JP2019078032A - Tapered steel pipe pile and method for pulling out the same - Google Patents

Tapered steel pipe pile and method for pulling out the same Download PDF

Info

Publication number
JP2019078032A
JP2019078032A JP2017204493A JP2017204493A JP2019078032A JP 2019078032 A JP2019078032 A JP 2019078032A JP 2017204493 A JP2017204493 A JP 2017204493A JP 2017204493 A JP2017204493 A JP 2017204493A JP 2019078032 A JP2019078032 A JP 2019078032A
Authority
JP
Japan
Prior art keywords
steel pipe
pipe pile
tapered
pile
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017204493A
Other languages
Japanese (ja)
Other versions
JP6797096B2 (en
Inventor
英治 大下
Eiji Oshita
英治 大下
聡 新谷
Satoshi Shintani
聡 新谷
英樹 仲井
Hideki Nakai
英樹 仲井
勝之 好田
Katsuyuki Koda
勝之 好田
充宏 中澤
Mitsuhiro Nakazawa
充宏 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinkai Nissan Construction Co Ltd
Yorigami Maritime Construction Co Ltd
Original Assignee
Rinkai Nissan Construction Co Ltd
Yorigami Maritime Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinkai Nissan Construction Co Ltd, Yorigami Maritime Construction Co Ltd filed Critical Rinkai Nissan Construction Co Ltd
Priority to JP2017204493A priority Critical patent/JP6797096B2/en
Publication of JP2019078032A publication Critical patent/JP2019078032A/en
Application granted granted Critical
Publication of JP6797096B2 publication Critical patent/JP6797096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Abstract

To provide a tapered steel pipe pile which can be easily pulled out at the time of removal and a method for pulling out the same.SOLUTION: A tapered steel pipe pile according to the present invention is a tapered steel pipe pile (4) installed on the underwater ground to support a floating structure, and has a straight portion (41) having a cylindrical shape that forms, at one end, a circular first opening (43) orthogonal to the central axis (O) of the tapered steel pipe pile and a tapered portion (42) which is connected to the other end of the straight portion (41), which extends to the opposite side of the first opening (43), which is reduced in diameter at a predetermined taper angle (θ) in the central axis (O) direction and which has a circular second opening (44) at the tip end orthogonal to the central axis (O).SELECTED DRAWING: Figure 2

Description

本発明は、テーパー付鋼管杭及びその引き抜き方法に関する。   The present invention relates to a tapered steel pipe pile and a method of drawing the same.

クリーンエネルギーを供給するため、港湾等への水上風力発電設備の設置が進められている。水上風力発電設備は、風が強く波が高い沖合に設置されることが多く、水上風力発電設備を支持するために用いられる鋼管杭は、水底地盤に強固に打ち込まれる。しかし、自然環境保護の観点から、水上風力発電設備の耐用年数、例えば設置から20年経過後には、水上風力発電設備を撤去して、自然環境を原状に復帰させることが求められている。撤去は、水上の設備(タワー、ナセル及びブレード)の撤去だけでなく、水底地盤に埋設された鋼管杭の撤去が求められる。   In order to supply clean energy, installation of waterborne wind turbines at ports etc. is underway. The offshore wind power plant is often installed offshore where the wind is strong and the waves are high, and the steel pipe pile used to support the offshore wind power plant is strongly driven into the underwater ground. However, from the viewpoint of natural environment protection, it is required to remove the on-water wind power generation facility after the service life of the on-water wind power generation facility, for example, 20 years after installation, to restore the natural environment to its original state. Removal is required not only removal of facilities on water (towers, nacelles and blades) but also removal of steel pipe piles buried in the ground floor.

鋼管杭の撤去にあたり、まず、埋設された鋼管杭を囲むように、外挿管がバイブロハンマとウォータージェットによって打設され、バイブロハンマ又はクレーンによって埋設された鋼管杭が引き抜かれる。次に、バイブロハンマ又はクレーンによって外挿管を引き抜く工法が従来工法として知られている。又、特許文献1には、複数の小孔を有する鋼管杭の内部に圧縮空気を供給して小孔から外部へ噴出させつつ、鋼管杭を引き抜く工法が開示されている。   In removing the steel pipe pile, first, the outer tube is driven by a vibrator and a water jet so as to surround the buried steel pipe pile, and the steel pipe pile buried by a vibrator or a crane is pulled out. Next, a method of pulling out the intubation tube with a vibro hammer or a crane is known as a conventional method. Further, Patent Document 1 discloses a method of drawing out a steel pipe pile while supplying compressed air to the inside of a steel pipe pile having a plurality of small holes and injecting the compressed air from the small holes to the outside.

特開2016−199874号公報JP, 2016-199874, A

しかし、水上風力発電設備の大型化に伴い、埋設される鋼管杭は大口径となってきている。大口径の鋼管杭を引き抜くには大型のバイブロハンマ又はクレーンを必要とする。又、複数の小孔を有する鋼管杭の内部に圧縮空気を送る方法は、鋼管杭の頭部を密封する必要があり、更に圧縮空気供給設備が必要となる。   However, with the upsizing of waterborne wind power generation facilities, steel pipe piles to be buried are becoming larger in diameter. In order to pull out a large diameter steel pipe pile, a large vibro hammer or a crane is required. Moreover, the method of sending compressed air inside a steel pipe pile having a plurality of small holes requires sealing the head of the steel pipe pile, and further requires compressed air supply equipment.

本発明は、前記の問題点を解決するためになされたものであり、水上風力発電設備の撤去時に、容易に引き抜き可能なテーパー付鋼管杭及びその引き抜き方法を提案することを課題とする。   The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to propose a tapered steel pipe pile that can be easily pulled out when removing a water-based wind power generation facility and a method for pulling out the same.

上記目的を達成するため、本発明に係るテーパー付鋼管杭は、水上構造物を支持するために水底地盤に設置されるテーパー付鋼管杭であって、一端にテーパー付鋼管杭の中心軸に直交する円形の第1開口部を形成する円筒形状を有するストレート部と、ストレート部の他端に連接し且つ第1開口部の反対側に延伸し、中心軸方向に所定のテーパー角度で縮径し、先端に中心軸に直交する円形の第2開口部を形成するテーパー部と、を有することを特徴とする。   In order to achieve the above object, the tapered steel pipe pile according to the present invention is a tapered steel pipe pile installed on the underwater ground to support a floating structure, and is orthogonal to the central axis of the tapered steel pipe pile at one end. And a straight portion having a cylindrical shape that forms a circular first opening, and the other end of the straight portion connected to the other end of the straight portion and extended on the opposite side of the first opening and diameter-reduced at a predetermined taper angle in the central axis direction And a tapered portion at a tip end of which a circular second opening orthogonal to the central axis is formed.

