JP2019074742A - Optical member, light source device, and irradiation system - Google Patents

Optical member, light source device, and irradiation system Download PDF

Info

Publication number
JP2019074742A
JP2019074742A JP2018223967A JP2018223967A JP2019074742A JP 2019074742 A JP2019074742 A JP 2019074742A JP 2018223967 A JP2018223967 A JP 2018223967A JP 2018223967 A JP2018223967 A JP 2018223967A JP 2019074742 A JP2019074742 A JP 2019074742A
Authority
JP
Japan
Prior art keywords
light
light source
source device
lens
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018223967A
Other languages
Japanese (ja)
Other versions
JP2019074742A5 (en
JP7048897B2 (en
Inventor
廣司 藤森
Koji Fujimori
廣司 藤森
晃由 若藤
Akiyoshi Wakafuji
晃由 若藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Publication of JP2019074742A publication Critical patent/JP2019074742A/en
Publication of JP2019074742A5 publication Critical patent/JP2019074742A5/ja
Application granted granted Critical
Publication of JP7048897B2 publication Critical patent/JP7048897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Lenses (AREA)

Abstract

To provide an optical member that can obtain a rectangular irradiation area of uniform illuminance on an irradiated surface obliquely arranged with respect to an optical axis of emission light when irradiating the irradiated surface with light, and to provide a light source device that includes the optical member, as well as to provide an irradiation system that includes the light source device.SOLUTION: In a fly-eye lens, one lens has a curve surface having a curvature in a first direction (an X-axis) and a second direction (a Y-axis) orthogonal to each other on a virtual plane surface orthogonal to an optical axis (a Z-axis) of incidence light. When viewing from an optical axis direction, a plane surface shape includes at least one approximately rectangular lens surface 2 surrounded with approximately parallel two sides in the first direction and approximately parallel two sides in the second direction, in which curvature in the second direction becomes continuously larger from one end part 4 in the first direction of the lens surface 2 toward the other end part 6 therein.SELECTED DRAWING: Figure 2

Description

本発明は、被照射面に光を照射するための光学部材、この光学部材を備えた光源装置及びこの光源装置を備えた照射システムに関する。   The present invention relates to an optical member for irradiating light to a surface to be irradiated, a light source device including the optical member, and an irradiation system including the light source device.

被照射面に光の照射を行う光源装置が、看板や道路の照明または投写型の表示装置等に用いられている。その中でも、被照射面に長方形の照射領域を得るため、複数のレンズ面がマトリックス状に配置されたフライアイレンズを用いた光源装置がある。更に、正面照射時の照射領域内の照度を均一にするため、フライアイレンズを構成する各レンズ面(セル)の中心を幅方向の中心から偏芯させた光源装置を備えた投影型表示装置が提案されている(例えば、特許文献1参照)。   A light source device that irradiates light to a surface to be irradiated is used for a signboard, illumination of a road, a projection type display device, or the like. Among them, there is a light source device using a fly's-eye lens in which a plurality of lens surfaces are arranged in a matrix in order to obtain a rectangular irradiation area on a surface to be irradiated. Furthermore, in order to make the illumination intensity in the irradiation area at the time of front illumination uniform, a projection type display apparatus provided with a light source device in which the center of each lens surface (cell) constituting the fly's eye lens is eccentric from the center in the width direction Has been proposed (see, for example, Patent Document 1).

特開2001−83603号公報JP, 2001-83603, A

特許文献1に記載の光源装置では、各レンズ面の中心を幅方向の中心から偏芯させることで各レンズ面の間の面弛れを防いで、照射領域の照度を均一にしている。しかし、正面照射ではなく、出射された光の光軸に対して斜めに配置された被照射面に光を照射する場合には、被照射面における照射領域は長方形ではなく台形の形状となり、光源装置に近い側が明るく遠い側が暗くなって、被照射面の照度は均一でなくなる。よって、光軸に対して斜めに配置された被照射面を照明するのには適さない。   In the light source device described in Patent Document 1, the center of each lens surface is decentered from the center in the width direction to prevent surface slack between the lens surfaces, thereby making the illuminance of the irradiation area uniform. However, in the case of irradiating light to the surface to be irradiated that is disposed obliquely with respect to the optical axis of the emitted light instead of frontal irradiation, the irradiation area on the surface to be irradiated is not rectangular but trapezoidal in shape. The side closer to the device is brighter and the side farther away is darker, and the illuminance on the illuminated surface is not uniform. Therefore, it is not suitable for illuminating the surface to be illuminated that is disposed obliquely to the optical axis.

本発明は、上記問題に鑑みてなされたものであり、出射光の光軸に対して斜めに配置された被照射面に光を照射する場合に、被照射面に長方形の均一な照度の照射領域を得ることができる光学部材、この光学部材を備えた光源装置及びこの光源装置を備えた照射システムを提供することを目的とする。   The present invention has been made in view of the above problems, and in the case of irradiating light onto a surface to be irradiated that is disposed obliquely to the optical axis of the emitted light, the irradiation of rectangular uniform illuminance to the surface to be irradiated An object is to provide an optical member capable of obtaining an area, a light source device including the optical member, and an illumination system including the light source device.

上記課題を解決するために、本発明の一態様に係る光学部材は、入射光の光軸に直交する仮想平面上の互いに直交する第1の方向及び第2の方向に曲率を有する曲面を有し、前記光軸方向から見た平面形状が、前記第1の方向に略平行な2つの辺及び前記第2の方向に略平行な2つの辺で囲まれた略長方形のレンズ面を少なくとも1つ備え、前記レンズ面の前記第1の方向の一方の端部から他方の端部へ向かって、前記第2の方向における曲率が連続的に大きくなっている。   In order to solve the above-mentioned subject, an optical member concerning one mode of the present invention has a curved surface which has a curvature in the 1st direction and the 2nd direction which intersect mutually perpendicularly on an imaginary plane which intersects perpendicularly with an optical axis of incident light. The planar shape viewed from the optical axis direction is at least one lens surface of a substantially rectangular shape surrounded by two sides substantially parallel to the first direction and two sides substantially parallel to the second direction. The curvature in the second direction is continuously increased from one end of the lens surface in the first direction to the other end of the lens surface.

本発明の一態様に係る光源装置は、上記の光学部材と、前記光学部材へ平行光を入射する光源と、を備える。   A light source device according to an aspect of the present invention includes the above-described optical member, and a light source that makes parallel light incident on the optical member.

本発明の一態様に係る照射システムは、上記の光源装置と、前記光源装置により照射される被照射面と、を備え、前記被照射面が、前記光源装置の出射光と直交する仮想平面に対して、前記第1の方向の前記一方の端部側が前記光源装置に近く、前記他方の端部側が前記光源装置から遠くなるように傾斜して配置されている。   An irradiation system according to an aspect of the present invention includes the light source device described above and an irradiated surface irradiated by the light source device, and the irradiated surface is a virtual plane orthogonal to the light emitted from the light source device. In contrast, the one end side in the first direction is disposed so as to be close to the light source device and the other end side is inclined so as to be far from the light source device.

上記の態様によれば、出射光の光軸に対して斜めに配置された被照射面に光を照射する場合に、被照射面に長方形の均一な照度の照射領域を得ることができる。   According to said aspect, when irradiating light to the to-be-irradiated surface arrange | positioned diagonally with respect to the optical axis of emitted light, the irradiation area | region of rectangular uniform illumination intensity can be obtained to a to-be-irradiated surface.

