JP2019076358A - Image pickup module, endoscope, and method of manufacturing image pickup module - Google Patents

Image pickup module, endoscope, and method of manufacturing image pickup module Download PDF

Info

Publication number
JP2019076358A
JP2019076358A JP2017205020A JP2017205020A JP2019076358A JP 2019076358 A JP2019076358 A JP 2019076358A JP 2017205020 A JP2017205020 A JP 2017205020A JP 2017205020 A JP2017205020 A JP 2017205020A JP 2019076358 A JP2019076358 A JP 2019076358A
Authority
JP
Japan
Prior art keywords
main surface
light receiving
thermal expansion
adhesive
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017205020A
Other languages
Japanese (ja)
Inventor
純平 米山
Junpei Yoneyama
純平 米山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2017205020A priority Critical patent/JP2019076358A/en
Publication of JP2019076358A publication Critical patent/JP2019076358A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an image pickup module with high reliability.SOLUTION: An image pickup module 1 comprises: an image pickup element 10 having a light-receiving surface and a rear surface; a cover glass 20 of which second main surface is bonded to the light-receiving surface; a dummy plate 30 of which third surface is bonded to the rear surface; a thermosetting first adhesive 40 for bonding the image pickup element 10 and the cover glass 20; and a thermosetting second adhesive 50 for bonding the image pickup element 10 and the dummy plate 30. The thermal expansion coefficient of the cover glass 20 is less than 50% or more than 200% of the thermal expansion coefficient of the image pickup element 10. The thermal expansion coefficient of the dummy plate 30 is approximately the same as the thermal expansion coefficient of the cover glass 20. The warpage of a first main surface is less than 0.5 μm/mm.SELECTED DRAWING: Figure 2

Description

本発明は、撮像素子の受光面に透明板が熱硬化型接着剤を介して接着されている撮像モジュール、前記撮像モジュールを有する内視鏡、および、撮像素子の受光面に透明板を、熱硬化型接着剤を介して接着する撮像モジュールの製造方法に関する。   The present invention provides an imaging module in which a transparent plate is adhered to the light receiving surface of the imaging device through a thermosetting adhesive, an endoscope having the imaging module, and a transparent plate on the light receiving surface of the imaging device. The present invention relates to a method of manufacturing an imaging module bonded via a curable adhesive.

撮像素子の受光面には、受光部の保護のためにカバーガラスが接着剤を介して接着される。信頼性向上のためには、接着剤として熱硬化型樹脂を用いることが好ましい。   A cover glass is adhered to the light receiving surface of the imaging device via an adhesive for protection of the light receiving unit. In order to improve the reliability, it is preferable to use a thermosetting resin as the adhesive.

例えば、図1Aに示すように、受光部11が形成された撮像素子10の受光面に、接着剤40を介してカバーガラス20が配設される。しかし、図1Bに示すように、接着剤40の熱硬化処理の後には、凹状に反りが生じる。これは、カバーガラス20の熱膨張係数α20と、撮像素子10の熱膨張係数α10とが、異なるためである。   For example, as shown to FIG. 1A, the cover glass 20 is arrange | positioned via the adhesive agent 40 on the light-receiving surface of the image pick-up element 10 in which the light-receiving part 11 was formed. However, as shown in FIG. 1B, after the heat curing treatment of the adhesive 40, concave warpage occurs. This is because the thermal expansion coefficient α20 of the cover glass 20 and the thermal expansion coefficient α10 of the imaging device 10 are different.

反りが生じると、撮像素子10の画像に乱れが生じる。また、反りが大きい撮像素子10を配線板60に押圧し当接すると撮像素子10が破損するおそれがあった。   When warpage occurs, disturbance occurs in the image of the imaging device 10. In addition, when the image sensor 10 having a large warpage is pressed against the wiring board 60 and brought into contact with the wiring board 60, there is a possibility that the image sensor 10 may be damaged.

なお、図1Cに示すように、撮像素子10の裏面に配線板60を押圧し当接して、接着剤65を介して接着すると、反りは矯正される。しかし、かかる撮像モジュール101では、撮像素子10とカバーガラス20との接合界面には応力が発生する。撮像モジュール101は、撮像素子10とカバーガラス20との接着界面が剥離し、信頼性が低下するおそれがあった。   In addition, as shown in FIG. 1C, when the wiring board 60 is pressed against the back surface of the image pickup device 10 and brought into contact with the back surface of the image pickup device 10 and adhered via the adhesive 65, the warpage is corrected. However, in the imaging module 101, stress is generated at the bonding interface between the imaging element 10 and the cover glass 20. In the imaging module 101, the adhesion interface between the imaging element 10 and the cover glass 20 may be peeled off, and the reliability may be reduced.

なお、特開2003−244559号公報には、撮像素子の両面にカバーガラスを接合固着し、撮像素子の両面を保護した撮像装置が開示されている。   Japanese Patent Application Laid-Open No. 2003-244559 discloses an imaging device in which cover glass is bonded and fixed to both sides of an imaging device to protect both sides of the imaging device.

特開2003−244559号公報Unexamined-Japanese-Patent No. 2003-244559

本発明の実施形態は、信頼性の高い撮像モジュール、信頼性の高い内視鏡、および信頼性の高い撮像モジュールの製造方法を提供することを目的とする。   Embodiments of the present invention aim to provide a reliable imaging module, a reliable endoscope, and a method of manufacturing the reliable imaging module.

本発明の実施形態の撮像モジュールは、受光面と前記受光面と対向する裏面とを有し、前記受光面に受光部が形成されている撮像素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第2の主面が前記撮像素子の前記受光面と接着されている透明板と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第3の主面が前記撮像素子の前記裏面と接着されているダミー板と、前記撮像素子の前記受光面と前記透明板の前記第2の主面とを接着する熱硬化型の第1の接着剤と、前記撮像素子の前記裏面と前記ダミー板の前記第3の主面とを接着している熱硬化型の第2の接着剤と、を具備し、前記透明板の熱膨張係数が、前記撮像素子の熱膨張係数の50%未満、または、200%超であり、前記ダミー板の熱膨張係数が、前記透明板の熱膨張係数と略同じであり、前記第1の主面の反り量が、0.5μm/mm未満である。   An image pickup module according to an embodiment of the present invention has a light receiving surface and a back surface facing the light receiving surface, and an image pickup element in which a light receiving portion is formed on the light receiving surface, a first main surface and the first A transparent plate having a second main surface opposite to the main surface, wherein the second main surface is bonded to the light receiving surface of the imaging device, a third main surface, and the third main surface A dummy plate having a fourth main surface opposed to the second main surface, the third main surface being bonded to the back surface of the imaging device, the light receiving surface of the imaging device, and the second of the transparent plate First adhesive of the thermosetting type adhering to the main surface of the second adhesive, and the second adhesive of the thermosetting type adhering the rear surface of the imaging device and the third main surface of the dummy plate And the thermal expansion coefficient of the transparent plate is less than 50% or more than 200% of the thermal expansion coefficient of the imaging device, and the dummy plate Expansion coefficient is substantially the same as the thermal expansion coefficient of the transparent plate, warpage of the first main surface is less than 0.5 [mu] m / mm.

