JP2019069883A - Silica glass member - Google Patents

Silica glass member Download PDF

Info

Publication number
JP2019069883A
JP2019069883A JP2017197582A JP2017197582A JP2019069883A JP 2019069883 A JP2019069883 A JP 2019069883A JP 2017197582 A JP2017197582 A JP 2017197582A JP 2017197582 A JP2017197582 A JP 2017197582A JP 2019069883 A JP2019069883 A JP 2019069883A
Authority
JP
Japan
Prior art keywords
fluorine
silica glass
less
glass member
ppm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017197582A
Other languages
Japanese (ja)
Inventor
祐司 深沢
Yuji Fukazawa
祐司 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Coorstek KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Coorstek KK filed Critical Coorstek KK
Priority to JP2017197582A priority Critical patent/JP2019069883A/en
Publication of JP2019069883A publication Critical patent/JP2019069883A/en
Pending legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

To provide a silica glass member having excellent refractive index homogeneity, and a method for producing the silica glass member that can easily produce the silica glass member having excellent refractive index homogeneity.SOLUTION: A silica glass member is used for a light lithography step using vacuum ultraviolet light as a light source. A content of fluorine is 1 wt.% or more and 5 wt.% or less, and a range from the maximum to the minimum of fluorine concentrations is 100 ppm or less, and an OH group concentration is 10 ppm or less.SELECTED DRAWING: None

Description

本発明はシリカガラス部材に関し、例えば、真空紫外波長領域での光リソグラフィーに用いられるフォトマスク用のシリカガラス部材に関する。   The present invention relates to a silica glass member, for example, to a silica glass member for a photomask used for photolithography in a vacuum ultraviolet wavelength region.

近年、真空紫外波長領域での光リソグラフィーは、極微細化の傾向が一段と強く、従来では無視できる程度のわずかな屈折率の差も許容されず、今まで以上の屈折率均質性が求められている。
この屈折率の均質性は、シリカガラスの光学特性の中で重要なもののひとつであり、シリカガラス面内での屈折率の不均一質が著しい場合は、脈理として現れる。また、脈理とは言えないがかなり不均質な屈折率分布をもったものは脈理状不均質として現れる。
この脈理、脈理状不均質が存在するシリカガラスをフォトマスク材として、リソグラフィー工程に用いると、半導体ウェハ上の光強度分布が設計値から外れ、異常な光強度分布のまま、フォトマスクのパターンが半導体ウェハに転写されることが指摘されている(特許文献1)。
In recent years, photolithography in the vacuum ultraviolet wavelength region has a tendency toward further miniaturization, and a slight difference in refractive index that can be ignored conventionally is not acceptable, and refractive index homogeneity higher than before is required. There is.
The homogeneity of the refractive index is one of the important optical properties of silica glass, and it appears as striae if the inhomogeneity of the refractive index in the surface of the silica glass is significant. Moreover, although it can not be said that it is a cord, what has a fairly heterogeneous refractive index distribution appears as cord-like heterogeneity.
When silica glass having this striae and striae-like heterogeneity is used as a photomask material in a lithography process, the light intensity distribution on the semiconductor wafer deviates from the design value, and the abnormal light intensity distribution remains unchanged. It is pointed out that the pattern is transferred to a semiconductor wafer (Patent Document 1).

また、特許文献2において、シリカガラス中の屈折率の均質性は、シリカガラス中のフッ素濃度、OH基濃度、塩素濃度、及びその分布を制御することによって得られることが示されている。特に、フッ素は屈折率に与える影響が大きいため、フッ素の含有量分布は精密に制御する必要があることが示されている。
尚、この特許文献2には、スート法を用いてシリカガラスを作製する場合、シリカガラス中のフッ素の含有量の分布は、フッ素化合物含有ガスで処理する直前の多孔質シリカ母材中のOH基濃度の分布とほぼ等しくなる。
そのため、シリカガラス中のフッ素の濃度分布の制御は、合成条件(原料に対する酸素/水素ガスの比率)の調整、あるいは合成した多孔質シリカガラス体を、例えば不活性ガス、10-4 Pa以下の減圧中、1100℃以下の温度での加熱処理により調整することによってなされることが示されている。
In Patent Document 2, it is shown that the homogeneity of the refractive index in silica glass can be obtained by controlling the fluorine concentration, the OH group concentration, the chlorine concentration, and the distribution thereof in silica glass. In particular, it is shown that the fluorine content distribution needs to be precisely controlled since fluorine has a large influence on the refractive index.
In addition, in this patent document 2, when producing silica glass using the soot method, the distribution of the content of fluorine in the silica glass is OH in the porous silica base material immediately before the treatment with the fluorine compound-containing gas. It becomes almost equal to the distribution of the basic concentration.
Therefore, control of the concentration distribution of fluorine in silica glass is controlled by adjusting the synthesis conditions (ratio of oxygen to hydrogen gas to the raw material) or by synthesizing the synthesized porous silica glass body, for example, with an inert gas of 10 -4 Pa or less It has been shown that this is done by adjusting the heat treatment at a temperature of 1100 ° C. or less under reduced pressure.

ところで、フッ素を含有するシリカガラスの製造方法としては、例えば、特許文献3に示すように、支燃性ガス及び可燃性ガスによる火炎中にシリカ製造原料ガスとフッ素化合物ガスを導入して反応させ、ターゲット上にシリカガラス微粒子を堆積させると同時にガラス化させる、いわゆるダイレクト法がある。
また、特許文献2のほか特許文献4に示すように、支燃性ガス、可燃性ガスおよびシリカ製造原料ガスをバーナーから反応域に供給し、この反応域においてシリカ製造原料ガスの火炎加水分解によりシリカ微粒子を生成させて多孔質シリカ母材を作製し、この母材をフッ素化合物ガス含有雰囲気下で加熱・溶融ガラス化させる、いわゆるスート法がある。
さらに、特許文献5に示すようにゾルゲル法によるドライゲルまたは焼結ゲルの多孔体を作製し、フッ素化合物溶液に浸し、乾燥し、焼結することでフッ素添加シリカガラスを製造する方法も開示されている。
By the way, as a method for producing fluorine-containing silica glass, for example, as shown in Patent Document 3, a raw material gas for producing silica and a fluorine compound gas are introduced into a flame by a combustion supporting gas and a combustible gas to react There is a so-called direct method of depositing silica glass fine particles on a target and simultaneously vitrifying them.
Further, as shown in Patent Document 2 as well as Patent Document 2, the combustion supporting gas, the flammable gas and the raw material gas for producing silica are supplied from the burner to the reaction zone, and flame hydrolysis of the raw material gas for producing silica is carried out in this reaction zone. There is a so-called soot method in which silica fine particles are generated to prepare a porous silica matrix, and the matrix is heated, melted and vitrified in an atmosphere containing a fluorine compound gas.
Furthermore, as disclosed in Patent Document 5, a method of producing a fluorinated silica glass by making a porous body of dry gel or sintered gel by a sol-gel method, immersing in a fluorine compound solution, drying and sintering is also disclosed. There is.

