JP2019066253A - Flow rate measuring device - Google Patents

Flow rate measuring device Download PDF

Info

Publication number
JP2019066253A
JP2019066253A JP2017190412A JP2017190412A JP2019066253A JP 2019066253 A JP2019066253 A JP 2019066253A JP 2017190412 A JP2017190412 A JP 2017190412A JP 2017190412 A JP2017190412 A JP 2017190412A JP 2019066253 A JP2019066253 A JP 2019066253A
Authority
JP
Japan
Prior art keywords
temperature
flow rate
detection element
resistor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017190412A
Other languages
Japanese (ja)
Inventor
太田 和宏
Kazuhiro Ota
和宏 太田
保夫 小野瀬
Yasuo Onose
保夫 小野瀬
琳琳 張
Linlin Zhang
琳琳 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2017190412A priority Critical patent/JP2019066253A/en
Publication of JP2019066253A publication Critical patent/JP2019066253A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a flow rate measuring device with which it is possible to realize the increased accuracy of a flow rate signal by correcting a temperature characteristics attributable to the manufacturing variation of a flow rate detection element.SOLUTION: A flow rate measuring device comprises: a flow rate detection element 1, provided in a sub-passage, for outputting a signal that corresponds to the flow rate of a fluid; and a flow rate computation unit 47 for computing a flow rate signal on the basis of the output signal output by the flow rate detection element 1. The flow rate detection element 1 includes a heat generating resistor and temperature detection elements 4, 5 for detecting the temperature upstream and the temperature downstream of the heat generating resistor, outputting signals that correspond to the temperature changes of the temperature detection elements 4,5 as output signals. The flow rate measuring device further includes a temperature measuring element 15 for measuring the temperatures of the temperature detection elements 4, 5, and a correction amount computation unit for computing, on the basis of the temperatures of the temperature detection elements 4, 5 measured using the temperature measuring element 15, a correction amount for correcting a flow rate signal error based on the temperature characteristics of the temperature detection elements 4, 5.SELECTED DRAWING: Figure 10

Description

本発明は、流量計測装置に係り、特に自動車エンジンの吸気系に設置してエンジンの吸入空気量を検出するのに適する流量計測装置に関する。   The present invention relates to a flow rate measuring device, and more particularly to a flow rate measuring device which is installed in an intake system of an automobile engine and is suitable for detecting an intake air amount of the engine.

近年、環境負荷低減に向け自動車の内燃機関における燃焼制御の高精度化が求められており、これを受けて、内燃機関への吸入空気量を測定する流量計測装置の高精度化が望まれている。中でも、自動車の内燃機関の周囲温度は様々な要因により大きく変動するため、内燃機関の近傍に設置されることの多い流量計測装置においては、温度に起因する計測誤差を低減する技術は重要な技術である。   In recent years, there has been a demand for higher precision combustion control in an internal combustion engine of a vehicle to reduce environmental load, and in response to this, it is desired to improve the precision of a flow rate measuring device for measuring the amount of intake air to the internal combustion engine. There is. Above all, since the ambient temperature of an internal combustion engine of a car fluctuates largely due to various factors, in a flow rate measuring device which is often installed near the internal combustion engine, a technique for reducing measurement error due to temperature is an important technique It is.

例えば、内燃機関に搭載される流量計測装置として、特開2014−169948号公報(特許文献1)に記載された熱式流体計測装置(以下、熱式流量計という)が知られている。特許文献1の熱式流量計では、発熱抵抗体により内燃機関に吸入される空気の一部を加熱し、発熱抵抗体上流と発熱抵抗体下流での流量に依存した放熱量の差による温度差を検出し、流量信号としている。この流量信号の多くは温度による誤差を含んでいるため、温度の影響を考慮した温度補正を行い、エンジンコントロールユニットに出力される。この温度補正を行うために、特許文献1の熱式流量計では、サーミスタと固定抵抗とで構成される第1温度センサにより吸入される空気の温度を検出すると共に、サーミスタと固定抵抗とで構成される第2温度センサによりセンサモジュールの温度を検出し、吸入空気温度をセンサモジュール温度とを補正部に入力し、流量信号を補正している。   For example, as a flow rate measuring device mounted on an internal combustion engine, a thermal fluid measuring device (hereinafter referred to as a thermal flow meter) described in JP-A-2014-169948 (Patent Document 1) is known. In the thermal flow meter of Patent Document 1, the heating resistor heats a portion of the air taken into the internal combustion engine, and the temperature difference due to the difference between the heat release upstream of the heating resistor and the heat release downstream of the heating resistor. Is detected as a flow rate signal. Since many of the flow rate signals include errors due to temperature, temperature correction is performed in consideration of the influence of temperature and is output to the engine control unit. In order to perform this temperature correction, in the thermal flowmeter of Patent Document 1, the temperature of the air taken in is detected by a first temperature sensor constituted by a thermistor and a fixed resistor, and it is constituted by a thermistor and a fixed resistor. The temperature of the sensor module is detected by the second temperature sensor, and the intake air temperature and the sensor module temperature are input to the correction unit to correct the flow rate signal.

