JP2019077900A - Mn-W-Cu-O-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF - Google Patents

Mn-W-Cu-O-BASED SPUTTERING TARGET, AND MANUFACTURING METHOD THEREOF Download PDF

Info

Publication number
JP2019077900A
JP2019077900A JP2017203521A JP2017203521A JP2019077900A JP 2019077900 A JP2019077900 A JP 2019077900A JP 2017203521 A JP2017203521 A JP 2017203521A JP 2017203521 A JP2017203521 A JP 2017203521A JP 2019077900 A JP2019077900 A JP 2019077900A
Authority
JP
Japan
Prior art keywords
powder
sputtering target
target
sputtering
relative density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017203521A
Other languages
Japanese (ja)
Other versions
JP6377230B1 (en
Inventor
淳一 菅原
Junichi Sugawara
淳一 菅原
雄一 加守
Yuichi Kamamori
雄一 加守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2017203521A priority Critical patent/JP6377230B1/en
Priority to TW107116374A priority patent/TWI788351B/en
Priority to CN202311580412.2A priority patent/CN117867451A/en
Priority to CN201810547267.0A priority patent/CN109695020A/en
Application granted granted Critical
Publication of JP6377230B1 publication Critical patent/JP6377230B1/en
Publication of JP2019077900A publication Critical patent/JP2019077900A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

To provide a Mn-W-Cu-O-based sputtering target capable of suppressing abnormal discharge, and performing stable deposition; and to provide a manufacturing method thereof.SOLUTION: There is provided a Mn-W-Cu-O-based sputtering target containing Mn, W, Cu and O in a component composition, and not containing Zn in the component composition. In the sputtering target, a relative density is 90% or more, and a specific resistance is 9×10Ω-cm or less.SELECTED DRAWING: None

Description

本発明は、特に、光情報記録媒体の記録層の形成に有用な、Mn−W−Cu−O系スパッタリングターゲット及びその製造方法に関する。   The present invention particularly relates to a Mn-W-Cu-O-based sputtering target useful for forming a recording layer of an optical information recording medium, and a method of manufacturing the same.

近年、光情報記録媒体(光ディスク)の分野において、取り扱うデータの増大等に伴い、光ディスクの大容量化が求められている。光ディスクは、読み込み専用と記録型とに大別され、記録型はさらに追記型と書き換え型との2種類に細分される。追記型の記録層材料として、従来は有機色素材料が広く検討されてきたが、近年の大容量化に伴い、無機材料も広く検討されるようになっている。   In recent years, in the field of optical information recording media (optical disks), with the increase of data to be handled, etc., it is required to increase the capacity of optical disks. Optical disks are roughly divided into read-only and recordable types, and the recordable type is further subdivided into two types: write-once type and rewritable type. Conventionally, organic dye materials have been widely studied as a write-once recording layer material, but with recent increase in capacity, inorganic materials are also widely studied.

無機材料を用いた有用な記録方式として、分解温度の低い無機酸化物を含む記録層にレーザー光を照射することにより、記録層の物性が変化し、それに伴い光学定数が変化することを利用した記録方式がある。無機酸化物材料としては、パラジウム酸化物が実用化されているが、Pdは貴金属であり材料コストが高いため、パラジウム酸化物に代わり安価な材料コストで実現できる記録層の開発が望まれている。   As a useful recording method using an inorganic material, by irradiating a recording layer containing an inorganic oxide having a low decomposition temperature with laser light, the physical properties of the recording layer are changed, and the optical constant is changed accordingly. There is a recording method. As the inorganic oxide material, palladium oxide is put to practical use, but since Pd is a noble metal and the material cost is high, development of a recording layer that can be realized at an inexpensive material cost instead of palladium oxide is desired .

安価な材料コストで十分良好な記録特性が得られるものとして、マンガン酸化物系材料からなる記録層が開発されている。例えば、特許文献1では、Mn−W−Zn−Cu−O系記録層等のマンガン酸化物と複数種の無機元素を含む記録層、及びその記録層を形成するために用いるスパッタリングターゲットが開示されている。   Recording layers made of manganese oxide-based materials have been developed to provide sufficiently good recording characteristics at low material costs. For example, Patent Document 1 discloses a recording layer containing manganese oxide and a plurality of inorganic elements such as a Mn-W-Zn-Cu-O-based recording layer, and a sputtering target used to form the recording layer. ing.

国際公開第2013/183277号International Publication No. 2013/183277

前述のマンガン酸化物とW等の複数の無機元素とからなる記録層を形成するためのスパッタリング法として、それぞれの元素からなる複数のスパッタリングターゲットを用いる多元スパッタ法と、複数の元素を含有する1枚の複合スパッタリングターゲットを用いる方法とがある。特許文献1では、多元スパッタ法が開示されているが、装置が大型化しコストアップ要因になる上、組成ずれが生じやすい欠点がある。そのため、1枚の複合スパッタリングターゲットを用いたスパッタリングが好ましい。また、生産性の観点から、高周波スパッタリングよりも、直流(DC)スパッタリングを用いることが望ましい。   As a sputtering method for forming a recording layer composed of the above-mentioned manganese oxide and a plurality of inorganic elements such as W, a multi-source sputtering method using a plurality of sputtering targets composed of each element and a plurality of elements 1 There is a method of using a plurality of composite sputtering targets. Although the multi-source sputtering method is disclosed in Patent Document 1, the size of the apparatus is increased, which causes an increase in cost, and there is a defect that composition deviation easily occurs. Therefore, sputtering using one composite sputtering target is preferable. Further, from the viewpoint of productivity, it is desirable to use direct current (DC) sputtering rather than high frequency sputtering.