特開2005−31689号公報JP 2005-31689 A 特開2001−180956号公報JP 2001-180956 A 特開2000−143252号公報Unexamined-Japanese-Patent No. 2000-143252 特開2002−60227号公報Japanese Patent Application Laid-Open No. 2002-60227 特開昭62−100443号公報Japanese Patent Application Laid-Open No. 62-100443

前記したダイレクト法、スート法のいずれの製造方法においても、シリカガラスの製造条件のうち、支燃性ガス、可燃性ガス、フッ素原料などの比を調整して、フッ素の含有量の分布を制御できると考えられる。
しかしながら、シリカガラスをダイレクト法で作製する場合、ケイ素のフッ化物を原料として合成したシリカガラスは、高い均質性が得られ難いという課題があった。
シリカガラス中のフッ素含有量が高い領域ほど屈折率が小さくなるため、シリカガラス中のフッ素含有量の分布を均一にする必要があるが、シリカガラス中でのフッ素の拡散係数が小さいために、シリカガラス微粒子をターゲット上に堆積させる際に生じるフッ素の含有量分布の不均一が合成終了までにほとんど緩和されないことが原因であると考えられる。
In any of the direct method and the soot method described above, the distribution of the content of fluorine is controlled by adjusting the ratio of the combustion supporting gas, the flammable gas, the fluorine raw material, etc. among the manufacturing conditions of silica glass It is considered possible.
However, when silica glass is produced by the direct method, silica glass synthesized using a fluoride of silicon as a raw material has a problem that it is difficult to obtain high homogeneity.
Since the refractive index decreases as the region having a high fluorine content in silica glass, the distribution of the fluorine content in silica glass needs to be uniform, but the diffusion coefficient of fluorine in silica glass is small, It is considered that the cause is that the non-uniformity of the content distribution of fluorine generated when depositing the silica glass fine particles on the target is hardly relieved by the end of the synthesis.

一方、シリカガラスをスート法で作製する場合、シリカガラス中のフッ素の含有量分布は、主としてスート体の密度分布、雰囲気処理中及びガラス化中のフッ素含有ガスの濃度で決定される。これら条件を適宜調整する事により、フッ素の含有量分布を設計することができる。   On the other hand, when silica glass is produced by the soot method, the content distribution of fluorine in the silica glass is mainly determined by the density distribution of the soot body and the concentration of the fluorine-containing gas during atmosphere treatment and vitrification. The content distribution of fluorine can be designed by appropriately adjusting these conditions.

しかしながら、シリカガラスの中心部と外周部を含む全領域で、フッ素の含有量分布が均一な分布を達成することは工業的には困難である。
この問題を解決するために、例えば、特開2001−342034には、フッ素の含有量分布に基づく屈折率変動分布を打ち消す方向に、仮想温度に基づく屈折率変動分布を形成し、全体として屈折率分布を制御する手法が示されている(尚、特開2001−342034では、段落(0051)に記載されているようにシリカガラスを高温にして粘性を低下させ、強制的(物理的)に攪拌して均一性を高めている)。
However, it is industrially difficult to achieve a uniform distribution of the fluorine content distribution in the entire region including the central portion and the outer peripheral portion of silica glass.
In order to solve this problem, for example, in Japanese Patent Application Laid-Open No. 2001-342034, a refractive index fluctuation distribution based on a virtual temperature is formed in the direction to cancel the refractive index fluctuation distribution based on the content distribution of fluorine A method of controlling the distribution is shown (In addition, in JP 2001-342034, as described in paragraph (0051), the viscosity is lowered by raising the temperature of silica glass, and forced (physical) stirring is performed. Improve the uniformity).

このように、仮想温度のような別の特性値の影響を考慮して制御する方法は、シリカガラスの改質手段として、シリカガラスを製造した後に追加の処理としてなされるアニールなどの熱処理でフッ素濃度が変化することが考えられるため利用が難しい。
また、上記方法を採用した場合はある程度の屈折率均質性が得られるが、近年求められる非常に屈折率分布が小さいシリカガラスを得ることは難しいという課題があった。
As described above, the method of controlling in consideration of the influence of another characteristic value such as the fictive temperature is fluorine as heat treatment such as annealing performed as an additional process after producing silica glass as a means of modifying silica glass. It is difficult to use because the concentration may change.
In addition, when the above method is adopted, a certain degree of refractive index homogeneity can be obtained, but there has been a problem that it is difficult to obtain silica glass having a very small refractive index distribution, which is required in recent years.

本発明者は、上記課題を解決するために、シリカガラスをスート法で作製することを前提に鋭意研究し、より屈折率均質性の優れたシリカガラス部材、及びその製造方法を想到し、本発明を完成するに至った。また、スート法の多孔体へのフッ素ドープは、ゾルゲル法による多孔体へのドープにも応用できることを想到した。
本発明の目的は、屈折率均質性の優れたシリカガラス部材、及び屈折率均質性の優れたシリカガラス部材を容易に製造することができるシリカガラス部材の製造方法を提供することを目的とする。
In order to solve the above problems, the present inventors have intensively studied on the premise of producing silica glass by the soot method, and have conceived a silica glass member having more excellent refractive index homogeneity, and a method for producing the same. We came to complete the invention. In addition, it was conceived that fluorine doping to the porous body of the soot method can be applied to doping to the porous body by sol-gel method.
An object of the present invention is to provide a silica glass member excellent in refractive index homogeneity, and a method of manufacturing a silica glass member capable of easily manufacturing a silica glass member excellent in refractive index homogeneity. .

上記目的を達成するためになされた本発明にかかるシリカガラス部材は、真空紫外光を光源とする光リソグラフィー工程に使用されるシリカガラス部材であって、フッ素の含有量が1wt%以上5wt%以下、かつフッ素濃度の最大値と最小値の幅が100ppm以下であり、かつOH基濃度が10ppm以下であることを特徴とする。   The silica glass member according to the present invention made to achieve the above object is a silica glass member used in a photolithographic process using vacuum ultraviolet light as a light source, and the fluorine content is 1 wt% or more and 5 wt% or less And, the range between the maximum value and the minimum value of the fluorine concentration is 100 ppm or less, and the OH group concentration is 10 ppm or less.

このように、フッ素の含有量が1wt%以上5wt%以下、かつフッ素濃度の最大値と最小値の幅が100ppm以下であるため、屈折率均質性の優れたシリカガラス部材を得ることができる。
また、OH基濃度が10ppm以下とすることで、フッ素を多くドープできることになり、好ましい。
As described above, since the content of fluorine is 1 wt% or more and 5 wt% or less, and the width between the maximum value and the minimum value of the fluorine concentration is 100 ppm or less, it is possible to obtain a silica glass member excellent in refractive index homogeneity.
Further, by setting the OH group concentration to 10 ppm or less, a large amount of fluorine can be doped, which is preferable.

ここで、波長633nmの光における部材面内の屈折率分布が1×10-6 以下であることが望ましい。尚、波長633nmの光における部材面内の屈折率分布を規定したのは、市販されている測定器の多くが633nmを採用しているためである。例えば、使用する際に用いられるArFエキシマレーザの波長は193nmであるが、屈折率は波長193nmの方が大きくなる。 Here, it is desirable that the refractive index distribution in the surface of the member for light of wavelength 633 nm is 1 × 10 −6 or less. Incidentally, the reason why the refractive index distribution in the surface of the member in the light having a wavelength of 633 nm is defined is that most of commercially available measuring devices adopt 633 nm. For example, although the wavelength of the ArF excimer laser used in use is 193 nm, the refractive index is larger at a wavelength of 193 nm.