特開2014−169948号公報JP, 2014-169948, A

一方、最近では更なる内燃機関のダウンサイジング化や低アイドル化が進み、極めて低い流量領域においても、高精度な流量計測が要求されている。本願筆者らによる検討の結果、極めて低い流量領域では、吸入される空気の温度を計測する吸気温度センサ(特許文献1の第1温度センサ)と回路室に備えられたモジュール温度を計測するモジュール温度センサ(特許文献1の第2温度センサ)とによる温度補正に対し、流量検出素子の製造ばらつきに起因する温度特性を補正することにより、さらに計測誤差を小さくして流量信号の高精度化を実現できることが判明した。   On the other hand, in recent years, further downsizing and low idling of internal combustion engines have progressed, and highly accurate flow rate measurement is required even in an extremely low flow rate region. As a result of studies by the present inventors, in an extremely low flow rate region, an intake air temperature sensor (the first temperature sensor of Patent Document 1) that measures the temperature of intake air and a module temperature that measures the module temperature provided in the circuit chamber By correcting the temperature characteristic due to the manufacturing variation of the flow rate detection element as opposed to the temperature correction with the sensor (the second temperature sensor of Patent Document 1), the measurement error is further reduced to realize the high accuracy of the flow rate signal It turned out that it was possible.

本発明の目的は、流量検出素子の製造ばらつきに起因する温度特性を補正することにより流量信号の高精度化を実現できる流量計測装置を提供することにある。   An object of the present invention is to provide a flow rate measuring device capable of realizing an increase in the accuracy of a flow rate signal by correcting a temperature characteristic caused by manufacturing variations of the flow rate detection element.

上記課題を解決するため、本発明の熱式流量計は、
主通路に流れる流体の一部を取り込む副通路と、前記副通路内に設けられ前記副通路内に取り込まれた流体の流量に応じた信号を出力する流量検出素子と、前記流量検出素子が出力する出力信号に基づいて流量信号を演算する流量演算部と、を備え、
前記流量検出素子は、発熱抵抗体と、流体の流れる方向において前記発熱抵抗体に対して上流側の温度と下流側の温度とを検出する複数の温度検出素子と、を備え、
前記温度検出素子の温度変化に対応した信号を前記出力信号として前記流量信号を演算する流量計測装置において、
前記温度検出素子の温度を計測する温度計測用素子と、前記温度計測用素子を用いて計測される前記温度検出素子の温度に基づいて前記温度検出素子の温度特性に基づく流量信号の誤差を補正する補正量を演算する補正量演算部と、を備え、
前記補正量に基づいて検出される流量を補正する。
In order to solve the above-mentioned subject, the thermal type flow meter of the present invention,
An auxiliary passage for taking in part of the fluid flowing in the main passage, a flow rate detection element provided in the auxiliary passage and outputting a signal according to the flow rate of the fluid taken in the auxiliary passage, and the flow rate detection element A flow rate calculating unit that calculates a flow rate signal based on the output signal to be
The flow rate detection element includes a heat generation resistor, and a plurality of temperature detection elements for detecting the temperature on the upstream side and the temperature on the downstream side with respect to the heat generation resistor in the fluid flow direction,
In a flow rate measuring device which calculates the flow rate signal by using a signal corresponding to a temperature change of the temperature detection element as the output signal,
The error of the flow rate signal based on the temperature characteristic of the temperature detection element is corrected based on the temperature measurement element for measuring the temperature of the temperature detection element and the temperature of the temperature detection element measured using the temperature measurement element A correction amount calculation unit that calculates a correction amount to be
The detected flow rate is corrected based on the correction amount.

本発明によれば、高精度な流量計測装置を提供することができる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, a highly accurate flow rate measuring device can be provided. Problems, configurations, and effects other than those described above will be apparent from the description of the embodiments below.