しかし、マンガン酸化物とW等の複数の無機元素とからなる複合スパッタリングターゲット中には、WMnO等の絶縁粒が含まれやすい。DCスパッタリングでは、複合スパッタリングターゲットに直流電圧をかけるため、複合スパッタリングターゲット中の絶縁粒の影響により十分な導電性が得られない場合、異常放電(アーキング)が発生するおそれがある。この成膜中の異常放電により、記録層にダメージが与えられ、歩留まり低下の原因となる。 However, in the composite sputtering target made of manganese oxide and a plurality of inorganic elements such as W, insulating particles such as WMnO 4 are easily included. In DC sputtering, since a direct current voltage is applied to the composite sputtering target, abnormal electric discharge (arching) may occur if sufficient conductivity can not be obtained due to the influence of insulating particles in the composite sputtering target. The abnormal discharge during the film formation damages the recording layer and causes a decrease in yield.

本発明は上記に鑑みてなされたものであり、DCスパッタリングであっても、異常放電が抑制され、かつ、安定した成膜を可能にするMn−W−Cu−O系スパッタリングターゲット及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above, and an Mn-W-Cu-O-based sputtering target which suppresses abnormal discharge and enables stable film formation even with DC sputtering, and a method of manufacturing the same Intended to provide.

上記目的を達成するため本発明は、Mnと、Wと、Cuと、Oと、を成分組成に含むMn−W−Cu−O系スパッタリングターゲットであって、相対密度が90%以上であり、かつ、比抵抗が9×10−4Ω・cm以下であるスパッタリングターゲットを提供する。 In order to achieve the above object, the present invention is a Mn-W-Cu-O-based sputtering target containing Mn, W, Cu, and O in the component composition, and the relative density is 90% or more. In addition, a sputtering target having a resistivity of 9 × 10 −4 Ω · cm or less is provided.

前記成分組成は、Mnと、Wと、Cuと、の合計100原子%に対して、Mnが4原子%〜40原子%であり、Wが10原子%〜70原子%であり、Cuが10原子%〜40原子%であってもよい。   The component composition is 4 at% to 40 at% of Mn, 10 at% to 70 at% of W, and 10 at Cu, with respect to a total of 100 at% of Mn, W, and Cu. It may be atomic% to 40 atomic%.

前記スパッタリングターゲットは、Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種以上の元素を、前記成分組成にさらに含んでもよい。   The sputtering target is selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb. The component composition may further include at least one or more elements.

前記Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素の合計の含有率は、Oを除いた構成元素の合計100原子%に対して、8原子%〜70原子%であってもよい。   At least one selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb The total content of the elements of the species may be 8 atomic% to 70 atomic% with respect to a total of 100 atomic% of the constituent elements excluding O.

前記スパッタリングターゲットは、相対密度が94%以上であってもよい。   The sputtering target may have a relative density of 94% or more.

また本発明は、前記Mn−W−Cu−O系スパッタリングターゲットの製造方法であって、マンガン含有粉末と、タングステン含有粉末と、銅含有粉末と、を含む混合粉末を、10時間以上湿式混合する混合工程と、前記混合工程の後、前記混合粉末を750℃超の温度で焼結する焼結工程と、を含む製造方法を提供する。   Moreover, this invention is a manufacturing method of said Mn-W-Cu-O type sputtering target, Comprising: The mixed powder containing a manganese containing powder, a tungsten containing powder, and a copper containing powder is wet-mixed for 10 hours or more A manufacturing method is provided that includes a mixing step, and a sintering step of sintering the mixed powder at a temperature above 750 ° C. after the mixing step.

前記マンガン含有粉末がマンガン酸化物粉末であり、前記タングステン含有粉末が金属タングステン粉末であり、前記銅含有粉末が金属銅粉末であってもよい。   The manganese-containing powder may be a manganese oxide powder, the tungsten-containing powder may be a metallic tungsten powder, and the copper-containing powder may be a metallic copper powder.

前記混合粉末は、Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素の単体又は化合物からなる粉末をさらに含んでもよい。   The mixed powder is selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb. It may further comprise a powder consisting of a single element or a compound of at least one element to be treated.

本発明によれば、DCスパッタリングであっても、異常放電が抑制され、かつ、安定した成膜を可能にするMn−W−Cu−O系スパッタリングターゲット及びその製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is DC sputtering, abnormal discharge can be suppressed and the Mn-W-Cu-O type sputtering target which enables stable film-forming, and its manufacturing method can be provided.

以下、本実施形態について詳しく説明する。   Hereinafter, the present embodiment will be described in detail.

[Mn−W−Cu−O系スパッタリングターゲット]
本実施形態に係るMn−W−Cu−O系スパッタリングターゲットは、Mnと、Wと、Cuと、Oと、を成分組成に含み、相対密度が90%以上であり、かつ、比抵抗が9×10−4Ω・cm以下である。以下、本実施形態に係るMn−W−Cu−O系スパッタリングターゲットを単に「ターゲット」と称する。
[Mn-W-Cu-O-based sputtering target]
The Mn-W-Cu-O-based sputtering target according to the present embodiment contains Mn, W, Cu, and O in the component composition, has a relative density of 90% or more, and has a specific resistance of 9 × 10 -4 Ω · cm or less. Hereinafter, the Mn-W-Cu-O-based sputtering target according to the present embodiment is simply referred to as a "target".