また、本発明のシリカガラス部材の製造方法は、多孔質シリカ母材にフッ素をドープし透明化する工程を経た母材に対して、400℃以上1000℃以下かつシリカガラスの粘性率が1014.5dPa・s以下となる温度範囲において水素雰囲気中で熱処理を行う工程と、を含むことを特徴とする。 In the method for producing a silica glass member of the present invention, the viscosity of the silica glass is 10 14.5 at a temperature of 400 ° C. or more and 1000 ° C. or less with respect to the base material having undergone the step of doping the porous silica base material to make it transparent. and D. heat treatment in a hydrogen atmosphere in a temperature range of dPa · s or less.

本発明にかかるシリカガラスの製造方法は、フッ素の含有量分布を均質に容易に形成することができると共に、非常に小さい屈折率分布を得るためにラジカル欠陥を生じさせないように水素雰囲気中で熱処理を行う点に特徴がある。
即ち、本発明によれば、フッ素含有したシリカガラスを作製した後に、さらに水素雰囲気中で熱処理を行う工程を実施することで、ラジカル欠陥を消滅させて、屈折率の均質性を高めることができる。
The method for producing silica glass according to the present invention can form a fluorine content distribution homogeneously and easily, and heat treatment in a hydrogen atmosphere so as not to cause radical defects in order to obtain a very small refractive index distribution. It is characterized in that
That is, according to the present invention, radical defects can be eliminated and the homogeneity of the refractive index can be enhanced by carrying out the step of performing heat treatment in a hydrogen atmosphere after producing fluorine-containing silica glass. .

尚、400℃以上1000℃以下かつシリカガラスの粘性率が1014.5dPa・s以下となる温度範囲としたのは、400℃未満では水素の処理の効果が確認できず、1000℃超の高温では水素の拡散が生じるためである。 It should be noted that the temperature range of 400 ° C. or more and 1000 ° C. or less and the viscosity of the silica glass of 10 14.5 dPa · s or less can not confirm the effect of hydrogen treatment below 400 ° C., and at a high temperature of more than 1000 ° C. This is because diffusion of hydrogen occurs.

前記透明化する工程を経た母材が、スート法で製作された多孔質シリカ母材であってフッ素含有雰囲気下でフッ素ドープが行われることが好ましい。
または、前記透明化する工程を経た母材が、ゾルゲル法で製作したドライゲルまたは焼結ゲルからなる多孔質シリカ母材にフッ素含有雰囲気下で、または、フッ素化合物溶液の浸潤によりフッ素ドープが行われることが好ましい。
尚、多孔質シリカ母材をダイレクト法で作製する場合においても、シリカガラス微粒子をターゲット上に堆積させる際に生じるフッ素の含有量分布の不均一が緩和されたものであれば、本発明にかかるシリカガラスの製造方法を適用することができる。
It is preferable that the base material which passed through the said process to make it transparent is a porous silica base material manufactured by the soot method, and fluorine dope is performed in a fluorine-containing atmosphere.
Alternatively, the base material subjected to the above-mentioned step of clarifying is subjected to fluorine doping in a fluorine-containing atmosphere, or by the infiltration of a fluorine compound solution into a porous silica base material made of dry gel or sintered gel manufactured by sol-gel method. Is preferred.
Incidentally, even in the case of producing the porous silica matrix by the direct method, the present invention relates to the present invention if the nonuniformity of the content distribution of fluorine generated when depositing the silica glass fine particles on the target is alleviated. A method of producing silica glass can be applied.

また、前記多孔質シリカ母材を透明化する工程が、加圧条件下で行われることが望ましい。
ここで、加圧条件とは、1気圧〜2気圧が望ましい。1気圧未満では、フッ素濃度の分布が100ppm超となり、2気圧を超えた場合でもフッ素濃度分布が100ppm超となり、好ましくない。
In addition, it is desirable that the step of clarifying the porous silica matrix be performed under pressure.
Here, the pressure condition is preferably 1 atm to 2 atm. If the pressure is less than 1 atm, the distribution of the fluorine concentration becomes more than 100 ppm, and even if the pressure exceeds 2 atm, the distribution of the fluorine concentration becomes more than 100 ppm, which is not preferable.

本発明によれば、屈折率均質性の優れたシリカガラス部材を得ることができ、また、屈折率均質性の優れたシリカガラス部材を容易に製造することができるシリカガラス部材の製造方法を得ることができる。   According to the present invention, a silica glass member excellent in refractive index homogeneity can be obtained, and a method of manufacturing a silica glass member capable of easily producing a silica glass member excellent in refractive index homogeneity is obtained. be able to.

本発明にかかるシリカガラス部材は、真空紫外光を光源とする光リソグラフィー工程に使用されるシリカガラス部材であって、フッ素の含有量が1wt%以上5wt%以下、かつフッ素濃度の最大値と最小値の幅が100ppm以下であり、かつOH基濃度が10ppm以下である。   The silica glass member according to the present invention is a silica glass member used in a photolithographic process using vacuum ultraviolet light as a light source, and has a fluorine content of 1 wt% or more and 5 wt% or less, and maximum and minimum fluorine concentration values. The range of the value is 100 ppm or less, and the OH group concentration is 10 ppm or less.

ここで、フッ素の含有量が1wt%以上5wt%以下であるため、フッ素濃度分布が小さく、優れたシリカガラス部材を得ることができる。
尚、フッ素の含有量が1wt%未満の場合には、フッ素濃度分布は100ppm超となり、屈折率の均質性の観点から好ましくない。一方、フッ素の含有量が5wt%を超える場合にも、フッ素濃度分布は100ppm超となり、同じく屈折率の均質性の観点から好ましくない。
Here, since the content of fluorine is 1 wt% or more and 5 wt% or less, it is possible to obtain an excellent silica glass member having a small fluorine concentration distribution.
When the content of fluorine is less than 1 wt%, the fluorine concentration distribution is more than 100 ppm, which is not preferable from the viewpoint of the homogeneity of the refractive index. On the other hand, when the content of fluorine exceeds 5 wt%, the fluorine concentration distribution exceeds 100 ppm, which is also not preferable from the viewpoint of homogeneity of refractive index.

フッ素濃度の最大値と最小値の幅が100ppmを超える場合には、屈折率均質性の優れたシリカガラス部材を得ることができない。
一方、シリカガラス部材におけるフッ素含有量を均質にすれば屈折率の均質性が望めるが、工業上完全に均質になすことは困難であるため、フッ素濃度の最大値と最小値の幅は、本来0であることが好ましいが、10ppm程度は本発明の効果を得る上では許容できる。
したがって、フッ素濃度の最大値と最小値の幅が100ppm以下であることが望ましい。
When the width between the maximum value and the minimum value of the fluorine concentration exceeds 100 ppm, it is not possible to obtain a silica glass member excellent in refractive index homogeneity.
On the other hand, if the fluorine content in the silica glass member is made uniform, the homogeneity of the refractive index can be expected, but since it is difficult to be completely homogeneous in the industry, the width of the maximum value and the minimum value of the fluorine concentration is essentially Although it is preferable that it is 0, about 10 ppm is acceptable for obtaining the effects of the present invention.
Therefore, it is desirable that the range between the maximum value and the minimum value of the fluorine concentration is 100 ppm or less.