メンブレン部に発熱抵抗体と温度検出素子とを備えた流量計測素子の概略図である。FIG. 6 is a schematic view of a flow rate measuring element provided with a heating resistor and a temperature detection element in a membrane part. 流量に応じたメンブレン部の温度分布の変化を示す概念図である。It is a conceptual diagram which shows the change of the temperature distribution of the membrane part according to the flow rate. 温度検出素子の温度特性ばらつきによる流量検出誤差の例を示す図である。It is a figure which shows the example of the flow volume detection error by the temperature characteristic dispersion | variation of a temperature detection element. 流量検出素子のメンブレン部断面(感温抵抗体の近傍)における、発熱抵抗体加熱時の温度分布イメージを示す図である。It is a figure which shows the temperature distribution image at the time of heating resistor heating in the membrane part cross section (near the temperature sensitive resistor) of a flow rate detection element. 感温抵抗体の温度特性ばらつきを示す模式図である。It is a schematic diagram which shows the temperature characteristic dispersion | variation of a temperature sensitive resistor. メンブレン部の温度分布の偏りを検出するための感温抵抗体のブリッジ回路図である。It is a bridge circuit diagram of the thermosensitive resistor for detecting the deviation of the temperature distribution of a membrane part. 感温抵抗体の温度とブリッジ回路出力の温度特性を示す図である。It is a figure which shows the temperature of a temperature sensitive resistor, and the temperature characteristic of a bridge circuit output. 実施例1に係る流量計測装置のブリッジ回路の構成を示す図である。FIG. 2 is a view showing a configuration of a bridge circuit of the flow rate measuring apparatus according to the first embodiment. 感温抵抗体の温度とVs電圧(ブリッジ電圧)の関係を示す図である。It is a figure which shows the temperature of a thermosensitive resistor, and the relationship of Vs voltage (bridge voltage). 実施例1に係る温度特性補正処理部の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of a temperature characteristic correction processing unit according to the first embodiment. 検出抵抗を信号処理回路に設けた場合の温度特性補正処理部の構成を示すブロック図である。It is a block diagram which shows the structure of a temperature characteristic correction process part at the time of providing a detection resistance in a signal processing circuit. 温度特性補正後の熱式流量計の流量計測誤差の例を示す図である。It is a figure which shows the example of the flow measurement error of the thermal type flow meter after temperature characteristic correction. 温度検出素子として熱電対を用いた場合の流量検出素子のメンブレン部断面における、発熱抵抗体加熱時の温度分布イメージを示す図である。It is a figure which shows the temperature distribution image at the time of heating resistor heating in the membrane part cross section of the flow volume detection element at the time of using a thermocouple as a temperature detection element. メンブレン部の温度分布の偏りを検出するための熱電対回路図である。It is a thermocouple circuit diagram for detecting the deviation of the temperature distribution of a membrane part. 熱電対の温度特性ばらつきを示す模式図である。It is a schematic diagram which shows the temperature characteristic variation of a thermocouple. 熱電対の温度と熱起電力差の温度特性を示す図である。It is a figure which shows the temperature characteristic of the temperature of a thermocouple, and a thermoelectromotive force difference. 実施例2に係る温度特性補正処理部の構成を示すブロック図である。FIG. 7 is a block diagram showing a configuration of a temperature characteristic correction processing unit according to a second embodiment. 流量検出素子を組み込んだ流量計測装置の例を示す図である。It is a figure showing an example of a flow rate measuring device incorporating a flow rate detection element.

以下、本発明を実施するための実施形態について、図面を用いて説明する。   Hereinafter, embodiments for carrying out the present invention will be described using the drawings.

[実施例1]
実施例1について図1〜図12を用いて説明する。
Example 1
A first embodiment will be described using FIGS. 1 to 12.

図1は、メンブレン部に発熱抵抗体と温度検出素子とを備えた流量検出素子の概略図である。図1に示すように流量検出素子1は薄膜構造であるメンブレン部(薄膜構造部、ダイアフラム)2を備え、メンブレン部2に発熱抵抗体3と少なくとも二つの温度検知素子4,5を備える。   FIG. 1 is a schematic view of a flow rate detecting element provided with a heating resistor and a temperature detecting element in a membrane part. As shown in FIG. 1, the flow rate detection element 1 includes a membrane portion (thin film structure portion, diaphragm) 2 which is a thin film structure, and the membrane portion 2 includes a heating resistor 3 and at least two temperature detection elements 4 and 5.