本実施形態に係るターゲットの成分比としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、Mnと、Wと、Cuと、の合計100原子%に対して、Mnが4原子%〜40原子%であり、Wが10原子%〜70原子%であり、Cuが10原子%〜40原子%であってもよい。   There is no restriction | limiting in particular as a component ratio of the target which concerns on this embodiment, According to the objective, it can select suitably. For example, Mn is 4 to 40 at%, W is 10 to 70 at%, and Cu is 10 at% to a total of 100 at% of Mn, W, and Cu. It may be 40 atomic%.

本実施形態に係るターゲットは、必要に応じて、その他の成分組成を含んでいてもよい。他の元素を適宜含有させることで、例えば、情報記録媒体の記録層形成のためにターゲットを用いる場合、記録層の透過率、反射率、及び記録感度を調整することができる。元素としては、例えば、Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素が挙げられる。   The target according to the present embodiment may contain other component compositions as necessary. When a target is used to form the recording layer of the information recording medium, for example, the transmittance, reflectance, and recording sensitivity of the recording layer can be adjusted by appropriately containing other elements. As an element, for example, Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and a group consisting of Tb There is at least one element selected.

上記Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素を含有する場合、その合計の含有率は、例えば、ターゲットの構成元素のうち、O(酸素)を除いた構成元素の合計100原子%に対して、8原子%〜70原子%とすることができる。   At least one selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb In the case of containing a kind of element, the total content rate thereof is, for example, 8 atomic% to 70 atomic% with respect to a total of 100 atomic% of constituent elements excluding O (oxygen) among constituent elements of the target. can do.

なお、Znを含有しない方が、Znを含有するターゲットに比べ容易にターゲットの相対密度を上げることができる。このため、ターゲットにZnが含まれないことが好ましい。   In addition, the direction which does not contain Zn can raise the relative density of a target easily compared with the target containing Zn. Therefore, it is preferable that the target does not contain Zn.

ターゲットの成分組成は、X線回折法により評価する。ターゲットのX線回折スペクトルの取得は、常法に従い行うことができる。例えば、株式会社リガク製のSmartLabを用いて、ターゲット表面をθ−2θスキャンして、スペクトルを取得すればよい。X線回折の測定条件はターゲットに応じて適宜定まり、例えば以下の条件の範囲内から選択することができる。
X線源:Cu−Kα線
出力設定:20kV〜100kV、10mA〜100mA
測角範囲:2θ=5°〜80°
スキャン速度:1°〜4°(2θ/min)、連続スキャン
発散スリット:0.5°〜2°
散乱スリット:0.5°〜2°
受光スリット:0.1mm〜0.5mm
The component composition of the target is evaluated by X-ray diffraction. Acquisition of the X-ray diffraction spectrum of a target can be performed according to a conventional method. For example, a spectrum may be acquired by scanning the target surface with θ-2θ using SmartLab manufactured by Rigaku Corporation. The measurement conditions of X-ray diffraction are appropriately determined depending on the target, and can be selected, for example, from the range of the following conditions.
X-ray source: Cu-Kα ray output setting: 20 kV to 100 kV, 10 mA to 100 mA
Angle range: 2θ = 5 ° -80 °
Scanning speed: 1 ° to 4 ° (2θ / min), continuous scan divergence slit: 0.5 ° to 2 °
Scattering slit: 0.5 ° to 2 °
Light receiving slit: 0.1 mm to 0.5 mm

ターゲットの成分組成の主な回折ピークは、以下の範囲で検出される。
Wの回折ピーク:40.26°±0.3°、58.27°±0.3°
MnWOの回折ピーク:29.8°±0.3°、30.23°±0.3°
MnOの回折ピーク:35.16°±0.3°、40.99°±0.3°、59.18°±0.3°
Cuの回折ピーク:43.47°±0.3°、50.67°±0.3°
The main diffraction peaks of the component composition of the target are detected in the following range.
D diffraction peak of W: 40.26 ° ± 0.3 °, 58.27 ° ± 0.3 °
Diffraction peaks of MnWO 4 : 29.8 ° ± 0.3 °, 30.23 ° ± 0.3 °
Diffraction peaks of MnO: 35.16 ° ± 0.3 °, 40.99 ° ± 0.3 °, 59.18 ° ± 0.3 °
Diffraction peak of Cu: 43.47 ° ± 0.3 °, 50.67 ° ± 0.3 °

本実施形態に係るターゲットが高密度であることを示す指標として、本明細書では相対密度を用いることとする。ターゲットの相対密度は、90%以上であり、好ましくは94%以上である。ターゲットの相対密度は高いほど好ましい。   In the present specification, relative density is used as an index indicating that the target according to the present embodiment has high density. The relative density of the target is 90% or more, preferably 94% or more. The higher the relative density of the target, the better.