更に、ストレート部の長さは前記テーパー付鋼管杭の長さの1/3〜1/10である、ことが好ましい。   Furthermore, it is preferable that the length of the straight part is 1/3 to 1/10 of the length of the tapered steel pipe pile.

更に、テーパー角度は1〜4(度)である、ことが好ましい。   Furthermore, the taper angle is preferably 1 to 4 (degrees).

更に、第1開口部の開口面積より第2開口部の開口面積は小さく、少なくとも0.28(m2)の面積を有する、ことが好ましい。 Furthermore, it is preferable that the opening area of the second opening be smaller than the opening area of the first opening, and have an area of at least 0.28 (m 2 ).

本発明に係る方法は、水上構造物を支持するために水底地盤に設置されるテーパー付鋼管杭を引き抜くための方法であって、テーパー付鋼管杭は、一端にテーパー付鋼管杭の中心軸に直交する円形の第1開口部を形成する円筒形状を有するストレート部と、ストレート部の他端に連接し且つ第1開口部の反対側に延伸し、中心軸方向に所定のテーパー角度で縮径し、先端に中心軸に直交する円形の第2開口部を形成するテーパー部と、を有するテーパー付鋼管杭、であることを特徴とする。   The method according to the present invention is a method for pulling out a tapered steel pipe pile installed on the underwater ground to support a floating structure, wherein the tapered steel pipe pile is attached to the central axis of the tapered steel pipe pile at one end. A straight portion having a cylindrical shape forming a circular first opening, and the other end of the straight portion are connected to the other end of the straight portion and extend on the opposite side of the first opening, and the diameter is reduced at a predetermined taper angle in the central axis direction And a tapered steel pipe pile having a tapered portion forming a circular second opening orthogonal to the central axis at the tip.

本発明に係るテーパー付鋼管杭は、埋設された後、容易に引き抜き可能となる。   The tapered steel pipe pile according to the present invention can be easily pulled out after being buried.

従来の水上風力発電設備の一例の概略を示す図である。It is a figure which shows the outline of an example of the conventional on-water wind power generation installation. テーパー付鋼管杭の実施形態の一例を示す図である。It is a figure which shows an example of embodiment of a tapered steel pipe pile. 照査に使用する骨組モデルを示す図である。It is a figure which shows the skeleton model used for a check. 鋼管杭の部材決定までのフローを示す図である。It is a figure which shows the flow to the member determination of a steel pipe pile. ストレート鋼管杭とテーパー付鋼管杭の形状を対比させた図である。It is the figure which contrasted the shape of a straight steel pipe pile and a tapered steel pipe pile. ストレート鋼管杭の一例の応力度照査結果を示す図表である。It is a graph which shows the stress degree check result of an example of a straight steel pipe pile. テーパー付鋼管杭の一例の応力度照査結果を示す図表である。It is a graph which shows the stress degree check result of an example of a tapered steel pipe pile. 鋼管杭のバリエーションを示す図である(その1)。It is a figure which shows the variation of a steel pipe pile (the 1). 鋼管杭のバリエーションを示す図である(その2)。It is a figure which shows the variation of a steel pipe pile (the 2). 鋼管杭のバリエーションを示す図である(その3)。It is a figure which shows the variation of a steel pipe pile (the 3). 鋼管杭の周面摩擦力を示すグラフである。It is a graph which shows the skin friction of a steel pipe pile. 応力度照査結果を示すグラフである。It is a graph which shows a stress degree check result. テーパー付鋼管杭を引き抜く方法を説明する図である。It is a figure explaining the method to withdraw a tapered steel pipe pile.

以下、本開示の一側面に係るテーパー付鋼管杭及びその引き抜き方法について、図を参照しつつ説明する。但し、本開示の技術的範囲はそれらの実施の形態に限定されず、特許請求の範囲に記載された発明とその均等物に及ぶ点に留意されたい。尚、以下の説明及び図において、同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Hereinafter, a tapered steel pipe pile and a method for drawing the same according to one aspect of the present disclosure will be described with reference to the drawings. However, it should be noted that the technical scope of the present disclosure is not limited to those embodiments, but extends to the inventions described in the claims and the equivalents thereof. In the following description and drawings, components having the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.

(水上風力発電設備の概要)
図1は、従来の水上風力発電設備1の一例の概略を示す図である。直径数mの1本の大口径杭(モノパイル)を水底の支持地盤に打ち込む、いわゆるモノパイル工法により設置された大口径杭2が水上の風力発電機3を支えている。通常、大口径杭2は、鋼管杭2と呼ばれる鋼製の円筒形状を有する中空の杭である。風力発電機3は、基礎である鋼管杭2の上にタワー31が設置され、タワー31上にナセル32とブレード33が設けられている。
(Summary of water and wind power plant)
FIG. 1 is a schematic view of an example of a conventional on-water wind power plant 1. A large diameter pile 2 installed by a so-called monopile method for driving one large diameter pile (monopile) having a diameter of several meters into the supporting ground of the water bottom supports the wind power generator 3 on the water. Usually, the large diameter pile 2 is a hollow pile having a cylindrical shape made of steel called a steel pipe pile 2. In the wind power generator 3, a tower 31 is installed on a steel pipe pile 2 which is a foundation, and a nacelle 32 and a blade 33 are provided on the tower 31.

風力発電機3を支える鋼管杭2は、風力発電機3の自重等による垂直方向の力Fzと、風力を受けるブレード33や波による水平方向の力Fy、更にはモーメントMxに耐えうるように水底の地盤に打ち込まれて設置される。   The steel pipe pile 2 supporting the wind power generator 3 has a bottom so as to withstand the vertical force Fz by the weight of the wind power generator 3, the blade 33 receiving the wind power, the horizontal force Fy by the wave, and the moment Mx. It is driven into the ground and installed.

水上風力発電設備1が老朽化すると、環境を保護するため、設備の撤去が必要となる。撤去は水上の風力発電機3だけでなく、水底地盤に設置されている鋼管杭2も撤去しなくてはならない。水底地盤に強く打ちこまれている鋼管杭2を引き抜くためには、鋼管杭2を設置したときと同程度かそれ以上の大型の水上クレーン、バイブロハンマ等の設備が必要となる。そこで、水上風力発電機をしっかり支持する鋼管杭であって、水底地盤からの引き抜きが容易な鋼管杭である本発明が発明された。   When the offshore wind power plant 1 is aged, the plant needs to be removed to protect the environment. Not only the wind turbine generator 3 above water but also the steel pipe pile 2 installed on the water bottom ground must be removed. In order to pull out the steel pipe pile 2 that has been squeezed into the underwater ground, facilities such as a large floating crane and a vibro hammer, which are the same size as or larger than when the steel pipe pile 2 is installed, are required. Therefore, the present invention has been invented which is a steel pipe pile that firmly supports a water-based wind power generator, and is a steel pipe pile that can be easily pulled out from the water bottom ground.

