JP2019075336A - Method for manufacturing fuel cell separator - Google Patents

Method for manufacturing fuel cell separator Download PDF

Info

Publication number
JP2019075336A
JP2019075336A JP2017202085A JP2017202085A JP2019075336A JP 2019075336 A JP2019075336 A JP 2019075336A JP 2017202085 A JP2017202085 A JP 2017202085A JP 2017202085 A JP2017202085 A JP 2017202085A JP 2019075336 A JP2019075336 A JP 2019075336A
Authority
JP
Japan
Prior art keywords
metal plate
resin layer
resin
resin layers
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017202085A
Other languages
Japanese (ja)
Other versions
JP6812945B2 (en
Inventor
博之 川合
Hiroyuki Kawai
博之 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017202085A priority Critical patent/JP6812945B2/en
Publication of JP2019075336A publication Critical patent/JP2019075336A/en
Application granted granted Critical
Publication of JP6812945B2 publication Critical patent/JP6812945B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a method for manufacturing a fuel cell separator capable of promoting discharge of air bubbles from an inside of a resin layer.SOLUTION: A method for manufacturing a fuel cell separator includes the steps of: preparing a flat metal plate; forming a conductive and thermosetting resin layer on at least one surface of the metal plate; forming a channel groove in the resin layer by pressing the metal plate together with the resin layer; and heating the metal plate to harden the resin layer to a higher temperature than the resin layer after the pressing.SELECTED DRAWING: Figure 2

Description

本発明は、燃料電池用セパレータの製造方法に関する。   The present invention relates to a method of manufacturing a fuel cell separator.

燃料電池用セパレータとして、金属板の面上に導電性を有した樹脂層が形成されたものがある(例えば特許文献1参照)。   As a fuel cell separator, there is one in which a conductive resin layer is formed on the surface of a metal plate (see, for example, Patent Document 1).

特開2017−071219号公報JP, 2017-071219, A

このような燃料電池用セパレータは、例えば以下のようにして製造される。樹脂層が熱硬化性である場合には、平板状の金属板の面に樹脂層が形成され、金属板及び樹脂層がプレス加工により流路溝が形成された後に、加熱炉内で金属板と共に樹脂層が硬化される。このように加熱炉内で樹脂層が加熱されると、樹脂層は外表面から加熱されて硬化する。ここで、樹脂層が加熱されることにより、樹脂層内で気泡が発生する場合がある。上述のように樹脂層が外表面から硬化すると、気泡が樹脂層内から排出されないまま樹脂層が硬化する可能性がある。樹脂層内の気泡が残留したままになると、樹脂層の導通性や強度に影響を与える可能性がある。   Such a fuel cell separator is manufactured, for example, as follows. When the resin layer is thermosetting, the resin layer is formed on the surface of the flat metal plate, and after the metal plate and the resin layer are formed by pressing the channel groove, the metal plate is formed in the heating furnace. At the same time, the resin layer is cured. Thus, when the resin layer is heated in the heating furnace, the resin layer is heated from the outer surface and hardened. Here, air bubbles may be generated in the resin layer by heating the resin layer. As described above, when the resin layer is cured from the outer surface, the resin layer may be cured without the air bubbles being discharged from the inside of the resin layer. If bubbles remain in the resin layer, the conductivity and strength of the resin layer may be affected.

そこで本発明は、樹脂層内からの気泡の排出を促進できる燃料電池用セパレータの製造方法を提供することを目的とする。   Then, an object of this invention is to provide the manufacturing method of the separator for fuel cells which can accelerate | stimulate discharge of the bubble from the inside of a resin layer.

上記目的は、平板状の金属板を準備する工程と、前記金属板の少なくとも一方の面に、導電性及び熱硬化性を有した樹脂層を形成する工程と、前記金属板を前記樹脂層と共にプレス加工して前記樹脂層に流路溝を形成する工程と、前記プレス加工後に、前記樹脂層よりも高温となるように前記金属板を加熱して前記樹脂層を硬化させる工程と、を備えた燃料電池用セパレータの製造方法によって達成できる。   The above object is to prepare a flat metal plate, to form a conductive and thermosetting resin layer on at least one surface of the metal plate, and to combine the metal plate with the resin layer. Forming a channel groove in the resin layer by pressing; and heating the metal plate to harden the resin layer so that the temperature becomes higher than that of the resin layer after the pressing. This can be achieved by the method of manufacturing a fuel cell separator.