別の実施形態の内視鏡は、挿入部の先端部に撮像モジュールを具備し、前記撮像モジュールは、受光面と前記受光面と対向する裏面とを有し、前記受光面に受光部が形成されている撮像素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第2の主面が前記撮像素子の前記受光面と接着されている透明板と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第3の主面が前記撮像素子の前記裏面と接着されているダミー板と、前記撮像素子の前記受光面と前記透明板の前記第2の主面とを接着する熱硬化型の第1の接着剤と、前記撮像素子の前記裏面と前記ダミー板の前記第3の主面とを接着している熱硬化型の第2の接着剤と、を具備し、前記透明板の熱膨張係数が、前記撮像素子の熱膨張係数の50%未満、または、200%超であり、前記ダミー板の熱膨張係数が、前記透明板の熱膨張係数と略同じであり、前記第1の主面の反り量が、0.5μm/mm未満である。   The endoscope according to another embodiment includes an imaging module at the distal end of the insertion portion, the imaging module having a light receiving surface and a back surface facing the light receiving surface, and the light receiving unit is formed on the light receiving surface. A second main surface facing the first main surface and the first main surface, and the second main surface is bonded to the light receiving surface of the image pickup device. Dummy plate having a third main surface and a fourth main surface opposite to the third main surface, wherein the third main surface is bonded to the back surface of the imaging device A thermosetting first adhesive for bonding the light receiving surface of the image sensor to the second main surface of the transparent plate, the back surface of the image sensor, and the third surface of the dummy plate. And a thermosetting second adhesive that adheres to the main surface, and the thermal expansion coefficient of the transparent plate is 5 of the thermal expansion coefficient of the imaging device. % Or more than 200%, the thermal expansion coefficient of the dummy plate is substantially the same as the thermal expansion coefficient of the transparent plate, and the warpage of the first main surface is less than 0.5 μm / mm It is.

別の実施形態の撮像モジュールの製造方法は、受光面と前記受光面と対向する裏面とを有し、前記受光面に受光部が形成されている撮像素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第2の主面が前記撮像素子の前記受光面と接着されている、熱膨張係数が前記撮像素子の熱膨張係数の50%未満または200%超の透明板と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第3の主面が前記撮像素子の前記裏面と接着されているダミー板と、を作製するチップ作製工程と、前記撮像素子の前記受光面と前記透明板の前記第2の主面との界面に第1の接着剤を配設するとともに、前記撮像素子の前記裏面と前記ダミー板の前記第3の主面との界面に第2の接着剤を配設する接着剤配設工程と、前記第1の接着剤および前記第2の接着剤を硬化する熱処理工程と、を具備し、前記ダミー板の熱膨張係数が前記透明板の熱膨張係数と略同じであり、前記熱処理工程の後の前記第1の主面の反り量が、0.5μm/mm未満である。   In a method of manufacturing an imaging module according to another embodiment, an imaging device having a light receiving surface and a back surface opposite to the light receiving surface, and a light receiving unit being formed on the light receiving surface, a first main surface, and the first A thermal expansion coefficient of 50 of the thermal expansion coefficient of the image pickup element, having a second main surface opposite to the main surface of 1 and the second main surface being bonded to the light receiving surface of the image pickup device % Or more than 200%, and a third main surface and a fourth main surface facing the third main surface, wherein the third main surface corresponds to the back surface of the imaging device A chip manufacturing process for manufacturing a bonded dummy plate, a first adhesive is provided at an interface between the light receiving surface of the imaging device and the second main surface of the transparent plate, and An adhesive providing step of providing a second adhesive at an interface between the back surface of the imaging device and the third main surface of the dummy plate; A heat treatment step of curing the first adhesive and the second adhesive, the thermal expansion coefficient of the dummy plate being substantially the same as the thermal expansion coefficient of the transparent plate, and after the heat treatment step The amount of warpage of the first main surface is less than 0.5 μm / mm.

本発明の実施形態によれば、信頼性の高い撮像モジュール、信頼性の高い内視鏡、および信頼性の高い撮像モジュールの製造方法を提供できる。   According to an embodiment of the present invention, it is possible to provide a reliable imaging module, a reliable endoscope, and a method of manufacturing a reliable imaging module.

従来の撮像モジュールの断面図である。It is sectional drawing of the conventional imaging module. 従来の撮像モジュールの断面図である。It is sectional drawing of the conventional imaging module. 従来の撮像モジュールの断面図である。It is sectional drawing of the conventional imaging module. 第1実施形態の撮像モジュールの断面図である。It is a sectional view of an imaging module of a 1st embodiment. 第1実施形態の撮像モジュールの分解図である。It is an exploded view of an imaging module of a 1st embodiment. 第1実施形態の撮像モジュールの製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the imaging module of 1st Embodiment. 第1実施形態の変形例1の撮像モジュールの断面図である。It is sectional drawing of the imaging module of the modification 1 of 1st Embodiment. 第1実施形態の変形例2の撮像モジュールの断面図である。It is sectional drawing of the imaging module of the modification 2 of 1st Embodiment. 第1実施形態の変形例2の撮像モジュールの分解図である。It is an exploded view of an imaging module of modification 2 of a 1st embodiment. 第1実施形態の変形例3の撮像モジュールの断面図である。It is sectional drawing of the imaging module of the modification 3 of 1st Embodiment. 第1実施形態の変形例4の撮像モジュールの断面図である。It is sectional drawing of the imaging module of the modification 4 of 1st Embodiment. 第1実施形態の変形例5の撮像モジュールの断面図である。It is sectional drawing of the imaging module of the modification 5 of 1st Embodiment. 第2実施形態の内視鏡の斜視図である。It is a perspective view of the endoscope of 2nd Embodiment.

<第1実施形態>
図2および図3に示すように、本実施形態の撮像モジュール1は、撮像素子10と、透明板であるカバーガラス20と、ダミー板30と、配線板60と、第1の接着剤40と、第2の接着剤50と、を有する。なお、撮像素子10と第1の接着剤40とカバーガラス20と第2の接着剤50とダミー板30とにより構成されたチップ積層体2も、撮像モジュールとしての機能を有している。
First Embodiment
As shown in FIGS. 2 and 3, the imaging module 1 of the present embodiment includes an imaging device 10, a cover glass 20 which is a transparent plate, a dummy plate 30, a wiring board 60, and a first adhesive 40. , And the second adhesive 50. The chip laminate 2 configured by the imaging element 10, the first adhesive 40, the cover glass 20, the second adhesive 50, and the dummy plate 30 also has a function as an imaging module.

また、図面は、いずれも模式的なものであり、各部分の厚みと幅との関係、夫々の部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、一部の構成要素の図示を省略する場合がある。   In addition, it should be noted that the drawings are all schematic, and the relationship between the thickness and width of each part, the ratio of the thickness of each part, etc. are different from actual ones. There are also cases in which there are parts between which dimensional relationships and ratios differ from one another. Moreover, illustration of some components may be omitted.

