JP2019068648A - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
JP2019068648A
JP2019068648A JP2017192834A JP2017192834A JP2019068648A JP 2019068648 A JP2019068648 A JP 2019068648A JP 2017192834 A JP2017192834 A JP 2017192834A JP 2017192834 A JP2017192834 A JP 2017192834A JP 2019068648 A JP2019068648 A JP 2019068648A
Authority
JP
Japan
Prior art keywords
switching element
arm switching
emitter
lower arm
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2017192834A
Other languages
Japanese (ja)
Inventor
賢治 早川
Kenji Hayakawa
賢治 早川
洋史 湯口
Hiroshi Yuguchi
洋史 湯口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017192834A priority Critical patent/JP2019068648A/en
Priority to CN201811122349.7A priority patent/CN109600053A/en
Priority to DE102018124030.9A priority patent/DE102018124030A1/en
Publication of JP2019068648A publication Critical patent/JP2019068648A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/40139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous strap daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/40227Connecting the strap to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73263Layer and strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

To provide an inverter device capable of achieving compaction of switching element while restraining unbalance of the switching element.SOLUTION: An inverter device includes a main circuit board 40 and a control board, where conductive plates for wiring 90, 92, 94, 96, 98, 100 are joined directly to the emitter electrodes in the switching elements Q1, Q3, Q5 for upper arm and the switching elements Q2, Q4, Q6 for lower arm of three phases U, V, W, auxiliary emitters 91, 93, 95, 97, 99, 101 branched from the conductive plates for wiring 90, 92, 94, 96, 98, 100 are connected with control terminals 53, 54, 59, 60, 64, 66, which extend from the main circuit board 40 to the control board and connected electrically with a driver.SELECTED DRAWING: Figure 3

Description

本発明は、インバータ装置に関するものである。   The present invention relates to an inverter device.

車載用電動圧縮機等においてモータがインバータ装置によって駆動されることにより圧縮機構によって冷媒が圧縮される。三相インバータ装置は、U、V、Wの相毎にそれぞれ、正極母線と負極母線との間に上アーム用スイッチング素子と下アーム用スイッチング素子が直列接続されている。この種の技術として、特許文献1にはパワーモジュールの上面の電極パッドと外部エミッタ端子とをボンディングワイヤで接続したりボンディングワイヤに代えてはんだで直接接合することが開示されている。   In the on-vehicle motor-driven compressor or the like, the refrigerant is compressed by the compression mechanism as the motor is driven by the inverter device. In the three-phase inverter device, an upper arm switching element and a lower arm switching element are connected in series between the positive electrode bus and the negative electrode bus for each of U, V, and W phases. As a technique of this type, Patent Document 1 discloses that an electrode pad on the upper surface of a power module and an external emitter terminal are connected by bonding wires or directly bonded by solder instead of bonding wires.

特開2003−31765号公報Unexamined-Japanese-Patent No. 2003-31765

ところで、U、V、Wの各相の上下のアーム用スイッチング素子はドライバにより駆動される。各スイッチング素子は主回路基板に搭載され、ドライバは制御基板に搭載される。スイッチング素子としてIGBTを用いた場合においてIGBTのスイッチングの高速化及び安定的な動作のためにIGBTのエミッタからドライバまでの配線経路を短くすべくIGBTの上面に補助エミッタ用パッドを設けてボンディングワイヤを介してドライバと接続する。ところが、IGBTの補助エミッタ用パッドが小型化の阻害要因になってしまう。また、U、V、Wの相間のエミッタ配線経路のアンバランスのみならず上下のアーム間のエミッタ配線経路のアンバランスを抑制する必要がある。   The upper and lower arm switching elements of each phase of U, V, and W are driven by a driver. Each switching element is mounted on the main circuit board, and the driver is mounted on the control board. When an IGBT is used as a switching element, an auxiliary emitter pad is provided on the upper surface of the IGBT to shorten a wiring path from the emitter of the IGBT to the driver for high speed switching and stable operation of the IGBT, and a bonding wire is provided. Connect with the driver via However, the auxiliary emitter pad of the IGBT is an obstacle to miniaturization. In addition, it is necessary to suppress not only the unbalance of the emitter wiring path between the U, V, and W phases, but also the unbalance of the emitter wiring path between the upper and lower arms.

本発明の目的は、スイッチング素子の小型化を図るとともにエミッタ配線経路のアンバランスを抑制することができるインバータ装置を提供することにある。   An object of the present invention is to provide an inverter device capable of reducing the size of a switching element and suppressing unbalance of an emitter wiring path.

請求項1に記載の発明では、正極母線と負極母線との間に上アーム用スイッチング素子と下アーム用スイッチング素子が直列接続されたU、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子とを、隣接して配置された状態で搭載した主回路基板と、前記U、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子を駆動するドライバを、対応する前記上アーム用スイッチング素子と前記下アーム用スイッチング素子に対向配置された状態で搭載した制御基板と、を備え、前記U、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子及び前記下アーム用スイッチング素子におけるエミッタ電極に配線用導電板が直接接合され、前記配線用導電板から分岐する補助エミッタが制御端子に接続され、前記制御端子が前記主回路基板から前記制御基板に延び、前記ドライバに電気的に接続されてなることを要旨とする。   In the invention according to claim 1, three phases of U, V and W in which an upper arm switching element and a lower arm switching element are connected in series between a positive electrode bus and a negative electrode bus are respectively used for the upper arm The main circuit board on which the switching element and the lower arm switching element are disposed adjacent to each other, and the three phases of U, V, and W, respectively, the upper arm switching element and the lower arm A driver for driving the switching element for the upper arm and a control board mounted in a state of being disposed opposite to the switching element for the lower arm, and the three phases of U, V and W, In each of them, the conductive plate for wiring is directly joined to the emitter electrode in the upper arm switching element and the lower arm switching element. , Auxiliary emitter branched from the wiring conductive plate is connected to the control terminal, the control terminal extends to the control board from the main circuit board, and summarized in that become electrically connected to the driver.

請求項1に記載の発明によれば、主回路基板において上アーム用スイッチング素子と下アーム用スイッチング素子とが隣接して配置されるとともにドライバが上アーム用スイッチング素子と下アーム用スイッチング素子に対向配置された状態で制御基板に搭載されており、エミッタ電極に直接接合された配線用導電板から分岐する補助エミッタを介してドライバに電気的に接続されていることにより、スイッチング素子のエミッタからドライバまでの経路が短くなり、U、V、Wの相間のエミッタ配線経路、及び、上下のアーム間のエミッタ配線経路を短くしてエミッタ配線経路のアンバランスを抑制することが可能となる。また、スイッチング素子の上面に補助エミッタ用パッドを設けてボンディングワイヤを介してドライバと接続する場合に比べ、補助エミッタ用パッドを不要にでき小型化が図られる。その結果、スイッチング素子の小型化を図るとともにエミッタ配線経路のアンバランスを抑制することができる。   According to the first aspect of the present invention, the upper arm switching element and the lower arm switching element are disposed adjacent to each other on the main circuit board and the driver faces the upper arm switching element and the lower arm switching element. The driver is electrically connected to the driver via the auxiliary emitter which is mounted on the control substrate in a state of being arranged and which branches from the conductive plate for wiring directly joined to the emitter electrode, whereby the driver from the emitter of the switching element is driven. It becomes possible to reduce the unbalance of the emitter wiring path by shortening the path to the emitter wiring path between the U, V and W phases and the emitter wiring path between the upper and lower arms. Further, as compared with the case where the pad for the auxiliary emitter is provided on the upper surface of the switching element and connected to the driver through the bonding wire, the pad for the auxiliary emitter can be made unnecessary and miniaturization can be achieved. As a result, it is possible to miniaturize the switching element and to suppress the unbalance of the emitter wiring path.

請求項2に記載のように、請求項1に記載のインバータ装置において、前記制御基板はメイングランド基準で動作する電流検出用回路が相別に設けられ、シャント抵抗が、負極母線と下アーム用スイッチング素子のエミッタ端子との間に配置され、前記シャント抵抗のエミッタ端子側から前記補助エミッタが分岐し、前記シャント抵抗の両端は前記電流検出用回路に接続され、前記下アーム用スイッチング素子は、メイングランドとは別の補助エミッタ用グランド基準で駆動するとよい。   As described in claim 2, in the inverter device according to claim 1, the control substrate is provided with a circuit for current detection operating on a main ground basis, and a shunt resistor is provided for switching between the negative electrode bus and the lower arm. The auxiliary emitter is disposed between the emitter terminal of the element and the emitter terminal side of the shunt resistor, both ends of the shunt resistor are connected to the current detection circuit, and the lower arm switching element is a main It is preferable to drive with a ground reference for an auxiliary emitter other than the ground.

請求項3に記載のように、請求項1又は2に記載のインバータ装置において、前記制御端子は、三相整列し、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子も整列しているとよい。   As described in claim 3, in the inverter device according to claim 1 or 2, the control terminals are aligned in three phases, and the upper arm switching element and the lower arm switching element are also aligned. Good.