なお、相対密度とは、ターゲットの原料粉が100%充填されたと仮定して計算した場合の仮想密度に対する、原料分を焼結した後の実測密度である。相対密度を計算するために、まず、ターゲットの寸法測定及び重量測定を行い、実測密度を算出する。次に、以下の計算式を用いて相対密度を算出する。
相対密度(%)=(焼結体の実測密度/仮想密度)×100
In addition, relative density is the actual density after sintering a raw material part with respect to the virtual density at the time of assuming that the raw material powder | flour of a target was 100% filled. In order to calculate the relative density, first, dimension measurement and weight measurement of the target are performed to calculate an actual measurement density. Next, the relative density is calculated using the following formula.
Relative density (%) = (measured density of sintered body / virtual density) × 100

また、本実施形態に係るターゲットが低抵抗であることを示す指標として、本明細書では比抵抗を用いることとする。ターゲットの比抵抗は、9×10−4Ω・cm以下であり、好ましくは8×10−4Ω・cm以下であり、より好ましくは6×10−4Ω・cmである。ターゲットの比抵抗は低いほど好ましい。 Further, in the present specification, specific resistance is used as an index indicating that the target according to the present embodiment has low resistance. The specific resistance of the target is 9 × 10 −4 Ω · cm or less, preferably 8 × 10 −4 Ω · cm or less, and more preferably 6 × 10 −4 Ω · cm. The lower the specific resistance of the target, the better.

ターゲットの比抵抗は、抵抗率計を用い測定することができる。例えば、抵抗率計(株式会社三菱化学アナリテック製のMCP−T610)を用い測定する。   The resistivity of the target can be measured using a resistivity meter. For example, it measures using a resistivity meter (MCP-T610 made from Mitsubishi Chemical Analytech Co., Ltd.).

なお、本実施形態に係るターゲットの形状は何ら限定されることはなく、円盤状、円筒状、四角形板状、長方形板状、正方形板状等の任意の形状とすることができ、ターゲットの用途に応じて適宜選択することができる。また、ターゲットの幅及び奥行きの大きさ(円形の場合には直径)についても、mmオーダー〜mオーダー程度の範囲で、ターゲットの用途に応じて適宜選択することができる。例えば、ターゲットが円形の場合、一般的には直径50mm〜300mm程度である。厚みについても同様であるが、一般的には1mm〜20mm程度である。   In addition, the shape of the target which concerns on this embodiment is not limited at all, It can be set as arbitrary shapes, such as disk shape, cylindrical shape, square plate shape, rectangular plate shape, square plate shape, and the use of a target It can be selected as appropriate. Further, the size (diameter in the case of a circle) of the width and depth of the target can be appropriately selected in the range of about mm order to m order according to the application of the target. For example, when the target is circular, the diameter is generally about 50 mm to 300 mm. The same applies to the thickness, but generally it is about 1 mm to 20 mm.

本実施形態に係るターゲットが、前述の相対密度と、比抵抗との両方の条件を満足することで、DCスパッタリングに供した際に、異常放電の発生を抑制することができるターゲットとなることが、本発明者によって確認された。さらに、いずれか一方の条件を満足するだけでは、異常放電の発生を十分に抑制することはできないことも確認された。また、ターゲットは、特に、光情報記録媒体の記録層の形成に有用であるが、用途は何ら限定されるものではない。   When the target according to the present embodiment satisfies both the relative density and the specific resistance described above, it becomes a target capable of suppressing the occurrence of abnormal discharge when subjected to DC sputtering. , Confirmed by the present inventor. Furthermore, it was also confirmed that the occurrence of the abnormal discharge can not be sufficiently suppressed only by satisfying one of the conditions. The target is particularly useful for forming the recording layer of the optical information recording medium, but the application is not limited at all.

[Mn−W−Cu−O系スパッタリングターゲットの製造方法]
次に、本実施形態に係るターゲットの製造方法を説明する。本実施形態に係る製造方法は、混合工程と、焼結工程と、を含む。
[Method of Manufacturing Mn-W-Cu-O-Based Sputtering Target]
Next, a method of manufacturing a target according to the present embodiment will be described. The manufacturing method according to the present embodiment includes a mixing step and a sintering step.

まず、混合工程にて、マンガン含有粉末と、タングステン含有粉末と、銅含有粉末と、を含む混合粉末を、10時間以上湿式混合する。   First, in the mixing step, the mixed powder containing the manganese-containing powder, the tungsten-containing powder, and the copper-containing powder is wet-mixed for 10 hours or more.

マンガン含有粉末としては、目的に応じて適宜選択することができ、Mnの単体又は化合物からなる粉末等が挙げられる。中でも、マンガン酸化物が好ましい。マンガン酸化物としては、例えば、Mn、Mn、MnO、MnO、MnO、Mn等を用いることができる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。上記マンガン酸化物の中でも、焼結温度と融点との関係よりMnが好ましい。
マンガン含有粉末の平均粒径としては、特に限定されず、例えば、3μm〜7μm程度とすることができる。
As a manganese containing powder, it can select suitably according to the object, and the powder etc. which consist of a single substance or compound of Mn are mentioned. Among them, manganese oxide is preferable. The manganese oxide, for example, can be used Mn 3 O 4, Mn 2 O 3, MnO, MnO 2, MnO 3, Mn 2 O 7 and the like. These may be used alone or in combination of two or more. Among the above-mentioned manganese oxides, Mn 3 O 4 is preferable from the relationship between the sintering temperature and the melting point.
The average particle size of the manganese-containing powder is not particularly limited, and can be, for example, about 3 μm to 7 μm.

タングステン含有粉末としては、目的に応じて適宜選択することができ、例えば、Wの単体からなる金属タングステン粉末等が挙げられる。
タングステン含有粉末の平均粒径としては、特に限定されず、例えば、2μm〜5μm程度とすることができる。
The tungsten-containing powder can be appropriately selected according to the purpose, and examples thereof include metallic tungsten powder and the like consisting of a single substance of W.
The average particle diameter of the tungsten-containing powder is not particularly limited, and can be, for example, about 2 μm to 5 μm.