本発明の1つの実施形態に係るフライアイレンズ及びフライアイレンズを構成するレンズ面を模式的に示す平面図である。It is a top view which shows typically the lens surface which constitutes the fly eye lens concerning one embodiment of the present invention, and a fly eye lens. 図1に示すレンズ面の詳細を示す斜視図である。It is a perspective view which shows the detail of the lens surface shown in FIG. 図1に示すフライアイレンズを備えた光源装置が被照射面に光を照射する場合を模式的に示す図である。It is a figure which shows typically the case where the light source device provided with the fly's-eye lens shown in FIG. 1 irradiates light to a to-be-irradiated surface. 図1に示すフライアイレンズを備えた光源装置において、出射光の光軸に対して垂直に配置された被照射面に光を照射する場合の照射領域の形状を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the shape of an irradiation area in the case where light is irradiated to a surface to be irradiated, which is disposed perpendicularly to the optical axis of emission light, in the light source device including the fly's eye lens shown in FIG. . 図1に示すフライアイレンズを備えた光源装置において、出射光の光軸に対して斜めに配置された被照射面に光を照射する場合の照射領域の形状を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the shape of an irradiation area in the case where light is irradiated to a surface to be irradiated that is disposed obliquely to the optical axis of emission light in the light source device provided with the fly's eye lens shown in FIG. . フライアイレンズから照射半角度αの光で被照射面に光を照射する場合を、X−Z平面上に示す模式図である。It is a schematic diagram which shows the case where light is irradiated to a to-be-irradiated surface by the light of irradiation half angle (alpha) from a fly-eye lens on XZ plane. 図3に示す光源装置を備えた1つの実施形態に係る照射システムを模式的に示す斜視図である。It is a perspective view which shows typically the irradiation system which concerns on one Embodiment provided with the light source device shown in FIG. 図6Aの矢視C−Cの側面図である。It is a side view of arrow CC of FIG. 6A. 図3に示す光源装置を備えたその他の実施形態に係る照射システムを模式的に示す斜視図である。It is a perspective view which shows typically the irradiation system which concerns on other embodiment provided with the light source device shown in FIG. 図7Aの矢視E−Eの側面図である。It is a side view of arrow E of FIG. 7A. 従来の光源装置において、出射光の光軸に対して垂直に配置された被照射面に光を照射する場合の照射領域の形状を模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing the shape of an irradiation area in the case where light is irradiated to the surface to be irradiated, which is disposed perpendicularly to the optical axis of the emitted light, in the conventional light source device. 従来の光源装置において、出射光の光軸に対して斜めに配置された被照射面に光を照射する場合の照射領域の形状を模式的に示す斜視図である。FIG. 13 is a perspective view schematically showing the shape of an irradiation area in the case where light is irradiated to a surface to be irradiated that is disposed obliquely to the optical axis of emitted light in a conventional light source device.

以下、本発明に係る実施形態について、図面を参照しながら説明する。
(本発明の1つの実施形態に係る光学部材)
はじめに、図1及び図2を参照ながら、本発明の1つの実施形態に係る光学部材の説明を行う。ここでは、光学部材として、複数のレンズ面がマトリックス状に配置されたフライアイレンズの場合を例にとって説明する。図1は、本発明の1つの実施形態に係るフライアイレンズ10及びフライアイレンズ10を構成するレンズ面2を示す平面図である。図2は、図1に示すレンズ面2の詳細を示す斜視図である。
Hereinafter, embodiments according to the present invention will be described with reference to the drawings.
(Optical member according to one embodiment of the present invention)
First, an optical member according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2. Here, as an optical member, a case of a fly eye lens in which a plurality of lens surfaces are arranged in a matrix will be described as an example. FIG. 1 is a plan view showing a fly-eye lens 10 and a lens surface 2 constituting the fly-eye lens 10 according to an embodiment of the present invention. FIG. 2 is a perspective view showing details of the lens surface 2 shown in FIG.

本実施形態に係るフライアイレンズ10では、図1の左側の図に示すように、複数のレンズ面2がマトリックス状に配置されている。各レンズ面2は、同じ向きに揃えられている。図1に示す場合には、全てのレンズ面2が図面手前側に凸となるように揃えられている。
図1の右側の図では、フライアイレンズ10を構成する1つのレンズ面2を拡大して示す。図2の斜視図では、フライアイレンズ10から1つのレンズ面2を有する部分を切り出した形で示している。
In the fly's-eye lens 10 according to the present embodiment, as shown in the left side of FIG. 1, a plurality of lens surfaces 2 are arranged in a matrix. Each lens surface 2 is aligned in the same direction. In the case shown in FIG. 1, all the lens surfaces 2 are aligned so as to be convex on the front side of the drawing.
In the right side of FIG. 1, one lens surface 2 constituting the fly's eye lens 10 is shown enlarged. In the perspective view of FIG. 2, a portion having one lens surface 2 is shown cut out from the fly-eye lens 10.

全ての図面において、光源から入射する光軸の方向をZ軸方向とする。入射光の光軸(Z軸方向)に直交する仮想平面上の互いに直交する方向のうち、第1の方向をX軸方向、第2の方向をY軸方向とする。また、光源やフライアイレンズから出射された光を、点線の矢印で模式的に示す。
図1に示すように、レンズ面2は、光軸方向から見た平面形状が、第1の方向(X軸方向)に略平行な2つの辺及び第2の方向(Y軸方向)に略平行な2つの辺で囲まれた略長方形を有する。なお、ここで示す長方形には正方形も含まれる。
In all the drawings, the direction of the optical axis incident from the light source is taken as the Z-axis direction. Of the directions orthogonal to each other on a virtual plane orthogonal to the optical axis (Z-axis direction) of incident light, the first direction is the X-axis direction, and the second direction is the Y-axis direction. Further, light emitted from the light source and the fly's eye lens is schematically shown by dotted arrows.
As shown in FIG. 1, in the lens surface 2, the planar shape viewed from the optical axis direction is substantially in two sides substantially parallel to the first direction (X-axis direction) and the second direction (Y-axis direction) It has a substantially rectangular shape surrounded by two parallel sides. The rectangles shown here also include squares.

図2から明らかなように、レンズ面2は、第1の方向(X軸方向)及び第2の方向(Y軸方向)に曲率を有する。レンズ面の第1の方向(X軸方向)の一方の端部4から他方の端部6へ向かって、第2の方向(Y軸方向)における曲率が連続的に大きくなっている。別の言い方をすれば、レンズ面の第1の方向(X軸方向)の一方の端部4から他方の端部6へ向かって、第2の方向(Y軸方向)における曲率半径Ryzが連続的に小さくなっている。   As apparent from FIG. 2, the lens surface 2 has curvatures in the first direction (X-axis direction) and the second direction (Y-axis direction). The curvature in the second direction (Y-axis direction) continuously increases from one end 4 to the other end 6 in the first direction (X-axis direction) of the lens surface. In other words, the radius of curvature Ryz in the second direction (Y-axis direction) is continuous from one end 4 to the other end 6 in the first direction (X-axis direction) of the lens surface Is getting smaller.