本発明によれば、スイッチング素子の小型化を図るとともにエミッタ配線経路のアンバランスを抑制することができる。   According to the present invention, it is possible to miniaturize the switching element and to suppress the unbalance of the emitter wiring path.

電動圧縮機の一部を破断して示す側面図。The side view which fractures and shows a part of electric compressor. 図1のA−A線での断面図。Sectional drawing in the AA of FIG. (a)はパワーモジュールの平面図、(b)は(a)のB−B線でのパワーモジュールの正面図。(A) is a top view of a power module, (b) is a front view of a power module in the BB line of (a). パワーモジュールの斜視図。The perspective view of a power module. (a)はパワーモジュールの一部平面図、(b)はパワーモジュールの一部側面図。(A) is a partial top view of a power module, (b) is a partial side view of a power module. 実施形態のインバータ装置の電気的構成を示す回路図。The circuit diagram which shows the electric constitution of the inverter apparatus of embodiment. 実施形態の制御基板の概略平面図。The schematic plan view of the control board of an embodiment. 実施形態におけるターンオフ時のゲート・エミッタ電圧、コレクタ電流、コレクタ・エミッタ電圧の測定結果を示す図。The figure which shows the measurement result of the gate emitter voltage at the time of turn-off in embodiment, collector current, and collector emitter voltage. 比較例の制御基板の概略平面図。The schematic plan view of the control board of a comparative example. 比較例のインバータ装置の電気的構成を示す回路図。The circuit diagram which shows the electric constitution of the inverter apparatus of a comparative example. 比較例におけるターンオフ時のゲート・エミッタ電圧、コレクタ電流、コレクタ・エミッタ電圧の測定結果を示す図。The figure which shows the measurement result of the gate emitter voltage at the time of turn-off in a comparative example, collector current, and collector emitter voltage.

以下、本発明を車載用の電動圧縮機に具体化した一実施形態を図面に従って説明する。
図1に示すように、電動圧縮機10は、圧縮機構(例えばスクロール圧縮機構)11と、モータ部12と、モータ部12の三相交流モータ13を駆動する三相インバータ装置14とが三相交流モータ13の軸方向であるZ方向に並んでいる。電動圧縮機10は、ハウジング15を有している。筒型のハウジング15の内部に、冷媒を圧縮する圧縮機構11、及び、圧縮機構11を駆動するモータ部12が収納され、軸方向であるZ方向一端側に仕切壁15aを設けて閉塞されている。仕切壁15aは円板状をなしている。
An embodiment of the present invention embodied in an on-vehicle electric compressor will be described below with reference to the drawings.
As shown in FIG. 1, the electric compressor 10 includes a compression mechanism (for example, a scroll compression mechanism) 11, a motor unit 12, and a three-phase inverter device 14 for driving a three-phase AC motor 13 of the motor unit 12. They are aligned in the Z direction which is the axial direction of the AC motor 13. The electric compressor 10 has a housing 15. A compression mechanism 11 for compressing a refrigerant and a motor unit 12 for driving the compression mechanism 11 are housed inside a cylindrical housing 15, and a partition wall 15a is provided on one end side in the Z direction which is an axial direction to be closed. There is. The partition wall 15a has a disk shape.

ハウジング15は、有底円筒状の第1ハウジング16と、第1ハウジング16の開口部に設けられる有蓋円筒状の第2ハウジング17とを有している。第1ハウジング16と第2ハウジング17とは例えばアルミ材料よりなる。ハウジング15は、第1ハウジング16と第2ハウジング17とを連結することで構成されている。第1ハウジング16には、第1ハウジング16内に冷媒を流入させる流入口18が第1ハウジング16の径方向に貫通して設けられている。第1ハウジング16に圧縮機構11とモータ部12が収容されている。   The housing 15 has a bottomed cylindrical first housing 16 and a covered cylindrical second housing 17 provided in the opening of the first housing 16. The first housing 16 and the second housing 17 are made of, for example, an aluminum material. The housing 15 is configured by connecting the first housing 16 and the second housing 17. The first housing 16 is provided with an inlet 18 which allows the refrigerant to flow into the first housing 16 in the radial direction of the first housing 16. The compression mechanism 11 and the motor unit 12 are accommodated in the first housing 16.

三相交流モータ13は、シャフト13aがベアリングボックス13b内のベアリングにより回転可能に支持されている。また、三相交流モータ13は、シャフト13aに固定されたロータ13cと、ロータ13cの外周側において第1ハウジング16に固定されたステータ13dを有する。ステータ13dのステータコアにコイル13eが巻回されている。   In the three-phase AC motor 13, a shaft 13a is rotatably supported by a bearing in a bearing box 13b. Further, the three-phase alternating current motor 13 has a rotor 13c fixed to the shaft 13a, and a stator 13d fixed to the first housing 16 on the outer peripheral side of the rotor 13c. A coil 13e is wound around the stator core of the stator 13d.

図1及び図2に示すように、第1ハウジング16の軸方向であるZ方向の外表面(第1ハウジング16の軸方向であるZ方向の端面)には、三相交流モータ13を駆動させる三相インバータ装置14が配置されている。三相インバータ装置14は、有蓋円筒状のカバー19で覆われている。詳しくは、第1ハウジング16の端部に軸方向であるZ方向から、有蓋円筒状のカバー19を嵌めることにより三相インバータ装置14がカバー19で覆われ、この状態でカバー19が第1ハウジング16にネジ等により固定されている。カバー19は例えばアルミ材料よりなる。また、樹脂でコーティングされた鉄製材料でもよい。   As shown in FIGS. 1 and 2, the three-phase alternating current motor 13 is driven on the outer surface in the Z direction which is the axial direction of the first housing 16 (the end surface in the Z direction which is the axial direction of the first housing 16). Three-phase inverter device 14 is arranged. The three-phase inverter device 14 is covered by a covered cylindrical cover 19. More specifically, the three-phase inverter device 14 is covered with the cover 19 by fitting the cylindrical cover 19 with a lid in the Z direction, which is the axial direction, to the end of the first housing 16. In this state, the cover 19 is the first housing It is fixed to 16 by a screw or the like. The cover 19 is made of, for example, an aluminum material. Alternatively, it may be an iron material coated with a resin.

インバータ装置14はパワーモジュール20を含む。パワーモジュール20により図6のインバータ回路21が構成されている。パワーモジュール20には、アームを構成するパワー素子(図6のスイッチング素子Q1〜Q6及びダイオードD1〜D6)が内蔵されている。   The inverter device 14 includes a power module 20. The power module 20 constitutes the inverter circuit 21 of FIG. The power module 20 incorporates power elements (switching elements Q1 to Q6 and diodes D1 to D6 in FIG. 6) that constitute an arm.

図6に示すように、インバータ装置14は、インバータ回路21とインバータ制御装置22とコイル23とコンデンサ24を備えている。インバータ制御装置22は相毎のドライバ25,26,27を備えている。ドライバ25がU相用ドライバであり、ドライバ26がV相用ドライバであり、ドライバ27がW相用ドライバである。ドライバ25,26,27としてIC化されたチップ(ICチップ)を用いている。   As shown in FIG. 6, the inverter device 14 includes an inverter circuit 21, an inverter control device 22, a coil 23, and a capacitor 24. The inverter controller 22 is provided with drivers 25 26 and 27 for each phase. The driver 25 is a U-phase driver, the driver 26 is a V-phase driver, and the driver 27 is a W-phase driver. An IC chip (IC chip) is used as the drivers 25, 26 and 27.

インバータ回路21は、6つのスイッチング素子Q1〜Q6と6つのダイオードD1〜D6を有する。スイッチング素子Q1〜Q6としてIGBTを用いている。正極母線Lpと負極母線Lnとの間に、U相上アームを構成するスイッチング素子Q1と、U相下アームを構成するスイッチング素子Q2が直列接続されている。正極母線Lpと負極母線Lnとの間に、V相上アームを構成するスイッチング素子Q3と、V相下アームを構成するスイッチング素子Q4が直列接続されている。正極母線Lpと負極母線Lnとの間に、W相上アームを構成するスイッチング素子Q5と、W相下アームを構成するスイッチング素子Q6が直列接続されている。スイッチング素子Q1〜Q6にはダイオードD1〜D6が逆並列接続されている。正極母線Lp、負極母線Lnには直流電源としての車載バッテリ28が接続される。車載バッテリ28は高圧、例えば600Vバッテリである。   The inverter circuit 21 has six switching elements Q1 to Q6 and six diodes D1 to D6. IGBTs are used as the switching elements Q1 to Q6. Between the positive electrode bus Lp and the negative electrode bus Ln, the switching element Q1 forming the U-phase upper arm and the switching element Q2 forming the U-phase lower arm are connected in series. Between the positive electrode bus Lp and the negative electrode bus Ln, the switching element Q3 forming the V-phase upper arm and the switching element Q4 forming the V-phase lower arm are connected in series. Between the positive electrode bus Lp and the negative electrode bus Ln, a switching element Q5 that constitutes a W-phase upper arm and a switching element Q6 that constitutes a W-phase lower arm are connected in series. Diodes D1 to D6 are connected in antiparallel to the switching elements Q1 to Q6. An on-vehicle battery 28 as a DC power supply is connected to the positive electrode bus Lp and the negative electrode bus Ln. The on-vehicle battery 28 is a high voltage, for example, a 600 V battery.