樹脂層内からの気泡の排出を促進できる燃料電池用セパレータの製造方法を提供できる。   The manufacturing method of the separator for fuel cells which can accelerate discharge of the air bubbles from the inside of a resin layer can be provided.

図1A〜図1Eは、燃料電池用セパレータの製造方法の説明図である。1A to 1E are explanatory views of a method of manufacturing a fuel cell separator. 図2は、硬化工程の実行中での金属板と樹脂層との部分拡大断面図である。FIG. 2 is a partially enlarged cross-sectional view of the metal plate and the resin layer during execution of the curing step.

図1A〜図1Eは、燃料電池用セパレータの製造方法の説明図である。尚、図1A〜図1Eにおいては、後述する金属板10、樹脂層20、及び30の断面図として示している。最初に、図1Aに示すように略平板状の金属板10を準備する。金属板10の材料は特に限定されないが、ステンレス、チタン、アルミニウム、鉄、銅などが使用できる。   1A to 1E are explanatory views of a method of manufacturing a fuel cell separator. In addition, in FIG. 1A-FIG. 1E, it has shown as sectional drawing of the metal plate 10, the resin layers 20, and 30 mentioned later. First, as shown in FIG. 1A, a substantially flat metal plate 10 is prepared. The material of the metal plate 10 is not particularly limited, but stainless steel, titanium, aluminum, iron, copper or the like can be used.

次に、図1Bに示すように塗布工程が実行され、金属板10の一方の面と他方の面とのそれぞれに樹脂を塗布して樹脂層20及び30を形成する。塗布の方法は、ディスペンサーにより塗布してもよいし、転写やスクリーン印刷により塗布してもよいし、その他の方法であってもよい。ここで、樹脂層20及び30は、共に導電性及び熱硬化性を有している。具体的には樹脂層20及び30は、熱硬化性樹脂にカーボンインクが混合されている。熱硬化性樹脂は、例えばフェノール樹脂又はエポキシ樹脂等である。熱硬化性樹脂中に、導電性を有したカーボンが混入されているため、樹脂層20及び30は導電性を有している。   Next, as shown in FIG. 1B, a coating process is performed to apply resin to each of the one surface and the other surface of the metal plate 10 to form the resin layers 20 and 30. The method of application may be application by a dispenser, application by transfer, screen printing, or any other method. Here, the resin layers 20 and 30 both have conductivity and thermosetting. Specifically, in the resin layers 20 and 30, carbon ink is mixed with thermosetting resin. The thermosetting resin is, for example, a phenol resin or an epoxy resin. The resin layers 20 and 30 have conductivity because carbon having conductivity is mixed in the thermosetting resin.

次に、図1Cに示すように乾燥工程が実行され、樹脂層20及び30内からカーボンインクの溶媒を除去するために、乾燥炉にて、およそ100度以下の温度で樹脂層20及び30を加熱する。これにより、溶媒の気化が促進されて、樹脂層20及び30内から溶媒を除去できる。尚、乾燥工程での加熱温度は、樹脂層20及び30の硬化温度未満であって溶媒が蒸発する温度以上であればよい。また、乾燥工程は、樹脂層20及び30としてフェノール樹脂を用いた場合にのみ必要となり、エポキシ樹脂を用いた場合には溶媒は不要となるため乾燥工程は不要である。但し、エポキシ樹脂を用いた場合には、以下のプレス工程の前に樹脂層20及び30をある程度硬化させるためのプレヒート加工が必要となる。   Next, a drying process is performed as shown in FIG. 1C, and in order to remove the solvent of the carbon ink from within the resin layers 20 and 30, the resin layers 20 and 30 are heated at a temperature of about 100.degree. Heat up. Thereby, the vaporization of the solvent is promoted, and the solvent can be removed from the resin layers 20 and 30. The heating temperature in the drying step may be lower than the curing temperature of the resin layers 20 and 30 and higher than the temperature at which the solvent evaporates. In addition, the drying step is necessary only when a phenol resin is used as the resin layers 20 and 30, and when an epoxy resin is used, a solvent is not necessary and thus the drying step is unnecessary. However, when an epoxy resin is used, it is necessary to preheat the resin layers 20 and 30 to some extent before the following pressing process.