(本発明に係るテーパー付鋼管杭の概要)
図2は、本発明に係るテーパー付鋼管杭4の実施形態の一例を示す図である。図2(a)はテーパー付鋼管杭4の斜視図であり、図2(b)はテーパー付鋼管杭4の中心軸Oに沿った断面図である。風力発電機3側を支持する側に、すなわち水面側に、テーパー付鋼管杭4は直径D1(m)、鋼管肉厚t1(m)の円筒形状のストレート部41を有し、テーパー付鋼管杭4が水中地盤に打ち込まれる方向には、円筒形状のストレート部41に連接し且つ延伸して次第に縮径するテーパー部42を有する。テーパー部42の先端の直径はD2(m)、鋼管肉厚はt2(m)である。したがってD1>D2である。鋼管杭の全長はL(m)であり、円筒部41の全長はL1(m)、テーパー部42の全長はL2(m)である。したがって、L = L1 + L2の関係にある。水面側にストレート部41は中心軸(O)に直交する円形の開口部43を形成し、テーパー部42はテーパー付鋼管杭4が水底地盤に打ち込まれる方向に中心軸(O)に直交する円形の開口部44を形成する。D1>D2である。又、通常、テーパー付鋼管杭4の鋼管肉厚の厚さはt1 = t2である。しかし、鋼管杭の自重を減らすため、鋼管肉厚を薄くなるよう変化させてt1>t2とすることも可能である。テーパー付鋼管杭4の垂直軸と、テーパー面の側線がなす角度、すなわちテーパー角度はθである。通常、鋼管杭の材質は、SKK400、SKK490等である。
(Overview of Tapered Steel Pipe Pile According to the Present Invention)
FIG. 2 is a view showing an example of an embodiment of the tapered steel pipe pile 4 according to the present invention. 2 (a) is a perspective view of the tapered steel pipe pile 4, and FIG. 2 (b) is a cross-sectional view along the central axis O of the tapered steel pipe pile 4. As shown in FIG. On the side that supports the wind power generator 3 side, that is, on the water surface side, the tapered steel pipe pile 4 has a cylindrical straight portion 41 with a diameter D 1 (m) and a steel pipe thickness t 1 (m). In the direction in which the steel pipe pile 4 is driven into the underwater ground, it has a tapered portion 42 connected to the cylindrical straight portion 41 and extending and gradually reducing its diameter. The diameter of the tip of the tapered portion 42 is D 2 (m), and the thickness of the steel pipe is t 2 (m). Therefore, D 1 > D 2 . The total length of the steel pipe pile is L (m), the total length of the cylindrical portion 41 is L 1 (m), and the total length of the tapered portion 42 is L 2 (m). Therefore, a relation of L = L 1 + L 2. The straight portion 41 forms a circular opening 43 orthogonal to the central axis (O) on the water surface side, and the tapered portion 42 is a circular perpendicular to the central axis (O) in the direction in which the tapered steel pipe pile 4 is driven into the underwater ground. Form the opening 44 of the D 1> is a D 2. Also, the thickness of the steel pipe thickness of the tapered steel pipe pile 4 is usually t 1 = t 2 . However, in order to reduce the weight of the steel pipe pile, it is possible to change the thickness of the steel pipe so as to reduce the thickness so that t 1 > t 2 . The angle between the vertical axis of the tapered steel pipe pile 4 and the side line of the tapered surface, that is, the taper angle is θ. Usually, the material of the steel pipe pile is SKK400, SKK490 or the like.

風力発電機3を支えるテーパー付鋼管杭4を、一部テーパー形状としたのは、鋼管表面と地盤との間の摩擦力を減らすためである。鋼管杭を垂直に引き上げて水中地盤から引き抜くとき、引き抜き力の抵抗となるのは、鋼管杭に働く重力と鋼管表面と地盤との間の摩擦力である。したがって鋼管の表面積を少なくし摩擦力を減らすように、テーパー付鋼管杭4の地中先端部から長さL2までをテーパー状としている。又、テーバ形状にすることにより鋼管杭2の重量が少なくなることも、引き抜き易くすることに資する。一方、水上構造物を支えるために、風力発電機3や波から受ける応力等に対抗できるだけのしっかりした基礎とすべく、直径D1(m)と長さL1(m)を備えた水面から地中にストレートに伸びるストレート部41を適切に設定する必要がある。すなわち、本発明に係るテーパー付鋼管杭4は、水上構造部を支えるに十分な強度を有し。撤去のとき引き抜き易い鋼管杭である。 The reason why the tapered steel pipe pile 4 supporting the wind power generator 3 is partially tapered is to reduce the friction between the surface of the steel pipe and the ground. When pulling up a steel pipe pile vertically and pulling it out from the underwater ground, it is the gravity acting on the steel pipe pile and the frictional force between the surface of the steel pipe and the ground that is the resistance to the drawing force. Therefore to reduce the reduced frictional force the surface area of the steel pipe, it is tapered from the ground tip of tapered steel pipe piles 4 to a length L 2. In addition, reducing the weight of the steel pipe pile 2 by forming it into a taber shape also contributes to facilitating extraction. On the other hand, from the water surface with diameter D 1 (m) and length L 1 (m), in order to support the floating structure, to provide a solid foundation that can resist the stress received from the wind power generator 3 and waves. It is necessary to properly set the straight portion 41 extending straight to the ground. That is, the tapered steel pipe pile 4 according to the present invention has sufficient strength to support the on-water structure. It is a steel pipe pile that is easy to pull out when removing it.

(鋼管杭の設計照査検討)
本発明に係るテーパー付鋼管杭4が備える特性を明確にすべく、支持地盤、風力発電機3、及び鋼管杭2とテーパー付鋼管杭4をモデル化して照査を行った。従来のテーパー部を有さない鋼管杭2(以下、「ストレート」鋼管杭」という。)とテーパー部を有するテーパー付鋼管杭4を比較照査にするにあたり、「洋上風力発電の技術マニュアル」2001年度版(著者(財)沿岸開発技術センター)の「3.2モノパイル基礎の式基礎の設計例」(以下、「設計例」という。)を参考にした。なお、「洋上風力発電の技術マニュアル」では洋上風車を想定しているが、本照査では、風車は陸上に設置されることとした。波力等の影響をなくし、ストレート杭2とテーパー杭4との比較を簡略にするためである。
(Study on design check of steel pipe piles)
In order to clarify the characteristics of the tapered steel pipe pile 4 according to the present invention, the supporting ground, the wind power generator 3, and the steel pipe pile 2 and the tapered steel pipe pile 4 were modeled and checked. The “Technical Manual of Offshore Wind Power Generation” 2001 for comparing the conventional steel pipe pile 2 without taper part (hereinafter referred to as “straight” steel pipe pile) and the tapered steel pipe pile 4 with taper part We referred to "3.2 Example of formula foundation design for monopile foundation" (hereinafter referred to as "design example") of the edition (author (Co) Development Center for Coastal Development). In the "Technical Manual for Offshore Wind Power Generation", offshore wind turbines are assumed, but for this inspection, the wind turbines are installed on land. It is for eliminating the influence of wave power etc. and simplifying the comparison with the straight pile 2 and the taper pile 4.

