に、前記のブロック層の上に、光電変換層としてキナクリドンを100nm真空成膜した。最後に、前記の光電変換層の上に、電極としてアルミニウムを100nm真空成膜し、比較用の光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は9.15×10−8A/cmであった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は1.04×10−5A/cmであった。透明導電ガラス側に5V電圧印加したときの明暗比は113であった。
Comparative Example 1 (Production and Evaluation of Comparative Photoelectric Conversion Element)
50 nm of tris (8-quinolinolato) aluminum was formed into a film by resistance heating vacuum evaporation as a block layer on ITO transparent conductive glass (Diomatec Co., Ltd. product, ITO film thickness 150 nm). Next, on the block layer, quinacridone was vacuum deposited to 100 nm as a photoelectric conversion layer. Lastly, aluminum was deposited in a vacuum of 100 nm as an electrode on the photoelectric conversion layer to fabricate a photoelectric conversion element for comparison. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in the dark was 9.15 × 10 −8 A / cm 2 . Moreover, the electric current at the time of applying the voltage of 5 V to the transparent conductive glass side and performing light irradiation was 1.04 * 10 < -5 > A / cm < 2 >. The contrast ratio was 113 when a voltage of 5 V was applied to the transparent conductive glass side.

比較例2(比較用の 光電変換素子の作製およびその評価)
ブロック層として、特許文献6に記載の方法により合成した下記式(2)で表される化合物を用いたこと以外は実施例1に準じて光電変換素子を作製した。ITOとアルミニウムを電極として5Vの電圧を印加した際の、暗所での電流は4.54×10−11A/cmであった。また、透明導電ガラス側に5Vの電圧を印加し、光照射を行った場合の電流は1.21×10−5A/cmであった。透明導電ガラス側に5V電圧印加したときの明暗比は2.7×10であった。
Comparative Example 2 (Production and Evaluation of Comparative Photoelectric Conversion Element)
The photoelectric conversion element was produced according to Example 1 except having used the compound represented by following formula (2) synthesize | combined by the method of patent document 6 as a block layer. When a voltage of 5 V was applied using ITO and aluminum as electrodes, the current in the dark was 4.54 × 10 −11 A / cm 2 . Moreover, the electric current at the time of applying the voltage of 5 V to the transparent conductive glass side and performing light irradiation was 1.21 * 10 < -5 > A / cm < 2 >. The contrast ratio was 2.7 × 10 5 when a voltage of 5 V was applied to the transparent conductive glass side.

Figure 2019080052
Figure 2019080052

上記の実施例1及び比較例1の評価において得られた暗電流−電圧グラフを図2に、明電流−電圧グラフを図3に示した。図2、3及び上記の実施例、比較例から、本発明の光電変換素子は、比較用の光電変換素子よりも3桁以上低い暗電流値を示しており、明暗比も3桁向上していることが分かる。このことより、本発明の光電変換素子用材料は優れたブロック性能を有することが明白である。   The dark current-voltage graph obtained in the evaluation of the above Example 1 and Comparative Example 1 is shown in FIG. 2, and the light current-voltage graph is shown in FIG. As shown in FIGS. 2 and 3 and the above examples and comparative examples, the photoelectric conversion element of the present invention exhibits a dark current value three or more orders of magnitude lower than that of the photoelectric conversion element for comparison, I understand that From this, it is apparent that the material for photoelectric conversion elements of the present invention has excellent block performance.

上記実施例1乃至3および比較例1乃至2の光電変換素子に15Vの電圧を印加し、暗所で電流値および光照射を行った場合の電流値を測定し、明電流値を暗電流値で割った明暗比を算出し、結果を表1に示した。   A voltage of 15 V is applied to the photoelectric conversion elements of Examples 1 to 3 and Comparative Examples 1 and 2, and the current value and the current value when light irradiation is performed in a dark place are measured. The contrast ratio divided by was calculated, and the results are shown in Table 1.

Figure 2019080052
Figure 2019080052

表1の結果より、実施例1乃至3の光電変換素子は比較例1乃至2の光電変換素子よりも高い明暗比を示すことが分かる。この結果からも本発明の光電変換素子材料がブロック材料として優れた性能を有することは明らかである。   From the results of Table 1, it can be seen that the photoelectric conversion devices of Examples 1 to 3 exhibit higher contrast ratio than the photoelectric conversion devices of Comparative Examples 1 and 2. Also from this result, it is clear that the photoelectric conversion element material of the present invention has excellent performance as a block material.