次に、図1Dに示すようプレス工程が実行され、樹脂層20側に流路溝20Aが断続的に形成され、樹脂層30側に流路溝30Aが断続的に形成される。流路溝20A及び30Aは、図1Dの紙面に垂直な方向に延びており、これらは交互に平行に並ぶように形成される。また、流路溝20A及び30Aの形状に合わせて、金属板10が波形状に形成される。一般的に、流路溝20A及び30Aの一方側には、燃料電池の発電反応に用いられる反応ガスが流れ、他方側には燃料電池の冷媒が流れる。従って、流路溝20A及び30Aは、主に、膜電極接合体に対向する領域に形成されている。尚、プレス工程では、プレス工程後での流路溝20A及び20Bの形状を維持できるが樹脂層20及び30が硬化しない程度に、ホットプレスにより短時間だけ樹脂層20及び30は加熱される。   Next, as shown in FIG. 1D, the pressing step is performed, the flow passage grooves 20A are intermittently formed on the resin layer 20 side, and the flow passage grooves 30A are intermittently formed on the resin layer 30 side. The flow grooves 20A and 30A extend in the direction perpendicular to the paper surface of FIG. 1D, and they are formed to be alternately parallel. Further, the metal plate 10 is formed in a wave shape in accordance with the shape of the flow path grooves 20A and 30A. Generally, the reaction gas used for the power generation reaction of the fuel cell flows to one side of the flow grooves 20A and 30A, and the refrigerant of the fuel cell flows to the other side. Therefore, the flow grooves 20A and 30A are mainly formed in the region facing the membrane electrode assembly. In the pressing step, the shapes of the flow path grooves 20A and 20B after the pressing step can be maintained, but the resin layers 20 and 30 are heated for a short time by hot pressing to such an extent that the resin layers 20 and 30 are not cured.

次に、図1Eに示すように硬化工程が実行され、樹脂層20及び30よりも高温となるように金属板10を加熱して樹脂層20及び30を硬化させる。例えば、金属板10を加熱する方法として、通電加熱、誘導加熱、及び直接加熱が考えられる。通電加熱は、金属板10を通電することにより加熱する。誘導加熱は、電磁現象を利用して金属板10を加熱する。直接加熱は、金属板10にヒータを直接接触させる、又は熱風を当てて加熱する。これにより樹脂層20及び30が硬化する。具体的には、金属板10の外縁部は、樹脂層20及び30から露出しているため、この部分から金属板10を通電させたり加熱することができる。   Next, as shown in FIG. 1E, a curing process is performed to heat the metal plate 10 so that the temperature is higher than that of the resin layers 20 and 30, and cure the resin layers 20 and 30. For example, as a method of heating the metal plate 10, electric heating, induction heating, and direct heating can be considered. The electric conduction heating is performed by energizing the metal plate 10. Induction heating heats the metal plate 10 using an electromagnetic phenomenon. In direct heating, the heater is brought into direct contact with the metal plate 10 or heated with hot air. Thereby, the resin layers 20 and 30 are cured. Specifically, since the outer edge portion of the metal plate 10 is exposed from the resin layers 20 and 30, the metal plate 10 can be energized or heated from this portion.

その後に、マニホールド用の孔を形成するために金属板10と樹脂層20及び30とが共に抜き打ち加工されることにより、燃料電池用セパレータが製造される。   Thereafter, the metal plate 10 and the resin layers 20 and 30 are punched and punched together to form a hole for a manifold, whereby a fuel cell separator is manufactured.

図2は、硬化工程の実行中での金属板10と樹脂層20及び30との部分拡大断面図である。図2に示すように、硬化工程の実行中に、樹脂層20及び30内で気泡Bが発生する場合がある。気泡Bが発生する理由は以下のとおりである。樹脂層20及び30の材料である熱硬化性樹脂は、硬化時に縮合反応することにより水が生成され、この水が加熱されて気化することにより、樹脂層20及び30内で気泡Bが発生する場合がある。また、上述した乾燥工程において溶媒を十分に除去できていない場合には、この溶媒が硬化工程で加熱されて樹脂層20及び30内で気泡Bが発生する場合がある。   FIG. 2 is a partially enlarged cross-sectional view of the metal plate 10 and the resin layers 20 and 30 during execution of the curing process. As shown in FIG. 2, bubbles B may be generated in the resin layers 20 and 30 during the curing process. The reason why the bubble B is generated is as follows. The thermosetting resin which is a material of the resin layers 20 and 30 generates water by condensation reaction at the time of curing, and the water is heated and vaporized to generate bubbles B in the resin layers 20 and 30. There is a case. In addition, when the solvent can not be sufficiently removed in the above-described drying step, the solvent may be heated in the curing step and bubbles B may be generated in the resin layers 20 and 30.