図3は、照査に使用する骨組モデルを示す図である。   FIG. 3 is a diagram showing a skeleton model used for control.

(地盤条件)
地盤条件は以下のような特質を有する4層の地盤からなることとした。単純化のためである。実際には、鋼管杭が埋設設置される地盤は、設置場所により様々な地質、地質層厚を有するため、現地でのボーリング調査等が必要である。
(Ground condition)
The ground conditions consisted of four layers of ground with the following characteristics. It is for simplification. In practice, since the ground on which the steel pipe pile is buried and installed has various geology and geological layer thicknesses depending on the installation place, it is necessary to conduct a boring survey and the like on site.

Figure 2019078032
Figure 2019078032

なお、D.L.はDatum Line(基準線、基準高さ)の略記であり、NはN値と呼ばれ地盤の硬さを示す指標である。 In addition, D. L. is an abbreviation of Datum Line (reference line, reference height), N is an N value, and is an index indicating the hardness of the ground.

(風車荷重)
上述の設計例ではD.L.+0.5m以深をモデル化しているため風車の転倒モーメントを作用させているが、本照査ではナセルのあるD.L.+60.00mまでをモデル化するため転倒モーメントは作用させないこととした。風車荷重は、暴風時の荷重組み合わせとする。なお、陸上設置を想定し設計例で載荷していた波力及び浮力は載荷させないものとした。暴風時の加重を以下に示す。
(Windmill load)
In the above design example, the overturning moment of the wind turbine is applied because it models DL + 0.5m or less deep, but in this control, the overturning moment is not applied because it models up to DL + 60.00m with nacelle did. The wind turbine load shall be the load combination during a storm. In addition, the wave power and buoyancy that were loaded in the design example assuming installation on land were not loaded. The weight during a storm is shown below.

Figure 2019078032
Figure 2019078032

(荷重の組合せ)
設計例で部材決定ケースとなった暴風時の荷重組み合わせとする。なお、陸上設置を想定し設計例で載荷していた波力及び浮力は載荷させないものとする。したがって、垂直加重=自重+風車荷重(暴風時)となる。
(Combination of load)
Load combination at the time of storm that became the member determination case in the design example. In addition, wave power and buoyancy that were loaded in the design example assuming installation on land shall not be loaded. Therefore, vertical load = self weight + windmill load (during storm).

(許容応力度の割増)
設計評価の基準となる許容応力度は、設計例と同じく1.0とした。
(Additional allowable stress level)
The allowable stress level, which is the basis of design evaluation, was 1.0, as in the design example.

(設計照査手法)
鋼管杭の部材照査に関しては、国土交通省監修の「杭基礎設計便覧」平成19年版、地盤支持力に関しては「港湾の施設の技術上の基準・同解説」平成19年版(以下、港湾基準)に従い照査を行なった。なお、簡易的な検討を行うため部分係数法による検討ではなく従来の許容応力度法による検討とした。
(Design verification method)
About member inspection of steel pipe pile, "Pile foundation design handbook" supervised by Ministry of Land, Infrastructure, Transport and Tourism 2007 edition, about ground supporting power "technical standard, commentary on facilities of harbor" 2007 edition (following, harbor standard) It checked according to. In addition, in order to conduct a simple study, it was decided not to study by the partial coefficient method but by the conventional allowable stress method.

図4は、鋼管杭の部材決定までのフローを示す図である。まず、鋼管杭が打ち込まれる地盤での杭の諸元が初期設定される(ST101)。次に杭の特性値βを算出し、3/βが杭の根入れ長とされる(ST102)。風車のタワーを長いハリとみなし、鋼管杭はいくつか部分に輪切りにした部分に構成される骨組構造モデルとして骨組解析が行なわれる(ST103)。応力度照査と板厚が検討され(ST104)、支持力照査が行われる(ST105)。照査結果がよければ設計終了となる。悪ければ、杭の根入れ長の再検討が行われ(ST106)、再検討内容が、骨組解析(ST103)にフィードバックされて、応力度照査と板厚が再度検討され(ST104)、再び支持力照査が行われる(ST105)。フィードバック・ループは支持力照査結果が良いと判定されるまで繰り返される。   FIG. 4 is a diagram showing the flow until the member determination of the steel pipe pile. First, specifications of the pile on the ground where the steel pipe pile is driven are initialized (ST101). Next, the characteristic value β of the stake is calculated, and 3 / β is taken as the penetration length of the stake (ST102). The frame analysis is performed as a frame structure model in which the tower of the wind turbine is regarded as a long shaft, and the steel pipe pile is configured to be divided into several sections (ST 103). The stress check and the plate thickness are examined (ST104), and the supporting force check is performed (ST105). If the reference result is good, the design is over. If it is bad, re-examination of the penetration length of the pile is performed (ST106), the re-examined content is fed back to the frame analysis (ST103), the stress check and thickness are re-examined (ST104), and the supporting force is again An examination is performed (ST105). The feedback loop is repeated until the bearing check results are determined to be good.

ストレート鋼管杭2とテーパー付鋼管杭4について、以下の点が留意された。
(1) 杭の根入れ長
テーパー付鋼管杭の根入れ長はテーパー付鋼管杭の3/βではなく地盤面での杭諸元に基づくストレート鋼管杭の3/βにより決定された。
(2) 応力度照査
試設計のため応力度比に余裕を持たないこととした。
(3) 杭の板厚
杭の板厚は9mm以上とし、かつ杭径に応じて t/D≧1.0% 程度となる様にした。
(4) 杭の板厚変化
杭の板厚変化の応力集中の影響を考慮し7mm以下とした。
(5) 杭の最大板厚
板厚40mmを超えると許容応力度が低減されるためt≦40mmとした。
(6) 杭頭変位
杭頭部(地盤面)での変位は杭径の1%以下(杭径1500mm以下の場合は15mm)とした。
(7) 杭の板厚変化点
本試設計では任意の位置に杭の板厚変化点を設定した。
The following points were noted for the straight steel pipe pile 2 and the tapered steel pipe pile 4.
(1) Insertion length of pile The insertion length of a tapered steel pipe pile was determined not by 3 / β of a tapered steel pipe pile but by 3 / β of a straight steel pipe pile based on pile specifications on the ground surface.
(2) Stress degree check It was decided that there is no margin in the stress degree ratio for test design.
(3) Pile thickness of piles The thickness of piles is 9 mm or more, and t / D / 1.0% according to the diameter of pile.
(4) Thickness change of pile Considering the influence of stress concentration of thickness change of pile, it was set to 7 mm or less.
(5) Since the allowable stress is reduced when the maximum thickness of the pile exceeds 40 mm, t ≦ 40 mm.
(6) Pile head displacement The displacement at the pile head (ground surface) was 1% or less of the diameter of the pile (15 mm for a diameter of 1500 mm or less).
(7) Plate thickness change point of pile In this trial design, the plate thickness change point of pile was set at any position.