銅含有粉末としては、目的に応じて適宜選択することができ、例えば、Cuの単体からなる金属銅粉末等が挙げられる。
銅含有粉末の平均粒径としては、特に限定されず、例えば、1μm〜4μm程度とすることができる。
As a copper containing powder, it can select suitably according to the object, for example, the metallic copper powder etc. which consist of a simple substance of Cu are mentioned.
It does not specifically limit as an average particle diameter of copper containing powder, For example, it can be about 1 micrometer-4 micrometers.

また、製造するスパッタリングターゲットの所望の目的に応じて、上記マンガン含有粉末、タングステン含有粉末、及び銅含有粉末以外のその他の粉末を、混合粉末に含ませてもよい。その他の粉末としては、例えば、Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素の単体又は化合物からなる粉末が挙げられる。   In addition, depending on the desired purpose of the sputtering target to be produced, the above-mentioned manganese-containing powder, tungsten-containing powder and other powders other than copper-containing powder may be contained in the mixed powder. Other powders include, for example, Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb. The powder which consists of a single substance or a compound of at least 1 sort (s) of element selected from a group is mentioned.

湿式混合の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、従来公知のボールミル装置を用いた湿式混合方法等が挙げられる。   There is no restriction | limiting in particular as a method of wet mixing, According to the objective, it can select suitably, For example, the wet mixing method etc. which used the conventionally well-known ball mill apparatus etc. are mentioned.

湿式混合時間は、10時間以上とする。混合時間を10時間以上とすることにより、十分に混合粉末を混合することができる。特に、マンガン含有粉末としてマンガン酸化物を用いる場合、焼結中のマンガン酸化物の固相反応を促進して、焼結後の酸化マンガンの結晶相の残留を抑制することに繋がる。混合時間は、12時間以上とすることが好ましく、16時間以上とすることがより好ましく、20時間以上とすることがさらに好ましい。24時間混合すると、混合の効果は飽和する。   The wet mixing time is 10 hours or more. The mixed powder can be sufficiently mixed by setting the mixing time to 10 hours or more. In particular, when using a manganese oxide as the manganese-containing powder, it leads to promoting the solid phase reaction of the manganese oxide during sintering to suppress the remaining of the crystalline phase of manganese oxide after sintering. The mixing time is preferably 12 hours or more, more preferably 16 hours or more, and still more preferably 20 hours or more. After mixing for 24 hours, the mixing effect is saturated.

次に焼結工程にて、混合粉末を750℃超の温度で焼結する。
焼結法としては、特に制限なく、目的に応じて適宜選択することができ、例えば、不活性ガス雰囲気中でのホットプレス、熱間等方圧加圧法(HIP法;Hot Isostatic Pressing)等が挙げられる。
Next, the mixed powder is sintered at a temperature of more than 750 ° C. in a sintering step.
The sintering method is not particularly limited and can be appropriately selected according to the purpose. For example, hot pressing in an inert gas atmosphere, hot isostatic pressing (HIP method), etc. It can be mentioned.

混合粉末を750℃超の温度で焼結することにより、焼結後の酸化マンガン等の絶縁体の結晶相の残留を抑制することができる。焼結温度は、たとえば、800℃以上であってもよく、850℃以上であってもよく、900℃以上であってもよい。   By sintering the mixed powder at a temperature higher than 750 ° C., it is possible to suppress the remaining of the crystal phase of the insulator such as manganese oxide after sintering. The sintering temperature may be, for example, 800 ° C. or more, 850 ° C. or more, or 900 ° C. or more.

焼結時間は特に限定されず、適宜選択することが可能であり、一般的に行われる1時間〜6時間程度の焼結時間とすればよい。   The sintering time is not particularly limited and can be appropriately selected, and may be generally set to a sintering time of about 1 hour to 6 hours.

また、焼結時に加える圧力についても、特に限定されず、適宜調整することができるが、200kgf/cm程度が好ましい。なお、1kgf/cmは、98.1kPaに相当する。 Further, the pressure to be applied at the time of sintering is not particularly limited and can be appropriately adjusted, but about 200 kgf / cm 2 is preferable. Note that 1 kgf / cm 2 corresponds to 98.1 kPa.

以上の工程を経て相対密度が90%以上、かつ、比抵抗が9×10−4Ω・cm以下のMn−W−Cu−O系スパッタリングターゲットを製造することができる。 Through the above steps, a Mn-W-Cu-O-based sputtering target having a relative density of 90% or more and a specific resistance of 9 × 10 −4 Ω · cm or less can be manufactured.

なお、本実施形態に係る製造方法は、上記混合工程及び焼結工程以外にも、他の工程を含んでもよい。他の工程としては、例えば、スパッタリングターゲットの形状を形成するために行われる、混合粉末の成形工程が挙げられる。   In addition, the manufacturing method which concerns on this embodiment may also contain another process other than the said mixing process and a sintering process. Other processes include, for example, a process of forming a mixed powder, which is performed to form the shape of a sputtering target.

次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。   Next, examples of the present invention will be described, but the present invention is not limited to these examples.