スイッチング素子Q1とスイッチング素子Q2の間が三相交流モータ13のU相端子に接続される。スイッチング素子Q3とスイッチング素子Q4の間がモータ13のV相端子に接続される。スイッチング素子Q5とスイッチング素子Q6の間がモータ13のW相端子に接続される。上下のアームを構成するスイッチング素子Q1〜Q6及びダイオードD1〜D6を有するインバータ回路21は、スイッチング素子Q1〜Q6のスイッチング動作に伴い車載バッテリ28の電圧である直流電圧を交流電圧に変換してモータ13に供給することができるようになっている。   The U-phase terminal of the three-phase AC motor 13 is connected between the switching element Q1 and the switching element Q2. The V phase terminal of the motor 13 is connected between the switching element Q3 and the switching element Q4. The W phase terminal of the motor 13 is connected between the switching element Q5 and the switching element Q6. The inverter circuit 21 having the switching elements Q1 to Q6 and the diodes D1 to D6 constituting the upper and lower arms converts a DC voltage, which is a voltage of the on-board battery 28, into an AC voltage in accordance with the switching operation of the switching elements Q1 to Q6. It is designed to be able to supply thirteen.

スイッチング素子Q1,Q2のゲート端子にはU相用のドライバ25が接続されている。スイッチング素子Q3,Q4のゲート端子にはV相用のドライバ26が接続されている。スイッチング素子Q5,Q6のゲート端子にはW相用のドライバ27が接続されている。各ドライバ25,26,27は、スイッチング素子Q1〜Q6をスイッチング動作させる。つまり、インバータ回路21は、スイッチング素子Q1〜Q6及びダイオードD1〜D6により、各相の上下のアームを構成しており、スイッチング素子Q1〜Q6のスイッチング動作により車載バッテリ28から供給される直流を適宜の周波数の三相交流に変換して三相交流モータ13の各相のコイル(図1のコイル13e)に供給する。即ち、スイッチング素子Q1〜Q6のスイッチング動作により三相交流モータ13の各相のコイル(図1のコイル13e)が通電されて三相交流モータ13を駆動することができる。   A U-phase driver 25 is connected to gate terminals of the switching elements Q1 and Q2. A driver 26 for the V phase is connected to the gate terminals of the switching elements Q3 and Q4. The driver 27 for the W phase is connected to the gate terminals of the switching elements Q5 and Q6. The drivers 25, 26 and 27 perform switching operation of the switching elements Q1 to Q6. That is, the inverter circuit 21 constitutes upper and lower arms of each phase by the switching elements Q1 to Q6 and the diodes D1 to D6, and the direct current supplied from the on-board battery 28 by the switching operation of the switching elements Q1 to Q6 is appropriately selected. It converts into three-phase alternating current of the frequency of, and supplies it to the coil (coil 13e of FIG. 1) of each phase of the three-phase alternating current motor 13. That is, the coil (coil 13e of FIG. 1) of each phase of the three-phase AC motor 13 is energized by the switching operation of the switching elements Q1 to Q6 to drive the three-phase AC motor 13.

スイッチング素子Q2のエミッタ端子と負極母線Lnとの間には電流検出用のシャント抵抗Rs1が接続されている。スイッチング素子Q4のエミッタ端子と負極母線Lnとの間には電流検出用のシャント抵抗Rs2が接続されている。スイッチング素子Q6のエミッタ端子と負極母線Lnとの間には電流検出用のシャント抵抗Rs3が接続されている。   A shunt resistor Rs1 for current detection is connected between the emitter terminal of the switching element Q2 and the negative electrode bus Ln. A shunt resistor Rs2 for current detection is connected between the emitter terminal of the switching element Q4 and the negative electrode bus Ln. A shunt resistor Rs3 for current detection is connected between the emitter terminal of the switching element Q6 and the negative electrode bus Ln.

制御基板30(図1参照)はメイングランド110基準で動作する電流検出用回路としてのIC(35,36,37)が相別に設けられ、シャント抵抗Rs1,Rs2,Rs3の両端は電流検出用回路としてのIC35,36,37に接続されている。詳しくは、インバータ制御装置22には電流検出回路としての電流検出用のIC35が備えられ、シャント抵抗Rs1の両端間の電圧を検知する。同様に、インバータ制御装置22には電流検出用のIC36が備えられ、シャント抵抗Rs2の両端間の電圧を検知する。インバータ制御装置22には電流検出用のIC37が備えられ、シャント抵抗Rs3の両端間の電圧を検知する。各電流検出用のIC35,36,37は、このように検知した各シャント抵抗の両端電圧から、U相電流、V相電流、W相電流を検出してスイッチング素子Q1〜Q6の制御に反映させる。各ドライバ25,26,27および各電流検出用のIC35,36,37には図示しない制御電源が供給されている。   The control board 30 (see FIG. 1) is provided with an IC (35, 36, 37) as a current detection circuit operating on the basis of the main ground 110 for each phase, and both ends of the shunt resistors Rs1, Rs2, Rs3 are current detection circuits. Are connected to the ICs 35, 36, 37. Specifically, the inverter control device 22 is provided with a current detection IC 35 as a current detection circuit, and detects a voltage across the shunt resistor Rs1. Similarly, the inverter controller 22 is provided with an IC 36 for current detection, and detects a voltage across the shunt resistor Rs2. The inverter controller 22 is provided with an IC 37 for current detection, and detects a voltage across the shunt resistor Rs3. The ICs 35, 36, 37 for current detection detect the U-phase current, the V-phase current, and the W-phase current from the voltage across each of the shunt resistors detected in this way and reflect them in the control of the switching elements Q1 to Q6. . A control power supply (not shown) is supplied to the drivers 25, 26, 27 and the ICs 35, 36, 37 for current detection.

インバータ回路21の入力側には、コイル23とコンデンサ24からなるフィルタ回路が設けられている。コンデンサ24には例えばフィルムコンデンサが用いられる。コンデンサ24の一端は正極母線Lpに、他端は負極母線Lnに接続されている。コイル23の一端は車載バッテリ28の正極端子側に、他端は正極母線Lp側に接続されている。   A filter circuit including a coil 23 and a capacitor 24 is provided on the input side of the inverter circuit 21. For example, a film capacitor is used for the capacitor 24. One end of the capacitor 24 is connected to the positive electrode bus Lp, and the other end is connected to the negative electrode bus Ln. One end of the coil 23 is connected to the positive electrode terminal side of the in-vehicle battery 28, and the other end is connected to the positive electrode bus Lp side.

次に、インバータ装置14の構造について説明する。
図1,2に示すように、インバータ装置14には、パワーモジュール20、コイル23、コンデンサ24、制御基板30等が配置されている。制御基板30はハウジング15に固定され、制御基板30にはパワーモジュール20、コイル23、コンデンサ24、ドライバ25,26,27、電流検出用のIC35,36,37等が実装されている。パワーモジュール20、コイル23、コンデンサ24、制御基板30等はカバー19で覆われている。カバー19はハウジング15と導通している。制御基板30は円板状をなしている。有蓋円筒状のカバー19の内径と、円板状の制御基板30の外径は、ほぼ同じである。
Next, the structure of the inverter device 14 will be described.
As shown in FIGS. 1 and 2, in the inverter device 14, a power module 20, a coil 23, a capacitor 24, a control board 30 and the like are arranged. The control substrate 30 is fixed to the housing 15, and the power module 20, the coil 23, the capacitor 24, the drivers 25, 26, 27 and the ICs 35, 36, 37 for current detection, etc. are mounted on the control substrate 30. The power module 20, the coil 23, the capacitor 24, the control board 30 and the like are covered with a cover 19. The cover 19 is in electrical communication with the housing 15. The control board 30 has a disk shape. The inner diameter of the covered cylindrical cover 19 and the outer diameter of the disk-like control substrate 30 are substantially the same.

図7に示すように、制御基板30は、絶縁基板31に導体パターン(導体パターンPg等)が形成されている。制御基板30での部品実装状態として、制御基板30にドライバ25,26,27がX方向に並んだ状態で実装されている。   As shown in FIG. 7, in the control substrate 30, a conductor pattern (conductor pattern Pg or the like) is formed on the insulating substrate 31. As components mounted on the control board 30, the drivers 25, 26 and 27 are mounted on the control board 30 in the X direction.