下流側温度検出素子5は、正常に流体(本実施例では空気)が流れる方向において、発熱抵抗体3の下流側に設けられる。上流側温度検出素子4は、正常に流体(本実施例では空気)が流れる方向において、発熱抵抗体3の上流側に設けられる。すなわち本実施例では、メンブレン部2に発熱抵抗体3と複数の温度検出素子4,5を備え、少なくとも一つの温度検出素子が下流側温度検出素子5として発熱抵抗体3に対して下流側に設けられ、少なくとも一つの温度検出素子が上流側温度検出素子4として、発熱抵抗体3に対して上流側に設けられる。   The downstream side temperature detection element 5 is provided on the downstream side of the heating resistor 3 in the direction in which the fluid (air in this embodiment) flows normally. The upstream temperature detection element 4 is provided on the upstream side of the heating resistor 3 in the direction in which the fluid (air in this embodiment) flows normally. That is, in the present embodiment, the membrane portion 2 is provided with the heating resistor 3 and the plurality of temperature detecting elements 4 and 5, and at least one temperature detecting element as the downstream side temperature detecting element 5 downstream of the heating resistor 3. At least one temperature detection element is provided upstream of the heating resistor 3 as the upstream temperature detection element 4.

本実施例では、発熱抵抗体3が発生する熱による温度分布の変化を利用して、流体流量を検出する。このため、流量計測装置は熱式流量計45(図18参照)により構成される。以下、流量計測装置は熱式流量計45と呼んで説明する場合がある。   In the present embodiment, the fluid flow rate is detected using the change in temperature distribution due to the heat generated by the heating resistor 3. For this reason, the flow rate measuring device is constituted by a thermal flow meter 45 (see FIG. 18). Hereinafter, the flow rate measuring device may be referred to as a thermal flow meter 45 and may be described.

図2は、流量に応じたメンブレン部の温度分布の変化を示す概念図である。流量検出素子1上の流体の流れに応じて図2に示すようにメンブレン部2の温度分布が変化する構成となっており、流量計測素子1はメンブレン部2の温度分布の変化を上流側温度検出素子4と下流側温度検出素子5とにより計測し、上流側と下流側の温度分布の偏り(温度差)により流量を検出する。   FIG. 2 is a conceptual view showing a change in temperature distribution of the membrane part according to the flow rate. The temperature distribution of the membrane unit 2 changes as shown in FIG. 2 in accordance with the flow of fluid on the flow rate detecting element 1. The flow rate measuring element 1 changes the temperature distribution of the membrane unit 2 by the upstream temperature The flow rate is detected by the deviation (temperature difference) between the temperature distribution on the upstream side and the downstream side, which is measured by the detection element 4 and the downstream temperature detection element 5.

図2において、温度分布6は流体の流れが無い状態での温度分布を示しており、上流側温度検出素子4の位置における温度と下流側温度検出素子5の位置における温度とが等しく、両温度検出素子4,5の位置で温度差は生じていない。一方、温度分布7は流体の流れ(矢印Flowで示す流れ)が発生している状態での温度分布を示しており、上流側温度検出素子4の位置における温度と下流側温度検出素子5の位置における温度との間に温度差が生じている。流体の流れが発生している場合、下流側温度検出素子5の位置における温度が上流側温度検出素子4の位置における温度よりも高くなる。   In FIG. 2, the temperature distribution 6 shows the temperature distribution in the absence of fluid flow, and the temperature at the position of the upstream temperature detection element 4 and the temperature at the position of the downstream temperature detection element 5 are equal. There is no temperature difference at the positions of the detection elements 4 and 5. On the other hand, the temperature distribution 7 shows the temperature distribution in the state where the fluid flow (flow indicated by the arrow Flow) is generated, and the temperature at the position of the upstream temperature detection element 4 and the position of the downstream temperature detection element 5 There is a temperature difference with the temperature at. When the flow of fluid is generated, the temperature at the position of the downstream temperature detection element 5 becomes higher than the temperature at the position of the upstream temperature detection element 4.

図3は、温度検出素子の温度特性ばらつきによる流量検出誤差の例を示す図である。上流側温度検出素子4及び下流側温度検出素子5はそれぞれ温度特性のばらつきを持っており、上流側と下流側とにおける温度分布の偏りが一定であったとしても、温度検出素子4,5の温度が変化することで、実際の温度分布の偏りとは異なる、誤った検出結果をしめしてしまう。この誤った検出結果により、図3に示すように、流量検出素子1の流量検出誤差8が生じてしまう。   FIG. 3 is a diagram showing an example of the flow rate detection error due to the temperature characteristic variation of the temperature detection element. The upstream temperature detection element 4 and the downstream temperature detection element 5 respectively have variations in temperature characteristics, and even if the deviation of the temperature distribution between the upstream side and the downstream side is constant, A change in temperature may indicate an erroneous detection result that is different from the deviation of the actual temperature distribution. Due to this erroneous detection result, as shown in FIG. 3, a flow rate detection error 8 of the flow rate detection element 1 occurs.