特定構造の化合物を含む本発明の光電変換素子用材料を用いることにより、正孔又は電子のリーク防止性や輸送性、さらには耐熱性や可視光透明性等の要求特性に優れた光電変換素子を提供することができる。よって、高解像度と高応答性を有する有機撮像素子はもとより有機太陽電池、光センサー、赤外センサー、紫外センサー、X線センサーやフォトンカウンター等のデバイスやそれらを利用したカメラ、ビデオカメラ、赤外線カメラ等の分野への応用が期待される。   A photoelectric conversion element excellent in the required characteristics such as the leak prevention property and transportability of holes or electrons, and further the heat resistance and visible light transparency by using the material for photoelectric conversion element of the present invention containing the compound of the specific structure Can be provided. Therefore, not only organic imaging devices having high resolution and high responsiveness but also organic solar cells, light sensors, infrared sensors, ultraviolet sensors, devices such as X-ray sensors and photon counters, cameras using them, video cameras, infrared cameras Application to the field of etc. is expected.

1 絶縁部
2 上部電極
3 電子ブロック層もしくは正孔輸送層
4 光電変換層
5 正孔ブロック層もしくは電子輸送層
6 下部電極
7 絶縁基材、もしくは他光電変換素子


Reference Signs List 1 insulating part 2 upper electrode 3 electron block layer or hole transport layer 4 photoelectric conversion layer 5 hole block layer or electron transport layer 6 lower electrode 7 insulating substrate or other photoelectric conversion element


Claims (9)

下記式(1)
Figure 2019080052
(式(1)中、R及びRはそれぞれ独立に芳香族基又は複素環基を表す。X及びXのいずれか一方は硫黄原子又は酸素原子を表し、他方はメチン基を表す。)で表される化合物を含有する光電変換素子用材料。
Following formula (1)
Figure 2019080052
(In formula (1), R 1 and R 2 each independently represent an aromatic group or a heterocyclic group. Either one of X 1 and X 2 represents a sulfur atom or an oxygen atom, and the other represents a methine group The material for photoelectric conversion elements containing the compound represented by these.).
及びXのいずれか一方が硫黄原子であり、他方がメチン基である請求項1に記載の光電変換素子用材料。 The material for a photoelectric conversion element according to claim 1, wherein one of X 1 and X 2 is a sulfur atom, and the other is a methine group. 及びRがそれぞれ独立に芳香族基である請求項1又は2に記載の光電変換素子用材料。 The material for a photoelectric conversion element according to claim 1, wherein R 1 and R 2 are each independently an aromatic group. 及びRがフェニル基である請求項3に記載の光電変換素子用材料。 The material for photoelectric conversion elements according to claim 3, wherein R 1 and R 2 are phenyl groups. 及びRがフェニル基を有するフェニル基である請求項4に記載の光電変換素子用材料。 The material for photoelectric conversion elements according to claim 4, wherein R 1 and R 2 are phenyl groups having a phenyl group. 請求項1乃至5のいずれか一項に記載の光電変換素子用材料を含む有機薄膜。 The organic thin film containing the material for photoelectric conversion elements as described in any one of Claims 1 thru | or 5. 請求項6に記載の有機薄膜を含む光電変換素子。 The photoelectric conversion element containing the organic thin film of Claim 6. 請求項7に記載の光電変換素子を複数アレイ状に配置した撮像素子。 An imaging device in which a plurality of photoelectric conversion devices according to claim 7 are arranged in an array. 請求項7に記載の光電変換素子または請求項8に記載の撮像素子を含む光センサー。


An optical sensor comprising the photoelectric conversion element according to claim 7 or the imaging element according to claim 8.


JP2018194467A 2017-10-26 2018-10-15 Materials for photoelectric conversion devices and photoelectric conversion devices Active JP7128584B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017207006 2017-10-26
JP2017207006 2017-10-26

Publications (2)

Publication Number Publication Date
JP2019080052A true JP2019080052A (en) 2019-05-23
JP7128584B2 JP7128584B2 (en) 2022-08-31

Family

ID=66626672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018194467A Active JP7128584B2 (en) 2017-10-26 2018-10-15 Materials for photoelectric conversion devices and photoelectric conversion devices

Country Status (1)

Country Link
JP (1) JP7128584B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013246A1 (en) 2018-07-13 2020-01-16 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2021141078A1 (en) 2020-01-10 2021-07-15 富士フイルム株式会社 Photoelectric conversion element, imaging element, and optical sensor
WO2021221108A1 (en) 2020-04-30 2021-11-04 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022014721A1 (en) 2020-07-17 2022-01-20 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022138833A1 (en) 2020-12-24 2022-06-30 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022168856A1 (en) 2021-02-05 2022-08-11 富士フイルム株式会社 Photoelectric conversion element, imaging element, photosensor, and compound