図7における制御基板30での導体パターンとして、制御基板30は、グランド導体パターン(接地導体パターン)Pgを有する。グランド導体パターンPgはY方向に延びるスリット32を有する。メイングランド端子112がグランド導体パターンPgにおけるX方向でのスリット32の左側に接続されている。ドライバ25,26,27がグランド導体パターンPgにおけるX方向でのスリット32の右側に接続されている。このとき、メイングランド端子112とドライバ25,26,27とは、スリット32によりグランド導体パターンPgでの経路(グランド配線ライン)が長くなっている。   As a conductor pattern on the control board 30 in FIG. 7, the control board 30 has a ground conductor pattern (ground conductor pattern) Pg. The ground conductor pattern Pg has a slit 32 extending in the Y direction. The main ground terminal 112 is connected to the left side of the slit 32 in the X direction in the ground conductor pattern Pg. The drivers 25, 26 and 27 are connected to the right side of the slit 32 in the X direction in the ground conductor pattern Pg. At this time, the route (ground wiring line) in the ground conductor pattern Pg is longer due to the slits 32 between the main ground terminal 112 and the drivers 25, 26 and 27.

図1に示すように、ねじSc1が制御基板30を貫通してハウジング15のボス(円柱部)29に螺入されることにより制御基板30がハウジング15に固定されている。
図2に示すように、ハウジング15の円形の端面(仕切壁)における円弧部にパワーモジュール20が配置されている。つまり、パワーモジュール20は円弧部を有し、パワーモジュール20の円弧部がハウジング15の円形の端面(仕切壁)における円弧部に沿うようにパワーモジュール20が配置されている。パワーモジュール20は三相交流モータ13と電気的に接続されている。パワーモジュール20、コイル23、コンデンサ24等は制御基板30と電気的に接続されている。
As shown in FIG. 1, the control board 30 is fixed to the housing 15 by screwing the screw Sc1 into the boss (cylindrical portion) 29 of the housing 15 through the control board 30.
As shown in FIG. 2, the power module 20 is disposed in an arc portion of a circular end surface (partition wall) of the housing 15. That is, the power module 20 has an arc portion, and the power module 20 is disposed such that the arc portion of the power module 20 follows the arc portion of the circular end surface (partition wall) of the housing 15. The power module 20 is electrically connected to the three-phase AC motor 13. The power module 20, the coil 23, the capacitor 24 and the like are electrically connected to the control substrate 30.

図3(a),(b)及び図4にはパワーモジュール20を示す。
図3(a),(b)及び図4に示すように、パワーモジュール20は、主回路基板40を備えている。主回路基板40は、例えば銅よりなる金属板の上面に絶縁層が形成された絶縁基板に、銅よりなる導体パターン75,76,77,78,79,80,81,82,83,84,85,86,87,88,89が形成されている。主回路基板40は扇型をなしている。
The power module 20 is shown in FIG. 3 (a), (b) and FIG.
As shown in FIGS. 3A, 3 B and 4, the power module 20 includes a main circuit board 40. The main circuit board 40 is, for example, a conductor pattern 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, made of copper on an insulating substrate having an insulating layer formed on the upper surface of a metal plate made of copper. 85, 86, 87, 88, 89 are formed. The main circuit board 40 is fan-shaped.

導体パターン75にはスイッチング素子(チップ)Q2とダイオード(チップ)D2がはんだ付けされている。導体パターン76が導体パターン75の右側に形成され、導体パターン76にはスイッチング素子(チップ)Q1とダイオード(チップ)D1がはんだ付けされている。導体パターン77が導体パターン76の右側に形成され、導体パターン77にはスイッチング素子(チップ)Q4とダイオード(チップ)D4がはんだ付けされている。導体パターン78が導体パターン77の右側に形成され、導体パターン78にはスイッチング素子(チップ)Q3とダイオード(チップ)D3がはんだ付けされている。導体パターン79が導体パターン78の右側に形成され、導体パターン79にはスイッチング素子(チップ)Q6とダイオード(チップ)D6がはんだ付けされている。導体パターン80が導体パターン79の右側に形成され、導体パターン80にはスイッチング素子(チップ)Q5とダイオード(チップ)D5がはんだ付けされている。スイッチング素子Q1〜Q6は外周側(Y方向正側)に、ダイオードD1〜D6は内周側(Y方向負側)に配置されている。   A switching element (chip) Q2 and a diode (chip) D2 are soldered to the conductor pattern 75. The conductor pattern 76 is formed on the right side of the conductor pattern 75, and the switching element (chip) Q1 and the diode (chip) D1 are soldered to the conductor pattern 76. A conductor pattern 77 is formed on the right side of the conductor pattern 76, and a switching element (chip) Q4 and a diode (chip) D4 are soldered to the conductor pattern 77. A conductor pattern 78 is formed on the right side of the conductor pattern 77, and a switching element (chip) Q3 and a diode (chip) D3 are soldered to the conductor pattern 78. A conductor pattern 79 is formed on the right side of the conductor pattern 78, and a switching element (chip) Q6 and a diode (chip) D6 are soldered to the conductor pattern 79. A conductor pattern 80 is formed on the right side of the conductor pattern 79, and a switching element (chip) Q5 and a diode (chip) D5 are soldered to the conductor pattern 80. The switching elements Q1 to Q6 are disposed on the outer peripheral side (positive side in the Y direction), and the diodes D1 to D6 are disposed on the inner peripheral side (negative side in the Y direction).

図5(a),(b)に示すように、配線用導電板90が、スイッチング素子Q2の上面のエミッタ電極102、ダイオードD2の上面電極、導体パターン81に直接接合されている。以下同様に、図3(a)、図4、図5(a),(b)に示すごとく、配線用導電板92が、スイッチング素子Q1の上面のエミッタ電極102、ダイオードD1の上面電極、導体パターン75に直接接合されている。配線用導電板92はU相出力端子120と電気的に接続されている。配線用導電板94が、スイッチング素子Q4の上面のエミッタ電極102、ダイオードD4の上面電極、導体パターン82に直接接合されている。配線用導電板96が、スイッチング素子Q3の上面のエミッタ電極102、ダイオードD3の上面電極、導体パターン77に直接接合されている。配線用導電板96はV相出力端子121と電気的に接続されている。配線用導電板98が、スイッチング素子Q6の上面のエミッタ電極102、ダイオードD6の上面電極、導体パターン83に直接接合されている。配線用導電板100が、スイッチング素子Q5の上面のエミッタ電極102、ダイオードD5の上面電極、導体パターン79に直接接合されている。配線用導電板100はW相出力端子122と電気的に接続されている。   As shown in FIGS. 5A and 5B, the wiring conductive plate 90 is directly bonded to the emitter electrode 102 on the top surface of the switching element Q2, the top surface electrode of the diode D2, and the conductor pattern 81. Likewise, as shown in FIGS. 3A, 4, 5A, and 5B, the conductive plate 92 for wiring is formed of the emitter electrode 102 on the upper surface of the switching element Q1, the upper surface electrode of the diode D1, and the conductor. It is directly bonded to the pattern 75. The wiring conductive plate 92 is electrically connected to the U-phase output terminal 120. The wiring conductive plate 94 is directly bonded to the emitter electrode 102 on the top surface of the switching element Q4, the top surface electrode of the diode D4, and the conductor pattern 82. The wiring conductive plate 96 is directly bonded to the emitter electrode 102 on the top surface of the switching element Q3, the top surface electrode of the diode D3, and the conductor pattern 77. The wiring conductive plate 96 is electrically connected to the V-phase output terminal 121. The wiring conductive plate 98 is directly bonded to the emitter electrode 102 on the top surface of the switching element Q6, the top surface electrode of the diode D6, and the conductor pattern 83. The wiring conductive plate 100 is directly bonded to the emitter electrode 102 on the top surface of the switching element Q5, the top surface electrode of the diode D5, and the conductor pattern 79. The wiring conductive plate 100 is electrically connected to the W-phase output terminal 122.

スイッチング素子Q1〜Q6及びダイオードD1〜D6はディスクリート部品であり、図3(a)に示すように平面視において長方形状をなしている。また、図3(b)に示すように、パワーモジュール20における基板40の裏面は平坦面であり、この裏面がパワーモジュール20の放熱面となっており、パワーモジュール20における基板40の放熱面がハウジング15に熱的に接続されている。   The switching elements Q1 to Q6 and the diodes D1 to D6 are discrete components, and have a rectangular shape in plan view as shown in FIG. 3 (a). Further, as shown in FIG. 3B, the back surface of the substrate 40 in the power module 20 is a flat surface, the back surface is a heat dissipation surface of the power module 20, and the heat dissipation surface of the substrate 40 in the power module 20 is It is thermally connected to the housing 15.

さらに、図2及び図3(a)に示すように、ハウジング15の外形(外周面)は円弧状をなしている。そして、スイッチング素子Q1〜Q6及びダイオードD1〜D6はハウジング15の外形に沿って配置されている。   Furthermore, as shown in FIG. 2 and FIG. 3A, the outer shape (outer peripheral surface) of the housing 15 is arc-shaped. The switching elements Q1 to Q6 and the diodes D1 to D6 are disposed along the outer shape of the housing 15.