つまり、一方の端部4における曲率半径をRyz1とし、他方の端部6における曲率半径をRyz2とし、X軸方向における両端部4、6の間の任意の位置の曲率半径をRyzとすると、
Ryz1 > Ryz > Ryz2
の関係を有する。
That is, assuming that the radius of curvature at one end 4 is Ryz1, the radius of curvature at the other end 6 is Ryz2, and the radius of curvature at an arbitrary position between both ends 4 and 6 in the X-axis direction is Ryz.
Ryz1>Ryz> Ryz2
Have a relationship of

本実施形態では、曲率半径Ryzは、一方の端部4からの距離に比例して小さくなるようになっている。つまり、一方の端部4及び他方の端部6の間の距離をLとした場合、一方の端部4からの距離をxとすると、
Ryz=(Ryz1−Ryz2)/L×x
となる。
In the present embodiment, the radius of curvature Ryz decreases in proportion to the distance from the one end 4. That is, when the distance between one end 4 and the other end 6 is L, the distance from one end 4 is x,
Ryz = (Ryz1-Ryz2) / L × x
It becomes.

ただし、これに限られるものではなく、曲率半径Ryzの値は、連続的に変化するものであれば、一方の端部4からの距離xを変数とする任意の関数を用いることができる。その場合、
Ryz=f(x)と表すことができる。
また、第1の方向(X軸方向)の任意の位置での第2の方向(Y軸方向)における曲率半径Ryz(=f(x))が定まると、第2の方向(Y軸方向)の任意の位置での第1の方向(X軸方向)における曲率半径Rxzが一意的に定まる。
However, the present invention is not limited to this, and as long as the value of the curvature radius Ryz changes continuously, any function using the distance x from one end 4 as a variable can be used. In that case,
It can be expressed as Ryz = f (x).
In addition, if the curvature radius Ryz (= f (x)) in the second direction (Y-axis direction) at an arbitrary position in the first direction (X-axis direction) is determined, the second direction (Y-axis direction) The radius of curvature Rxz in the first direction (the X-axis direction) at any position of is uniquely determined.

本実施形態では、一方の端部4において、第2の方向(Y軸方向)における曲率(曲率半径Ryz1)で楕円形の曲線の一部が形成され、他方の端部6において、第2の方向(Y軸方向)における曲率(曲率半径Ryz2)で円形の曲線の一部が形成される。これに応じて、第1の方向(X軸方向)における曲率(曲率半径Rxz)でスプライン曲線またはベジエ曲線が形成される。   In the present embodiment, at one end 4, a part of an elliptic curve is formed with the curvature (curvature radius Ryz 1) in the second direction (Y-axis direction), and at the other end 6, the second A part of a circular curve is formed with the curvature (curvature radius Ryz2) in the direction (Y-axis direction). Accordingly, a spline curve or Bezier curve is formed with the curvature (curvature radius Rxz) in the first direction (X-axis direction).

このとき、第2の方向(Y軸方向)の任意の位置における第1の方向(X軸方向)の曲率半径を、Rxzとすると、
Ryz1 > Rxz> Ryz2
の関係を有するようにすることもできる。
At this time, assuming that the curvature radius in the first direction (X-axis direction) at an arbitrary position in the second direction (Y-axis direction) is Rxz,
Ryz1>Rxz> Ryz2
It can also be made to have a relationship of

図1に示すフライアイレンズ10では、図2に示すレンズ面2を有する部分がマトリック状に配置されて一体成形されているので、例えば、X軸方向において、一方の端部4が、隣接するレンズ面2を有する部分の他方の端部6と接するように一体成形されている。
本実施形態では、複数のレンズ面2がマトリックス状に配置されたフライアイレンズ10を例にとって説明したが、それに限られるものではなく、図2に示すような1つのレンズ面2だけを有する光学部材を用いる場合もあり得る。
In the fly's eye lens 10 shown in FIG. 1, since the portion having the lens surface 2 shown in FIG. 2 is arranged in a matrix and integrally molded, for example, one end 4 is adjacent in the X-axis direction It is integrally molded to be in contact with the other end 6 of the portion having the lens surface 2.
In the present embodiment, the fly's eye lens 10 in which the plurality of lens surfaces 2 are arranged in a matrix is described as an example, but the present invention is not limited thereto, and an optical having only one lens surface 2 as shown in FIG. In some cases, a member may be used.

(本発明の1つの実施形態に係る光源装置)
次に、図3、図4A及び図4Bを参照ながら、本発明の1つの実施形態に係る光源装置の説明を行う。図3は、図1に示すフライアイレンズ10を備えた光源装置40が被照射面32A、32Bに照射する場合を模式的に示す図である。図4Aは、図1に示すフライアイレンズ10を備えた光源装置40において、出射光の光軸に対して垂直に配置された被照射面32Aに照射する場合の照射領域34Aの形状を模式的に示す斜視図であり、図4Bは、出射光の光軸に対して斜めに配置された被照射面32Bに照射する場合の照射領域34Bの形状を模式的に示す斜視図である。なお図4A及び図4Bには、光源装置40に備えられたフライアイレンズ10、及び被照射面32A、Bだけが示されている。
(Light source device according to one embodiment of the present invention)
Next, a light source device according to an embodiment of the present invention will be described with reference to FIGS. 3, 4A and 4B. FIG. 3 is a view schematically showing the case where the light source device 40 provided with the fly's eye lens 10 shown in FIG. 1 irradiates the surfaces 32A and 32B. FIG. 4A schematically shows the shape of the irradiation area 34A in the case of irradiating the light receiving surface 32A disposed perpendicularly to the optical axis of the emitted light in the light source device 40 provided with the fly's eye lens 10 shown in FIG. FIG. 4B is a perspective view schematically showing the shape of the irradiation region 34B in the case of irradiating the irradiation surface 32B disposed obliquely to the optical axis of the emitted light. 4A and 4B show only the fly eye lens 10 provided in the light source device 40 and the surfaces 32A and 32B to be irradiated.

本実施形態に係る光源装置40は、フライアイレンズ10と、フライアイレンズ10に平行光を入射する光源20とを備える。光源20として、例えば発光ダイオード(LED)を例示することができる。また、フライアイレンズ10に平行光を入射するため、発光ダイオード(LED)の出射側にコリメートレンズを備えた光源装置を用いることが好ましい。   The light source device 40 according to the present embodiment includes a fly's eye lens 10 and a light source 20 that makes parallel light incident on the fly's eye lens 10. For example, a light emitting diode (LED) can be exemplified as the light source 20. Moreover, in order to make parallel light enter into the fly's eye lens 10, it is preferable to use a light source device provided with a collimating lens on the emission side of the light emitting diode (LED).

後述するように、フライアイレンズ10のレンズ面から、ある程度の照射半角度を有する光を出射する場合、光が広がって出射される発光ダイオード(LED)を用いることが好ましいが、用途によっては、光の指向性の強いレーザダイオード(LD)を用いることもできる。更に、レーザダイオード(LD)に光を広げるための反射面や光学部材を組み合わせた光源を用いることもできる。   As described later, it is preferable to use a light emitting diode (LED) from which light is spread and emitted when emitting light having a certain irradiation half angle from the lens surface of the fly eye lens 10, depending on the application A highly directional laser diode (LD) can also be used. Furthermore, it is also possible to use a light source in which a reflecting surface for spreading light to a laser diode (LD) and an optical member are combined.