流量検出誤差8は流量Qが小さくなるほど大きくなり、極めて低い流量領域においては大きな誤差を生じる。そこで、温度検出素子4,5の温度を計測できるように回路を構成し、温度検出素子4,5の温度に基づいて誤った検出結果を補正することで、高精度な流量検出素子1を実現する。   The flow rate detection error 8 increases as the flow rate Q decreases, and causes a large error in an extremely low flow rate region. Therefore, a circuit is configured to measure the temperature of the temperature detection elements 4 and 5, and the erroneous detection result is corrected based on the temperatures of the temperature detection elements 4 and 5 to realize the flow rate detection element 1 with high accuracy. Do.

図18は、流量検出素子を組み込んだ流量計測装置の例を示す図である。
流量検出素子1は図18に示すように、リードフレーム35に支持され、熱硬化性樹脂37によりモールド成型され、チップパッケージ36内に構成される。流量検出素子1は、熱式流量計45のセンシング部(センサ)を構成し、電気的にLSI32と接続される。本実施例では温度検出素子4,5は感温抵抗体により構成され、流量検出素子1により検出される温度検出素子4,5の抵抗値により、発熱抵抗体3の上流側と下流側との温度差に基づく流量が求められる。この流量の計算(演算)はLSI32で実行される。さらにLSI32では計算した流量値の補正処理を行う。LSI32で求められた流量値は、入出力端子38及びコネクタ端子43を介して、熱式流量計45により検出される吸気管通路42内の流量信号として出力される。
FIG. 18 is a diagram showing an example of a flow rate measuring device incorporating a flow rate detecting element.
As shown in FIG. 18, the flow rate detection element 1 is supported by the lead frame 35, molded with a thermosetting resin 37, and configured in a chip package 36. The flow rate detection element 1 constitutes a sensing unit (sensor) of the thermal flow meter 45 and is electrically connected to the LSI 32. In the present embodiment, the temperature detection elements 4 and 5 are formed of temperature sensitive resistors, and the resistance values of the temperature detection elements 4 and 5 detected by the flow amount detection element 1 The flow rate based on the temperature difference is determined. The calculation (calculation) of the flow rate is executed by the LSI 32. Further, the LSI 32 performs correction processing of the calculated flow rate value. The flow rate value determined by the LSI 32 is output as a flow rate signal in the intake pipe passage 42 detected by the thermal flow meter 45 via the input / output terminal 38 and the connector terminal 43.

温度検出素子4,5として感温抵抗体を用いた場合の流量検出誤差8の低減方法について説明する。   A method of reducing the flow rate detection error 8 when a temperature sensitive resistor is used as the temperature detection elements 4 and 5 will be described.

図4は、流量検出素子のメンブレン部断面(感温抵抗体の近傍)における、発熱抵抗体加熱時の温度分布イメージを示す図である。発熱抵抗体3の加熱制御によりメンブレン2の温度上昇を環境温度Taに依存しないように制御すると、各環境温度T1,T0,T2でのメンブレン部2の温度分布は環境温度に応じてオフセットした温度分布となる。図4に示すように、環境温度Taが高いほど、メンブレン部2の温度分布は高い温度範囲にオフセットする。   FIG. 4 is a view showing a temperature distribution image at the time of heating the heating resistor in the cross section of the membrane portion (in the vicinity of the temperature sensitive resistor) of the flow rate detecting element. If the temperature rise of the membrane 2 is controlled not to depend on the environmental temperature Ta by the heating control of the heating resistor 3, the temperature distribution of the membrane part 2 at each environmental temperature T1, T0, T2 is offset according to the environmental temperature It becomes distribution. As shown in FIG. 4, as the environmental temperature Ta is higher, the temperature distribution of the membrane portion 2 is offset to a higher temperature range.

図5は、感温抵抗体の温度特性ばらつきを示す模式図である。図5では、抵抗温度係数が正の場合の温度特性を一例に示した。   FIG. 5 is a schematic view showing the temperature characteristic variation of the temperature sensitive resistor. In FIG. 5, the temperature characteristic in the case where the temperature coefficient of resistance is positive is shown as an example.