撮像素子10は、受光面10SAと受光面10SAと対向する裏面10SBとを有し、受光面10SAに受光部11が形成されている。受光部11は、CMOSイメージセンサ回路、または、CCD回路等である。撮像素子10は、光軸O(Z軸方向)に直交するXY平面の断面形状が矩形の平行平板の半導体素子チップである。撮像素子10の受光面10SAの外周部には受光部11と接続された接続電極12が配設されている。   The imaging element 10 has a light receiving surface 10SA and a back surface 10SB facing the light receiving surface 10SA, and the light receiving unit 11 is formed on the light receiving surface 10SA. The light receiving unit 11 is a CMOS image sensor circuit, a CCD circuit, or the like. The imaging device 10 is a parallel plate semiconductor element chip having a rectangular cross-sectional shape in the XY plane orthogonal to the optical axis O (Z-axis direction). A connection electrode 12 connected to the light receiving unit 11 is disposed on an outer peripheral portion of the light receiving surface 10SA of the imaging element 10.

カバーガラス20は、第1の主面20SAと第1の主面20SAと対向する第2の主面20SBとを有し、第2の主面20SBが撮像素子10の受光面10SAと接着されている平行平板チップである。受光部11を保護するカバーガラス20は、受光部11を完全に覆い、かつ、接続電極12を覆わないように位置決めされて接着されている。   The cover glass 20 has a first main surface 20SA and a second main surface 20SB facing the first main surface 20SA, and the second main surface 20SB is bonded to the light receiving surface 10SA of the imaging device 10 Parallel flat chip. A cover glass 20 for protecting the light receiving unit 11 is positioned and bonded so as to completely cover the light receiving unit 11 and not to cover the connection electrode 12.

透明板(カバーガラス20)は、撮像する光の波長帯域において透明であればよい。   The transparent plate (cover glass 20) may be transparent in the wavelength band of the light to be imaged.

ダミー板30は、第3の主面30SAと第3の主面30SAと対向する第4の主面30SBとを有し、第3の主面30SAが撮像素子10の裏面10SBと接着されている平行平板チップである。   The dummy plate 30 has a third main surface 30SA and a fourth main surface 30SB facing the third main surface 30SA, and the third main surface 30SA is bonded to the back surface 10SB of the imaging element 10 It is a parallel plate chip.

後述するように、ダミー板30は、熱膨張係数α30がカバーガラス20の熱膨張係数α20と略同じ材料からなる。熱膨張係数αは、単位が、ppm/℃(K)の線膨張係数である。なお、本実施形態のダミー板30は、カバーガラス20と同じ組成で同じ大きさのガラスチップである。   As described later, the dummy plate 30 is made of a material whose thermal expansion coefficient α30 is substantially the same as the thermal expansion coefficient α20 of the cover glass 20. The thermal expansion coefficient α is a linear expansion coefficient in units of ppm / ° C. (K). The dummy plate 30 of the present embodiment is a glass chip having the same composition and the same size as the cover glass 20.

第1の接着剤40は、撮像素子10の受光面10SAとカバーガラス20の第2の主面20SBとを接着している。第2の接着剤50は、撮像素子10の裏面10SBとダミー板30の第3の主面30SAとを接着している。   The first adhesive 40 bonds the light receiving surface 10SA of the imaging element 10 and the second main surface 20SB of the cover glass 20. The second adhesive 50 bonds the back surface 10 SB of the imaging element 10 and the third main surface 30 SA of the dummy plate 30.

第1の接着剤40および第2の接着剤50は、同一の透明樹脂、例えば、エポキシ樹脂またはアクリル樹脂である。液体またはゲル状の未硬化の樹脂は、接合界面に配設され硬化処理により固体化する。接合信頼性を担保するために、第1の接着剤40および第2の接着剤50は、熱硬化型樹脂である。   The first adhesive 40 and the second adhesive 50 are the same transparent resin, for example, an epoxy resin or an acrylic resin. The liquid or gel-like uncured resin is disposed at the bonding interface and solidified by the curing treatment. The first adhesive 40 and the second adhesive 50 are thermosetting resins in order to ensure bonding reliability.

第5の主面60SAを有する配線板60は、セラミック配線板である。配線板60に接合された電気ケーブル75は、撮像素子10の接続電極12と電気的に接続されている。   The wiring board 60 having the fifth main surface 60SA is a ceramic wiring board. The electric cable 75 joined to the wiring board 60 is electrically connected to the connection electrode 12 of the imaging element 10.

配線板60は平坦な第5の主面60SAを有していれば、第5の主面60SAと対向する第6の主面60SBを有している平行平板でなくともよい。配線板60の第5の主面60SAは、ダミー板30の第4の主面30SBと第3の接着剤65を介して接着されている。   As long as the wiring board 60 has the flat fifth main surface 60SA, it may not be a parallel flat plate having the sixth main surface 60SB opposite to the fifth main surface 60SA. The fifth main surface 60SA of the wiring board 60 is bonded to the fourth main surface 30SB of the dummy board 30 via the third adhesive 65.

なお、後述するように、撮像モジュール1では、第1の主面20SAの反り量が、0.5μm/mm以下の0.05μm/mmである。なお反り量は、3次元測定器を用いて対角線上で測定し、その反りの大きさの最大値を対角線の長さで割った値である。   As described later, in the imaging module 1, the amount of warpage of the first main surface 20SA is 0.05 μm / mm, which is 0.5 μm / mm or less. The amount of warpage is measured on a diagonal line using a three-dimensional measuring device, and is a value obtained by dividing the maximum value of the size of the warpage by the length of the diagonal line.

撮像モジュール1は、反りが発生しないので、信頼性が高い、   The imaging module 1 is highly reliable because no warping occurs.

次に図4のフローチャートにそって、撮像モジュール1の製造方法を説明する。   Next, a method of manufacturing the imaging module 1 will be described according to the flowchart of FIG. 4.

<ステップS10>チップ作製工程
各種のチップ、すなわち、撮像素子10と、カバーガラス20と、ダミー板30と、が作製される。
<Step S10> Chip Production Step Various chips, that is, the imaging device 10, the cover glass 20, and the dummy plate 30 are produced.

撮像素子10は複数の撮像素子10を含む撮像ウエハを切断することで作製される。すなわち、シリコン等の半導体ウエハに半導体製造技術を用いて、複数の受光部等を有する撮像ウエハが作製され、切断により撮像素子10に個片化される。撮像素子10は、表面照射(FSI:Front Side Illumination)型イメージセンサまたは裏面照射(BSI:Back Side Illumination)型イメージセンサのいずれでもよい。カバーガラス20およびダミー板30は、ガラスウエハの個片化により作製される。   The imaging device 10 is manufactured by cutting an imaging wafer including a plurality of imaging devices 10. That is, an imaging wafer having a plurality of light receiving portions and the like is manufactured on a semiconductor wafer of silicon or the like using semiconductor manufacturing technology, and cut into pieces into imaging elements 10. The imaging device 10 may be either a front side illumination (FSI) type image sensor or a back side illumination (BSI) type image sensor. The cover glass 20 and the dummy plate 30 are produced by singulating a glass wafer.