図3において、光源20からフライアイレンズ10に平行光が入射され、フライアイレンズ10のレンズ面から広がりのある光が出射され、被照射面に照射される。フライアイレンズ10のレンズ面は、光源20側に配置される場合も、その反対側の出射側に配置される場合もあり得る。レンズ面と反対側に配置される面は、平面であることが好ましいが、これに限るものではない。また、フライアイレンズ10の取り付け面をレンズ面を有さない面にする場合、特に平面とする場合には、光学的に優れた効率的な光源装置40の配置が実現できる。   In FIG. 3, parallel light is incident from the light source 20 to the fly's eye lens 10, and light having a spread from the lens surface of the fly's eye lens 10 is emitted and is irradiated onto the surface to be irradiated. The lens surface of the fly's-eye lens 10 may be disposed on the light source 20 side, or may be disposed on the opposite emission side. The surface opposite to the lens surface is preferably a flat surface, but is not limited thereto. Further, in the case where the mounting surface of the fly's eye lens 10 is a surface not having a lens surface, particularly when it is a flat surface, it is possible to realize an efficient and efficient arrangement of the light source device 40.

図3には、出射光の光軸と垂直に配置された被照射面32Aを有する壁部30Aと、出射光の光軸と垂直な面に対して角度θだけ傾いて配置された被照射面32Bを有する壁部30Bとが示されている。壁部30Bについて言い換えれば、出射光の光軸に対して、法線が角度θだけ傾いて配置された被照射面32Bを有する壁部30Bが示されている。
出射光の光軸に対して、垂直に配置された被照射面32Aに光が照射された場合の照射領域34Aの形状が図4Aに示され、角度θだけ傾いて配置された被照射面32Bに光が照射された場合の照射領域34Bの形状が図4Aに示されている。
In FIG. 3, a wall 30A having an illuminated surface 32A disposed perpendicular to the optical axis of the emitted light, and an illuminated surface disposed inclined at an angle θ with respect to a plane perpendicular to the optical axis of the emitted light A wall 30B with 32B is shown. In other words, the wall 30B is shown having the illuminated surface 32B whose normal is inclined by the angle θ with respect to the optical axis of the emitted light.
The shape of the irradiation area 34A when the light is irradiated to the irradiation surface 32A arranged perpendicularly to the optical axis of the emitted light is shown in FIG. 4A, and the irradiation surface 32B arranged to be inclined by the angle θ The shape of the irradiated area 34B when the light is irradiated is shown in FIG. 4A.

ここで図8Aは、従来の正面照射式の光源装置140において、出射光の光軸に対して垂直に配置された被照射面132Aに照射する場合の照射領域134Aの形状を模式的に示す斜視図であり、図8Bは、出射光の光軸に対して斜めに配置された被照射面132Bに照射する場合の照射領域134Bの形状を模式的に示す斜視図である。なお図8A及び図8Bには、光源装置に備えられたフライアイレンズ110、及び被照射面132A、Bのみが示されている。   Here, FIG. 8A is a perspective view schematically showing the shape of the irradiation area 134A in the case of irradiating the irradiation surface 132A disposed perpendicularly to the optical axis of the emitted light in the conventional front irradiation type light source device 140. FIG. 8B is a perspective view schematically showing the shape of the irradiation region 134B in the case of irradiating the irradiation surface 132B disposed obliquely with respect to the optical axis of the emitted light. FIGS. 8A and 8B show only the fly's eye lens 110 provided on the light source device and the surfaces to be irradiated 132A and 132B.

図8A及び図8Bに示す従来の光源装置は正面照射式なので、出射光の光軸に対して垂直に配置された被照射面132Aに照射する場合には、照射領域134Aは長方形の形状を有し、照射領域134Aにおける照度は均一になっている。
しかし、出射光の光軸に対して斜めに配置された被照射面32Bに照射する場合には、フライアイレンズ110から光が広がる方向に進むので、フライアイレンズ110から近い側の照射領域134Bの辺の長さが短く、フライアイレンズ110から遠い側の照射領域134Bの辺の長さが長くなり、図8Bに示すような台形の形状になる。
The conventional light source device shown in FIGS. 8A and 8B is of the front illumination type, and therefore, when the illumination surface 132A disposed perpendicularly to the optical axis of the emitted light is illuminated, the illumination area 134A has a rectangular shape. The illumination intensity in the irradiation area 134A is uniform.
However, in the case of irradiating the light receiving surface 32B disposed obliquely with respect to the optical axis of the emitted light, the light proceeds from the fly's eye lens 110 in the spreading direction, so the irradiation region 134B closer to the fly's eye lens 110 The length of the side is short, and the length of the side of the irradiation area 134B far from the fly's eye lens 110 is long, resulting in a trapezoidal shape as shown in FIG. 8B.

図8Bに示すような台形の形状にした場合、辺の長さが長くなった側は面積が大きくなるので、単位面積当たりの光強度である照度は低くなり、長さが短くなった側は面積が小さくなるので、照度は高くなる。よって、フライアイレンズ110から近い側の照射領域が明るく、遠くなるにつれて暗くなり、均一な照射はできなくなる。例えば、看板を斜めから照明するような場合に、この光源装置を用いた場合、照明したい領域と照射領域が一致せず、照射領域の照度も不均一になるので、適用は困難である。   In the case of a trapezoidal shape as shown in FIG. 8B, since the area is large on the side where the side length is long, the illuminance which is the light intensity per unit area is low, and the side where the length is short is Because the area is smaller, the illuminance is higher. Therefore, the irradiation area closer to the fly's eye lens 110 becomes brighter and becomes darker as it goes further away, making it impossible to perform uniform irradiation. For example, in the case where a signboard is illuminated at an angle, when this light source device is used, the area to be illuminated and the irradiation area do not match, and the illuminance of the irradiation area becomes uneven, which makes application difficult.

一方、本実施形態においては、出射光の光軸に対して垂直に配置された被照射面32Aに光が照射された場合には、図4Aに示すように、フライアイレンズ10のレンズ面の、曲率が小さい(曲率半径Ryz1が大きい)一方の端部4側の辺が短く、曲率が大きい(曲率半径Ryz2が小さい)他方の端部6側の辺が長くなっている。上記のように、第1の方向(X軸方向)における一方の端部4からの距離xに比例して曲率(曲率半径Ryz)が変化するので、照射領域34Aは、長辺と短辺を直線で繋いだ台形の形状を有する。   On the other hand, in the present embodiment, when the light is irradiated to the irradiated surface 32A disposed perpendicularly to the optical axis of the outgoing light, as shown in FIG. 4A, the lens surface of the fly eye lens 10 is The side on one end 4 side with a small curvature (large radius of curvature Ryz1) is short and the side with a large curvature (small radius of curvature Ryz2) on the other side with end 6 is long. As described above, since the curvature (curvature radius Ryz) changes in proportion to the distance x from one end 4 in the first direction (X-axis direction), the irradiation area 34A has the long side and the short side It has a trapezoidal shape connected by straight lines.

被照射面32Aに照射された光の照度は、一方の端部4で最も高く、他方の端部6側に進むにつれて照度が低くなり、他方の端部6で最も低くなっている。つまり、グラデーションを形成している。
ただし、第1の方向(X軸方向)における一方の端部4からの距離xを変数とする任意の関数を用いて、曲率(曲率半径Ryz)変化させることができるので、長辺と短辺を関数に応じた曲線で繋いだ形状の場合もあり得る。照度もそれに応じて変化するので、それに応じたグラデーションが形成される。
The illuminance of the light irradiated to the surface 32A to be irradiated is the highest at one end 4 and the illuminance becomes lower toward the other end 6 and is the lowest at the other end 6. That is, the gradation is formed.
However, the curvature (curvature radius Ryz) can be changed using an arbitrary function having the distance x from one end 4 in the first direction (X-axis direction) as a variable, so the long side and the short side There is also a case where the shape is connected by a curve according to the function. Since the illuminance also changes accordingly, a gradation corresponding to it is formed.