このように、主回路基板40において、U、V、Wの三相、それぞれについて、図3(a)、図4に示すように上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6とが、隣接して配置された状態で搭載されている。また、制御基板30において、U、V、Wの三相、それぞれについて、上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6を駆動するドライバ25,26,27が、図2に示すように、対応する上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6に対向配置された状態で搭載されている。   Thus, in the main circuit board 40, the upper arm switching elements Q1, Q3 and Q5 and the lower arm switching elements as shown in FIG. 3 (a) and FIG. 4 for each of the three phases U, V and W. Q2, Q4, and Q6 are mounted adjacent to each other. Further, in the control substrate 30, drivers 25, 26 and 27 for driving the upper arm switching elements Q1, Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 for the three phases U, V and W respectively are provided. As shown in FIG. 2, the upper arm switching elements Q1, Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 are mounted opposite to each other.

図3(a)、図4に示すように、Z方向に離間して形成された導体パターン81,81にはシャント抵抗(チップ抵抗器)Rs1がはんだ付けされている。Z方向に離間して形成された導体パターン82,82にはシャント抵抗(チップ抵抗器)Rs2がはんだ付けされている。Z方向に離間して形成された導体パターン83,83にはシャント抵抗(チップ抵抗器)Rs3はんだ付けされている。シャント抵抗Rs1〜Rs3はディスクリート部品である。   As shown in FIG. 3A and FIG. 4, a shunt resistor (chip resistor) Rs1 is soldered to the conductor patterns 81, 81 formed to be separated in the Z direction. A shunt resistor (chip resistor) Rs2 is soldered to the conductor patterns 82, 82 formed separately in the Z direction. The shunt resistor (chip resistor) Rs3 is soldered to the conductor patterns 83, 83 formed separately in the Z direction. The shunt resistors Rs1 to Rs3 are discrete components.

ボンディングワイヤにて、導体パターン75,76,77,78,79,80の外周側に形成された導体パターン84,85,86,87,88,89とスイッチング素子Q1〜Q6の上面のゲート電極とが電気的に接続されている。導体パターン84,85,86,87,88,89には信号端子としての制御端子52,55,58,61,65,67が立設されている。シャント抵抗Rs1,Rs2,Rs3の一方の電極に繋がる導体パターン81,82,83には信号端子としての電圧モニタ端子50,56,62が立設されている。シャント抵抗Rs1,Rs2,Rs3の他方の電極に繋がる導体パターン81,82,83には信号端子としての電圧モニタ端子51,57,63が立設されている。   Conductor patterns 84, 85, 86, 87, 88, 89 formed on the outer peripheral side of conductor patterns 75, 76, 77, 78, 79, 80 by bonding wires and a gate electrode on the upper surface of switching elements Q1 to Q6 Are electrically connected. Control terminals 52, 55, 58, 61, 65, 67 as signal terminals are erected on the conductor patterns 84, 85, 86, 87, 88, 89, respectively. Voltage monitor terminals 50, 56, 62 as signal terminals are erected on the conductor patterns 81, 82, 83 connected to one of the electrodes of the shunt resistors Rs1, Rs2, Rs3. Voltage monitor terminals 51, 57, 63 as signal terminals are erected on the conductor patterns 81, 82, 83 connected to the other electrodes of the shunt resistors Rs1, Rs2, Rs3.

図3(a)、図4、図5(a),(b)に示すように、配線用導電板90が、下アーム用スイッチング素子Q2におけるエミッタ電極102に直接接合されるが、配線用導電板90から補助エミッタ(配線用導電板)91が分岐している。補助エミッタ91には立設する制御端子53が電気的に接続されている。同様に、配線用導電板92が、上アーム用スイッチング素子Q1におけるエミッタ電極102に直接接合されるが、配線用導電板92から補助エミッタ(配線用導電板)93が分岐している。補助エミッタ93には立設する制御端子54が電気的に接続されている。配線用導電板94が、下アーム用スイッチング素子Q4におけるエミッタ電極102に直接接合されるが、配線用導電板94から補助エミッタ(配線用導電板)95が分岐している。補助エミッタ95には立設する制御端子59が電気的に接続されている。配線用導電板96が、上アーム用スイッチング素子Q3におけるエミッタ電極102に直接接合されるが、配線用導電板96から補助エミッタ(配線用導電板)97が分岐している。補助エミッタ97には立設する制御端子60が電気的に接続されている。配線用導電板98が、下アーム用スイッチング素子Q6におけるエミッタ電極102に直接接合されるが、配線用導電板98から補助エミッタ(配線用導電板)99が分岐している。補助エミッタ99には立設する制御端子64が電気的に接続されている。配線用導電板100が、上アーム用スイッチング素子Q5におけるエミッタ電極102に直接接合されるが、配線用導電板100から補助エミッタ(配線用導電板)101が分岐している。補助エミッタ101には立設する制御端子66が電気的に接続されている。   As shown in FIGS. 3A, 4 and 5A and 5B, the wiring conductive plate 90 is directly joined to the emitter electrode 102 in the lower arm switching element Q2, but the wiring conductive An auxiliary emitter (wiring conductive plate) 91 is branched from the plate 90. The auxiliary emitter 91 is electrically connected to a control terminal 53 provided upright. Similarly, the wiring conductive plate 92 is directly joined to the emitter electrode 102 in the upper arm switching element Q1, but the auxiliary emitter (wiring conductive plate) 93 is branched from the wiring conductive plate 92. The auxiliary emitter 93 is electrically connected to a control terminal 54 provided upright. The wiring conductive plate 94 is directly joined to the emitter electrode 102 in the lower arm switching element Q4, but the auxiliary emitter (wiring conductive plate) 95 is branched from the wiring conductive plate 94. The auxiliary emitter 95 is electrically connected to a control terminal 59 provided upright. The wiring conductive plate 96 is directly joined to the emitter electrode 102 in the upper arm switching element Q3, but the auxiliary emitter (wiring conductive plate) 97 branches from the wiring conductive plate 96. A control terminal 60 which is erected is electrically connected to the auxiliary emitter 97. The wiring conductive plate 98 is directly joined to the emitter electrode 102 in the lower arm switching element Q6, but the auxiliary emitter (wiring conductive plate) 99 branches from the wiring conductive plate 98. The auxiliary emitter 99 is electrically connected to a control terminal 64 that is erected. The wiring conductive plate 100 is directly joined to the emitter electrode 102 in the upper arm switching element Q5, but the auxiliary emitter (wiring conductive plate) 101 is branched from the wiring conductive plate 100. A control terminal 66 standingly connected to the auxiliary emitter 101 is electrically connected.

図3(a),(b)、図4に示すように、負極用端子70がシャント抵抗Rs1,Rs2,Rs3の一方の導体パターン81,82,83と接続されているとともに上方に延設されている。正極用端子71が導体パターン76,78,80と接続されているとともに上方に延設されている。   As shown in FIGS. 3A, 3B and 4, the negative electrode terminal 70 is connected to one of the conductor patterns 81, 82, 83 of the shunt resistors Rs1, Rs2, Rs3 and extended upward. ing. The positive electrode terminal 71 is connected to the conductor patterns 76, 78, and 80 and extends upward.

図1に示すように、パワーモジュール20から延びる端子50〜67は、制御基板30を貫通して制御基板30にはんだ付けされている。このとき、補助エミッタ91,93,95,97,99,101に接続される制御端子53,54,59,60,64,66が主回路基板40から制御基板30に向かってZ方向に延び、制御基板30においてドライバ25,26,27に電気的に接続されている。   As shown in FIG. 1, terminals 50 to 67 extending from the power module 20 are soldered to the control substrate 30 through the control substrate 30. At this time, control terminals 53, 54, 59, 60, 64, 66 connected to the auxiliary emitters 91, 93, 95, 97, 99, 101 extend in the Z direction from the main circuit board 40 toward the control board 30, The control board 30 is electrically connected to the drivers 25, 26 and 27.

また、U相出力端子(コネクタ)120、V相出力端子(コネクタ)121、W相出力端子(コネクタ)122がモータ部12に接続されている。
図6に示すように、電流検出用のIC35,36,37はメイングランド(メイングランド端子)110基準で動作し、下アーム用スイッチング素子Q2,Q4,Q6は、メイングランド110とは別の補助エミッタ用グランド(補助エミッタ用グランド端子)111基準で駆動する。
A U-phase output terminal (connector) 120, a V-phase output terminal (connector) 121, and a W-phase output terminal (connector) 122 are connected to the motor unit 12.
As shown in FIG. 6, the ICs 35, 36, 37 for current detection operate on the basis of the main ground (main ground terminal) 110, and the lower arm switching elements Q2, Q4, Q6 are auxiliary other than the main ground 110. Drive with reference to emitter ground (auxiliary emitter ground terminal) 111.