[スパッタリングターゲットの製造]
<実施例1>
実施例1では、原料粉末として、以下の粉末を用意した。
Mn粉末(純度:99.9%以上、平均粒径:5μm)
W粉末(純度:99.9%以上、平均粒径:2μm)
Cu粉末(純度:99.9%以上、平均粒径:1.5μm)
各含有金属の割合が、Mn:W:Cu=30:40:30(原子%)となるように、上記原料粉末を秤量した。秤量した各原料粉末、各原料粉末の合計重量の3倍のジルコニアボール(直径5mm)、及びアルコールを容器に入れ、ボールミル装置にて、湿式混合を12時間行った。混合粉末を乾燥後、目開き500μmの篩にかけた。次いで、上記混合粉末に対し、焼結温度900℃にて2時間、200kgf/cmの圧力を加え、不活性ガス雰囲気中でホットプレスを行い、スパッタリングターゲットを製造した。スパッタリングターゲットの形状は円盤状であり、サイズは直径50mmである。
[Production of sputtering target]
Example 1
In Example 1, the following powders were prepared as raw material powders.
Mn 3 O 4 powder (Purity: 99.9% or more, average particle size: 5 μm)
W powder (Purity: 99.9% or more, average particle size: 2 μm)
Cu powder (Purity: 99.9% or more, average particle size: 1.5 μm)
The raw material powder was weighed such that the ratio of each contained metal was Mn: W: Cu = 30: 40: 30 (atomic%). The raw material powders weighed, zirconia balls (diameter 5 mm) three times the total weight of the raw material powders, and alcohol were placed in a container, and wet mixing was performed for 12 hours in a ball mill. After drying the mixed powder, it was passed through a 500 μm sieve. Then, a pressure of 200 kgf / cm 2 was applied to the mixed powder at a sintering temperature of 900 ° C. for 2 hours, and hot pressing was performed in an inert gas atmosphere to produce a sputtering target. The shape of the sputtering target is a disk and the size is 50 mm in diameter.

<実施例2>
実施例2では、湿式混合時間を24時間とし、焼結温度を920℃とした以外は、実施例1と同様の方法でスパッタリングターゲットを作製した。
Example 2
In Example 2, a sputtering target was produced in the same manner as in Example 1 except that the wet mixing time was 24 hours and the sintering temperature was 920 ° C.

<比較例1>
比較例1では、湿式混合時間を2時間とした以外は、実施例1と同様の方法でスパッタリングターゲットを作製した。
Comparative Example 1
In Comparative Example 1, a sputtering target was produced in the same manner as in Example 1 except that the wet mixing time was 2 hours.

<比較例2>
比較例2では、焼結温度を750℃とした以外は、実施例1と同様の方法でスパッタリングターゲットを作製した。
Comparative Example 2
In the comparative example 2, the sputtering target was produced by the method similar to Example 1 except sintering temperature having been 750 degreeC.

<比較例3>
比較例3では、湿式混合時間を2時間とし、焼結温度を750℃とした以外は、実施例1と同様の方法でスパッタリングターゲットを作製した。
Comparative Example 3
In Comparative Example 3, a sputtering target was produced in the same manner as Example 1, except that the wet mixing time was 2 hours, and the sintering temperature was 750 ° C.

[評価]
上記の実施例1及び2並びに比較例1、2及び3で作製したスパッタリングターゲットについて、相対密度測定、比抵抗測定、異常放電回数の測定、及び結晶相の成分評価を行った。各評価は、以下のように行った。得られた評価結果を表1に示した。
[Evaluation]
The relative density measurement, the specific resistance measurement, the measurement of the number of abnormal discharges, and the component evaluation of the crystal phase were performed on the sputtering targets manufactured in the above-described Examples 1 and 2 and Comparative Examples 1, 2 and 3. Each evaluation was performed as follows. The obtained evaluation results are shown in Table 1.

<相対密度>
上記の実施例1及び2並びに比較例1、2及び3で作製したスパッタリングターゲットの相対密度を計算するため、スパッタリングターゲットの寸法測定及び重量測定を行い、実測密度を算出した。次に、以下の計算式を用いて相対密度を算出した。
相対密度(%)=(焼結体の実測密度/焼結体の仮想密度)×100
<Relative density>
In order to calculate the relative density of the sputtering target produced in the above-mentioned Examples 1 and 2 and Comparative Examples 1, 2 and 3, the dimensional measurement and weight measurement of the sputtering target were performed, and the actual measurement density was calculated. Next, the relative density was calculated using the following formula.
Relative density (%) = (measured density of sintered body / virtual density of sintered body) × 100

<比抵抗>
上記の実施例1及び2並びに比較例1、2及び3で作製したスパッタリングターゲットの比抵抗を、抵抗率計(株式会社三菱化学アナリテック製のMCP−T610)を用い測定した。
<Resistance>
The specific resistances of the sputtering targets produced in the above Examples 1 and 2 and Comparative Examples 1, 2 and 3 were measured using a resistivity meter (MCP-T610 manufactured by Mitsubishi Chemical Analytech Co., Ltd.).