環境温度が高くなると感温抵抗体4,5の抵抗値は増加する。感温抵抗体4,5の製造ばらつきにより、抵抗値及び抵抗温度係数もばらつきをもってしまう。上流側温度検出素子4の抵抗値は大きく、抵抗温度係数は小さい方向にばらつき、一方下流側温度検出素子5の抵抗値は小さく、抵抗温度係数は大きい方向にばらついた場合には、上流側温度検出素子4の抵抗値の温度特性は温度特性ばらつき9となり、下流側温度検出素子5の抵抗値の温度特性は温度特性ばらつき10となる。   The resistance value of the temperature sensitive resistors 4 and 5 increases as the environmental temperature rises. Due to manufacturing variations of the temperature sensitive resistors 4 and 5, the resistance value and the temperature coefficient of resistance also vary. When the resistance value of the upstream temperature detection element 4 is large and the resistance temperature coefficient varies in a small direction, while the resistance value of the downstream temperature detection element 5 is small and the resistance temperature coefficient varies in a large direction, the upstream temperature The temperature characteristic of the resistance value of the detection element 4 is the temperature characteristic variation 9, and the temperature characteristic of the resistance value of the downstream side temperature detection element 5 is the temperature characteristic variation 10.

この場合、流体の流れが生じていない場合であっても、環境温度Ta=T1においては上流側感温抵抗体4の抵抗値と下流側感温抵抗体5の抵抗値との間にRT1−RT1’の抵抗差が生じ、環境温度Ta=T0においては上流側感温抵抗体4の抵抗値と下流側感温抵抗体5の抵抗値との間にRT0−RT0’の抵抗差が生じ、環境温度Ta=T2においては上流側感温抵抗体4の抵抗値と下流側感温抵抗体5の抵抗値との間にRT2−RT2’の抵抗差が生じる。このため、各抵抗差に応じた流量の検出誤差が生じる。   In this case, even if no fluid flow occurs, RT1 − between the resistance value of the upstream temperature sensitive resistor 4 and the resistance value of the downstream temperature sensitive resistor 5 at the environmental temperature Ta = T1. A resistance difference of RT1 ′ occurs, and a resistance difference of RT0−RT0 ′ occurs between the resistance value of the upstream temperature sensitive resistor 4 and the resistance value of the downstream temperature sensitive resistor 5 at the environmental temperature Ta = T0. At the environmental temperature Ta = T2, a resistance difference of RT2-RT2 'occurs between the resistance value of the upstream temperature sensitive resistor 4 and the resistance value of the downstream temperature sensitive resistor 5. For this reason, the detection error of the flow rate according to each resistance difference arises.

感温抵抗体材料としてはシリコン、白金、タングステン、モリブデン、タンタル、チタンなどが用いられ、抵抗温度係数が大きい材料ほど、温度に対する抵抗値変化の感度を大きくすることができ有用である。   Silicon, platinum, tungsten, molybdenum, tantalum, titanium or the like is used as the temperature sensitive resistor material, and a material having a large temperature coefficient of resistance is useful because the sensitivity of the resistance value change with respect to temperature can be increased.

図6は、メンブレン部の温度分布の偏りを検出するための感温抵抗体のブリッジ回路図である。感温抵抗体4,5はメンブレン2の温度分布の偏りを高精度に計測するために、図6のようなブリッジ回路として構成される。   FIG. 6 is a bridge circuit diagram of a temperature-sensitive resistor for detecting deviation of temperature distribution in a membrane part. The temperature sensitive resistors 4 and 5 are configured as a bridge circuit as shown in FIG. 6 in order to measure the deviation of the temperature distribution of the membrane 2 with high accuracy.