地中の杭の性能照査に関しては杭基礎設計便覧に従い照査を行なった。杭に作用する軸力および曲げモーメントにより杭に生じる応力度は次式により計算した。   Regarding the performance check of underground piles, the check was conducted according to the pile foundation design manual. The stress generated in the pile due to the axial force and bending moment acting on the pile was calculated by the following equation.

Figure 2019078032
Figure 2019078032

ここに、
σ:杭体に生じる曲げ応力度(N/mm2
N:杭の軸力(N)
A:杭の有効断面積(mm2
M:杭の曲げモーメント(N・mm)
Z:杭の有効断面係数(mm3
である。
here,
σ: Bending stress generated in pile (N / mm 2 )
N: Axial force of pile (N)
A: Effective cross-sectional area of pile (mm 2 )
M: Bending moment of pile (N · mm)
Z: Effective section coefficient of pile (mm 3 )
It is.

発生する応力度が表2に示す構造用鋼材の許容応力度以下であることを照査した。   It was checked that the degree of stress generated was equal to or less than the allowable stress of structural steels shown in Table 2.

Figure 2019078032
Figure 2019078032

以上の設計照査基準に基づき、図3に示したように地盤横方向バネをモデル化し杭先端をピン支持とし、弾性床上の梁とした2次元骨組みモデルにて検討を行なった。   Based on the above design verification criteria, as shown in FIG. 3, we modeled the lateral spring in the ground and used the pin end as the pile tip for pin support, and studied in a two-dimensional framework model with beams on an elastic floor.

上述の港湾基準に従い、横方向地盤反力係数kh(kN/m2)は線形バネとして、次式
kh = 1500N
により算出した。ここにNは、地盤の硬さを示す指標であるN値である。
According to the above-mentioned harbor standard, lateral ground reaction force coefficient k h (kN / m 2 ) is a linear spring,
k h = 1500N
Calculated by Here, N is an N value which is an index indicating the hardness of the ground.

ストレート鋼管杭とテーパー付鋼管杭の比較検討とするため地上部に突出した風車タワー部は設計例と同じ、直径4,000mm、厚さ40mm、材質SM400とした。   In order to make a comparative examination of a straight steel pipe pile and a tapered steel pipe pile, the wind turbine tower projecting to the ground part was the same as the design example in diameter 4,000 mm, thickness 40 mm, and material SM400.

(杭根入れ長の算定)
鋼管杭をどの程度地中に埋めるか、すなわち杭根入れ長は、港湾基準に従い、3/β以上とした。βは杭の特性値と呼ばれ、次式で求められる。
(Calculation of pile penetration length)
To what extent the steel pipe piles are to be buried in the ground, that is, the pile penetration length is 3 / β or more according to the harbor standard. β is called a characteristic value of a pile and is obtained by the following equation.

Figure 2019078032
Figure 2019078032

ここに、
kh;横方向地盤反力係数(kN/m3
D:杭の直径(m)
E:杭のヤング率(kN/m2
I:杭の断面二次モーメント(m4)
である。
here,
k h ; lateral ground reaction force coefficient (kN / m 3 )
D: Diameter of pile (m)
E: Young's modulus of pile (kN / m 2 )
I: Sectional second moment of pile (m 4 )
It is.

(引き抜き力)
地盤に打撃工法により打ち込まれた杭の引き抜き力は、砂地盤の場合は、次式で求められる。
(Pulling force)
In the case of sand, the pull-out force of a pile driven into the ground by a striking method is determined by the following equation.

Figure 2019078032
Figure 2019078032

粘性土地盤の場合は、   In the case of sticky land,

Figure 2019078032
Figure 2019078032

ここに、
Rut:杭の最大引き抜き力(kN)
here,
R ut : Maximum pulling out force of pile (kN)

Figure 2019078032
Figure 2019078032

As;杭周の全表面積(m2A s ; Total surface area of pile circumference (m 2 )

Figure 2019078032
Figure 2019078032

である。 It is.

図5は、照査する2つの鋼管杭、ストレート鋼管杭2(モデル名T41T)とテーパー付鋼管杭4(モデル名TB1-55T)の形状を対比させた図である。ストレート鋼管杭2(モデル名T41T)は、杭の直径 D = 3400(mm)一定とし、鋼管肉厚は、地上側から400(mm)までを t = 39(mm)、400(mm)より下の部分を t = 34(mm)とし、杭の全長を24(m)とした。テーパー付鋼管杭4(モデル名TB1-55T)は、ストレート鋼管杭2と同じく全長24(m)、地上側の杭の直径 D = 3400(mm)、鋼管肉厚 t = 39(mm)としている。地上から地中3(m)まではテーパーのついていない円筒形状であり、地中3(m)からは、テーパー角度θ= 3.0(度)で縮径している。更に、鋼管肉厚を地表から地下5(m)までをt = 39(mm)、地下5(m)から地下11(m)までをt= 36(mm)、地下11(m)から地下16(m)までをt=29(mm)、地下16(m)から地下24(m)までをt=22(mm)としている。ストレート鋼管杭2(モデル名T41T)とテーパー付鋼管杭4(モデル名TB1-55T)の形状の差異から、鋼管杭の表面積に比例する周面摩擦抵抗力は、ストレート鋼管杭2(モデル名T41T)に比べてテーパー付鋼管杭4(モデル名TB1-55T)は -39 %の減少となる。又、体積に比例する土中の杭自重は -33%減少する。したがって、ストレート鋼管杭2(モデル名T41T)に比べてテーパー付鋼管杭4(モデル名TB1-55T)は引き抜き易いことがわかる。   FIG. 5 is a diagram comparing the shapes of two steel pipe piles to be checked, straight steel pipe pile 2 (model name T41T) and tapered steel pipe pile 4 (model name TB1-55T). For straight steel pipe pile 2 (model name T41T), the diameter D of the pile is fixed to 3400 (mm), and the thickness of the steel pipe is below 400 g (t = 39 (mm) and 400 (mm) from the ground side) The part of the pile is t = 34 (mm), and the total length of the pile is 24 (m). The tapered steel pipe pile 4 (model name TB1-55T) has the same total length 24 (m) as the straight steel pipe pile 2, the diameter of the pile on the ground side D = 3400 (mm), and the steel pipe thickness t = 39 (mm) . From the ground to the ground 3 (m) is a non-tapered cylindrical shape, and from the ground 3 (m), the diameter is reduced at a taper angle θ = 3.0 (degrees). Furthermore, from the ground surface to the underground 5 (m), t = 39 (mm), from the underground 5 (m) to the underground 11 (m), t = 36 (mm), and the underground 11 (m) to the underground 16 The distance up to (m) is t = 29 (mm), and the distance from underground 16 (m) to underground 24 (m) is t = 22 (mm). From the difference in the shape of the straight steel pipe pile 2 (model name T41T) and the tapered steel pipe pile 4 (model name TB1-55T), the skin friction resistance proportional to the surface area of the steel pipe pile is the straight steel pipe pile 2 (model name T41T) Compared to the above, tapered steel pipe pile 4 (model name TB1-55T) has a decrease of -39%. Also, the weight of the pile in the soil, which is proportional to the volume, decreases by -33%. Therefore, it is understood that the tapered steel pipe pile 4 (model name TB1-55T) is easier to pull out than the straight steel pipe pile 2 (model name T41T).