前記シリカガラス部材におけるフッ素濃度の最大値と最小値の幅が100ppm以下とすることにより、おおよそ4.2×10-6以下の屈折率差に抑えることができる。
尚、フッ素濃度の最大値とは、使用領域の各点において測定されるフッ素濃度の内の最大値をいう。フッ素濃度の最小値とは、使用領域の各点において測定されるフッ素濃度の内の最小値をいう。また、フッ素濃度の最大値と最小値の幅とは、フッ素濃度の最大値と最小値の差をいう。
When the width between the maximum value and the minimum value of the fluorine concentration in the silica glass member is 100 ppm or less, the difference in refractive index can be suppressed to about 4.2 × 10 −6 or less.
The maximum value of the fluorine concentration refers to the maximum value of the fluorine concentrations measured at each point in the use area. The minimum value of the fluorine concentration means the minimum value of the fluorine concentrations measured at each point in the use area. Further, the range between the maximum value and the minimum value of the fluorine concentration means the difference between the maximum value and the minimum value of the fluorine concentration.

OH基濃度は、フッ素濃度を1wt%以上とするためには、10ppm以下が好ましい。
シリカガラス形成過程で生じるラジカル構造を、水素雰囲気処理をしてOH基構造としたため、非常に小さい屈折率分布を得ることができる。
このOH基濃度は10ppm以下であることが望ましく、さらに5ppm以下であることが望ましい。
The OH group concentration is preferably 10 ppm or less in order to set the fluorine concentration to 1 wt% or more.
Since the radical structure generated in the process of forming silica glass is treated with a hydrogen atmosphere to form an OH group structure, a very small refractive index distribution can be obtained.
The OH group concentration is preferably 10 ppm or less, and more preferably 5 ppm or less.

次に、本発明にかかるシリカガラス部材の製造方法について説明する。
本発明にかかるシリカガラス部材の製造方法は、フッ素の含有量分布を均質に形成するのみならず、非常に小さい屈折率分布を得るためにラジカル欠陥を生じさせないように水素雰囲気中で熱処理を行う点に特徴がある。
Next, a method of manufacturing a silica glass member according to the present invention will be described.
In the method for producing a silica glass member according to the present invention, the heat treatment is performed in a hydrogen atmosphere so as not to form radical defects, in order to obtain a very small distribution of refractive index as well as to uniformly form the content distribution of fluorine. There is a feature in the point.

シリカガラス部材の作製方法としては、フッ素を均質に含むように、支燃性ガス、可燃性ガスおよびシリカ製造原料ガスをバーナーから反応域に供給し、この反応域においてシリカ製造原料ガスの火炎加水分解によりシリカ微粒子を生成させて、多孔質シリカ母材を作製し、この母材をフッ素化合物ガス含有雰囲気下で加熱・溶融し、ガラス化させる、いわゆるスート法を用いることができる。
この際、ガラス化中のフッ素ガス導入量を適時設定し、且つ加圧条件で透明化を行うことで均質なフッ素含有量を達成できる。
As a method for producing a silica glass member, a combustion supporting gas, a flammable gas and a silica producing raw material gas are supplied from a burner to a reaction zone so as to uniformly contain fluorine, and flame hydrolysis of the silica producing raw material gas is performed in this reaction zone. It is possible to use a so-called soot method in which silica fine particles are generated by decomposition to produce a porous silica base material, and the base material is heated and melted in an atmosphere containing a fluorine compound gas to vitrify.
At this time, it is possible to achieve a uniform fluorine content by appropriately setting the amount of fluorine gas introduced during vitrification and by making it transparent under pressure conditions.

具体的には、例えば、特開2001−342027号公報に記載されているように、シリカガラス形成原料を火炎加水分解して多孔質シリカ体(スート)を形成し、その後に透明化処理を行う、いわゆるVAD法により製造することができる。
即ち、スートを形成後、ヘリウム等の不活性ガスとSiF4ガスとを混合した混合ガス雰囲気中で処理することで、フッ素をドープした後、フッ素含有雰囲気(混合ガス雰囲気)下に透明化し、さらに所定の熱処理を施すことにより、シリカガラス部材を製造する。
Specifically, for example, as described in JP-A-2001-342027, a silica glass forming raw material is subjected to flame hydrolysis to form a porous silica body (soot), and then a transparentizing treatment is performed. , So-called VAD method.
That is, after forming a soot, it is treated in a mixed gas atmosphere in which an inert gas such as helium and a SiF 4 gas are mixed, after doping with fluorine, it is made transparent in a fluorine-containing atmosphere (mixed gas atmosphere), Further, a predetermined heat treatment is performed to manufacture a silica glass member.

前記混合ガス中のフッ素濃度(SiF4ガスの濃度割合)は、10vol%〜35vol%が好ましく、25vol%〜35vol%がより好ましい。
また、混合ガスの導入温度は1000℃〜1300℃が好ましく、1100℃〜1200℃がより好ましい。導入温度が1000℃未満ではフッ素のガラス構造中への拡散が遅く、十分にドープされないことがある。一方、1300℃を超えると、スートの焼結が始まり、フッ素のガラス構造中への拡散が阻害されることがある。
10 vol%-35 vol% are preferable, and, as for the fluorine concentration (concentration ratio of SiF 4 gas) in the said mixed gas, 25 vol%-35 vol% are more preferable.
Moreover, 1000 degreeC-1300 degreeC are preferable, and, as for introduction | transduction temperature of mixed gas, 1100 degreeC-1200 degreeC is more preferable. When the introduction temperature is less than 1000 ° C., diffusion of fluorine into the glass structure may be slow and not sufficiently doped. On the other hand, if the temperature is higher than 1300 ° C., sintering of soot may start, and diffusion of fluorine into the glass structure may be inhibited.

このときのフッ素含有量分布を完全に均質とすることは原理的に難しいとしても、加圧条件でフッ素ガスを導入しながらガラス化させることで、フッ素の含有量が1wt%以上5wt%以下、かつフッ素含有量の最大値と最小値の幅が100ppm以下というフッ素の含有量が従来技術よりも大きく、かつ均質性の高いガラスが得ることができる。
この加圧条件としては、1気圧〜2気圧が望ましい。1気圧未満では、フッ素濃度の分布が100ppm超となり、2気圧を超えた場合でもフッ素濃度分布が100ppm超となり、好ましくない。
Even if it is difficult in principle to make the fluorine content distribution completely homogeneous at this time, the content of fluorine is 1 wt% or more and 5 wt% or less by introducing vitrified gas under pressurized conditions. In addition, it is possible to obtain a glass having a fluorine content of 100 ppm or less between the maximum value and the minimum value of the fluorine content, which is larger than that of the prior art and high in homogeneity.
As this pressurizing condition, 1 atm to 2 atm is desirable. If the pressure is less than 1 atm, the distribution of the fluorine concentration becomes more than 100 ppm, and even if the pressure exceeds 2 atm, the distribution of the fluorine concentration becomes more than 100 ppm, which is not preferable.