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042652A1 (en) * 2007-12-13 2011-02-24 E.I.Du Pont De Nemours And Company Electroactive materials
CN103664995A (en) * 2012-08-31 2014-03-26 昆山维信诺显示技术有限公司 Naphthodithiophene derivative organic electroluminescent material and application thereof
JP2017157731A (en) * 2016-03-03 2017-09-07 キヤノン株式会社 Organic photoelectric conversion element, two-dimensional sensor, image sensor, and imaging apparatus
WO2018207722A1 (en) * 2017-05-08 2018-11-15 ソニー株式会社 Organic photoelectric conversion element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042652A1 (en) * 2007-12-13 2011-02-24 E.I.Du Pont De Nemours And Company Electroactive materials
CN103664995A (en) * 2012-08-31 2014-03-26 昆山维信诺显示技术有限公司 Naphthodithiophene derivative organic electroluminescent material and application thereof
JP2017157731A (en) * 2016-03-03 2017-09-07 キヤノン株式会社 Organic photoelectric conversion element, two-dimensional sensor, image sensor, and imaging apparatus
WO2018207722A1 (en) * 2017-05-08 2018-11-15 ソニー株式会社 Organic photoelectric conversion element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHAUDHRY, RASOOL, AIJAZ ET AL.: "Effect of heteroatoms substitution on electronic, photophysical and charge transfer properties of na", COMPUTATIONAL AND THEORETICAL CHEMISTRY, vol. 1045, JPN6022015069, 2014, pages 123 - 134, ISSN: 0004751914 *
YI, YUANPING ET AL.: "Charge-Transport Parameters of Acenedithiophene Crystals: Realization of One-, Two-, or Three-Dimens", THE JOURNAL OF PHYSICAL CHEMISTRY C, vol. 116, JPN6022015071, 2012, pages 5215 - 5224, ISSN: 0004751915 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020013246A1 (en) 2018-07-13 2020-01-16 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
EP4306526A2 (en) 2018-07-13 2024-01-17 FUJIFILM Corporation Compound for photoelectric conversion element
WO2021141078A1 (en) 2020-01-10 2021-07-15 富士フイルム株式会社 Photoelectric conversion element, imaging element, and optical sensor
WO2021221108A1 (en) 2020-04-30 2021-11-04 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022014721A1 (en) 2020-07-17 2022-01-20 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022138833A1 (en) 2020-12-24 2022-06-30 富士フイルム株式会社 Photoelectric conversion element, imaging element, optical sensor, and compound
WO2022168856A1 (en) 2021-02-05 2022-08-11 富士フイルム株式会社 Photoelectric conversion element, imaging element, photosensor, and compound

Also Published As

Publication number Publication date
JP7128584B2 (en) 2022-08-31

Similar Documents

Publication Publication Date Title
JP6803362B2 (en) Photoelectric conversion element for image sensor
JP7128584B2 (en) Materials for photoelectric conversion devices and photoelectric conversion devices
JP6739290B2 (en) Material for photoelectric conversion element for imaging device and photoelectric conversion element including the same
JP6618785B2 (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element including the same
KR102325175B1 (en) Organic compounds, near-infrared absorbing dyes, photoelectric conversion elements and their optical sensors, and imaging elements
JP6910880B2 (en) Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
CN109791984B (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element containing same
JP6862277B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP6619806B2 (en) Fused polycyclic aromatic compounds
JP6906357B2 (en) Photoelectric conversion element for image sensor
JP6864561B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2020010024A (en) Material for photoelectric conversion element for imaging element and photoelectric conversion element
JP2018078270A (en) Photoelectric conversion element material for imaging device and photoelectric conversion element containing the same
JP6784639B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2017041559A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element
JP6759075B2 (en) Materials for photoelectric conversion elements for imaging elements and photoelectric conversion elements including them
JP2018046267A (en) Photoelectric conversion element material for image pickup element, and photoelectric conversion element including the same
JP6478277B2 (en) Organic polycyclic aromatic compounds and uses thereof
JP2017079317A (en) Material for photoelectric conversion element for image pickup device and photoelectric conversion element including the same
JP2017041560A (en) Photoelectric conversion element, imaging device, optical sensor, and material for photoelectric conversion element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220818

R150 Certificate of patent or registration of utility model

Ref document number: 7128584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150