図6と7は、ストレート鋼管杭2(モデル名T41T)とテーパー付鋼管杭4(モデル名TB1-55T)の各例についての応力度照査結果を示す図表である。ストレート鋼管杭2(モデル名T41T)の骨組解析による応力度照査結果を図6に示す。ここで、骨組の部材番号100は、地上60mにあるナセルの位置である。部材番号1、2、・・・、24,24は、地表面を部材番号1とし、1mごとに下がるストレート杭2の位置を示し、最初の部材番号24は地上から23(m)地下の位置であり、最後の部材番号24は、ストレート杭2の地中側の先端の位置を示している。テーパー付鋼管杭4(モデル名TB1-55T)の応力度照査結果を図7に示す。   FIGS. 6 and 7 are charts showing stress level check results for each of the straight steel pipe pile 2 (model name T41T) and the tapered steel pipe pile 4 (model name TB1-55T). The stress degree check result by frame analysis of straight steel pipe pile 2 (model name T41T) is shown in FIG. Here, the member number 100 of the frame is the position of the nacelle at 60 m above the ground. The member numbers 1, 2, ..., 24, 24 indicate the position of the straight pile 2 which descends every 1 m, with the ground surface as the member number 1, and the first member number 24 is the position of 23 (m) underground from the ground The last member number 24 indicates the position of the underground tip of the straight pile 2. The stress degree check result of the tapered steel pipe pile 4 (model name TB1-55T) is shown in FIG.

地中に設置された鋼管杭が地上構造物を支持するのに耐え得るかは応力度比により判断される。応力度比は、応力度比=発生応力度/許容応力度、で算出され1.0以下でなければならない。ストレート鋼管杭2(モデル名T41T)とテーパー付鋼管杭4(モデル名TB1-55T)の各部材での応力度比は、すべて1.0以下であり要求を満たしている。したがって、全長が24(m)のテーパー付鋼管杭が、地上側のストレート部の長さ3(m)で地中側のテーパー部の長さ21(m)の構成を有する場合でも支持可能であることが設計照査結果から得られた。   Whether the steel pipe pile installed in the ground can endure supporting the aboveground structure is judged by the stress ratio. The stress level ratio must be 1.0 or less, which is calculated by stress level ratio = generated stress level / permissible stress level. The stress ratio in each member of the straight steel pipe pile 2 (model name T41T) and the tapered steel pipe pile 4 (model name TB1-55T) is all 1.0 or less, which satisfies the requirement. Therefore, a tapered steel pipe pile with a total length of 24 (m) can be supported even if it has a configuration with a length 3 (m) of the straight portion on the ground side and a length 21 (m) of the tapered portion on the ground side Some were obtained from the design check results.

図8〜10は、鋼管杭の全長は24(m)、地上側開口部の直径は3400(mm)であることを共通として、鋼管杭のストレート部の長さやテーパー角度を変えたバリエーションを示す図である。図8は、鋼管肉厚40(mm)を共通としてストレート部がないテーパー付鋼管杭で、テーパー角度θ=1.0, 2.0, 2.5, 3.5(度)のバリエーションである。特に、テーパー角度θ=3.5(度)のテーパー付鋼管杭の地中側先端は閉塞してしまっている。鋼管杭の先端が閉塞していると、打ち込みのとき土砂が鋼管内を抜けることができず、鋼管杭は座屈する。したがって、鋼管杭の先端は0.28(m2)以上の開口面積を有していることが必要とされる。 8 to 10 show variations in which the length and taper angle of the straight portion of the steel pipe pile are changed, with the total length of the steel pipe pile being 24 (m) and the diameter of the ground side opening being 3400 (mm) in common. FIG. FIG. 8 shows a variation of taper angles θ = 1.0, 2.0, 2.5, and 3.5 (degrees) in a tapered steel pipe pile in which there is no straight portion with the steel pipe thickness 40 (mm) in common. In particular, the underground tip of the tapered steel pipe pile having a taper angle of θ = 3.5 (degrees) is blocked. If the tip of the steel pipe pile is closed, the sand can not pass through the steel pipe at the time of driving, and the steel pipe pile buckles. Therefore, the tip of the steel pipe pile is required to have an opening area of 0.28 (m 2 ) or more.

図9は、鋼管肉厚39(mm)、ストレート部10(m)を共通とするテーパー付鋼管杭で、テーパー角度θ=1.0, 2.0, 2.5, 3.5(度)のバリエーションである。ここにストレート部を10(m)としたのは、杭の特性値β(m-1)の逆数1/βに近いからである。テーパー付鋼管杭の算出される根入れ長さは3/β = 24(m)であり、24(m)の1/3に近ければ、十分な支持特性を得られると考えられる。 FIG. 9 is a tapered steel pipe pile in which the thickness of the steel pipe is 39 (mm) and the straight portion 10 (m) is common, with variations of taper angles θ = 1.0, 2.0, 2.5, 3.5 (degrees). The reason why the straight portion is set to 10 (m) is because it is close to the reciprocal 1 / β of the characteristic value β (m −1 ) of the pile. The calculated penetration length of the tapered steel pipe pile is 3 / β = 24 (m), and it is considered that sufficient supporting characteristics can be obtained if it is close to 1⁄3 of 24 (m).

図10は、鋼管肉厚39(mm)、ストレート部2〜3(m)であるテーパー付鋼管杭で、テーパー角度θ=1.0, 2.0, 2.5, 3.0, 3.5(度)のバリエーションである。ただし、モデル名TB1-55Tのテーパー杭はテーパー角度θ=3.0(度)で、鋼管肉厚を39, 36, 29, 22(mm)と4段階に変化させている。   FIG. 10 shows a variation of taper angles θ = 1.0, 2.0, 2.5, 3.0, 3.5 (degrees) in a tapered steel pipe pile having a steel pipe thickness of 39 (mm) and straight portions 2 to 3 (m). However, the tapered pile with model name TB1-55T changes the steel pipe thickness to 39, 36, 29, 22 (mm) in four stages at a taper angle θ = 3.0 (degree).