一方、出射光の光軸と垂直な面に対して角度θだけ傾いて(出射光の光軸に対して法線が角度θだけ傾いて)配置された被照射面32Bに光が照射された場合には、図4Bに示すように、照射領域34Bは、一方の端部4側の辺及び他方の端部6側の辺の長さが一致した長方形の形状を有する。なお、この長方形の形状には正方形も含まれる。また、照射領域34Bにおける光の照度は均一になっている。
つまり、一方の端部4及び他方の端部6において、傾斜角度θに対応した適切な曲率を有するように、フライアイレンズ10のレンズ面を形成することにより、角度θだけ傾いた場合に、最適な照射領域34Bの形状を得ることができる。
On the other hand, the light was irradiated to the irradiated surface 32B arranged at an angle θ with respect to the plane perpendicular to the optical axis of the emitted light (the normal line is inclined at the angle θ with respect to the optical axis of the emitted light) In this case, as shown in FIG. 4B, the irradiation region 34B has a rectangular shape in which the lengths of the side on the one end 4 side and the side on the other end 6 side coincide with each other. The rectangular shape also includes a square. Further, the illuminance of light in the irradiation area 34B is uniform.
That is, when the lens surface of the fly-eye lens 10 is formed so as to have an appropriate curvature corresponding to the inclination angle θ at one end 4 and the other end 6, when inclined by an angle θ, An optimum shape of the irradiation area 34B can be obtained.

これにより、例えば、看板を斜めから照明するときに光源装置40を用いた場合、照明したい領域と照射領域34Bを一致させることができ、照射領域34Bにおいて均一な照度で照明できるので、看板への優れた照射システムを提供できる。   Thus, for example, when the light source device 40 is used to illuminate the signboard from an angle, the area to be illuminated and the irradiation area 34B can be matched, and illumination can be performed with uniform illuminance in the irradiation area 34B. An excellent irradiation system can be provided.

次に、図5を参照しながら、出射光の光軸と垂直な面に対して角度θだけ傾いて配置された被照射面32Bに照射を行うフライアイレンズ10のレンズ面の曲率の定め方について説明する。図5は、フライアイレンズ10から照射半角度αの光で被照射面に光を照射する場合を、X−Z平面上に示す模式図である。照射半角度αは照射開き角度の1/2の角度であり、ここでは、フライアイレンズ10の中心点Pから照射半角度αの光が出射されたものとして示す。図面に対して垂直方向のY軸方向にも、フライアイレンズ10の中心点Pから照射半角度αで光が広がって進む。   Next, referring to FIG. 5, how to determine the curvature of the lens surface of the fly's eye lens 10 that irradiates the light receiving surface 32B disposed at an angle θ with respect to the surface perpendicular to the optical axis of the emitted light. Will be explained. FIG. 5 is a schematic diagram showing, on the XZ plane, a case where light is irradiated from the fly's-eye lens 10 to the surface to be irradiated with light of the irradiation half angle α. The irradiation half angle α is an angle of 1/2 of the irradiation opening angle, and here, it is shown that the light of the irradiation half angle α is emitted from the center point P of the fly eye lens 10. Also in the Y-axis direction perpendicular to the drawing, light travels from the central point P of the fly-eye lens 10 at a half irradiation angle α and travels.

フライアイレンズ10のレンズ面の曲率の定め方は以下のようになる。まず、被照射面32Aの幅寸法Wと、フライアイレンズ10から被照射面32Aへの距離Dとにより、照射半角度αの値が定まる。つまり、
W=2×D×sinα
となるようにαを定める。
The curvature of the lens surface of the fly's eye lens 10 is determined as follows. First, the value of the half irradiation angle α is determined by the width dimension W of the illuminated surface 32A and the distance D from the fly's eye lens 10 to the illuminated surface 32A. In other words,
W = 2 × D × sin α
Determine α to be

続いて、フライアイレンズ10から照射半角度αの光が出射されるように、レンズ面の第1の方向(X軸方向)の曲率(図2の曲率半径Rxz参照)を定め、次に、第1の方向(X軸方向)の曲率(半径Rxz)が所定の値なるようにしながら、レンズ面の第2の方向(Y軸方向)の曲率(図2の曲率半径Ryz参照)を定める。   Subsequently, the curvature (see the radius of curvature Rxz in FIG. 2) of the lens surface in the first direction (X-axis direction) is determined so that light of the irradiation half angle α is emitted from the fly eye lens 10. While the curvature (radius Rxz) in the first direction (X-axis direction) has a predetermined value, the curvature (see the curvature radius Ryz in FIG. 2) of the lens surface in the second direction (Y-axis direction) is determined.

ここで、フライアイレンズ10の中心点Pから照射半角度αで進む光を示す線と、出射光の光軸に対して垂直に配置された被照射面32Aを表す線との交点をA0及びB0とする。つまり、交点A0及びB0が、出射光の光軸に対して垂直に配置された被照射面32Aに光を照射する場合の照射領域34Aの両端部に該当する。
同様に、フライアイレンズ10の中心点Pからの照射半角度αで進む光を示す線と、出射光の光軸と垂直な面に対して角度θだけ斜めに配置された被照射面32Bを示す線との交点をAθ及びBθとする。つまり、交点Aθ及びBθが、出射光の光軸に対して斜めに配置された被照射面32Bに光を照射する場合の照射領域34Bの両端部に該当する。
Here, the point of intersection of a line representing light traveling at the irradiation half angle α from the center point P of the fly eye lens 10 and a line representing the illuminated surface 32A disposed perpendicular to the optical axis of the outgoing light is A0 and Assume B0. That is, the intersection points A0 and B0 correspond to both end portions of the irradiation area 34A in the case of irradiating the light to the irradiated surface 32A disposed perpendicularly to the optical axis of the emitted light.
Similarly, a line indicating light traveling at the irradiation half angle α from the center point P of the fly-eye lens 10, and the irradiated surface 32B disposed obliquely at an angle θ with respect to a plane perpendicular to the optical axis of the emitted light Let Aθ and Bθ be the points of intersection with the indicated line. That is, the intersection points Aθ and Bθ correspond to both ends of the irradiation area 34B in the case of irradiating the light to the irradiated surface 32B disposed obliquely with respect to the optical axis of the emitted light.

以上により、辺P−A0の長さDPA0、辺P−B0の長さDPB0、辺P−Aθの長さDPAθ、及び辺P−Bθの長さDPBθが定まる。よって、照射領域34Aの両端点A0及びB0におけるY軸方向の辺の長さが定まり、照射領域34Bの両端部Aθ及びBθにおけるY軸方向の辺の長さが定まる。 As described above, the length D PA0 of the side P-A0, the length D PB0 of the side P-B0, the length D PAθ of the side P-Aθ, and the length D PBθ of the side P- are determined. Therefore, the length of the side in the Y-axis direction at both end points A0 and B0 of the irradiation area 34A is determined, and the length of the side in the Y-axis direction at both ends Aθ and Bθ of the irradiation area 34B is determined.