尚、本発明はシリカガラスをスート法で作製することを前提になされてものであるが、多孔質シリカ母材が公知のゾルゲル法で製作されたものであっても、本発明にかかるシリカガラス部材の製造方法を適用することができる。
また、多孔質シリカ母材をダイレクト法で作製する場合においても、シリカガラス微粒子をターゲット上に堆積させる際に生じるフッ素の含有量分布の不均一が緩和されたものであれば、本発明にかかるシリカガラス部材の製造方法を適用することができる。
Although the present invention is premised on producing silica glass by the soot method, the silica glass according to the present invention may be used even if the porous silica matrix is produced by a known sol-gel method. The manufacturing method of a member can be applied.
Further, even in the case where the porous silica matrix is produced by the direct method, the present invention relates to the present invention, provided that the unevenness of the content distribution of fluorine generated when depositing the silica glass fine particles on the target is alleviated. The manufacturing method of a silica glass member can be applied.

本発明にかかるシリカガラス部材の製造方法は、フッ素含有したシリカガラスを作製した後に、さらに水素雰囲気中で熱処理を行うことでラジカル欠陥を消滅させて、屈折率の均質性を高めることができるという知見に基づくものである。このような処理を追加することで屈折率の均質性が高まる理由は明確ではないが、以下のように推察される。   In the method for producing a silica glass member according to the present invention, after producing fluorine-containing silica glass, the heat treatment is further performed in a hydrogen atmosphere to eliminate radical defects and improve the homogeneity of the refractive index. It is based on knowledge. The reason why the homogeneity of the refractive index is improved by the addition of such treatment is not clear, but it is presumed as follows.

例えば、フッ素がシリカガラス中に含まれるとガラス中のSi−O−Siネットワーク中に構成される3員環、4員環構造に代表される歪結合が解消されることが知られている。この反応は員環構造の一部が切断されて式(1)の反応が生じ、引き継いてフッ素により式(2)の反応が生じることが説明されている(OPTRONICS (2004) 23 p148)。
−Si−O−Si− → −Si・+・O−Si− (1)
−Si・+・O−Si− +F2 → −Si―F+F−Si− (2)
For example, it is known that when fluorine is contained in silica glass, strain bonding represented by a three-membered ring or a four-membered ring structure formed in a Si-O-Si network in glass is eliminated. In this reaction, part of the member ring structure is cleaved to generate the reaction of the formula (1), and it is described that the reaction of the formula (2) is generated by the fluorine (OPTRONICS (2004) 23 p 148).
-Si-O-Si- → -Si ···· O-Si- (1)
-Si * + * O-Si- + F2->-Si-F + F-Si- (2)

しかし、(2)式ではO−Si構造の酸素原子が脱離するモデルであるが、大多数が(2)式の反応が生じるとしても、ごくわずかに・O−Si−構造が残留することが想定される。
この場合はラジカル構造が残留する箇所は屈折率が異なることが考えられる。このため、ラジカル構造を解消するためにさらに水素雰囲気中で熱処理することでHO−Si−構造とするものである。
However, although (2) is a model in which the oxygen atom of O-Si structure is detached, even if the majority reaction occurs in (2), only a slight amount of .O-Si- structure remains. Is assumed.
In this case, it is considered that the refractive index is different in the portion where the radical structure remains. For this reason, in order to eliminate a radical structure, it is set as HO-Si- structure by heat-processing in a hydrogen atmosphere.

また、必ずしも理由は明確でないが、本発明ではラジカル構造で残留するよりもOH基で残留する方が屈折率の均質性に寄与することが新たに知見した。
即ち、本発明にかかる製造方法にあっては、ラジカル構造であるよりも水素雰囲気処理をしてOH基構造とした方が屈折率への影響を小さくできるために、水素雰囲気中での熱処理が行われる。
In addition, although the reason is not necessarily clear, it has been newly found that in the present invention, the remaining of the OH group contributes to the homogeneity of the refractive index rather than the remaining of the radical structure.
That is, in the manufacturing method according to the present invention, since the effect on the refractive index can be reduced when the hydrogen atmosphere is treated to form the OH group rather than the radical structure, the heat treatment in the hydrogen atmosphere is performed. To be done.

また、前記水素雰囲気中での熱処理は、400℃以上1000℃以下かつシリカガラスの粘性率が1014.5dPa・s以下となる温度範囲において行われる。
尚、400℃以上1000℃以下の温度範囲で処理することで、高温での水素の拡散を抑制し、効率的にラジカル欠陥を消滅することができる。
The heat treatment in the hydrogen atmosphere is performed in a temperature range where the temperature is 400 ° C. or more and 1000 ° C. or less and the viscosity of the silica glass is 10 14.5 dPa · s or less.
In addition, by processing in a temperature range of 400 ° C. or more and 1000 ° C. or less, diffusion of hydrogen at high temperature can be suppressed, and radical defects can be efficiently eliminated.

フッ素濃度が1wt%以上5wt%以下のシリカガラスの歪点は1000℃以下であることから、前記熱処理の温度は、通常1000℃以下、好ましくは800℃以下、より好ましくは600℃から400℃の間で行う。この歪点とは1014.5dPa・sの粘性率となる温度であり、シリカガラスの粘性流動が事実上起り得ない温度であり、徐冷域における下限温度に相当する。
したがって、シリカガラスの粘性流動が事実上起り得ない温度範囲において、シリカガラス中のラジカル構造をOH基構造とすることができる。
Since the strain point of silica glass having a fluorine concentration of 1 wt% or more and 5 wt% or less is 1000 ° C. or less, the temperature of the heat treatment is usually 1000 ° C. or less, preferably 800 ° C. or less, more preferably 600 ° C. to 400 ° C. Do between. The strain point is a temperature at which the viscosity becomes 10 14.5 dPa · s, the temperature at which viscous flow of the silica glass can not practically occur, and corresponds to the lower limit temperature in the slow cooling region.
Therefore, the radical structure in silica glass can be made into OH group structure in the temperature range which viscous flow of silica glass can not practically occur.

以下、本発明を実施例に基づき具体的に説明するが、本発明は下記に示す実施例により制限されるものではない。   EXAMPLES Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited by the examples shown below.