図11は、図8〜10に示した鋼管杭の周面摩擦力を示すグラフである。ここに、ストレートと示されるのは、テーパー部を有さない従来のストレート鋼管杭であり、スト10と示されるのはストレート部の長さが10(m)であるテーパー付鋼管杭、スト2,3と示されているのはストレート部の長さが2〜3(m)であるテーパー鋼管杭である。スト無はストレート部がないテーパー付鋼管杭である。鋼管杭の全長に対してテーパー部が長ければ長いほど周面摩擦力は減少することがわかる。又、テーバ―角度が大きくなるにつれ周面摩擦力は減少していることがわかる。なお、図8において説明したようにテーパー角度が大きくなりすぎると鋼管杭の先端が閉塞してしまうことに留意されたい。ストレート部が2〜3(m)のテーパー鋼管杭の周面摩擦力は y = 2039.5x + 16067の直線近似ができる。   FIG. 11 is a graph showing the circumferential surface frictional force of the steel pipe pile shown in FIGS. Here, what is indicated as straight is a conventional straight steel pipe pile having no tapered portion, and what is indicated as strike 10 is a tapered steel pipe pile whose straight portion has a length of 10 (m), strike 2 , 3 are tapered steel pipe piles having a straight portion length of 2 to 3 (m). The no strike is a tapered steel pipe pile without a straight part. It can be seen that the circumferential surface friction force decreases as the taper portion is longer than the total length of the steel pipe pile. Also, it can be seen that the surface friction force decreases as the taber angle increases. It should be noted that as described in FIG. 8, if the taper angle is too large, the tip of the steel pipe pile is blocked. The skin friction force of a tapered steel pipe pile with a straight part of 2 to 3 (m) can be linearly approximated as y = 2039.5x + 16067.

図12は、図8〜10に示した鋼管杭の応力度照査結果を示すグラフである。ストレート部がないテーパー鋼管杭(スト無)は、応力度比が1.0以上となり不適挌であることがわかる。テーパー角度が1.0〜3.4(度)、ストレート部が2〜3(m)(スト2,3)、10(m)(スト10)のテーパー杭は応力度比が1.0未満であり支持杭として適していることがわかる。   FIG. 12 is a graph showing the result of checking the degree of stress of the steel pipe pile shown in FIGS. It can be seen that the tapered steel pipe pile (without strike) having no straight part has a stress ratio of 1.0 or more and is unsuitable. A taper pile with a taper angle of 1.0 to 3.4 (degrees) and a straight part of 2 to 3 (m) (str 2, 3), 10 (m) (str 10) has a stress ratio of less than 1.0 and is suitable as a support pile Know that

よって、本発明に係るテーパー付鋼管杭4は、次の特徴を有する。
(1) ストレート部とテーパー部を有し、ストレート部の長さは、鋼管杭の全長の1/10〜1/3である。
(2) テーパー角度は1〜4(度)である。
(3) ストレート部の開口面積よりもテーパー部の先端の開口面積は小さく、少なくとも0.28(m2)である。
Therefore, the tapered steel pipe pile 4 according to the present invention has the following features.
(1) It has a straight part and a taper part, and the length of a straight part is 1/10-1/3 of the full length of a steel pipe pile.
(2) The taper angle is 1 to 4 (degrees).
(3) The opening area of the tip of the tapered portion is smaller than the opening area of the straight portion, and is at least 0.28 (m 2 ).

図13は、水上設備である風車が撤去された後、テーパー付鋼管杭4を引き抜く方法を説明する図である。従来は、地盤とストレート鋼管杭との周面摩擦力を弱めるため外挿管をバイブロハンマで打ち込み、大型起重機船等で鋼管杭を引き抜く2ステップが必要であった。本発明に係るテーパー付鋼管杭4はテーパー部を有することにより、周面摩擦力と自重が減少して、従来の鋼管杭より引き抜き易いため、外挿管の打ち込みが不要となり旋回型起重機船等を使用して1ステップで引きぬくことが可能である。又、水上風車の大型化に伴い鋼管杭の口径が4mを超えるような大口径のテーパー付鋼管杭を使用した場合でも既存設備を利用した引き抜き撤去作業が可能となる。   FIG. 13 is a view for explaining a method of pulling out the tapered steel pipe pile 4 after the wind turbine which is the water facility is removed. Conventionally, in order to weaken the circumferential surface friction force between the ground and the straight steel pipe pile, it is necessary to drive the outer intubation with a vibratory hammer, and to pull out the steel pipe pile with a large hoisting vessel etc. in two steps. Since the tapered steel pipe pile 4 according to the present invention has a tapered portion, the circumferential surface friction force and the self weight are reduced and it is easier to pull out than the conventional steel pipe pile, so that the driving of the outer tube is unnecessary and the turning type hoisting ship etc. It is possible to use it in one step. Further, with the enlargement of the water turbine, even when using a large diameter tapered steel pipe pile in which the diameter of the steel pipe pile exceeds 4 m, extraction and removal work using existing equipment becomes possible.

当業者は、本発明の精神及び範囲から外れることなく、様々な変更、置換、及び修正をこれに加えることが可能であることを理解されたい。   It is to be understood that one of ordinary skill in the art can add various changes, substitutions, and alterations thereto without departing from the spirit and scope of the present invention.

1 水上風力発電設備
2 鋼管杭
3 風力発電機
31 タワー
32 ナセル
33 ブレード
4 テーパー付鋼管杭
41 ストレート部
42 テーパー部
43 第1開口部
44 第2開口部
DESCRIPTION OF SYMBOLS 1 Water and wind power generation facility 2 Steel pipe pile 3 Wind power generator 31 Tower 32 Nacelle 33 Blade 4 Tapered steel pipe pile 41 Straight part 42 Tapered part 43 1st opening 44 2nd opening

Claims (5)