図3(a)に示すように、各端子50〜67は、左側のU相、右側のW相、中央のV相としてX方向に並んで配置されている。即ち、各端子50〜67は、三相整列されている。また、Y方向においてスイッチング素子Q1,Q2、スイッチング素子Q3,Q4、スイッチング素子Q5,Q6が、並んで配置されている。即ち、上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6が整列している。   As shown in FIG. 3A, the terminals 50 to 67 are arranged side by side in the X direction as the U phase on the left side, the W phase on the right side, and the V phase at the center. That is, the terminals 50 to 67 are aligned in three phases. Further, in the Y direction, switching elements Q1 and Q2, switching elements Q3 and Q4, and switching elements Q5 and Q6 are arranged side by side. That is, the upper arm switching elements Q1, Q3, Q5 and the lower arm switching elements Q2, Q4, Q6 are aligned.

次に、作用について説明する。
U相用のドライバ25によりスイッチング素子Q1,Q2のゲート電極にパルス状のゲート電圧が印加され、スイッチング素子Q1,Q2がオンオフ制御される。同様に、V相用のドライバ26によりスイッチング素子Q3,Q4のゲート電極にパルス状のゲート電圧が印加され、スイッチング素子Q3,Q4がオンオフ制御される。W相用のドライバ27によりスイッチング素子Q5,Q6のゲート電極にパルス状のゲート電圧が印加され、スイッチング素子Q5,Q6がオンオフ制御される。このスイッチング素子Q1〜Q6のスイッチング動作により車載バッテリ28から供給される直流が適宜の周波数の三相交流に変換されて三相交流モータ13の各相のコイルに供給される。スイッチング素子(IGBT)Q1〜Q6においてはオン時にはゲートを充電し、オフ時にはゲートから放電する。
Next, the operation will be described.
A pulsed gate voltage is applied to the gate electrodes of the switching elements Q1 and Q2 by the U-phase driver 25, and the switching elements Q1 and Q2 are on / off controlled. Similarly, a pulse-like gate voltage is applied to the gate electrodes of the switching elements Q3 and Q4 by the V-phase driver 26, and the switching elements Q3 and Q4 are on / off controlled. A pulsed gate voltage is applied to the gate electrodes of the switching elements Q5 and Q6 by the W-phase driver 27, and the switching elements Q5 and Q6 are on / off controlled. By the switching operation of the switching elements Q1 to Q6, the direct current supplied from the on-vehicle battery 28 is converted into a three-phase alternating current of an appropriate frequency and supplied to the coil of each phase of the three-phase alternating current motor 13. The switching elements (IGBTs) Q1 to Q6 charge the gate when turned on, and discharge from the gate when turned off.

以下、下アーム用スイッチング素子としてW相下アーム用のスイッチング素子(IGBT)Q6のターンオフ動作安定化のためゲートループを改善することについて説明する。
図8には、実施形態における特定のスイッチング素子における、ターンオフ時のゲート・エミッタ電圧Vge、コレクタ電流Ic、コレクタ・エミッタ電圧Vceの測定結果を示す。図8において閾値電圧Vthを併記している。
The improvement of the gate loop for stabilizing the turn-off operation of the switching element (IGBT) Q6 for the W-phase lower arm as the lower arm switching element will be described below.
FIG. 8 shows the measurement results of the gate-emitter voltage Vge at turn-off, the collector current Ic, and the collector-emitter voltage Vce in the specific switching element in the embodiment. The threshold voltage Vth is also shown in FIG.

図9、図10、図11は比較例である。図6に対して図10の比較例ではスイッチング素子Q2,Q4,Q6における補助エミッタラインは無い。また、電流検出用のICの機能はドライバに組み込まれている。図7に対して図9の比較例ではスイッチング素子Q2,Q4,Q6のエミッタはグランド導体パターンPgで繋がっている。その結果、図8に対して図11の測定結果を得た。   FIG. 9, FIG. 10, and FIG. 11 are comparative examples. In contrast to FIG. 6, in the comparative example of FIG. 10, there is no auxiliary emitter line in the switching elements Q2, Q4 and Q6. Also, the function of the current detection IC is incorporated in the driver. The emitters of the switching elements Q2, Q4, and Q6 in the comparative example of FIG. 9 with respect to FIG. 7 are connected by the ground conductor pattern Pg. As a result, the measurement result of FIG. 11 was obtained with respect to FIG.

図9、図10に示す比較例においては、図10における破線及び図9における破線で示すごとくIGBTのエミッタからドライバ27のメイングランド(端子)110までの配線経路(パワーライン)が長い。そのため、図11に示すようにコレクタ電流Icの遮断時においてゲート・エミッタ電圧Vgeが閾値電圧Vthを跨ぐように閾値電圧Vth付近で停滞し誤ったオンが生じてしまいコレクタ電流Icが流れる。   In the comparative example shown in FIGS. 9 and 10, the wiring path (power line) from the emitter of the IGBT to the main ground (terminal) 110 of the driver 27 is long as shown by the broken line in FIG. 10 and the broken line in FIG. Therefore, as shown in FIG. 11, when the collector current Ic is cut off, the gate-emitter voltage Vge stagnates in the vicinity of the threshold voltage Vth so that the gate-emitter voltage Vge crosses the threshold voltage Vth.

これに対し図6、図7に示す本実施形態においては、図6における破線及び図7における破線で示すごとくIGBTのエミッタからドライバ27の補助エミッタ用グランド(端子)111までの配線経路(パワーライン)が短い。そのため、配線インダクタンスを低減でき、これにより図8に示すようにコレクタ電流Icの遮断時のインダクタンスを小さくしてゲート・エミッタ電圧Vgeの持ち上がりを抑制することができる。その結果、ゲート・エミッタ電圧Vgeが閾値電圧Vth付近で停滞することなく誤ったオンが生じることなくコレクタ電流Icも流れることもない。   On the other hand, in the present embodiment shown in FIGS. 6 and 7, a wiring path (power line) from the emitter of the IGBT to the auxiliary emitter ground (terminal) 111 of the driver 27 as shown by the broken line in FIG. ) Is short. Therefore, the wiring inductance can be reduced, and as shown in FIG. 8, the inductance at the time of interruption of the collector current Ic can be reduced to suppress the lifting of the gate-emitter voltage Vge. As a result, the gate-emitter voltage Vge does not stagnate in the vicinity of the threshold voltage Vth, and no erroneous on occurs, nor does the collector current Ic flow.

次に、補助エミッタパッドでワイヤボンディングする場合について言及する。
大型のIGBTのスイッチングスピードのアップ及び安定的な動作のために、IGBTのゲート・エミッタ間とドライバ25,26,27までのループ(ゲートループ)は、比較例として、小信号用の補助エミッタ用パッドをIGBTのエミッタ電極上に設け、極力短いループになるようにワイヤボンドでドライバと接続しゲート駆動を行うものがある。しかし、チップの小型化が進むにつれて補助エミッタのワイヤボンディングに必要なパッド面積比率が高くなり、小型化の阻害要因になりうる。また、密集した部位にワイヤボンディングを行う製造上の課題にもなりうる。通常、小型(30Aクラスの電流容量)では補助エミッタを設けずに実装することが多い。
Next, the case of wire bonding with an auxiliary emitter pad will be mentioned.
The loop (gate loop) between the gate and the emitter of the IGBT and the drivers 25, 26 and 27 is for a small signal auxiliary emitter as a comparative example, for the switching speed increase and stable operation of a large IGBT. There is a device in which a pad is provided on the emitter electrode of the IGBT and connected to a driver by wire bonding to perform gate driving so as to form a loop as short as possible. However, as the miniaturization of chips progresses, the pad area ratio required for wire bonding of the auxiliary emitters becomes high, which may be a hindrance to miniaturization. In addition, it can also be a manufacturing problem in which wire bonding is performed on dense portions. Usually, small size (30 A class current capacity) is often mounted without providing an auxiliary emitter.

本実施形態では、DLB(ダイレクト・リード・ボンド)接続をすることで、メインエミッタと補助エミッタを1箇所に集約して接続する。そして、IGBTのエミッタ配線用導電板(メインエミッタのリード)の途中から補助エミッタ91,93,95,97,99,101を分岐している。   In this embodiment, the main emitters and the auxiliary emitters are collectively connected to one place by DLB (direct lead bond) connection. The auxiliary emitters 91, 93, 95, 97, 99, 101 are branched from the middle of the emitter wiring conductive plate (lead of the main emitter) of the IGBT.