なお、撮像素子10の熱膨張係数α10は、3ppm/℃であり、カバーガラス20の熱膨張係数α20およびダミー板30の熱膨張係数α30は、7.8ppm/℃であった。すなわち、熱膨張係数α20、α30は、熱膨張係数α10の260%である。
<ステップS11>接着剤配設工程
撮像素子10の受光面10SAとカバーガラス20の第2の主面20SBの間に未硬化の第1の接着剤40が配設され、さらに、撮像素子10の裏面10SBとダミー板30の第3の主面30SAとの間に未硬化の第2の接着剤が配設される。
The thermal expansion coefficient α10 of the imaging device 10 was 3 ppm / ° C., and the thermal expansion coefficient α20 of the cover glass 20 and the thermal expansion coefficient α30 of the dummy plate 30 were 7.8 ppm / ° C. That is, the thermal expansion coefficients α20 and α30 are 260% of the thermal expansion coefficient α10.
<Step S11> Adhesive Placement Step An uncured first adhesive 40 is disposed between the light receiving surface 10SA of the imaging element 10 and the second major surface 20SB of the cover glass 20. An uncured second adhesive is disposed between the back surface 10SB and the third major surface 30SA of the dummy plate 30.

なお、カバーガラス20は、受光部11を完全に覆い、かつ、接続電極12を覆わないように位置決めされている。   The cover glass 20 is positioned so as to completely cover the light receiving section 11 and not to cover the connection electrode 12.

<ステップS12>熱処理工程
熱処理により、熱硬化型樹脂である第1の接着剤40および第2の接着剤50が硬化する。例えば、不活性雰囲気の加熱装置を用いて、150℃で、30分間の熱処理が行われる。加熱温度は、十分な硬化反応のために、100℃超が好ましい。加熱温度の上限は、撮像素子10の耐熱温度の例えば300℃である。
<Step S12> Heat Treatment Step The heat treatment cures the first adhesive 40 and the second adhesive 50, which are thermosetting resins. For example, heat treatment is performed at 150 ° C. for 30 minutes using an inert atmosphere heater. The heating temperature is preferably over 100 ° C. for a sufficient curing reaction. The upper limit of the heating temperature is, for example, 300 ° C. of the heat resistant temperature of the imaging device 10.

なお、チップは熱処理中に相対位置が変化しないように、仮固定されていることが好ましい。例えば、第1の接着剤40および第2の接着剤50として、紫外線熱硬化型樹脂を用いる。紫外線熱硬化型接着剤は、光硬化および熱硬化する樹脂であり、紫外線の照射により仮硬化し、加熱処理により完全硬化する。紫外線熱硬化型接着剤としては、公知の製品が適用可能である。   Preferably, the chip is temporarily fixed so that the relative position does not change during heat treatment. For example, an ultraviolet thermosetting resin is used as the first adhesive 40 and the second adhesive 50. The ultraviolet thermosetting adhesive is a photocurable and thermosetting resin, which is temporarily cured by irradiation of ultraviolet rays and completely cured by heat treatment. A well-known product can be applied as the ultraviolet heat-curable adhesive.

なお、図1Bに示したように、従来の撮像モジュール101では熱処理工程の後に、カバーガラス20が接着された撮像素子10に反りが生じる。例えば、熱膨張係数α10が、3ppm/℃の撮像素子10は、150℃の熱処理工程の後に室温(20℃)になると、寸法が390ppm減少する。これに対して、熱膨張係数α20が、7.8ppm/℃のカバーガラス20は、寸法が1014ppm減少する。撮像素子10とカバーガラス20とは、寸法変化量が624ppmも異なるため、カバーガラス20の第1の主面20SA(第2の主面20SB、受光面10SA、裏面10SB)は凹状に変形し、その反り量は、2.8μm/mmであった。   Note that as shown in FIG. 1B, in the conventional imaging module 101, warpage occurs in the imaging element 10 to which the cover glass 20 is bonded after the heat treatment step. For example, the imaging element 10 having a thermal expansion coefficient α10 of 3 ppm / ° C. decreases in size by 390 ppm at room temperature (20 ° C.) after the heat treatment step of 150 ° C. On the other hand, the cover glass 20 having a thermal expansion coefficient α 20 of 7.8 ppm / ° C. is reduced in size by 10 14 ppm. Since the image sensor 10 and the cover glass 20 also differ in dimensional change by 624 ppm, the first main surface 20SA (the second main surface 20SB, the light receiving surface 10SA, the back surface 10SB) of the cover glass 20 deforms in a concave shape The amount of warpage was 2.8 μm / mm.

なお、撮像素子10は、厚さが280μmであり、ヤング率が187GPaであり、カバーガラス20は、厚さが650μmであり、ヤング率が710GPaである。接着剤40は、厚さが7μmであり、ヤング率が2.9GPaと小さいため、反り量に大きな影響はなかった。   The imaging device 10 has a thickness of 280 μm and a Young's modulus of 187 GPa. The cover glass 20 has a thickness of 650 μm and a Young's modulus of 710 GPa. The adhesive 40 had a thickness of 7 μm and a small Young's modulus of 2.9 GPa, so the amount of warpage was not significantly affected.

一方、チップ積層体2では、撮像素子10の裏面10SBには、カバーガラス20と材質が同じダミー板30が接着されている。ダミー板30の温度変化による寸法変化は、カバーガラス20と同じ1014ppmである。このため、カバーガラス20と撮像素子10との間に作用する第1の応力と、撮像素子10とダミー板30との間に作用する第2の応力とが、相殺されるため、撮像モジュール1では熱処理工程の後にも殆ど反りが生じない。例えば、熱処理工程の後の第1の主面20SAの反り量は、0.05μm/mmであった。   On the other hand, in the chip stack 2, a dummy plate 30 of the same material as the cover glass 20 is adhered to the back surface 10 </ b> SB of the imaging device 10. The dimensional change of the dummy plate 30 due to the temperature change is 1014 ppm, which is the same as that of the cover glass 20. Therefore, since the first stress acting between the cover glass 20 and the imaging device 10 and the second stress acting between the imaging device 10 and the dummy plate 30 are offset, the imaging module 1 In this case, almost no warpage occurs even after the heat treatment step. For example, the amount of warpage of the first major surface 20SA after the heat treatment step was 0.05 μm / mm.

このため、チップ積層体2は、撮像モジュールとして用いた場合であっても、反りが小さいため、撮像素子10の画像に乱れが生じるおそれがない。   For this reason, even when the chip stack 2 is used as an imaging module, since the warp is small, there is no possibility that the image of the imaging element 10 may be disturbed.

<ステップS13>配線板固定工程
ダミー板30の第4の主面30SBが、配線板60の第5の主面60SAと当接するように押圧されて、接着剤65を介して固定される。第5の主面60SAは平面であり、その反り量は、0.01μm/mm未満である。
<Step S13> Wiring Board Fixing Step The fourth main surface 30SB of the dummy board 30 is pressed so as to abut on the fifth main surface 60SA of the wiring board 60, and is fixed via the adhesive 65. The fifth main surface 60SA is a flat surface, and the amount of warpage is less than 0.01 μm / mm.