ここで、例えば本実施例での硬化工程とは異なり、例えば金属板10と樹脂層20及び30とを加熱炉内で加熱することにより、樹脂層20及び30を硬化させることも考えられる。しかしながらこの場合、樹脂層20及び30の外表面から硬化が進行する。このため、樹脂層20及び30内で発生した気泡Bが、硬化を開始した樹脂層20及び30の外表面から排出されず、気泡Bが残留したまま樹脂層20及び30が完全に硬化する可能性がある。気泡Bが残留したまま樹脂層20及び30が硬化すると、樹脂層20及び30の強度の低下や、樹脂層20及び30の電気抵抗値の増大、金属板10の耐食性の低下が生じる可能性がある。   Here, it is also conceivable to cure the resin layers 20 and 30 by, for example, heating the metal plate 10 and the resin layers 20 and 30 in a heating furnace, unlike the curing process in the present embodiment, for example. However, in this case, curing proceeds from the outer surfaces of the resin layers 20 and 30. Therefore, the air bubbles B generated in the resin layers 20 and 30 are not discharged from the outer surfaces of the resin layers 20 and 30 that have started curing, and the resin layers 20 and 30 can be completely cured while the air bubbles B remain. There is sex. If the resin layers 20 and 30 are cured while the air bubble B remains, the strength of the resin layers 20 and 30 may decrease, the electrical resistance of the resin layers 20 and 30 may increase, and the corrosion resistance of the metal plate 10 may decrease. is there.

これに対して本実施例では、上述したように樹脂層20及び30よりも高温となるように金属板10を加熱することにより、樹脂層20及び30を硬化させる。これにより、樹脂層20及び30は、金属板10に接触する内面から硬化が進行する。このため、樹脂層20及び30の外表面が硬化する前に、樹脂層20及び30内からの気泡Bの排出が促進される。これにより、樹脂層20及び30の強度の低下を抑制でき、樹脂層20及び30の電気抵抗値の増大を抑制でき、金属板10の耐食性の低下も抑制できる。   On the other hand, in the present embodiment, as described above, the resin layers 20 and 30 are cured by heating the metal plate 10 so that the temperature is higher than that of the resin layers 20 and 30. Thereby, the resin layers 20 and 30 proceed with the hardening from the inner surface in contact with the metal plate 10. For this reason, before the outer surfaces of the resin layers 20 and 30 are cured, the discharge of the air bubbles B from inside the resin layers 20 and 30 is promoted. Thereby, the fall of the intensity | strength of the resin layers 20 and 30 can be suppressed, the increase in the electrical resistance value of the resin layers 20 and 30 can be suppressed, and the fall of the corrosion resistance of the metal plate 10 can also be suppressed.

尚、熱硬化性樹脂の硬化による収縮によって樹脂層20及び30内からの気泡Bの排出が促進されるため、図2に示すように、樹脂層30が鉛直下方側に位置した姿勢であっても、樹脂層30内から気泡Bの排出が促進される。   In addition, since the discharge of the air bubbles B from inside of the resin layers 20 and 30 is promoted by the shrinkage due to the hardening of the thermosetting resin, as shown in FIG. Also, the discharge of the air bubbles B from the inside of the resin layer 30 is promoted.