ブリッジ回路は上流側の感温抵抗体4と下流側の感温抵抗体5とが直列に接続された感温抵抗体対が二組設けられている。一方の感温抵抗体対11は、GND電位(グランド電位)側に上流側感温抵抗体4が、Vref電位(参照電位、基準電位)側に下流側感温抵抗体5が接続される。もう一方の感温抵抗体対12はGND電位(グランド電位)側に下流側感温抵抗体5が、Vref電位(参照電位、基準電位)側に上流側感温抵抗体4が接続される構成となっている。すなわち本実施例では、上流側感温抵抗体4が二つの感温抵抗体により構成され、下流側感温抵抗体5が二つの感温抵抗体により構成される。感温抵抗体対11と感温抵抗体対12とでは、GND電位及びVref電位に対する上流側感温抵抗体4と下流側感温抵抗体5との接続が反対になっている。   The bridge circuit is provided with two temperature-sensitive resistor pairs in which the upstream temperature-sensitive resistor 4 and the downstream temperature-sensitive resistor 5 are connected in series. The upstream temperature sensitive resistor 4 is connected to the GND potential (ground potential) side, and the downstream temperature sensitive resistor 5 is connected to the Vref potential (reference potential, reference potential) side. Another temperature sensitive resistor pair 12 is configured such that the downstream temperature sensitive resistor 5 is connected to the GND potential (ground potential) side and the upstream temperature sensitive resistor 4 is connected to the Vref potential (reference potential, reference potential) side It has become. That is, in the present embodiment, the upstream temperature sensitive resistor 4 is constituted by two temperature sensitive resistors, and the downstream temperature sensitive resistor 5 is constituted by two temperature sensitive resistors. In the temperature sensitive resistor pair 11 and the temperature sensitive resistor pair 12, the connection between the upstream temperature sensitive resistor 4 and the downstream temperature sensitive resistor 5 with respect to the GND potential and the Vref potential is reversed.

図7は、感温抵抗体の温度とブリッジ回路出力の温度特性を示す図である。上流側感温抵抗体4及び下流側感温抵抗体5が理想的な感温抵抗体の場合(抵抗値及び抵抗温度係数にばらつきがない場合)には、ブリッジ回路の出力電圧は図7のように温度特性を持たない特性13となる。   FIG. 7 is a diagram showing the temperature characteristics of the temperature sensitive resistor and the temperature characteristics of the bridge circuit output. When the upstream temperature sensitive resistor 4 and the downstream temperature sensitive resistor 5 are ideal temperature sensitive resistors (when the resistance value and the resistance temperature coefficient do not vary), the output voltage of the bridge circuit is as shown in FIG. Thus, the characteristic 13 has no temperature characteristic.

実際の感温抵抗体では例えば図5のようなばらつきにより、図7の温度特性14のようにブリッジ回路出力は温度Tに応じて変化する特性を持ってしまう。温度特性14は、流量検出素子1の流量検出誤差として、極めて低い流量領域で顕著となり、図3のような流量検出誤差8となる。   In an actual temperature sensitive resistor, for example, due to the variation as shown in FIG. 5, the bridge circuit output has a characteristic that changes in accordance with the temperature T as in the temperature characteristic 14 of FIG. The temperature characteristic 14 becomes remarkable in a very low flow rate region as a flow rate detection error of the flow rate detection element 1 and becomes a flow rate detection error 8 as shown in FIG.

図8は、実施例1に係る流量計測装置のブリッジ回路の構成を示す図である。本実施例の熱式流量計45においては、図6のようなブリッジ回路を構成する感温抵抗体4,5の平均温度を検出できるように、図8に示すようにブリッジ回路と直列に検出抵抗(基準抵抗)15を設ける構成とし、感温抵抗体4,5の温度により流量検出素子1の検出結果を補正する。これにより、温度検出素子1のばらつきによる温度に依存した流量検出誤差8は、温度検出素子4,5のばらつきによる温度特性を補正したときの流量検出誤差21に示すように、小さくすることができる。特に、極めて低い流量領域での誤差低減の効果が大きい。これにより、高精度な熱式流量計45を提供することができる。   FIG. 8 is a diagram showing a configuration of a bridge circuit of the flow rate measuring apparatus according to the first embodiment. In the thermal flowmeter 45 of this embodiment, as shown in FIG. 8, detection is performed in series with the bridge circuit so that the average temperature of the temperature sensitive resistors 4 and 5 constituting the bridge circuit as shown in FIG. The resistance (reference resistance) 15 is provided, and the detection result of the flow rate detection element 1 is corrected by the temperature of the temperature sensitive resistors 4 and 5. Thereby, the flow rate detection error 8 depending on the temperature due to the variation of the temperature detection element 1 can be reduced as shown by the flow rate detection error 21 when the temperature characteristic due to the variation of the temperature detection elements 4 and 5 is corrected. . In particular, the effect of error reduction in a very low flow rate area is large. Thereby, a highly accurate thermal flowmeter 45 can be provided.