チップ積層体2は、反り量が0.5μm/mm未満であるため、第5の主面60SAと当接し固定されても、撮像素子10が破損したり、積層界面に大きな応力が発生したりすることはない。すなわち、第1の接着剤40を熱硬化した際、撮像素子10よりも熱膨張係数が大きいカバーガラス20が受光面10SAの面方向に収縮しようとする第1の応力と、第2の接着剤50を熱硬化した際、撮像素子10よりも熱膨張係数が大きいダミー板30が受光面10SAの面方向に収縮しようとする第2の応力が等しい。このため、本実施形態の製造方法により作製された撮像モジュール1は信頼性が高い。   Since the amount of warping of the chip stack 2 is less than 0.5 μm / mm, the image pickup element 10 may be damaged or a large stress may be generated at the lamination interface even if the chip stack 2 is in contact with the fifth main surface 60SA and fixed. There is nothing to do. That is, when the first adhesive 40 is thermally cured, the first stress causes the cover glass 20 having a thermal expansion coefficient larger than that of the imaging device 10 to contract in the surface direction of the light receiving surface 10SA, and the second adhesive When heat curing 50 is performed, the second stress that the dummy plate 30 having a thermal expansion coefficient larger than that of the imaging device 10 tends to contract in the surface direction of the light receiving surface 10SA is equal. For this reason, the imaging module 1 manufactured by the manufacturing method of this embodiment has high reliability.

なお、別途行った実験および応力シミュレーションの結果から、カバーガラス20の熱膨張係数α20が、撮像素子10の熱膨張係数α10の200%超の場合に、カバーガラス20が接着された撮像素子10に、反り量が0.5μm/mm超の反りが生じる。反り量が0.5μm/mm超の反りが生じると、撮像モジュールの信頼性が低下する。   In addition, when the thermal expansion coefficient α20 of the cover glass 20 is more than 200% of the thermal expansion coefficient α10 of the imaging device 10, the imaging device 10 to which the cover glass 20 is adhered is Warpage of more than 0.5 μm / mm occurs. When a warp amount of more than 0.5 μm / mm occurs, the reliability of the imaging module is reduced.

なお、透明板(カバーガラス20)の熱膨張係数α20が、撮像素子10の熱膨張係数α10の50%未満の場合にも、カバーガラス20が接着された撮像素子10に、反り量が0.5μm/mm超の反りが生じる。例えば、透明板として、石英ガラス(熱膨張係数α=0.4ppm/℃)、または、単結晶サファイア(熱膨張係数α=0.5ppm/℃)を用いると、第1の主面20SAは図1Bとは逆に凸状に大きな反りが生じる。反り量が0.5μm/mm超の反りが生じると、撮像モジュールの信頼性が低下する。   Even when the thermal expansion coefficient α20 of the transparent plate (cover glass 20) is less than 50% of the thermal expansion coefficient α10 of the imaging device 10, the amount of warping is 0. 0 to the imaging device 10 to which the cover glass 20 is adhered. Warpage of more than 5 μm / mm occurs. For example, when quartz glass (thermal expansion coefficient α = 0.4 ppm / ° C.) or single crystal sapphire (thermal expansion coefficient α = 0.5 ppm / ° C.) is used as the transparent plate, the first main surface 20SA is Contrary to 1 B, a large warp occurs in a convex shape. When a warp amount of more than 0.5 μm / mm occurs, the reliability of the imaging module is reduced.

しかし、透明板と熱膨張係数αが略同じダミー板を、撮像素子10の裏面10SBに第2の接着剤50を介して接着することで、反り量を0.5μm/mm以下にできる。   However, by bonding a dummy plate having a thermal expansion coefficient α substantially the same as that of the transparent plate to the back surface 10SB of the imaging device 10 via the second adhesive 50, the amount of warpage can be reduced to 0.5 μm / mm or less.

すなわち、カバーガラス20の熱膨張係数α20が、撮像素子10の熱膨張係数α10の50%未満、または、200%超の場合に本実施形態の効果は顕著である。   That is, when the thermal expansion coefficient α20 of the cover glass 20 is less than 50% or more than 200% of the thermal expansion coefficient α10 of the imaging device 10, the effect of the present embodiment is remarkable.

さらに、カバーガラス20の熱膨張係数α20は、撮像素子10の熱膨張係数α10の20%超50%未満、または、200%超400%未満の場合に本実施形態の効果は顕著である。   Furthermore, when the thermal expansion coefficient α20 of the cover glass 20 is more than 20% and less than 50%, or more than 200% and less than 400% of the thermal expansion coefficient α10 of the imaging device 10, the effect of the present embodiment is remarkable.

<第1実施形態の変形例>
第1実施形態の変形例の撮像モジュールは、撮像モジュール1と類似し同じ効果を有するため、同じ機能の構成要素には同じ符号を付し説明は省略する。
Modification of First Embodiment
Since the imaging module of the modification of the first embodiment is similar to the imaging module 1 and has the same effect, the components having the same functions are indicated by the same reference numerals and the description thereof is omitted.

<第1実施形態の変形例1>
図5に示すように、第1実施形態の変形例1の撮像モジュール1Aでは、撮像素子10Aは第1の貫通配線13を有する。そして、撮像素子10Aは受光部11と第1の貫通配線13を介して電気的に接続されている外部電極14を裏面10SBに有する。
<Modified Example 1 of First Embodiment>
As shown in FIG. 5, in the imaging module 1 </ b> A of the first modification of the first embodiment, the imaging element 10 </ b> A has a first through wiring 13. The imaging device 10A has an external electrode 14 electrically connected to the light receiving unit 11 via the first through wiring 13 on the back surface 10SB.

一方、ダミー板30Aは、第2の貫通配線31を有する。接続電極12と第2の貫通配線31とは、第1の貫通配線を13を介して接続されている。さらに、第2の貫通配線31は配線板60Aと接続されている。第3の接着剤65は、ダミー板30Aと配線板60Aとの接合部を保護するアンダーフィル樹脂である。   On the other hand, the dummy plate 30A has a second through wire 31. The connection electrode 12 and the second through wiring 31 are connected to each other through the first through wiring 13. Furthermore, the second through wiring 31 is connected to the wiring board 60A. The third adhesive 65 is an underfill resin that protects the joint between the dummy board 30A and the wiring board 60A.

撮像モジュール1Aは、撮像モジュール1よりも簡単に撮像素子と配線板とを電気的に接続でき、さらに、光軸直交方向のサイズを小さくできる。   The imaging module 1A can electrically connect the imaging element and the wiring board more easily than the imaging module 1, and can further reduce the size in the optical axis orthogonal direction.

なお、断面がT字形の立体配線板である配線板60Aには、複数の電子部品70、例えば、チップコンデンサが実装されている。   A plurality of electronic components 70 such as chip capacitors are mounted on the wiring board 60A, which is a three-dimensional wiring board having a T-shaped cross section.

<第1実施形態の変形例2>
図6および図7に示すように、第1実施形態の変形例2の撮像モジュール1Bは、撮像モジュール1Aと同じ構成の撮像素子10Aを有する。一方、ダミー板30Bは枠状(額縁状)である。ダミー板30Bの外寸は、カバーガラス20の外寸と同じである。
<Modification 2 of First Embodiment>
As shown in FIGS. 6 and 7, the imaging module 1B of Modification 2 of the first embodiment includes an imaging element 10A having the same configuration as the imaging module 1A. On the other hand, the dummy plate 30B has a frame shape (frame shape). The outer dimension of the dummy plate 30B is the same as the outer dimension of the cover glass 20.