例えば、点AθにおけるY軸方向の辺の長さは、点A0におけるY軸方向の辺の長さに比べて、
2×(DPA0−DPAθ)×tanα
だけ短くなる。
点BθにおけるY軸方向の辺の長さは、点B0におけるY軸方向の辺の長さに比べて、
2×(DPBθ−DPB0)×tanα
だけ長くなる。
For example, the length of the side in the Y-axis direction at the point Aθ is shorter than the length of the side in the Y-axis direction at the point A0.
2 × (D PA0 −D PAθ ) × tan α
Only become shorter.
The length of the side in the Y-axis direction at the point Bθ is smaller than the length of the side in the Y-axis direction at the point B0.
2 × (D PBθ −D PB0 ) × tan α
Only longer.

よって、出射光の光軸に対して斜めに配置された被照射面32Bの照射領域34Bの両端部Aθ及びBθにおけるY軸方向の辺の長さが同じになるようにするため(つまり長方形の照射領域にするため)、出射光の光軸と垂直な被照射面32Aの照射領域34Aの両端部A0及びB0におけるY軸方向の辺の長さ(つまり台形の照射領域の形状)を定めることができる。   Therefore, the sides in the Y-axis direction at both ends Aθ and Bθ of the irradiation area 34B of the irradiated surface 32B disposed obliquely to the optical axis of the emitted light have the same length (ie, rectangular Define the length of the side in the Y-axis direction (that is, the shape of the trapezoidal irradiation area) at both ends A0 and B0 of the irradiation area 34A of the irradiated surface 32A perpendicular to the optical axis of the outgoing light). Can.

次に、上記の照射領域の形状が定まるように、レンズ面の第2の方向(Y軸方向)の曲率(曲率半径Ryz参照)を定める。更に詳細には、第1の方向(X軸方向)の一方の端部4における曲率半径Ryz1及び他方の端部6における曲率半径Ryz2を定める。そして、一方の端部4に及び他方の端部6の間の曲率半径Ryzを連続的に変化させて定める(図2参照)。
このとき、照射半角度αの光が出射されるような第1の方向(X軸方向)の曲率半径Rxzが得られるように、必要に応じて、曲率半径Ryzを調整する。
Next, the curvature (refer to the curvature radius Ryz) in the second direction (Y-axis direction) of the lens surface is determined so that the shape of the above-described irradiation area is determined. More specifically, the radius of curvature Ryz1 at one end 4 in the first direction (X-axis direction) and the radius of curvature Ryz2 at the other end 6 are determined. Then, the radius of curvature Ryz between one end 4 and the other end 6 is continuously changed and determined (see FIG. 2).
At this time, the curvature radius Ryz is adjusted as necessary so as to obtain the curvature radius Rxz in the first direction (X-axis direction) such that the light of the irradiation half angle α is emitted.

次に、フライアイレンズ10から照射半角度αの光が照射された場合において、出射光の光軸に対して斜めに配置された被照射面32Bの照射領域34Bの両端部Aθ及びBθにおける照度TAθ及びTBθを算出し、両端部での照度の比であるTAθ/TBθを下表に示す。ここでは、照射半角度αが14度(照射開き角度28度)の場合及び26.5度(照射開き角度53度)の場合を示す。   Next, when light of half the irradiation angle α is irradiated from the fly's eye lens 10, the illuminance at both ends Aθ and Bθ of the irradiation area 34B of the irradiated surface 32B arranged obliquely to the optical axis of the emitted light TAθ and TBθ were calculated, and TAθ / TBθ, which is the ratio of illuminance at both ends, is shown in the table below. Here, a case where the irradiation half angle α is 14 degrees (irradiation opening angle 28 degrees) and 26.5 degrees (irradiation opening angle 53 degrees) is shown.

Figure 2019074742
Figure 2019074742

照度は単位面積当たりの光の強さなので、照射領域の面積に反比例する。照射半角度αの光は、X軸方向だけでなくY軸方向にも広がるので、照度は辺の長さの二乗に反比例する。実際にフライアイレンズ10のレンズ面2の曲率を定める当たり、照射領域の両端の辺の長さの比が2倍を超える場合、一方の端部4及び他方の端部6での曲率の差が非常に大きくなる。よって、照射領域の両端部での辺の長さの比が2倍以内、つまり両端部での照度の比TAθ/TBθが4倍以内に収まるのが好ましい。   Since the illuminance is the intensity of light per unit area, it is inversely proportional to the area of the irradiation area. The light of the irradiation half angle α spreads not only in the X-axis direction but also in the Y-axis direction, so the illuminance is inversely proportional to the square of the side length. Actually, when the curvature of the lens surface 2 of the fly's eye lens 10 is determined, the ratio of the curvature at one end 4 and the other end 6 when the ratio of the lengths of the sides at both ends of the irradiation area exceeds two. Will be very big. Therefore, it is preferable that the ratio of the side length at both ends of the irradiation area is within 2 times, that is, the ratio TA.theta./TB.theta. Of the illuminance at both ends is within 4 times.

上記の表1に示す場合であれば、照射半角度αが14度の場合には、傾斜角度θが50度であっても適用可能であるが、照射半角度αが26.5度の場合には、傾斜角度θが30度を少し上回る程度以内で適用するのが好ましい。   In the case shown in Table 1 above, the case where the irradiation half angle α is 14 degrees is applicable even if the inclination angle θ is 50 degrees, but the case where the irradiation half angle α is 26.5 degrees Is preferably applied within a range of slightly more than 30 degrees.

以上のように、本実施形態に係る光学部材では、図2に示すように、入射光の光軸に直交する仮想平面上の互いに直交する第1の方向(X軸方向)及び第2の方向(Y軸方向)に曲率を有する曲面を有し、光軸方向から見た平面形状が、第1の方向(X軸方向)に略平行な2つの辺及び第2の方向(Y軸方向)に略平行な2つの辺で囲まれた略長方形のレンズ面2を少なくとも1つ備える。そして、レンズ面2の第1の方向(X軸方向)の一方の端部4から他方の端部6へ向かって、第2の方向(Y軸方向)における曲率が連続的に大きくなっている。   As described above, in the optical member according to the present embodiment, as shown in FIG. 2, the first direction (X-axis direction) and the second direction orthogonal to each other on a virtual plane orthogonal to the optical axis of incident light Two sides and a second direction (Y-axis direction) having a curved surface having a curvature in the (Y-axis direction) and having a planar shape viewed from the optical axis direction substantially parallel to the first direction (X-axis direction) And at least one substantially rectangular lens surface 2 surrounded by two sides substantially parallel to each other. Then, the curvature in the second direction (Y-axis direction) is continuously increased from one end 4 to the other end 6 in the first direction (X-axis direction) of the lens surface 2 .

1つのレンズ面2を有する光学部材もあり得るし、同じ向きに揃えられた複数のレンズ面2がマトリックス状に配置されたフライアイレンズ10の場合もあり得る。   There may be an optical member having one lens surface 2, or it may be a fly-eye lens 10 in which a plurality of lens surfaces 2 aligned in the same direction are arranged in a matrix.

何れの場合も、図4Bに示すように、出射光の光軸に対して斜めに配置された被照射面32Bに光を照射する場合に、被照射面32Bに長方形の均一な照度の照射領域34Bを得ることができる。   In any case, as shown in FIG. 4B, when light is irradiated to the irradiated surface 32B disposed obliquely to the optical axis of the emitted light, an irradiation area of rectangular uniform illuminance on the irradiated surface 32B 34B can be obtained.