[実施例1]
ガラス成形原料としてのSiCl4を酸水素火炎中で加水分解させ、生成したシリカ微粒子を石英ガラス製のターゲットに堆積させて、直径200mm、長さ500mmの多孔質シリカ(スート)を得た。
次いで、前記スートを炉に入れ、流量20L/minのHeガス雰囲気中、400℃/hの昇温速度で1250℃まで昇温した後、雰囲気ガスをSiF425vol%+He 75vol%の混合ガスに切り換え(流量20L/min)、1250℃で4時間保持してフッ素ドープ処理を行った。この時の炉内圧力は1.2気圧とした。
前記フッ素ドープ処理終了後、雰囲気はそのままとして、400℃/hの昇温速度で1420℃まで昇温し、1420℃で2.5時間保持して透明化処理を行って、直径120mm、長さ230mmのシリカガラスインゴットを得た。
インゴットを一旦常温に戻して、加工しスライスして、基板サイズの152mm×152mm、厚さ6.4mmの薄板にした後、その薄板を電気炉に入れて水素雰囲気中で昇温し、800℃で15時間保持した。
Example 1
SiCl 4 as a glass forming material was hydrolyzed in an oxyhydrogen flame, and the produced fine silica particles were deposited on a target made of quartz glass to obtain porous silica (soot) having a diameter of 200 mm and a length of 500 mm.
Next, the soot is put into a furnace and heated to 1250 ° C. at a heating rate of 400 ° C./h in a He gas atmosphere with a flow rate of 20 L / min, and then the atmosphere gas is mixed gas of 25 vol% SiF 4 + 75 vol% He The fluorine doping process was performed by switching (flow rate 20 L / min) and holding at 1250 ° C. for 4 hours. The pressure in the furnace at this time was 1.2 atm.
After completion of the fluorine doping treatment, the atmosphere is kept as it is, and the temperature is raised to 1420 ° C. at a temperature rising rate of 400 ° C./h, held at 1420 ° C. for 2.5 hours to perform a clarifying treatment, diameter 120 mm, length A 230 mm silica glass ingot was obtained.
The ingot is once cooled to room temperature, processed and sliced to a substrate size of 152 mm × 152 mm, 6.4 mm thick, and then the thin plate is placed in an electric furnace and heated in a hydrogen atmosphere to 800 ° C. Held for 15 hours.

さらに20mm×40mm×6.4mmの短冊状のサンプルを切り出し、光学研磨を実施した後に、赤外線分光測定装置(Nicolet6700)でOH吸収ピークによるOH濃度を測定した。合わせてイオンクロマトグラフィーでF濃度分析を行った。
このときのフッ素含有量は2.6wt%であった。またフッ素濃度の最大値と最小値の幅は60ppm以下であった。また、OH基濃度は1.5ppmであった。
Furthermore, after cutting out a 20 mm x 40 mm x 6.4 mm strip-like sample and performing optical polishing, OH concentration by OH absorption peak was measured with an infrared spectrometer (Nicolet 6700). In addition, F concentration analysis was performed by ion chromatography.
The fluorine content at this time was 2.6 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 60 ppm or less. In addition, the OH group concentration was 1.5 ppm.

更に、波長633nmの光における部材面内の屈折率分布を測定した。屈折率の均質性の測定は、光学計測機器(Zygo Verifire)を用いて、面内25点を測定し、評価した。その結果、屈折率の面内分布は0.5×10-6であった。その結果を表1に示す。尚、波長633nmの光における部材面内の屈折率分布を測定したのは、市販されている測定器の多くが633nmを採用しているためである。例えば、使用する際に用いられるArFエキシマレーザの波長は193nmであるが、屈折率は波長193nmの方が大きくなる。 Furthermore, the refractive index distribution in the member surface in the light of wavelength 633 nm was measured. The measurement of the homogeneity of refractive index measured and evaluated in-plane 25 points using the optical measurement instrument (Zygo Verifire). As a result, the in-plane distribution of the refractive index was 0.5 × 10 −6 . The results are shown in Table 1. The reason why the refractive index distribution in the surface of the member in the light having a wavelength of 633 nm is measured is that most of the commercially available measuring devices use 633 nm. For example, although the wavelength of the ArF excimer laser used in use is 193 nm, the refractive index is larger at a wavelength of 193 nm.

[実施例2]
SiF4とHe混合ガスの比を35vol%:65vol%としたフッ素ドープ処理を行ったこと以外は、実施例1と同様にして、シリカガラス部材を得た。
その後、実施例1と同様の測定・評価を行った。
このときのフッ素含有量は3.6wt%であった。また、フッ素濃度の最大値と最小値の幅は75ppm以下であった。また、OH基濃度は1ppmであった。またその屈折率の面内分布は0.7×10-6であった。その結果を表1に示す。
Example 2
A silica glass member was obtained in the same manner as Example 1, except that the fluorine doping process was performed with the ratio of SiF 4 to He mixed gas being 35 vol%: 65 vol%.
Thereafter, the same measurement and evaluation as in Example 1 were performed.
The fluorine content at this time was 3.6 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 75 ppm or less. In addition, the OH group concentration was 1 ppm. The in-plane distribution of the refractive index was 0.7 × 10 −6 . The results are shown in Table 1.

[実施例3]
テトラエトキシシラン1モル、水10モル、硝酸0.002モルを混合し撹拌後、酸触媒下で加水分解を進行させ、混合液が安定した後に酢酸アンモニウム0.02モルを滴下し溶液を塩基性とすることでゲル化をさせた。得られたゲルを80℃で7日間かけて乾燥させることで、直径100mm、長さ100mmの多孔質シリカを得た。
その後、多孔質シリカを実施例1のスートのようにして炉に入れ、流量20L/minのHeガス雰囲気中、400℃/hの昇温速度で1250℃まで昇温した後、雰囲気ガスをSiF410vol%+He 90vol%の混合ガスに切り換え(流量20L/min)、1250℃で4時間保持してフッ素ドープ処理を行った。この時の炉内圧力は1.1気圧とした。前記フッ素ドープ処理終了後、雰囲気はそのままとして、400℃/hの昇温速度で1420℃まで昇温し、1420℃で2.5時間保持して透明化処理を行って、直径80mm、長さ80mmのシリカガラスインゴットを得た。
インゴットを一旦常温に戻して、加工しスライスして、基板サイズの60mm×60mm、厚さ6.4mmの薄板にした後、その薄板を電気炉に入れて水素雰囲気中で昇温し、600℃で15時間保持した。
さらに20mm×40mm×6.4mmの短冊状のサンプルを切り出し、光学研磨を実施した後に、赤外線分光測定装置(Nicolet6700)でOH吸収ピークによるOH濃度を測定した。合わせてイオンクロマトグラフィーでF濃度分析を行った。このときのフッ素含有量は1.0wt%であった。またフッ素濃度の最大値と最小値の幅は25ppm以下であった。また、OH基濃度は4ppmであった。その結果を表1に示す。
[Example 3]
After 1 mole of tetraethoxysilane, 10 moles of water and 0.002 moles of nitric acid are mixed and stirred, hydrolysis is allowed to proceed under an acid catalyst, and after the mixture is stabilized, 0.02 mole of ammonium acetate is added dropwise to make the solution basic The gelation was caused by The obtained gel was dried at 80 ° C. for 7 days to obtain porous silica having a diameter of 100 mm and a length of 100 mm.
Thereafter, the porous silica is put into a furnace as in the soot of Example 1, and the temperature is raised to 1250 ° C. at a heating rate of 400 ° C./h in a He gas atmosphere with a flow rate of 20 L / min. It switched to the mixed gas of 4 10 vol% + He 90 vol% (flow volume 20 L / min), and it hold | maintained at 1250 degreeC for 4 hours, and performed the fluorine dope process. The pressure in the furnace at this time was 1.1 atm. After completion of the fluorine doping treatment, the atmosphere is kept as it is, and the temperature is raised to 1420 ° C. at a temperature rising rate of 400 ° C./h and held at 1420 ° C. for 2.5 hours to perform a clarifying treatment, diameter 80 mm, length An 80 mm silica glass ingot was obtained.
The ingot is once cooled to room temperature, processed and sliced to a substrate size of 60 mm × 60 mm, 6.4 mm thick, and then the thin plate is placed in an electric furnace and heated in a hydrogen atmosphere to a temperature of 600 ° C. Held for 15 hours.
Furthermore, after cutting out a 20 mm x 40 mm x 6.4 mm strip-like sample and performing optical polishing, OH concentration by OH absorption peak was measured with an infrared spectrometer (Nicolet 6700). In addition, F concentration analysis was performed by ion chromatography. The fluorine content at this time was 1.0 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 25 ppm or less. In addition, the OH group concentration was 4 ppm. The results are shown in Table 1.