撮像モジュール1Bは、撮像モジュール1Aと同じ効果を有する。   The imaging module 1B has the same effect as the imaging module 1A.

すなわち、矩形の第1の接着剤40の面積と、額縁状の第2の接着剤50Bの面積とは異なる。しかし、熱応力の大きさは、面積ではなく外寸に応じて増減する。このため、撮像素子10の受光面10SAの第1の接着剤40の外周と、撮像素子10の裏面10SBの第2の接着剤50Bの外周とが受光面10SAに直交する方向に延長すると重畳していれば、反りは低減できる。   That is, the area of the rectangular first adhesive 40 is different from the area of the frame-like second adhesive 50B. However, the magnitude of the thermal stress increases or decreases according to the external size, not the area. Therefore, when the outer periphery of the first adhesive 40 of the light receiving surface 10SA of the imaging device 10 and the outer periphery of the second adhesive 50B of the back surface 10SB of the imaging device 10 extend in the direction orthogonal to the light receiving surface 10SA If so, warpage can be reduced.

なお、撮像モジュール1Bでは、枠状のダミー板30Bの内部空間に、電子部品70が収容されている。このため、撮像モジュール1Bは、撮像モジュール1Aよりも多くの電子部品70を実装できる。   In the imaging module 1B, the electronic component 70 is accommodated in the internal space of the frame-shaped dummy plate 30B. Thus, the imaging module 1B can mount more electronic components 70 than the imaging module 1A.

<第1実施形態の変形例3>
図8に示す第1実施形態の変形例3の撮像モジュール1Cのダミー板30Cは、カバーガラス20と同じガラスを基体とするが、厚さがカバーガラス20よりも薄い。
<Modification 3 of the First Embodiment>
The dummy plate 30C of the imaging module 1C of Modification 3 of the first embodiment shown in FIG. 8 uses the same glass as the cover glass 20 as a base, but has a thickness smaller than that of the cover glass 20.

しかし、撮像モジュール1Cは、熱処理工程の後の第1の主面20SAの反り量が、0.5μm/mm未満であった。   However, in the imaging module 1C, the amount of warpage of the first main surface 20SA after the heat treatment step is less than 0.5 μm / mm.

撮像モジュール1Cの評価、別途行った実験および応力シミュレーションの結果から、ダミー板は、熱膨張係数がカバーガラスと略同じ、すなわち、カバーガラスの熱膨張係数の80%超120%未満であれば、厚さが異なっていても、熱処理工程の後の第1の主面20SAの反り量が0.5μm/mm未満であることが判明した。   From the evaluation of the imaging module 1C, the results of experiments conducted separately and stress simulation, the dummy plate has a thermal expansion coefficient substantially equal to that of the cover glass, ie, more than 80% and less than 120% of the thermal expansion coefficient of the cover glass It was found that the amount of warpage of the first main surface 20SA after the heat treatment step is less than 0.5 μm / mm even though the thickness is different.

すなわち、ダミー板の熱膨張係数がカバーガラスの熱膨張係数と略同じであれば、両者の厚さが異なっていても、信頼性の高い撮像モジュールを得ることができる。   That is, if the thermal expansion coefficient of the dummy plate is substantially the same as the thermal expansion coefficient of the cover glass, an imaging module with high reliability can be obtained even if the thicknesses of both are different.

ダミー板30Cの厚さが薄い撮像モジュール1Cは、カバーガラス20と同じ厚さのダミー板30を有する撮像モジュール1等よりも短小である。   The imaging module 1C having the thin dummy plate 30C is shorter than the imaging module 1 having the dummy plate 30 having the same thickness as the cover glass 20.

<第1実施形態の変形例4>
図9に示す第1実施形態の変形例4の撮像モジュール1Dでは、カバーガラス20Dおよびダミー板30Dは、撮像素子10Dよりも大きい。
<Modification 4 of First Embodiment>
In the imaging module 1D of the modification 4 of the first embodiment shown in FIG. 9, the cover glass 20D and the dummy plate 30D are larger than the imaging element 10D.

また、ダミー板30Dは、カバーガラス20Dとは異なる材料からなり透明ではないが、両者の熱膨張係数は略同じである。   Although the dummy plate 30D is made of a material different from that of the cover glass 20D and is not transparent, the thermal expansion coefficients of the two are substantially the same.

撮像モジュール1Dは、熱処理工程の後の第1の主面20SAの反り量が、0.5μm/mm未満であった。   In the imaging module 1D, the amount of warpage of the first main surface 20SA after the heat treatment step was less than 0.5 μm / mm.

撮像モジュール1Dの評価、別途行った実験および応力シミュレーションの結果から、ダミー板および透明板の少なくともいずれかの外周の大きさが、撮像素子の外周の大きさと異なっていても、第1の接着剤の外周が、受光面に直交する方向に延長すると、第2の接着剤の外周と重畳していれば、熱処理工程の後の第1の主面20SAの反り量が0.5μm/mm未満であることが判明した。   From the evaluation of the imaging module 1D, the results of experiments performed separately and stress simulation, the first adhesive is used even if the size of the outer periphery of at least one of the dummy plate and the transparent plate is different from the size of the outer periphery of the imaging device When the outer periphery of the second adhesive extends in a direction perpendicular to the light receiving surface, the warpage of the first main surface 20SA after the heat treatment step is less than 0.5 .mu.m / mm, as long as it overlaps with the outer periphery of the second adhesive. It turned out to be.

<第1実施形態の変形例5>
図10に示す第1実施形態の変形例5の撮像モジュール1Eでは、ダミー板30Eは配線板機能を有する。すなわち、ダミー板30Eは、第2の貫通配線31を有し、電子部品70が実装され、電気ケーブル75が接合されている。
<Modification 5 of First Embodiment>
In the imaging module 1E of the modification 5 of the first embodiment shown in FIG. 10, the dummy board 30E has a wiring board function. That is, the dummy plate 30E has the second through wiring 31, the electronic component 70 is mounted, and the electric cable 75 is joined.

ダミー板30Dは、カバーガラス20とは異なる材料からなり透明ではないが、両者の熱膨張係数は略同じである。   Although the dummy plate 30D is made of a material different from that of the cover glass 20 and is not transparent, the thermal expansion coefficients of both are substantially the same.

撮像モジュール1Eは、熱処理工程の後の第1の主面20SAの反り量が、0.5μm/mm未満であった。   In the imaging module 1E, the amount of warpage of the first main surface 20SA after the heat treatment step was less than 0.5 μm / mm.

<第2実施形態>
次に、第2実施形態の内視鏡9について説明する。
Second Embodiment
Next, an endoscope 9 according to a second embodiment will be described.

図11に示すように、内視鏡9は、撮像モジュール1、1A〜1Eが先端部9Aに配設された挿入部9Bと、挿入部9Bの基端側に配設された操作部9Cと、操作部9Cから延出するユニバーサルコード9Dと、を具備する。   As shown in FIG. 11, the endoscope 9 includes an insertion portion 9B in which the imaging modules 1, 1A to 1E are disposed at the distal end portion 9A, and an operation portion 9C disposed on the proximal end side of the insertion portion 9B. , And a universal cord 9D extending from the operation unit 9C.