<異常放電回数の測定>
上記の実施例1及び2並びに比較例1、2及び3で作製したスパッタリングターゲットを、無酸素銅製のバッキングプレートにInはんだで接着した。これらスパッタリングターゲットをスパッタリング装置に取り付け、1×10−4Pa以下まで真空排気を行った後、ArガスとOガスとを導入し、装置内圧力を0.3Paとした。酸素の割合(O/Ar+O)は70%とした。DC電源にて電力5W/cmを印加して、30分間スパッタリングを行い、アーキングカウンターによりスパッタリング中の異常放電の回数を測定した。
<Measurement of abnormal discharge frequency>
The sputtering targets produced in the above-mentioned Examples 1 and 2 and Comparative Examples 1, 2 and 3 were bonded to a backing plate made of oxygen-free copper by In solder. The sputtering target was attached to a sputtering apparatus, vacuum evacuation was performed to 1 × 10 −4 Pa or less, Ar gas and O 2 gas were introduced, and the pressure in the apparatus was set to 0.3 Pa. The proportion of oxygen (O 2 / Ar + O 2 ) was 70%. Sputtering was performed for 30 minutes by applying a power of 5 W / cm 2 from a DC power supply, and the number of abnormal discharges during sputtering was measured by an arcing counter.

Figure 2019077900
Figure 2019077900

以上の結果から、相対密度及び比抵抗の両方の条件を満足する実施例1及び2に係るMn−W−Cu−O系スパッタリングターゲットは、異常放電回数が抑制されることが確認された。相対密度及び比抵抗のいずれか一方の条件を満足する比較例1及び2の場合、いずれも満たさない比較例3と比較すると異常放電回数が減少したが、実用化が可能な程度まで抑制できたとは言えない。また、相対密度及び比抵抗は、スパッタリングターゲットの作製条件である混合時間及び焼結温度に影響を受けていることが確認された。   From the above results, it was confirmed that the Mn-W-Cu-O-based sputtering targets according to Examples 1 and 2 satisfying both the relative density and the specific resistance conditions have the number of abnormal discharges suppressed. In the case of Comparative Examples 1 and 2 satisfying either one of the relative density and the specific resistance, the number of abnormal discharges was reduced compared to Comparative Example 3 not satisfying either, but it was suppressed to the extent that practical use was possible. I can not say. Further, it was confirmed that the relative density and the specific resistance are influenced by the mixing time and the sintering temperature which are the preparation conditions of the sputtering target.

上記目的を達成するため本発明は、Mnと、Wと、Cuと、Oと、を成分組成に含み、かつ、Znを成分組成に含まないMn−W−Cu−O系スパッタリングターゲットであって、相対密度が90%以上であり、かつ、比抵抗が9×10−4Ω・cm以下であるスパッタリングターゲットを提供する。 The present invention for achieving the above object, the Mn, and W, and Cu, seen containing a O, and the chemical composition, and there in Mn-W-Cu-O based sputtering target containing no Zn in the chemical composition The sputtering target has a relative density of 90% or more and a resistivity of 9 × 10 −4 Ω · cm or less.

Claims (8)

Mnと、Wと、Cuと、Oと、を成分組成に含むMn−W−Cu−O系スパッタリングターゲットであって、
相対密度が90%以上であり、かつ、比抵抗が9×10−4Ω・cm以下であるスパッタリングターゲット。
An Mn—W—Cu—O-based sputtering target containing Mn, W, Cu, and O in the component composition,
A sputtering target having a relative density of 90% or more and a resistivity of 9 × 10 −4 Ω · cm or less.
Mnと、Wと、Cuと、の合計100原子%に対して、Mnが4原子%〜40原子%であり、Wが10原子%〜70原子%であり、Cuが10原子%〜40原子%である請求項1に記載のスパッタリングターゲット。   Mn is 4 at% to 40 at%, W is 10 at% to 70 at%, and Cu is at 10 at% to 40 with respect to a total of 100 at% of Mn, W, and Cu. The sputtering target according to claim 1, which is%. Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種以上の元素を、前記成分組成にさらに含む請求項1又は2に記載のスパッタリングターゲット。   At least one selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb The sputtering target of Claim 1 or 2 which further contains the above element in the said component composition. 前記Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素の合計の含有率が、Oを除いた構成元素の合計100原子%に対して、8原子%〜70原子%である請求項3に記載のスパッタリングターゲット。   At least one selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Ge, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb The sputtering target according to claim 3, wherein the total content of the elements of the species is 8 atomic% to 70 atomic% with respect to a total of 100 atomic% of the constituent elements excluding O. 相対密度が、94%以上である請求項1から4いずれかに記載のスパッタリングターゲット。   The sputtering target according to any one of claims 1 to 4, wherein the relative density is 94% or more. 請求項1から5いずれかに記載のMn−W−Cu−O系スパッタリングターゲットの製造方法であって、
マンガン含有粉末と、タングステン含有粉末と、銅含有粉末と、を含む混合粉末を、10時間以上湿式混合する混合工程と、
前記混合工程の後、前記混合粉末を750℃超の温度で焼結する焼結工程と、を含む製造方法。
It is a manufacturing method of the Mn-W-Cu-O type sputtering target according to any one of claims 1 to 5,
A mixing step of wet mixing the mixed powder containing the manganese-containing powder, the tungsten-containing powder and the copper-containing powder for 10 hours or more;
And sintering the mixed powder at a temperature of more than 750 ° C. after the mixing step.
前記マンガン含有粉末がマンガン酸化物粉末であり、前記タングステン含有粉末が金属タングステン粉末であり、前記銅含有粉末が金属銅粉末である請求項6に記載の製造方法。   The method according to claim 6, wherein the manganese-containing powder is a manganese oxide powder, the tungsten-containing powder is a metallic tungsten powder, and the copper-containing powder is a metallic copper powder. 前記混合粉末が、Mo、Nb、Mg、Ag、Ru、Ni、Zr、Sn、Bi、Ge、Co、Al、Pd、Ga、Te、V、Si、Ta、Cr、及びTbからなる群より選択される少なくとも1種の元素の単体又は化合物からなる粉末をさらに含む請求項6又は7に記載の製造方法。   The mixed powder is selected from the group consisting of Mo, Nb, Mg, Ag, Ru, Ni, Zr, Sn, Bi, Co, Al, Pd, Ga, Te, V, Si, Ta, Cr, and Tb. The method according to claim 6 or 7, further comprising a powder consisting of a single element or a compound of at least one element to be treated.
JP2017203521A 2017-10-20 2017-10-20 Mn-W-Cu-O-based sputtering target and method for producing the same Active JP6377230B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017203521A JP6377230B1 (en) 2017-10-20 2017-10-20 Mn-W-Cu-O-based sputtering target and method for producing the same
TW107116374A TWI788351B (en) 2017-10-20 2018-05-15 Mn-W-Cu-O-BASED SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME
CN202311580412.2A CN117867451A (en) 2017-10-20 2018-05-31 Mn-W-Cu-O sputtering target and preparation method thereof
CN201810547267.0A CN109695020A (en) 2017-10-20 2018-05-31 Mn-W-Cu-O base sputtering target and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017203521A JP6377230B1 (en) 2017-10-20 2017-10-20 Mn-W-Cu-O-based sputtering target and method for producing the same