このようにして、1点集約で接続し途中から分岐することで補助エミッタ用パッドを別途設ける必要が無く、小型のチップでも補助エミッタをつけることができ、短いゲートループを構成することができる。よって、ターンオフ動作安定化のためゲートループを改善できる。つまり、スイッチング素子(IGBT)のエミッタからドライバのグランドまでの経路を短くしてループ上の配線インダクタンス(寄生インダクタンス)を低減してコレクタ電流の遮断時に発生するゲート・エミッタ電圧Vge=Ls・di/dtにおける寄生インダクタンスLsを小さくしてゲート・エミッタ電圧Vgeの持ち上がりを抑制することができる。また、DLB工法を用いることでメインエミッタと補助エミッタ91,93,95,97,99,101の接続を1箇所に集約でき実装の簡素化が図られる。また、スイッチング動作(ターンオン及びターンオフ)の安定化及び高速化を図ることができる。   In this way, it is not necessary to separately provide an auxiliary emitter pad by connecting at one-point connection and branching from the middle, and an auxiliary emitter can be attached even with a small chip, and a short gate loop can be configured. Thus, the gate loop can be improved to stabilize the turn-off operation. That is, the path from the emitter of the switching element (IGBT) to the ground of the driver is shortened to reduce the wiring inductance (parasitic inductance) on the loop to reduce the gate-emitter voltage Vge = Ls · di / generated when the collector current is cut off. The parasitic inductance Ls at dt can be reduced to suppress lifting of the gate-emitter voltage Vge. Further, by using the DLB method, the connection of the main emitter and the auxiliary emitters 91, 93, 95, 97, 99, 101 can be concentrated at one place, and the mounting can be simplified. In addition, the switching operation (turn on and turn off) can be stabilized and speeded up.

上記実施形態によれば、以下のような効果を得ることができる。
(1)インバータ装置14の構成として、正極母線Lpと負極母線Lnとの間に上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6が直列接続されたU、V、Wの三相、それぞれについて、上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6とを、隣接して配置された状態で搭載した主回路基板40を備える。U、V、Wの三相、それぞれについて、上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6を駆動するドライバ25,26,27を、対応する上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6に対向配置された状態で搭載した制御基板30を備える。U、V、Wの三相、それぞれについて、上アーム用スイッチング素子Q1,Q3,Q5及び下アーム用スイッチング素子Q2,Q4,Q6におけるエミッタ電極102に配線用導電板90,92,94,96,98,100が直接接合され、配線用導電板90,92,94,96,98,100から分岐する補助エミッタ91,93,95,97,99,101が制御端子53,54,59,60,64,66に接続されている。制御端子53,54,59,60,64,66が主回路基板40から制御基板30に延び、ドライバ25,26,27に電気的に接続されている。
According to the above embodiment, the following effects can be obtained.
(1) U and V in which upper arm switching elements Q1, Q3 and Q5 and lower arm switching elements Q2, Q4 and Q6 are connected in series between positive electrode bus Lp and negative electrode bus Ln as a configuration of inverter device 14 , W for the three phases, the main circuit board 40 on which the upper arm switching elements Q1, Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 are disposed adjacent to each other. Upper arm switching elements Q1, Q3, Q5 and drivers 25, 26, 27 for driving the lower arm switching elements Q2, Q4, Q6 for U, V, W three phases respectively corresponding to the upper arm switching The control substrate 30 is mounted in a state in which the elements Q1, Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 are disposed to face each other. Conductive plates 90, 92, 94, 96, for the wiring of the emitter electrode 102 of the upper arm switching elements Q1, Q3, Q5 and the lower arm switching elements Q2, Q4, Q6 for U, V, W three phases respectively. 98, 100 are directly joined, and auxiliary emitters 91, 93, 95, 97, 99, 101 branched from conductive plates 90, 92, 94, 96, 98, 100 for control terminals 53, 54, 59, 60, 64, 66 are connected. Control terminals 53, 54, 59, 60, 64, 66 extend from the main circuit board 40 to the control board 30 and are electrically connected to the drivers 25, 26, 27.

よって、主回路基板40において上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6とが隣接して配置されるとともにドライバ25,26,27が上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6に対向配置された状態で制御基板に搭載されており、エミッタ電極102に直接接合された配線用導電板90,92,94,96,98,100から分岐する補助エミッタ91,93,95,97,99,101を介してドライバ25,26,27に電気的に接続されていることにより、スイッチング素子のエミッタからドライバまでの経路が短くなり、U、V、Wの相間のエミッタ配線経路、及び、上下のアーム間のエミッタ配線経路を短くしてエミッタ配線経路のアンバランスを抑制することが可能となる。つまり、U、V、Wの相間のエミッタ配線経路での寄生インダクタンスの均等化が図られるとともに上下のアーム間のエミッタ配線経路での寄生インダクタンスの均等化が図られる。また、スイッチング素子の上面に補助エミッタ用パッドを設けてボンディングワイヤを介してドライバと接続する場合に比べ、補助エミッタ用パッドを不要にでき小型化が図られる。その結果、スイッチング素子の小型化を図るとともにエミッタ配線経路のアンバランスを抑制することができる。また、スイッチング素子のエミッタからドライバまでの経路が短くなり、配線インダクタンスが低減される。   Therefore, on the main circuit board 40, the upper arm switching elements Q1, Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 are disposed adjacent to each other, and the drivers 25, 26 and 27 are upper arm switching elements Q1. , Q3 and Q5 and the lower arm switching elements Q2, Q4 and Q6 are mounted on the control substrate in a state of being opposed to each other, and are directly connected to the emitter electrode 102. By electrically connecting to the drivers 25, 26 and 27 via auxiliary emitters 91, 93, 95, 97, 99 and 101 branched from 98 and 100, the path from the emitter of the switching element to the driver is short. The emitter wiring path between the U, V, and W phases, and the emitter wiring path between the upper and lower arms are shortened to It is possible to suppress the imbalance of wiring paths. That is, the parasitic inductance in the emitter wiring path between the U, V, and W phases can be equalized, and the parasitic inductance in the emitter wiring path between the upper and lower arms can be equalized. Further, as compared with the case where the pad for the auxiliary emitter is provided on the upper surface of the switching element and connected to the driver through the bonding wire, the pad for the auxiliary emitter can be made unnecessary and miniaturization can be achieved. As a result, it is possible to miniaturize the switching element and to suppress the unbalance of the emitter wiring path. In addition, the path from the emitter of the switching element to the driver is shortened, and the wiring inductance is reduced.

(2)メイングランドで動作する電流検出用のIC35,36,37が設けられている。シャント抵抗Rs1,Rs2,Rs3が、負極母線Lnと下アーム用スイッチング素子Q2,Q4,Q6のエミッタ端子との間に配置され、シャント抵抗Rs1,Rs2,Rs3のエミッタ端子側から補助エミッタ91,95,99が分岐している。シャント抵抗Rs1,Rs2,Rs3の両端は各相の電流検出用のIC35,36,37に接続されている。下アーム用スイッチング素子Q2,Q4,Q6は、メイングランド110とは別の補助エミッタ用グランド(専用の端子)111基準で駆動する。よって、シャント抵抗におけるもう一方の端子側(反エミッタ端子側)からドライバに接続するよりもインダクタンスを小さくすることができる。   (2) The ICs 35, 36, 37 for current detection operating at the main ground are provided. Shunt resistors Rs1, Rs2 and Rs3 are arranged between negative pole bus Ln and the emitter terminals of lower arm switching elements Q2, Q4 and Q6, and auxiliary emitters 91 and 95 are arranged from the emitter terminal side of shunt resistors Rs1, Rs2 and Rs3. , 99 are branched. Both ends of the shunt resistors Rs1, Rs2 and Rs3 are connected to the ICs 35, 36 and 37 for current detection of each phase. The lower arm switching elements Q 2, Q 4 and Q 6 are driven by reference to an auxiliary emitter ground (dedicated terminal) 111 different from the main ground 110. Therefore, the inductance can be made smaller than that of the shunt resistor connected to the driver from the other terminal side (anti-emitter terminal side).

仮に、電流制御用のIC35,36,37も下アーム用スイッチング素子と同様に補助エミッタ用グランド111で動作させようとすると、基準となる電圧が補助エミッタ用グランド111の電位となってしまう。正確な値を得るためには補助エミッタをシャント抵抗の反エミッタ端子側で取る必要があるが、そうすると下アーム用スイッチング素子の動作としては補助エミッタがシャント抵抗を介すこととなり、インダクタンスが増えてしまう。   If the current control ICs 35, 36, 37 are to be operated with the auxiliary emitter ground 111 in the same manner as the lower arm switching elements, the reference voltage becomes the potential of the auxiliary emitter ground 111. In order to obtain an accurate value, it is necessary to take the auxiliary emitter on the side opposite to the emitter terminal of the shunt resistor, but this causes the auxiliary emitter to go through the shunt resistor for the operation of the lower arm switching element, increasing the inductance. I will.

(3)制御端子53,54,59,60,64,66は、三相整列し、上アーム用スイッチング素子Q1,Q3,Q5と下アーム用スイッチング素子Q2,Q4,Q6も整列している。これにより、省スペース化を図ることができる。   (3) The control terminals 53, 54, 59, 60, 64, 66 are three-phase aligned, and the upper arm switching elements Q1, Q3, Q5 and the lower arm switching elements Q2, Q4, Q6 are also aligned. This can save space.