上記実施例では、金属板10の全面に亘って導電性を有した樹脂層20及び30を形成したが、これに限定されない。例えば、膜電極接合体に重なる領域、即ち発電領域に重なる領域のみに導電性を有した樹脂層20及び30を塗布し、それ以外の領域には、導電性を有していない熱硬化性樹脂を塗布してもよい。導電性を有していない熱硬化性樹脂では、上述したようにカーボンインクなどの導電性粒子を含有していないため、金属板10の耐食性の確保や、ガスシール性を確保することができる。例えば図1Dの例では、流路溝20A及び30Aが形成されていない領域に、上述した樹脂層20及び30の代わりに、導電性を有していない熱硬化性樹脂を塗布してもよい。   Although the resin layers 20 and 30 having conductivity are formed over the entire surface of the metal plate 10 in the above embodiment, the present invention is not limited to this. For example, the resin layers 20 and 30 having conductivity are applied only to the region overlapping the membrane electrode assembly, that is, the region overlapping the power generation region, and a thermosetting resin having no conductivity in the other regions. May be applied. Since the thermosetting resin having no conductivity does not contain conductive particles such as carbon ink as described above, it is possible to ensure the corrosion resistance of the metal plate 10 and the gas sealability. For example, in the example of FIG. 1D, instead of the resin layers 20 and 30 described above, a thermosetting resin having no conductivity may be applied to the regions where the flow grooves 20A and 30A are not formed.

上記実施例では金属板10の一方の面及び他方の面のそれぞれに樹脂層20及び30が形成される場合を例に示したが、これに限定されず、少なくとも一方の面に樹脂層が設けられていてもよい。   Although the case where the resin layers 20 and 30 are formed on each of the one surface and the other surface of the metal plate 10 is described in the above embodiment, the present invention is not limited thereto, and the resin layer is provided on at least one surface. It may be done.

以上本発明の好ましい実施形態について詳述したが、本発明は係る特定の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形、変更が可能である。   Although the preferred embodiments of the present invention have been described in detail, the present invention is not limited to the specific embodiments, and various modifications may be made within the scope of the subject matter of the present invention described in the claims. Changes are possible.

10 金属板
20、30 樹脂層
B 気泡
10 metal plate 20, 30 resin layer B bubbles

Claims (1)

平板状の金属板を準備する工程と、
前記金属板の少なくとも一方の面に、導電性及び熱硬化性を有した樹脂層を形成する工程と、
前記金属板を前記樹脂層と共にプレス加工して前記樹脂層に流路溝を形成する工程と、
前記プレス加工後に、前記樹脂層よりも高温となるように前記金属板を加熱して前記樹脂層を硬化させる工程と、
を備えた燃料電池用セパレータの製造方法。
Preparing a flat metal plate;
Forming a conductive and thermosetting resin layer on at least one surface of the metal plate;
Forming a channel groove in the resin layer by pressing the metal plate together with the resin layer;
Heating the metal plate to harden the resin layer to a higher temperature than the resin layer after the pressing;
Method of producing a fuel cell separator comprising:
JP2017202085A 2017-10-18 2017-10-18 Manufacturing method of separator for fuel cell Active JP6812945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017202085A JP6812945B2 (en) 2017-10-18 2017-10-18 Manufacturing method of separator for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017202085A JP6812945B2 (en) 2017-10-18 2017-10-18 Manufacturing method of separator for fuel cell

Publications (2)

Publication Number Publication Date
JP2019075336A true JP2019075336A (en) 2019-05-16
JP6812945B2 JP6812945B2 (en) 2021-01-13

Family

ID=66544260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017202085A Active JP6812945B2 (en) 2017-10-18 2017-10-18 Manufacturing method of separator for fuel cell

Country Status (1)

Country Link
JP (1) JP6812945B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077527A (en) * 2019-11-11 2021-05-20 トヨタ車体株式会社 Fuel cell separator, manufacturing method of fuel cell separator, and manufacturing method of thermal transfer sheet