水上構造物を支持するために水底地盤に設置されるテーパー付鋼管杭であって、
一端に前記テーパー付鋼管杭の中心軸に直交する円形の第1開口部を形成する円筒形状を有するストレート部と、
前記ストレート部の他端に連接し且つ前記第1開口部の反対側に延伸し、前記中心軸方向に所定のテーパー角度で縮径し、先端に前記中心軸に直交する円形の第2開口部を形成するテーパー部と、
を有するテーパー付鋼管杭。
A tapered steel pipe pile installed on the bottom of the water to support floating structures,
A straight portion having a cylindrical shape that forms a circular first opening at one end orthogonal to the central axis of the tapered steel pipe pile;
A circular second opening which is connected to the other end of the straight portion and extends on the opposite side of the first opening, is reduced in diameter in the central axis direction by a predetermined taper angle, and which is perpendicular to the central axis at the tip Forming a tapered portion,
Tapered steel pipe piles with.
前記ストレート部の長さは前記テーパー付鋼管杭の長さの1/3〜1/10である請求項1に記載の鋼管杭。   The steel pipe pile according to claim 1, wherein the length of the straight portion is 1/3 to 1/10 of the length of the tapered steel pipe pile. 前記テーパー角度は1〜4(度)である、請求項1又は2に記載のテーパー付鋼管杭。   The tapered steel pipe pile according to claim 1, wherein the taper angle is 1 to 4 degrees. 前記第2開口部の開口面積は、前記第1開口部の開口面積より小さく、少なくとも0.28(m2)の面積を有する、請求項1〜3のいずれか一項に記載のテーパー付鋼管杭。 The tapered steel pipe pile according to any one of claims 1 to 3, wherein the opening area of the second opening is smaller than the opening area of the first opening and has an area of at least 0.28 (m 2 ). 水上構造物を支持するために水底地盤に設置されるテーパー付鋼管杭を引き抜くための方法であって、
前記テーパー付鋼管杭は、
一端に前記テーパー付鋼管杭の中心軸に直交する円形の第1開口部を形成する円筒形状を有するストレート部と、
前記ストレート部の他端に連接し且つ前記第1開口部の反対側に延伸し、前記中心軸方向に所定のテーパー角度で縮径し、先端に前記中心軸に直交する円形の第2開口部を形成するテーパー部と、
を有するテーパー付鋼管杭、であることを特徴とする方法。
A method for pulling out a tapered steel pipe pile installed on the underwater ground to support a floating structure,
The tapered steel pipe pile is
A straight portion having a cylindrical shape that forms a circular first opening at one end orthogonal to the central axis of the tapered steel pipe pile;
A circular second opening which is connected to the other end of the straight portion and extends on the opposite side of the first opening, is reduced in diameter in the central axis direction by a predetermined taper angle, and which is perpendicular to the central axis at the tip Forming a tapered portion,
A method characterized in that it is a tapered steel pipe pile, having.
JP2017204493A 2017-10-23 2017-10-23 Tapered steel pipe pile and its drawing method Active JP6797096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017204493A JP6797096B2 (en) 2017-10-23 2017-10-23 Tapered steel pipe pile and its drawing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017204493A JP6797096B2 (en) 2017-10-23 2017-10-23 Tapered steel pipe pile and its drawing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020116503A Division JP7002607B2 (en) 2020-07-06 2020-07-06 Tapered steel pipe pile and its extraction method

Publications (2)

Publication Number Publication Date
JP2019078032A true JP2019078032A (en) 2019-05-23
JP6797096B2 JP6797096B2 (en) 2020-12-09

Family

ID=66627491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017204493A Active JP6797096B2 (en) 2017-10-23 2017-10-23 Tapered steel pipe pile and its drawing method

Country Status (1)

Country Link
JP (1) JP6797096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179112A (en) * 2020-05-13 2021-11-18 鹿島建設株式会社 Foundation removal method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003465A (en) * 2001-06-20 2003-01-08 Norio Moriya Tapered foundation pile
JP2010059603A (en) * 2008-09-01 2010-03-18 Sumitomo Forestry Co Ltd Method for constructing tapered pile, and the tapered pile
JP2015507109A (en) * 2013-01-07 2015-03-05 広東保威新能源有限公司 Separate spiral pile and its welding method
JP2016199874A (en) * 2015-04-08 2016-12-01 鹿島建設株式会社 Removal method of pile foundation, pile foundation and installation method of pile foundation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003465A (en) * 2001-06-20 2003-01-08 Norio Moriya Tapered foundation pile
JP2010059603A (en) * 2008-09-01 2010-03-18 Sumitomo Forestry Co Ltd Method for constructing tapered pile, and the tapered pile
JP2015507109A (en) * 2013-01-07 2015-03-05 広東保威新能源有限公司 Separate spiral pile and its welding method
JP2016199874A (en) * 2015-04-08 2016-12-01 鹿島建設株式会社 Removal method of pile foundation, pile foundation and installation method of pile foundation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021179112A (en) * 2020-05-13 2021-11-18 鹿島建設株式会社 Foundation removal method
JP7311460B2 (en) 2020-05-13 2023-07-19 鹿島建設株式会社 How to remove the foundation

Also Published As

Publication number Publication date
JP6797096B2 (en) 2020-12-09

Similar Documents

Publication Publication Date Title
Dehghani et al. A review on defects in steel offshore structures and developed strengthening techniques
EP3105114B1 (en) Method of mooring floating wind turbine platforms
Ding et al. One-step-installation of offshore wind turbine on large-scale bucket-top-bearing bucket foundation
Benassai et al. Ultimate and accidental limit state design for mooring systems of floating offshore wind turbines
JP5745688B2 (en) Floating wind power generation facility with energy storage equipment
US9004819B2 (en) Installation method and recovery method for offshore wind turbine
US8689721B2 (en) Vertically installed spar and construction methods
JP2011157971A (en) Support structure for supporting offshore wind turbine
Henderson et al. Offshore wind turbines on TLPs-assessment of floating support structures for offshore wind farms in german waters
Leite Review of design procedures for monopile offshore wind structures
EP2495370A1 (en) In-line piling method for offshore wind turbine foundation applications
Zhang et al. A glance at offshore wind turbine foundation structures
Copple et al. Tension leg wind turbine (TLWT) conceptual design suitable for a wide range of water depths
JP6797096B2 (en) Tapered steel pipe pile and its drawing method
Schaumann et al. Support structures of wind energy converters
JP6139559B2 (en) Precast concrete structures supporting wind turbines
Malhotra Design and construction considerations for offshore wind turbine foundations
DK2796620T3 (en) MAKING foundation pile FOR OFFSHORE STRUCTURES AND foundation pile FOR OFFSHORE STRUCTURES
JP7002607B2 (en) Tapered steel pipe pile and its extraction method
GB2505192A (en) A pile sleeve connection for a monopole foundation
Casale et al. Preliminary design of a floating wind turbine support structure and relevant system cost assessment
Ryu et al. Comparison of two meteorological tower foundations for off-shore wind turbines
Sarhan et al. Offshore petroleum rigs/platforms: An overview of analysis, design, construction and installation
Ding et al. Construction and installation technique of large-scale top-bearing bucket foundation for offshore wind turbine
CN114348199A (en) Offshore wind power foundation platform capable of resisting wind wave influence

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200706

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200706

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200818

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201117

R150 Certificate of patent or registration of utility model

Ref document number: 6797096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350