内視鏡9は、信頼性の高い撮像モジュール1、1A〜1Eを挿入部9Bの先端部9Aに有するため、信頼性が高い。なお、内視鏡9は軟性鏡であるが、硬性鏡でもよい。また、実施形態の内視鏡は、撮像モジュール1、1A〜1Eを具備していれば、カプセル型でもよいし、医療用でも工業用でもよい。   The endoscope 9 has high reliability because it has the highly reliable imaging modules 1 and 1A to 1E at the distal end 9A of the insertion portion 9B. Although the endoscope 9 is a soft mirror, it may be a rigid mirror. The endoscope according to the embodiment may be a capsule type, and may be medical or industrial as long as it includes the imaging modules 1 and 1A to 1E.

本発明は上述した実施形態および変形例等に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変、組み合わせ等ができる。   The present invention is not limited to the above-described embodiment and modifications, and various changes, modifications, combinations, and the like can be made without departing from the scope of the present invention.

1、1A〜1E…撮像モジュール
2…チップ積層体
9…内視鏡
9A…先端部
10…撮像素子
10SA…受光面
10SB…裏面
11…受光部
12…接続電極
13…第1の貫通配線
14…外部電極
20…カバーガラス
20SA…第1の主面
20SB…第2の主面
30、30A〜30E…ダミー板
30SA…第3の主面
30SB…第4の主面
31…第2の貫通配線
40…第1の接着剤
50…第2の接着剤
60…配線板
60SA…第5の主面
60SB…第6の主面
65…第3の接着剤
70…電子部品
75…電気ケーブル
101…撮像モジュール
DESCRIPTION OF SYMBOLS 1, 1A-1E ... Imaging module 2 ... Chip laminated body 9 ... Endoscope 9A ... Tip part 10 ... Imaging element 10SA ... Light receiving surface 10SB ... Back surface 11 ... Light reception part 12 ... Connection electrode 13 ... 1st penetration wiring 14 ... Outer electrode 20: cover glass 20SA: first main surface 20SB: second main surface 30, 30A to 30E: dummy plate 30SA: third main surface 30SB: fourth main surface 31: second through wiring 40 ... first adhesive 50 ... second adhesive 60 ... wiring board 60SA ... fifth main surface 60SB ... sixth main surface 65 ... third adhesive 70 ... electronic component 75 ... electric cable 101 ... imaging module

Claims (9)

受光面と前記受光面と対向する裏面とを有し、前記受光面に受光部が形成されている撮像素子と、
第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第2の主面が前記撮像素子の前記受光面と接着されている透明板と、
第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第3の主面が前記撮像素子の前記裏面と接着されているダミー板と、
前記撮像素子の前記受光面と前記透明板の前記第2の主面とを接着する熱硬化型の第1の接着剤と、
前記撮像素子の前記裏面と前記ダミー板の前記第3の主面とを接着する熱硬化型の第2の接着剤と、を具備し、
前記透明板の熱膨張係数が、前記撮像素子の熱膨張係数の50%未満、または、200%超であり、
前記ダミー板の熱膨張係数が、前記透明板の熱膨張係数と略同じであり、前記第1の主面の反り量が、0.5μm/mm未満であることを特徴とする撮像モジュール。
An imaging element having a light receiving surface and a back surface opposite to the light receiving surface, the light receiving surface being formed on the light receiving surface;
A transparent plate having a first main surface and a second main surface opposite to the first main surface, wherein the second main surface is bonded to the light receiving surface of the imaging device;
A dummy plate having a third main surface and a fourth main surface opposite to the third main surface, wherein the third main surface is bonded to the back surface of the imaging device;
A thermosetting first adhesive that adheres the light receiving surface of the image sensor to the second main surface of the transparent plate;
And a thermosetting second adhesive for bonding the back surface of the imaging device and the third main surface of the dummy plate,
The thermal expansion coefficient of the transparent plate is less than 50% or more than 200% of the thermal expansion coefficient of the imaging device,
The imaging module, wherein the thermal expansion coefficient of the dummy plate is substantially the same as the thermal expansion coefficient of the transparent plate, and the amount of warpage of the first main surface is less than 0.5 μm / mm.
第5の主面を有し、前記第5の主面が前記ダミー板の前記第4の主面と接着されている配線板を更に具備することを特徴とする請求項1に記載の撮像モジュール。   The imaging module according to claim 1, further comprising a wiring board having a fifth main surface, wherein the fifth main surface is bonded to the fourth main surface of the dummy plate. . 前記透明板の外周が、前記撮像素子の外周よりも小さく、
前記撮像素子は、前記受光面に前記受光部と電気的に接続されている接続電極を有し、
前記透明板が、前記接続電極を覆っていないことを特徴とする請求項1に記載の撮像モジュール。
The outer periphery of the transparent plate is smaller than the outer periphery of the imaging device,
The imaging device has a connection electrode electrically connected to the light receiving unit on the light receiving surface,
The imaging module according to claim 1, wherein the transparent plate does not cover the connection electrode.
前記撮像素子は第1の貫通配線を有し、さらに、前記裏面に前記受光部と前記第1の貫通配線を介して電気的に接続されている外部電極を有し、
前記ダミー板は、第2の貫通配線を有し、
前記接続電極と前記第2の貫通配線とが、前記外部電極および前記第1の貫通配線を介して接続されていることを特徴とする請求項1に記載の撮像モジュール。
The image pickup device has a first through wiring, and further has an external electrode electrically connected to the light receiving portion and the first through wiring on the back surface,
The dummy plate has a second through wire,
The imaging module according to claim 1, wherein the connection electrode and the second through wiring are connected via the external electrode and the first through wiring.
前記撮像素子は第1の貫通配線を有し、さらに、前記裏面に前記受光部と前記第1の貫通配線を介して電気的に接続されている外部電極を有し、
前記ダミー板は、枠状であることを特徴とする請求項1に記載の撮像モジュール。
The image pickup device has a first through wiring, and further has an external electrode electrically connected to the light receiving portion and the first through wiring on the back surface,
The imaging module according to claim 1, wherein the dummy plate has a frame shape.
前記ダミー板が、前記透明板と同じガラス材料からなる基板を基体とすることを特徴とする請求項1から請求項5のいずれか1項に記載の撮像モジュール。   The imaging module according to any one of claims 1 to 5, wherein the dummy plate is a substrate made of the same glass material as the transparent plate. 請求項1から請求項6のいずれか1項に記載の撮像モジュールを挿入部の先端部に具備することを特徴とする内視鏡。   An endoscope comprising the imaging module according to any one of claims 1 to 6 at the distal end portion of the insertion portion. 受光面と前記受光面と対向する裏面とを有し、前記受光面に受光部が形成されている撮像素子と、第1の主面と前記第1の主面と対向する第2の主面とを有し、前記第2の主面が前記撮像素子の前記受光面と接着されている、熱膨張係数が前記撮像素子の熱膨張係数の50%未満または200%超の透明板と、第3の主面と前記第3の主面と対向する第4の主面とを有し、前記第3の主面が前記撮像素子の前記裏面と接着されているダミー板と、を作製するチップ作製工程と、
前記撮像素子の前記受光面と前記透明板の前記第2の主面との界面に第1の接着剤を配設するとともに、前記撮像素子の前記裏面と前記ダミー板の前記第3の主面との界面に第2の接着剤を配設する接着剤配設工程と、
前記第1の接着剤および前記第2の接着剤を加熱し硬化する熱処理工程と、を具備し、
前記ダミー板の熱膨張係数が、前記透明板の熱膨張係数と略同じであり、
前記熱処理工程の後の前記第1の主面の反り量が、0.5μm/mm未満であることを特徴とする撮像モジュールの製造方法。
An imaging element having a light receiving surface and a back surface opposite to the light receiving surface, and a light receiving portion formed on the light receiving surface, and a first main surface and a second main surface facing the first main surface A transparent plate whose thermal expansion coefficient is less than 50% or more than 200% of the thermal expansion coefficient of the image pickup device, and the second main surface is bonded to the light receiving surface of the image pickup device; A dummy plate having a third main surface and a fourth main surface opposite to the third main surface, wherein the third main surface is bonded to the back surface of the imaging device Manufacturing process,
A first adhesive is disposed at an interface between the light receiving surface of the image sensor and the second main surface of the transparent plate, and the back surface of the image sensor and the third main surface of the dummy plate An adhesive providing step of providing a second adhesive at the interface with the
A heat treatment step of heating and curing the first adhesive and the second adhesive;
The thermal expansion coefficient of the dummy plate is substantially the same as the thermal expansion coefficient of the transparent plate,
A method of manufacturing an imaging module, wherein the amount of warpage of the first main surface after the heat treatment step is less than 0.5 μm / mm.
前記熱処理工程の後に、前記ダミー板の前記第4の主面が、第5の主面を有する配線板の前記第5の主面と当接して固定される配線板固定工程を更に具備し、
前記配線板固定工程の後の前記第1の主面の反り量が、0.5μm/mm未満であることを特徴とする請求項8に記載の撮像モジュールの製造方法。
The method further comprises a wiring board fixing step of fixing the fourth main surface of the dummy board in contact with the fifth main surface of the wiring board having a fifth main surface after the heat treatment step,
9. The method for manufacturing an imaging module according to claim 8, wherein an amount of warpage of the first main surface after the wiring board fixing step is less than 0.5 μm / mm.
JP2017205020A 2017-10-24 2017-10-24 Image pickup module, endoscope, and method of manufacturing image pickup module Pending JP2019076358A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017205020A JP2019076358A (en) 2017-10-24 2017-10-24 Image pickup module, endoscope, and method of manufacturing image pickup module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017205020A JP2019076358A (en) 2017-10-24 2017-10-24 Image pickup module, endoscope, and method of manufacturing image pickup module