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314785A (en) * 1996-05-27 1997-12-09 Matsushita Electric Works Ltd Manufacture of laminated plate with metal foil and apparatus therefor
JP2002094214A (en) * 2000-09-13 2002-03-29 Sato Shoji Corp Substrate manufacturing method, device and single-sided insulating sheet used for the manufacturing method
JP2006134644A (en) * 2004-11-04 2006-05-25 Nissan Motor Co Ltd Assembling method of fuel cell
JP2006302741A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Method and device for manufacturing fuel cell
JP2007157387A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Manufacturing method of fuel battery and fuel battery
JP2010251305A (en) * 2009-03-25 2010-11-04 Toppan Printing Co Ltd Manufacturing method of separator for fuel cell
JP2011204425A (en) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd Separator for fuel cell, and method for manufacturing the same
JP2013187036A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Device and method for manufacturing member for fuel cell
JP2015095314A (en) * 2013-11-11 2015-05-18 株式会社神戸製鋼所 Method for manufacturing titanium fuel cell separator
WO2015178432A1 (en) * 2014-05-21 2015-11-26 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09314785A (en) * 1996-05-27 1997-12-09 Matsushita Electric Works Ltd Manufacture of laminated plate with metal foil and apparatus therefor
JP2002094214A (en) * 2000-09-13 2002-03-29 Sato Shoji Corp Substrate manufacturing method, device and single-sided insulating sheet used for the manufacturing method
JP2006134644A (en) * 2004-11-04 2006-05-25 Nissan Motor Co Ltd Assembling method of fuel cell
JP2006302741A (en) * 2005-04-22 2006-11-02 Toyota Motor Corp Method and device for manufacturing fuel cell
JP2007157387A (en) * 2005-12-01 2007-06-21 Toyota Motor Corp Manufacturing method of fuel battery and fuel battery
JP2010251305A (en) * 2009-03-25 2010-11-04 Toppan Printing Co Ltd Manufacturing method of separator for fuel cell
JP2011204425A (en) * 2010-03-25 2011-10-13 Toppan Printing Co Ltd Separator for fuel cell, and method for manufacturing the same
JP2013187036A (en) * 2012-03-08 2013-09-19 Toyota Motor Corp Device and method for manufacturing member for fuel cell
JP2015095314A (en) * 2013-11-11 2015-05-18 株式会社神戸製鋼所 Method for manufacturing titanium fuel cell separator
WO2015178432A1 (en) * 2014-05-21 2015-11-26 日産自動車株式会社 Fuel cell manufacturing method and fuel cell manufacturing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021077527A (en) * 2019-11-11 2021-05-20 トヨタ車体株式会社 Fuel cell separator, manufacturing method of fuel cell separator, and manufacturing method of thermal transfer sheet
WO2021095312A1 (en) * 2019-11-11 2021-05-20 トヨタ車体株式会社 Separator for fuel cells, method for producing separator for fuel cells, and method for producing sheet for thermal transfer
JP7247864B2 (en) 2019-11-11 2023-03-29 トヨタ車体株式会社 Separator for fuel cell, method for producing separator for fuel cell, and method for producing thermal transfer sheet

Also Published As

Publication number Publication date
JP6812945B2 (en) 2021-01-13

Similar Documents

Publication Publication Date Title
US10608223B2 (en) Method for manufacturing separator for fuel cell
WO2015008838A1 (en) Fuel cell separator and production method for fuel cell separator
KR20100068593A (en) Method for laminating copper layer on seramic board
JP6559136B2 (en) Insulating sheet
KR101837762B1 (en) Manufacturing method of fuel cell separator
JP2007172929A5 (en)
JP2019075336A (en) Method for manufacturing fuel cell separator
Ma et al. Breaking the Rate‐Integrity Dilemma in Large‐Area Bubbling Transfer of Graphene by Strain Engineering
WO1999012737A1 (en) Thermal bonding method and apparatus
JP5330060B2 (en) Manufacturing method of membrane electrode assembly
JP2011189402A (en) Resistance heating method of metal sheet
KR101031230B1 (en) Copper clad laminate manufacturing method
US20200343028A1 (en) Method for manufacturing resistor
JP2006134644A (en) Assembling method of fuel cell
JP2016082108A (en) Circuit board with heat sink, and manufacturing method of circuit board with heat sink
CN1836147A (en) Heat radiating member, device using the heat radiating member, casing, computer support stand, and radiating member manufacturing method
JP2008293721A (en) Method of manufacturing electrolyte membrane-electrode assembly
CN105304504A (en) Manufacturing method for substrate used for semiconductor device
JP2007224208A (en) Fluorine rubber sheet and planar heater using fluorine rubber sheet and method for producing the same heater
JP2009289850A (en) Method of manufacturing metal core-containing multilayer substrate
JP2015201254A (en) Manufacturing method of catalyst layer for fuel cell
JP6889029B2 (en) Heater unit and its manufacturing method
CN202074857U (en) Helical divergent high radiator
JP2014141002A (en) Method for molding structural member made by fiber-reinforced composite material
CN107994240A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201130

R151 Written notification of patent or utility model registration

Ref document number: 6812945

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151