Publications (2)

Publication Number Publication Date
JP6377230B1 JP6377230B1 (en) 2018-08-22
JP2019077900A true JP2019077900A (en) 2019-05-23

Family

ID=63249989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017203521A Active JP6377230B1 (en) 2017-10-20 2017-10-20 Mn-W-Cu-O-based sputtering target and method for producing the same

Country Status (3)

Country Link
JP (1) JP6377230B1 (en)
CN (2) CN109695020A (en)
TW (1) TWI788351B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061543B2 (en) * 2018-09-19 2022-04-28 デクセリアルズ株式会社 Mn-Nb-W-Cu-O-based sputtering target and its manufacturing method
JP7096113B2 (en) * 2018-09-19 2022-07-05 デクセリアルズ株式会社 Mn-Ta-W-Cu-O-based sputtering target and its manufacturing method
JP7162647B2 (en) * 2020-09-15 2022-10-28 Jx金属株式会社 Cu-W-O sputtering target and oxide thin film

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328801A (en) * 1991-04-30 1992-11-17 Taiyo Yuden Co Ltd Composition for thermistor
JP2017088932A (en) * 2015-11-05 2017-05-25 デクセリアルズ株式会社 Mn-Zn-O-BASED SPUTTERING TARGET, AND PRODUCTION METHOD THEREOF
WO2017159561A1 (en) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 Information recording medium, and method for producing information recording medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208395A (en) * 1978-12-05 1980-06-17 Continental Oil Company Removal of sulfur dioxide from flue gas
TWI521505B (en) * 2012-06-04 2016-02-11 Sony Corp Information media

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04328801A (en) * 1991-04-30 1992-11-17 Taiyo Yuden Co Ltd Composition for thermistor
JP2017088932A (en) * 2015-11-05 2017-05-25 デクセリアルズ株式会社 Mn-Zn-O-BASED SPUTTERING TARGET, AND PRODUCTION METHOD THEREOF
WO2017159561A1 (en) * 2016-03-14 2017-09-21 パナソニックIpマネジメント株式会社 Information recording medium, and method for producing information recording medium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATUREAU PASCALINE, ET AL.: "Incorporation of Jahn-Teller Cu2+ Ions into Magnetoelectric Multiferroic MnWO4:Structural, Magnetic,", INORGANIC CHEMISTRY, vol. 2015,54, JPN6018025833, 2015, pages 10623 - 10631, ISSN: 0003832580 *

Also Published As

Publication number Publication date
TW201917229A (en) 2019-05-01
JP6377230B1 (en) 2018-08-22
CN109695020A (en) 2019-04-30
CN117867451A (en) 2024-04-12
TWI788351B (en) 2023-01-01

Similar Documents

Publication Publication Date Title
TWI745315B (en) Mn-Zn-O series sputtering target material and manufacturing method thereof
JP6560497B2 (en) Mn—Zn—W—O-based sputtering target and method for producing the same
TWI788351B (en) Mn-W-Cu-O-BASED SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME
TWI807097B (en) Mn-Nb-W-Cu-O-BASED SPUTTERING TARGET AND METHOD FOR MANUFACTURING THE SAME
CN112639159B (en) Mn-Ta-W-Cu-O sputtering target and method for producing same
JP6377231B1 (en) Mn—Zn—W—O-based sputtering target and method for producing the same
KR101583124B1 (en) Sintered compact of conductive oxide and method for manufacturing the same
CN117587366A (en) Mn-Zn-O sputtering target and preparation method thereof
JP6027699B1 (en) Mn—Zn—W—O-based sputtering target and method for producing the same
JP6450229B2 (en) Mn—Zn—Mo—O-based sputtering target and method for producing the same
JP7141276B2 (en) sputtering target
JP5847308B2 (en) Zinc oxide-based sintered body, zinc oxide-based sputtering target comprising the sintered body, and zinc oxide-based thin film obtained by sputtering the target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180710

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180724

R150 Certificate of patent or registration of utility model

Ref document number: 6377230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250