[実施例4]
SiF4とHe混合ガスの比を35vol%:65vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を1.7気圧とし、透明化後の水素処理温度を400℃としたこと以外は、実施例1と同様にして、シリカガラス部材を得た。
その後、実施例1と同様の測定・評価を行った。
このときのフッ素含有量は5.0wt%であった。また、フッ素濃度の最大値と最小値の幅は95ppm以下であった。また、OH基濃度は1ppmであった。またその屈折率の面内分布は0.9×10-6であった。その結果を表1に示す。
Example 4
The fluorine doping process is performed with the ratio of SiF 4 to He mixed gas set to 35 vol%: 65 vol%, the atmosphere pressure at the time of transparency is 1.7 atm, and the hydrogen treatment temperature after the transparency is 400 ° C. In the same manner as in Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Example 1 were performed.
The fluorine content at this time was 5.0 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 95 ppm or less. In addition, the OH group concentration was 1 ppm. The in-plane distribution of the refractive index was 0.9 × 10 -6 . The results are shown in Table 1.

[実施例5]
SiF4とHe混合ガスの比を15vol%:85vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を1.1気圧とし、透明化後の水素処理温度を600℃としたこと以外は、実施例1と同様にして、シリカガラス部材を得た。
その後、実施例1と同様の測定・評価を行った。
このときのフッ素含有量は1.5wt%であった。また、フッ素濃度の最大値と最小値の幅は45ppm以下であった。また、OH基濃度は3ppmであった。またその屈折率の面内分布は0.3×10-6であった。その結果を表1に示す。
[Example 5]
A fluorine doping process is performed with a ratio of SiF 4 to He mixed gas of 15 vol%: 85 vol%, the atmosphere pressure at the time of clarification is 1.1 atm, and the hydrogen treatment temperature after the clarification is 600 ° C. In the same manner as in Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Example 1 were performed.
The fluorine content at this time was 1.5 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 45 ppm or less. Also, the OH group concentration was 3 ppm. The in-plane distribution of the refractive index was 0.3 × 10 −6 . The results are shown in Table 1.

[実施例6]
SiF4とHe混合ガスの比を30vol%:70vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を1.5気圧とし、透明化後の水素処理温度を400℃としたこと以外は、実施例1と同様にして、シリカガラス部材を得た。
その後、実施例1と同様の測定・評価を行った。
このときのフッ素含有量は4.2wt%であった。また、フッ素濃度の最大値と最小値の幅は85ppm以下であった。また、OH基濃度は1ppmであった。またその屈折率の面内分布は0.8×10-6であった。その結果を表1に示す。
[Example 6]
A fluorine doping process is performed at a ratio of 30 vol%: 70 vol% of SiF 4 and He mixed gas, the atmosphere pressure at the time of transparency is 1.5 atm, and the hydrogen treatment temperature after the transparency is 400 ° C. In the same manner as in Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Example 1 were performed.
The fluorine content at this time was 4.2 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 85 ppm or less. In addition, the OH group concentration was 1 ppm. The in-plane distribution of the refractive index was 0.8 × 10 −6 . The results are shown in Table 1.

[比較例1]
実施例1において、SiF4とHe混合ガスの比を7vol%と93vol%としたフッ素ドープ処理を行ったこと以外は、実施例1と同様にして、シリカガラスを得た。
その後、実施例1と同様の試験・評価を行った。
このときのフッ素含有量は0.7wt%であった。また、フッ素濃度の最大値と最小値の幅は120ppm以下であった。また、OH基濃度は12ppmであった。また屈折率の面内分布は2.7×10-6であった。その結果を表1に示す。
Comparative Example 1
Silica glass was obtained in the same manner as in Example 1 except that the fluorine doping process was performed in Example 1 in which the ratio of SiF 4 to He mixed gas was 7 vol% and 93 vol%.
Thereafter, the same test and evaluation as in Example 1 were performed.
The fluorine content at this time was 0.7 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 120 ppm or less. The OH group concentration was 12 ppm. The in-plane distribution of the refractive index was 2.7 × 10 −6 . The results are shown in Table 1.

[比較例2]
比較例1において、SiF4とHe混合ガスの比を45vol%と55vol%としたこと以外は、実施例1と同様にして、シリカガラスを得た。
その後、実施例1と同様の試験・評価を行った。
このときのフッ素含有量は6wt%であった。また、フッ素濃度の最大値と最小値の幅は130ppm以下であった。また、OH基濃度は1ppmであった。また、屈折率の面内分布は1.5×10-6であった。その結果を表1に示す。
Comparative Example 2
Silica glass was obtained in the same manner as in Example 1 except that the ratio of SiF 4 to He mixed gas was 45 vol% and 55 vol% in Comparative Example 1.
Thereafter, the same test and evaluation as in Example 1 were performed.
The fluorine content at this time was 6 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 130 ppm or less. In addition, the OH group concentration was 1 ppm. In addition, the in-plane distribution of the refractive index was 1.5 × 10 −6 . The results are shown in Table 1.

[比較例3]
SiF4とHe混合ガスの比を25vol%:75vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を0.5気圧とし、透明化後の水素処理温度を600℃としたこと以外は、比較例1と同様にして、シリカガラス部材を得た。
その後、比較例1と同様の測定・評価を行った。
このときのフッ素含有量は0.8wt%であった。また、フッ素濃度の最大値と最小値の幅は120ppm以下であった。また、OH基濃度は15ppmであった。またその屈折率の面内分布は1.3×10-6であった。その結果を表1に示す。
Comparative Example 3
A fluorine doping process is performed with a ratio of SiF 4 to He mixed gas of 25 vol%: 75 vol%, the atmosphere pressure at the time of transparency is 0.5 atm, and the hydrogen treatment temperature after the transparency is 600 ° C. In the same manner as in Comparative Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Comparative Example 1 were performed.
The fluorine content at this time was 0.8 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 120 ppm or less. The OH group concentration was 15 ppm. The in-plane distribution of the refractive index was 1.3 × 10 -6 . The results are shown in Table 1.