実施形態は前記に限定されるものではなく、例えば、次のように具体化してもよい。
○ ドライバは、U相用ドライバ、V相用ドライバ、W相用ドライバを有していたが、U相、V相、W相で1つのドライバを用いてもよい。
The embodiment is not limited to the above, and may be embodied as follows, for example.
The driver includes the U-phase driver, the V-phase driver, and the W-phase driver, but one driver may be used for the U-phase, the V-phase, and the W-phase.

○ シャント抵抗の無い構成としてもよく、シャント抵抗に代わりホール素子等で電流を計測する構成としてもよい。シャント抵抗は三相のうち二相のみに設けてもよい。
○ 電動圧縮機に用いるインバータ装置に適用したが、電動圧縮機以外の機器におけるインバータ装置に適用してもよい。
○ It is good also as composition without a shunt resistance, and it is good also as composition which measures current with a Hall element etc. instead of shunt resistance. The shunt resistor may be provided in only two of the three phases.
Although the present invention is applied to the inverter device used for the electric compressor, it may be applied to the inverter device in equipment other than the electric compressor.

14…インバータ装置、25,26,27…ドライバ、30…制御基板、35,36,37…IC、40…主回路基板、53,54,59,60,64,66…制御端子、90,92,94,96,98,100…配線用導電板、91,93,95,97,99,101…補助エミッタ、102…エミッタ電極、110…メイングランド、111…補助エミッタ用グランド、Lp…正極母線、Ln…負極母線、Q1,Q3,Q5…上アーム用スイッチング素子、Q2,Q4,Q6…下アーム用スイッチング素子、Rs1,Rs2,Rs3…シャント抵抗。   14 inverter device 25 26 27 driver 30 control board 35 36 IC 37 40 main circuit board 53 54 59 60 64 control terminal 90 92 , 94, 96, 98, 100 ... conductive plate for wiring, 91, 93, 95, 97, 99, 101 ... auxiliary emitter, 102 ... emitter electrode, 110 ... main ground, 111 ... ground for auxiliary emitter, Lp ... positive electrode bus Ln: Negative electrode bus bar, Q1, Q3, Q5: Upper arm switching element, Q2, Q4, Q6 ... Lower arm switching element, Rs1, Rs2, Rs3: Shunt resistance.

Claims (3)

正極母線と負極母線との間に上アーム用スイッチング素子と下アーム用スイッチング素子が直列接続されたU、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子とを、隣接して配置された状態で搭載した主回路基板と、
前記U、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子を駆動するドライバを、対応する前記上アーム用スイッチング素子と前記下アーム用スイッチング素子に対向配置された状態で搭載した制御基板と、
を備え、
前記U、V、Wの三相、それぞれについて、前記上アーム用スイッチング素子及び前記下アーム用スイッチング素子におけるエミッタ電極に配線用導電板が直接接合され、
前記配線用導電板から分岐する補助エミッタが制御端子に接続され、前記制御端子が前記主回路基板から前記制御基板に延び、前記ドライバに電気的に接続されてなる
ことを特徴とするインバータ装置。
The upper arm switching element and the lower arm switching element for each of three phases of U, V and W in which an upper arm switching element and a lower arm switching element are connected in series between the positive electrode bus and the negative electrode bus And a main circuit board mounted in a state of being disposed adjacent to each other,
For each of the three phases U, V, and W, a driver for driving the upper arm switching element and the lower arm switching element is disposed opposite to the corresponding upper arm switching element and the lower arm switching element. The control board mounted in the
Equipped with
A conductive plate for wiring is directly joined to an emitter electrode in the upper arm switching element and the lower arm switching element for each of the three phases of U, V, and W, respectively,
An inverter device comprising: an auxiliary emitter branched from the wiring conductive plate connected to a control terminal; the control terminal extending from the main circuit board to the control board; and electrically connected to the driver.
前記制御基板はメイングランド基準で動作する電流検出用回路が相別に設けられ、
シャント抵抗が、負極母線と下アーム用スイッチング素子のエミッタ端子との間に配置され、前記シャント抵抗のエミッタ端子側から前記補助エミッタが分岐し、
前記シャント抵抗の両端は前記電流検出用回路に接続され、
前記下アーム用スイッチング素子は、メイングランドとは別の補助エミッタ用グランド基準で駆動することを特徴とする請求項1に記載のインバータ装置。
The control board is provided with a circuit for current detection operating on a main ground basis separately for each phase,
The shunt resistor is disposed between the negative electrode bus bar and the emitter terminal of the lower arm switching element, and the auxiliary emitter branches from the emitter terminal side of the shunt resistor.
Both ends of the shunt resistor are connected to the current detection circuit,
The inverter device according to claim 1, wherein the lower arm switching element is driven by a ground reference for an auxiliary emitter different from the main ground.
前記制御端子は、三相整列し、前記上アーム用スイッチング素子と前記下アーム用スイッチング素子も整列していることを特徴とする請求項1又は2に記載のインバータ装置。   The inverter device according to claim 1 or 2, wherein the control terminals are in three phase alignment, and the upper arm switching element and the lower arm switching element are also aligned.
JP2017192834A 2017-10-02 2017-10-02 Inverter device Withdrawn JP2019068648A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017192834A JP2019068648A (en) 2017-10-02 2017-10-02 Inverter device
CN201811122349.7A CN109600053A (en) 2017-10-02 2018-09-26 Convertor device
DE102018124030.9A DE102018124030A1 (en) 2017-10-02 2018-09-28 An inverter apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017192834A JP2019068648A (en) 2017-10-02 2017-10-02 Inverter device

Publications (1)

Publication Number Publication Date
JP2019068648A true JP2019068648A (en) 2019-04-25

Family

ID=65727909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017192834A Withdrawn JP2019068648A (en) 2017-10-02 2017-10-02 Inverter device

Country Status (3)

Country Link
JP (1) JP2019068648A (en)
CN (1) CN109600053A (en)
DE (1) DE102018124030A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5171520B2 (en) * 2008-09-30 2013-03-27 日立オートモティブシステムズ株式会社 Power converter
JP5637944B2 (en) * 2011-06-29 2014-12-10 株式会社 日立パワーデバイス Power semiconductor module
JP5893126B2 (en) * 2012-03-01 2016-03-23 三菱電機株式会社 Power semiconductor module and power conversion device
JP5708583B2 (en) * 2012-07-12 2015-04-30 株式会社豊田自動織機 Inverter device
CN203839372U (en) * 2013-04-29 2014-09-17 Abb技术有限公司 Power semiconductor module and contacting assembly
JP2015006118A (en) * 2013-06-24 2015-01-08 株式会社デンソー Rotary electric machine for vehicle
CN106165095B (en) * 2014-02-14 2018-10-19 Abb 瑞士有限公司 There are two the semiconductor modules of auxiliary emitter electrode conductor path for tool
DE112015000156T5 (en) * 2014-04-14 2016-06-16 Fuji Electric Co., Ltd. Semiconductor device
JP6397795B2 (en) * 2015-05-19 2018-09-26 株式会社日立製作所 Power converter
US10254327B2 (en) * 2016-02-29 2019-04-09 Infineon Technologies Ag Method and device for short circuit detection in power semiconductor switches

Also Published As

Publication number Publication date
CN109600053A (en) 2019-04-09
DE102018124030A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
CN108093671B (en) Integrated electric power steering apparatus
JP5556353B2 (en) Motor current detector and motor control device
US20180191220A1 (en) Electric compressor
JP6288769B2 (en) Semiconductor power module, power conversion device, and moving body using the same
JP4682985B2 (en) Brushless DC motor and electric device equipped with the same
JP6962945B2 (en) Power semiconductor module and power converter using it
WO2015068565A1 (en) Semiconductor device
CN107492531B (en) Semiconductor device with a plurality of semiconductor chips
JP4064741B2 (en) Semiconductor device
JP6227150B2 (en) Semiconductor device and multiphase semiconductor device
WO2018096573A1 (en) Semiconductor module
JP4631179B2 (en) Semiconductor device and inverter device using the same
JP2019068648A (en) Inverter device
JP5477159B2 (en) Motor current detection IC and current detector or motor control device using the same
JP4246040B2 (en) Semiconductor device package
JP2019068650A (en) Inverter module for motor compressor
JPH11252885A (en) Motor driving equipment and manufacture thereof
JP2021090328A (en) Inverter controller
JP3922698B2 (en) Semiconductor device
JP2007288046A (en) Semiconductor module for electric power
JP7205402B2 (en) parallel switching circuit
JP2004194382A (en) Semiconductor device and power conversion device
WO2019026257A1 (en) Electric motor system and outdoor unit equipped with electric motor system
JP2003179203A (en) Circuit for driving power semiconductor module and method of constituting the same
KR101335619B1 (en) Integrated semiconductor module for Switched Reluctance Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200117

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200902