Publications (1)

Publication Number Publication Date
JP2019076358A true JP2019076358A (en) 2019-05-23

Family

ID=66626738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017205020A Pending JP2019076358A (en) 2017-10-24 2017-10-24 Image pickup module, endoscope, and method of manufacturing image pickup module

Country Status (1)

Country Link
JP (1) JP2019076358A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254659A1 (en) * 2021-06-03 2022-12-08 オリンパスメディカルシステムズ株式会社 Imaging unit and endoscope

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215437A (en) * 1998-01-28 1999-08-06 Canon Inc Mounting structure for two-dimension image-pickup device
JP2002076313A (en) * 2000-08-28 2002-03-15 Canon Inc Solid-state imaging device
JP2002100751A (en) * 2000-09-21 2002-04-05 Canon Inc Solid-state image pickup device
JP2004200274A (en) * 2002-12-17 2004-07-15 Sanyo Electric Co Ltd Method for manufacturing semiconductor package
JP2010279527A (en) * 2009-06-04 2010-12-16 Hoya Corp Endoscope
JP2013135823A (en) * 2011-12-28 2013-07-11 Olympus Corp Imaging mechanism, and endoscope apparatus
WO2013190748A1 (en) * 2012-06-22 2013-12-27 株式会社ニコン Substrate, imaging unit, and imaging device
JP2015046438A (en) * 2013-08-27 2015-03-12 株式会社ニコン Imaging unit and imaging device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11215437A (en) * 1998-01-28 1999-08-06 Canon Inc Mounting structure for two-dimension image-pickup device
JP2002076313A (en) * 2000-08-28 2002-03-15 Canon Inc Solid-state imaging device
JP2002100751A (en) * 2000-09-21 2002-04-05 Canon Inc Solid-state image pickup device
JP2004200274A (en) * 2002-12-17 2004-07-15 Sanyo Electric Co Ltd Method for manufacturing semiconductor package
JP2010279527A (en) * 2009-06-04 2010-12-16 Hoya Corp Endoscope
JP2013135823A (en) * 2011-12-28 2013-07-11 Olympus Corp Imaging mechanism, and endoscope apparatus
WO2013190748A1 (en) * 2012-06-22 2013-12-27 株式会社ニコン Substrate, imaging unit, and imaging device
JP2015046438A (en) * 2013-08-27 2015-03-12 株式会社ニコン Imaging unit and imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022254659A1 (en) * 2021-06-03 2022-12-08 オリンパスメディカルシステムズ株式会社 Imaging unit and endoscope

Similar Documents

Publication Publication Date Title
JP4304163B2 (en) Imaging module and manufacturing method thereof
US8698887B2 (en) Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus
US9509890B2 (en) Solid image pickup apparatus
US20110285003A1 (en) Optical device and method for manufacturing optical device, and camera module and endoscope module equipped with optical device
CN104576570B (en) Electronic unit, electronic installation and the method for manufacturing electronic unit
JP2008219854A (en) Optical device, optical device wafer, method for manufacturing them, and camera module and endoscope module equipped with optical device
JP2010118373A (en) Method of manufacturing semiconductor device
JP2007324303A (en) Optical module and packaging method therefor
JP2010103493A (en) Optical element, optical element wafer, optical element wafer module, optical element module, method of manufacturing optical element module, electronic element wafer module, method of manufacturing electronic element module, electronic element module, and electronic information device
JP6124505B2 (en) Imaging module
JP2002329850A (en) Chip size package and its manufacturing method
JP5718514B2 (en) Optical module, optical module mounting method, optical module mounting circuit board, optical module evaluation kit system, circuit board, and communication system
WO2018092347A1 (en) Imaging module and endoscope
WO2018198247A1 (en) Endoscope, image capturing module, and method for manufacturing image capturing module
JP6091296B2 (en) Imaging device, manufacturing method of imaging device, and imaging module
WO2017037828A1 (en) Endoscope, electronic unit, and electronic unit manufacturing method
JP4818750B2 (en) Imaging device
JP2015084378A (en) Electronic component, electronic apparatus, manufacturing method of mounting member, and manufacturing method of electronic component
JP2006245090A (en) Package for semiconductor and manufacturing method thereof
JP2019076358A (en) Image pickup module, endoscope, and method of manufacturing image pickup module
WO2019007412A1 (en) Encapsulation structure of image sensing chip, and encapsulation method therefor
JP6650958B2 (en) Electronic component, electronic module, and manufacturing method thereof
JP2007035779A (en) Leadless hollow package and its manufacturing method
JP2011066092A (en) Imaging unit
WO2012008072A1 (en) Solid-state image pickup device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201008

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220510