[比較例4]
SiF4とHe混合ガスの比を25vol%:75vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を1.2気圧とし、透明化後の水素処理温度を1100℃としたこと以外は、比較例1と同様にして、シリカガラス部材を得た。
その後、比較例1と同様の測定・評価を行った。
このときのフッ素含有量は1.8wt%であった。また、フッ素濃度の最大値と最小値の幅は140ppm以下であった。また、OH基濃度は2.5ppmであった。またその屈折率の面内分布は1.6×10-6であった。その結果を表1に示す。
Comparative Example 4
The fluorine doping process is performed at a ratio of 25 vol%: 75 vol% of SiF 4 and He mixed gas, the atmospheric pressure at the time of transparency is 1.2 atm, and the hydrogen treatment temperature after the transparency is 1100 ° C. In the same manner as in Comparative Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Comparative Example 1 were performed.
The fluorine content at this time was 1.8 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 140 ppm or less. In addition, the OH group concentration was 2.5 ppm. The in-plane distribution of the refractive index was 1.6 × 10 -6 . The results are shown in Table 1.

[比較例5]
SiF4とHe混合ガスの比を35vol%:65vol%としたフッ素ドープ処理を行い、透明化時の雰囲気圧力を1.2気圧とし、透明化後の水素処理温度を300℃としたこと以外は、比較例1と同様にして、シリカガラス部材を得た。
その後、比較例1と同様の測定・評価を行った。
このときのフッ素含有量は3.0wt%であった。また、フッ素濃度の最大値と最小値の幅は150ppm以下であった。また、OH基濃度は1.5ppmであった。またその屈折率の面内分布は1.8×10-6であった。その結果を表1に示す。
Comparative Example 5
A fluorine doping process is performed with a ratio of SiF 4 to He mixed gas of 35 vol%: 65 vol%, the atmosphere pressure at the time of transparency is 1.2 atm, and the hydrogen treatment temperature after the transparency is 300 ° C. In the same manner as in Comparative Example 1, a silica glass member was obtained.
Thereafter, the same measurement and evaluation as in Comparative Example 1 were performed.
The fluorine content at this time was 3.0 wt%. Further, the width between the maximum value and the minimum value of the fluorine concentration was 150 ppm or less. In addition, the OH group concentration was 1.5 ppm. The in-plane distribution of the refractive index was 1.8 × 10 −6 . The results are shown in Table 1.

Figure 2019069883
Figure 2019069883

本発明のシリカガラス部材は、ArFエキシマレーザー(193nm)やF2レーザー(157nm)等の真空紫外光を光源とする光リソグラフィーに好適に使用することができる。   The silica glass member of the present invention can be suitably used for photolithography using vacuum ultraviolet light such as ArF excimer laser (193 nm) or F2 laser (157 nm) as a light source.

Claims (6)

真空紫外光を光源とする光リソグラフィー工程に使用されるシリカガラス部材であって、フッ素の含有量が1wt%以上5wt%以下、かつフッ素濃度の最大値と最小値の幅が100ppm以下であり、かつOH基濃度が10ppm以下であることを特徴とするシリカガラス部材。   A silica glass member used in a photolithographic process using vacuum ultraviolet light as a light source, wherein the content of fluorine is 1 wt% or more and 5 wt% or less, and the width between the maximum value and the minimum value of fluorine concentration is 100 ppm or less And an OH group concentration of 10 ppm or less. 波長633nmの光における部材面内の屈折率分布が1×10-6 以下であることを特徴とする請求項1に記載のシリカガラス部材。 The silica glass member according to claim 1, wherein the refractive index distribution in the member plane of light having a wavelength of 633 nm is 1 × 10 -6 or less. 多孔質シリカ母材にフッ素をドープし透明化する工程を経た母材に対して、400℃以上1000℃以下かつシリカガラスの粘性率が1014.5dPa・s以下となる温度範囲において水素雰囲気中で熱処理を行う工程と、
を含むことを特徴とするシリカガラス部材の製造方法。
In a temperature range where the viscosity of the silica glass is 10 14.5 dPa · s or less, the temperature is 400 ° C. or more and 1000 ° C. or less and the viscosity of the silica glass is 10 14.5 dPa · s or less. A step of heat treatment;
A method of manufacturing a silica glass member, comprising:
前記透明化する工程を経た母材が、スート法で製作された多孔質シリカ母材であってフッ素含有雰囲気下でフッ素ドープが行われたことを特徴とする請求項3記載のシリカガラス部材の製造方法。   The silica glass member according to claim 3, wherein the base material subjected to the step of making transparent is a porous silica base material manufactured by a soot method, and fluorine doping is performed in a fluorine-containing atmosphere. Production method. 前記透明化する工程を経た母材が、ゾルゲル法で製作したドライゲルまたは焼結ゲルからなる多孔質シリカ母材にフッ素含有雰囲気下で、または、フッ素化合物溶液の浸潤によりフッ素ドープが行われたことを特徴とする請求項3記載のシリカガラス部材の製造方法。   In the fluorine-containing atmosphere, or the porous silica base material made of a dry gel or sintered gel manufactured by a sol-gel method, the base material which has been subjected to the above-mentioned clearing step is subjected to fluorine doping by infiltration of a fluorine compound solution. The manufacturing method of the silica glass member of Claim 3 characterized by these. 前記多孔質シリカ母材を透明化する工程が、加圧条件下で行われることを特徴とする請求項3乃至請求項5のいずれかに記載のシリカガラス部材の製造方法。   The method for producing a silica glass member according to any one of claims 3 to 5, wherein the step of making the porous silica matrix transparent is performed under pressure.
JP2017197582A 2017-10-11 2017-10-11 Silica glass member Pending JP2019069883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017197582A JP2019069883A (en) 2017-10-11 2017-10-11 Silica glass member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017197582A JP2019069883A (en) 2017-10-11 2017-10-11 Silica glass member

Publications (1)

Publication Number Publication Date
JP2019069883A true JP2019069883A (en) 2019-05-09

Family

ID=66441531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017197582A Pending JP2019069883A (en) 2017-10-11 2017-10-11 Silica glass member

Country Status (1)

Country Link
JP (1) JP2019069883A (en)

Similar Documents

Publication Publication Date Title
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
KR101869979B1 (en) Titania-doped quartz glass and making method
WO2000024685A1 (en) Synthetic quartz glass and method for production thereof
EP1900694A1 (en) Synthetic quartz glass substrate for excimer lasers and making method
JP4763877B2 (en) Synthetic quartz glass optical material and optical member for F2 excimer laser
EP2495220A1 (en) Optical member for deep ultraviolet and process for producing same
JP2005255423A (en) Synthetic quartz glass-made photomask substrate and photomask
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP5471478B2 (en) Method for producing synthetic quartz glass for excimer laser
JP3865039B2 (en) Method for producing synthetic quartz glass, synthetic quartz glass and synthetic quartz glass substrate
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
US6990836B2 (en) Method of producing fluorine-containing synthetic quartz glass
JP2008189547A (en) Synthetic quartz glass and its production method
JP2019069883A (en) Silica glass member
EP1178688A2 (en) Image decoding device and image decoding method
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP4085633B2 (en) Synthetic quartz glass for optical components
JP3671732B2 (en) ArF excimer laser, optical member for KrF excimer laser, and method for manufacturing photomask substrate
JP3796653B2 (en) Fluorine-containing synthetic quartz glass and method for producing the same
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JPH06166527A (en) Production of quartz glass
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP4459608B2 (en) Method for producing synthetic quartz glass member