更に、図2に示すように、第1の方向(X軸方向)における曲率でスプライン曲線またはベジエ曲線が形成され、一方の端部4において第2の方向(Y軸方向)における曲率で楕円形の曲線の一部が形成され、他方の端部6において第2の方向(Y軸方向)における曲率で円形の曲線の一部が形成されることができる。   Furthermore, as shown in FIG. 2, a spline curve or a Bezier curve is formed with the curvature in the first direction (X-axis direction), and an ellipse with the curvature in the second direction (Y-axis direction) at one end 4 A part of a curve of a circle can be formed at the other end 6 with a curvature in the second direction (the Y-axis direction).

この場合には、出射光の光軸に対して斜めに配置された被照射面32Bに照射する場合に、被照射面32Bを均一な照度で長方形に照射可能なレンズ面2をシンプルな構成で効率的に形成することができる。   In this case, in the case of irradiating the light receiving surface 32B disposed obliquely with respect to the optical axis of the emitted light, the lens surface 2 capable of irradiating the light receiving surface 32B in a rectangular shape with uniform illuminance has a simple configuration. It can be formed efficiently.

図3に示すように、このような光学部材10と、光学部材10へ平行光を入射する光源20と、を備えたる光源装置40においても、被照射面32Bに長方形の均一な照度の照射領域34Bを得ることができる。   As shown in FIG. 3, also in the light source device 40 provided with such an optical member 10 and the light source 20 which makes parallel light enter the optical member 10, the irradiation area of the rectangular uniform illuminance on the irradiated surface 32B 34B can be obtained.

(本発明の1つの実施形態に係る照射システム)
次に、図6A及び図6Bを参照ながら、本発明の1つの実施形態に係る照射システムの説明を行う。図6Aは、図3に示す光源装置40を備えた1つの実施形態に係る照射システム50を模式的に示す斜視図である。図6Bは、図6Aの矢視C−Cの側面図である。
(Irradiation system according to one embodiment of the present invention)
An illumination system according to an embodiment of the invention will now be described with reference to FIGS. 6A and 6B. FIG. 6A is a perspective view schematically showing an irradiation system 50 according to an embodiment provided with the light source device 40 shown in FIG. FIG. 6B is a side view of arrows C-C in FIG. 6A.

本実施形態に係る照射システム50は、上記の光源装置40と、光源装置40により照射される被照射面32Bを有する壁部である看板30を備えている。光源装置40は、看板30の上側に取り付けられ、斜め上方から看板30の被照射面32Bを照らすようになっている。   The irradiation system 50 according to the present embodiment includes the light source device 40 described above and the signboard 30 which is a wall portion having the light receiving surface 32B irradiated by the light source device 40. The light source device 40 is attached to the upper side of the signboard 30, and illuminates the light receiving surface 32B of the signboard 30 from diagonally above.

更に詳細に述べれば、図6Bに示すように、看板30の被照射面32Bが、光源装置40の出射光と直交する平面に対して角度θだけ傾斜して配置されている。光源装置40に備えられたフライアイレンズのレンズ面において、図2に示すような第1の方向(X軸方向)における一方の端部4及び他方の端部6を考えると、一方の端部4側の被照射面32Bが光源装置40に近く、他方の端部6側が光源装置40から遠くなるように、光源装置40が看板30に取り付けられている。
これにより、図6Aに示すように、看板30の被照射面32Bに長方形の均一な照度の照射領域34Bを得ることができる。
More specifically, as shown in FIG. 6B, the illuminated surface 32B of the sign 30 is disposed at an angle θ with respect to a plane orthogonal to the light emitted from the light source device 40. Considering one end 4 and the other end 6 in the first direction (X-axis direction) as shown in FIG. 2 on the lens surface of the fly's-eye lens provided in the light source device 40, one end The light source device 40 is attached to the sign 30 such that the light receiving surface 32B on the fourth side is close to the light source device 40 and the other end 6 side is far from the light source device 40.
Thereby, as shown to FIG. 6A, the irradiation area | region 34B of rectangular uniform illumination intensity can be obtained to the to-be-irradiated surface 32B of the billboard 30. FIG.

(本発明のその他の実施形態に係る照射システム)
次に、図7A及び図7Bを参照ながら、本発明のその他の実施形態に係る照射システムの説明を行う。図7Aは、図3に示す光源装置40を備えたその他の実施形態に係る照射システム50を模式的に示す斜視図である。図7Bは、図7Aの矢視E−Eの側面図である。
(Irradiation system according to another embodiment of the present invention)
An illumination system according to another embodiment of the present invention will now be described with reference to FIGS. 7A and 7B. FIG. 7A is a perspective view schematically showing an irradiation system 50 according to another embodiment provided with the light source device 40 shown in FIG. FIG. 7B is a side view of arrow E-E of FIG. 7A.

本実施形態に係る照射システム50では、上記の光源装置40が道路の側部に設置されたポール60の上部に取り付けられ、斜め上方から道路を照らしている。つまり、本システムは、光源装置40により照射される道路上の被照射面32Bを含む。   In the irradiation system 50 according to the present embodiment, the light source device 40 described above is attached to the top of the pole 60 installed on the side of the road, and illuminates the road from diagonally above. That is, the present system includes the illuminated surface 32 B on the road illuminated by the light source device 40.

更に詳細に述べれば、図7Bに示すように、道路上の被照射面32Bが、光源装置40の出射光と直交する平面に対して、角度θだけ傾斜して配置されている。光源装置40に備えられたフライアイレンズのレンズ面において、図2に示すような第1の方向(X軸方向)における一方の端部4及び他方の端部6を考えると、一方の端部4側の被照射面32Bが光源装置40に近く、他方の端部6側が光源装置40から遠くなるように、光源装置40がポール60に取り付けられている。
これにより、図7Aに示すように、道路上の被照射面32Bに長方形の均一な照度の照射領域34Bを得ることができる。
More specifically, as shown in FIG. 7B, the illuminated surface 32B on the road is disposed at an angle θ with respect to a plane orthogonal to the light emitted from the light source device 40. Considering one end 4 and the other end 6 in the first direction (X-axis direction) as shown in FIG. 2 on the lens surface of the fly's-eye lens provided in the light source device 40, one end The light source device 40 is attached to the pole 60 so that the light receiving surface 32B on the fourth side is close to the light source device 40 and the other end 6 side is far from the light source device 40.
Thereby, as shown to FIG. 7A, the irradiation area | region 34B of rectangular uniform illumination intensity can be obtained on the to-be-irradiated surface 32B on a road.

本発明の1つの実施形態及びその他の実施形態に係る照射システム何れにおいても、光源装置40の出射光と直交する平面に対して角度θだけ傾斜して配置された被照射面32Bに、長方形の均一な照度の照射領域34Bを得ることができる。   In any of the illumination systems according to one embodiment and the other embodiments of the present invention, the irradiation surface 32B is inclined at an angle θ with respect to a plane orthogonal to the light emitted from the light source device 40. The irradiation area 34B of uniform illuminance can be obtained.

ここでは、一例として、看板に斜めから光を当てる照射システムや、道路を斜めから照明する照射システムを示したが、これに限られるものではなく、投影型の表示装置に用いる場合を含め、斜めから被照射面に照射するその他の任意の照射システムが本発明に含まれる。   Here, as an example, an irradiation system that obliquely applies light to a signboard and an irradiation system that obliquely illuminates a road are illustrated, but the present invention is not limited thereto, and may be oblique, including the case of using for projection type display devices The present invention includes any other irradiation system that irradiates the surface to be irradiated with light.

本発明の実施の形態、実施の態様を説明したが、開示内容は構成の細部において変化してもよく、実施の形態、実施の態様における要素の組合せや順序の変化等は請求された本発明の範囲および思想を逸脱することなく実現し得るものである。   Although the embodiments and modes of the present invention have been described, the disclosed contents may be varied in the details of construction, and the combinations and changes of the elements and the like in the modes and embodiments may be claimed. It can be realized without departing from the scope and spirit of the invention.

2 レンズ面
4 一方の端部
6 他方の端部
10 フライアレンズ
20 光源
30A 壁部、看板(光軸に対して垂直)
30B 壁部、看板(光軸に対して斜め)
32A 被照射面(光軸に対して垂直)
32B 被照射面(光軸に対して斜め)
34A 照射領域(光軸に対して垂直)
34B 照射領域(光軸に対して斜め)
40 光源装置
50 照射システム
60 ポール
110 フライアレンズ
132A 被照射面(光軸に対して垂直)
132B 被照射面(光軸に対して斜め)
134A 照射領域(光軸に対して垂直)
134B 照射領域(光軸に対して斜め)
2 lens surface 4 one end 6 the other end 10 frier lens 20 light source 30A wall, signboard (perpendicular to optical axis)
30B Wall, signboard (diagonal to light axis)
32A irradiated surface (perpendicular to the optical axis)
32B Surface to be illuminated (oblique to the optical axis)
34A irradiated area (perpendicular to the optical axis)
34B Irradiation area (oblique to the optical axis)
DESCRIPTION OF SYMBOLS 40 Light source device 50 Irradiation system 60 Pole 110 Frier lens 132A Irradiated surface (perpendicular to the optical axis)
132B Irradiated surface (oblique to the optical axis)
134A Irradiated area (perpendicular to the optical axis)
134B Irradiation area (oblique to the optical axis)

Claims (1)

入射光の光軸に直交する仮想平面上の互いに直交する第1の方向及び第2の方向に曲率を有する曲面を有し、前記光軸方向から見た平面形状が、前記第1の方向に略平行な2つの辺及び前記第2の方向に略平行な2つの辺で囲まれた略長方形のレンズ面を少なくとも1つ備え、
前記レンズ面の前記第1の方向の一方の端部から他方の端部へ向かって、前記第2の方向における曲率が連続的に大きくなることを特徴とする光学部材。
It has a curved surface having a curvature in a first direction and a second direction orthogonal to each other on a virtual plane orthogonal to the optical axis of incident light, and the planar shape viewed from the optical axis direction corresponds to the first direction At least one substantially rectangular lens surface surrounded by two substantially parallel sides and two sides substantially parallel to the second direction,
An optical member characterized in that the curvature in the second direction continuously increases from one end of the lens surface in the first direction to the other end in the first direction.
JP2018223967A 2016-08-31 2018-11-29 Optical components, light source devices and irradiation systems Active JP7048897B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016169714 2016-08-31
JP2016169714 2016-08-31

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017162251A Division JP6443515B2 (en) 2016-08-31 2017-08-25 Optical member, light source device and irradiation system

Publications (3)

Publication Number Publication Date
JP2019074742A true JP2019074742A (en) 2019-05-16
JP2019074742A5 JP2019074742A5 (en) 2020-09-17
JP7048897B2 JP7048897B2 (en) 2022-04-06

Family

ID=61626006

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017162251A Active JP6443515B2 (en) 2016-08-31 2017-08-25 Optical member, light source device and irradiation system
JP2018223967A Active JP7048897B2 (en) 2016-08-31 2018-11-29 Optical components, light source devices and irradiation systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017162251A Active JP6443515B2 (en) 2016-08-31 2017-08-25 Optical member, light source device and irradiation system

Country Status (1)

Country Link
JP (2) JP6443515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173661B (en) * 2019-06-27 2024-04-12 华域视觉科技(上海)有限公司 Signal lamp pattern capable of controlling light distribution, automobile signal lamp and automobile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239218A (en) * 1989-03-13 1990-09-21 Tokyo Electric Co Ltd Shape correcting lens and projection type display device using this lens
JPH06162205A (en) * 1992-11-20 1994-06-10 Mutoh Ind Ltd Method and device for connection processing of curve
JPH1054958A (en) * 1996-08-12 1998-02-24 Seiko Epson Corp Polarization generating device, display device and projection display device
JP2003331296A (en) * 2002-05-10 2003-11-21 Ricoh Co Ltd Method of drawing circular arc
US20120212709A1 (en) * 2009-11-04 2012-08-23 Akihiro Osaka Fly eye lens, optical unit, and projection display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009047883A (en) 2007-08-20 2009-03-05 Seiko Epson Corp Screen
US8547618B2 (en) 2009-04-09 2013-10-01 Panasonic Corporation Beam scanning display apparatus
RU2612562C2 (en) * 2011-05-05 2017-03-09 Филипс Лайтинг Холдинг Б.В. Optical device for generating light beam
JP6076676B2 (en) * 2012-10-10 2017-02-08 株式会社小糸製作所 Road illumination lens and road illumination device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02239218A (en) * 1989-03-13 1990-09-21 Tokyo Electric Co Ltd Shape correcting lens and projection type display device using this lens
JPH06162205A (en) * 1992-11-20 1994-06-10 Mutoh Ind Ltd Method and device for connection processing of curve
JPH1054958A (en) * 1996-08-12 1998-02-24 Seiko Epson Corp Polarization generating device, display device and projection display device
JP2003331296A (en) * 2002-05-10 2003-11-21 Ricoh Co Ltd Method of drawing circular arc
US20120212709A1 (en) * 2009-11-04 2012-08-23 Akihiro Osaka Fly eye lens, optical unit, and projection display device

Also Published As

Publication number Publication date
JP6443515B2 (en) 2018-12-26
JP2018041072A (en) 2018-03-15
JP7048897B2 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
JP5866644B1 (en) Head-up display and moving body with head-up display
US10302943B2 (en) Head-up display and moving body comprising head-up display
JP7135166B2 (en) Reflector, head-up display with reflector, and vehicle equipped with head-up display
JP6078798B2 (en) Head-up display, lighting device, and moving body equipped with the same
JP5725349B2 (en) Surface lighting device
JP2019215568A (en) Head-up display device
JP4485999B2 (en) Surface light source device
US20110080730A1 (en) Optical element for asymmetric light distribution
JP2014211983A (en) Vehicular lighting tool unit
JP5889065B2 (en) Luminous flux control member, light emitting device, and illumination device
JP2019074742A (en) Optical member, light source device, and irradiation system
WO2016194798A1 (en) Planar light source device and liquid crystal display device
KR20200000330A (en) Spread illuminating apparatus
US10180232B2 (en) Optical member, light source device, and irradiation system
JP4703611B2 (en) Backlight light source, display device, and light emitting device
JP2004047358A (en) Light guide body and light guide plate, display device and electronic device
JP6142661B2 (en) Lighting system
WO2018109978A1 (en) Planar light source device and display device
JP6751452B2 (en) Area lighting device
JP7495702B2 (en) Lighting equipment
JP2018181822A (en) Planar illumination device
JP2017091939A (en) Surface light source device and liquid crystal display device
WO2018186413A1 (en) Light guide body and planar light-emitting module
JP6146639B2 (en) Illuminated mirror device
JP2020170687A (en) Illuminating device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220307

R150 Certificate of patent or registration of utility model

Ref document number: 7048897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150