検出抵抗(基準抵抗)15は、ブリッジ回路の合成抵抗を計測するために用いられる。検出抵抗15により検出されるブリッジ回路の合成抵抗から、温度検出素子4,5の温度が検出される。すなわち検出抵抗15は、ブリッジ回路と直列に設けられることで、Vrefから温度に応じた所定の電圧降下を生じたVs電圧を発生させ、このVs電圧により感温抵抗体4,5の温度を検出することが可能になる。すなわち検出抵抗15は、感温抵抗体4,5の温度を計測するための温度計測用素子を構成する。本実施例では、感温抵抗体4,5のいずれか一方を第1温度検出素子、他方を第2温度検出素子と呼ぶ場合がある。そこで検出抵抗(温度計測用素子)15は、第3温度検出素子と呼んで、第1温度検出素子及び第2温度検出素子と区別して説明する場合がある。   The detection resistance (reference resistance) 15 is used to measure the combined resistance of the bridge circuit. The temperature of the temperature detection elements 4 and 5 is detected from the combined resistance of the bridge circuit detected by the detection resistor 15. That is, the detection resistor 15 is provided in series with the bridge circuit to generate a Vs voltage in which a predetermined voltage drop corresponding to the temperature is generated from Vref, and the temperature of the temperature sensitive resistors 4 and 5 is detected by the Vs voltage. It will be possible to That is, the detection resistor 15 constitutes a temperature measurement element for measuring the temperature of the temperature sensitive resistors 4 and 5. In this embodiment, one of the temperature sensitive resistors 4 and 5 may be referred to as a first temperature detection element, and the other may be referred to as a second temperature detection element. Therefore, the detection resistor (element for temperature measurement) 15 may be referred to as a third temperature detection element, and may be described separately from the first temperature detection element and the second temperature detection element.

図8に示すような回路を構成し、Vs電圧(ブリッジ電圧:感温抵抗体対11,12に発生する電位差)を測定することで、感温抵抗体の温度を測定することができる。   The temperature of the temperature-sensitive resistor can be measured by configuring a circuit as shown in FIG. 8 and measuring the voltage Vs (bridge voltage: potential difference generated in the temperature-sensitive resistor pair 11, 12).

図9は、感温抵抗体の温度とVs電圧(ブリッジ電圧)の関係を示す図である。検出抵抗15は抵抗温度係数がゼロであることが望ましいが、抵抗温度係数が感温抵抗体4,5と検出抵抗15とで異なれば、図9に示すような感温抵抗体の温度TrとVs電圧との関係を予め調べて保有しておくことにより、補正量を算出することができる。   FIG. 9 is a diagram showing the relationship between the temperature of the temperature sensitive resistor and the Vs voltage (bridge voltage). Although it is desirable that the detection temperature coefficient of the detection resistor 15 is zero, if the temperature coefficient of resistance is different between the temperature sensitive resistors 4 and 5 and the detection resistor 15, the temperature Tr of the temperature sensitive resistor as shown in FIG. The amount of correction can be calculated by examining and storing the relationship with the Vs voltage in advance.

図10は、実施例1に係る温度特性補正処理部の構成を示すブロック図である。本実施例において、検出抵抗15は流量検出素子1と同一の基板上に設ける。   FIG. 10 is a block diagram of the configuration of the temperature characteristic correction processing unit according to the first embodiment. In the present embodiment, the detection resistor 15 is provided on the same substrate as the flow rate detection element 1.

流量検出素子1は、感温抵抗体4,5により構成されるブリッジ回路から、感温抵抗体対11の第1中間電圧(感温抵抗体5のGND側電位、感温抵抗体4のVref側電位)と、感温抵抗体対12の第2中間電圧(感温抵抗体4のGND側電位、感温抵抗体5のVref側電位)と、Vs電圧(検出抵抗15のGND側電位、感温抵抗体対11及び感温抵抗体対12のVref側電位)と、を出力する。第1中間電圧と第2中間電圧との電圧差(電位差)は流体の流量に応じて変化し、この電位差から流量を検出することができる。発熱抵抗体3、感温抵抗体4,5、及びブリッジ回路の構成は、従来知られた種々の構成を用いることができる。   Since the flow rate detection element 1 is a bridge circuit formed by the temperature sensitive resistors 4 and 5, the first intermediate voltage of the temperature sensitive resistor pair 11 (the GND side potential of the temperature sensitive resistor 5, Vref of the temperature sensitive resistor 4 Side potential), the second intermediate voltage of the temperature sensitive resistor pair 12 (the GND side potential of the temperature sensitive resistor 4, the Vref side potential of the temperature sensitive resistor 5), and the Vs voltage (the GND side potential of the detection resistor 15) The temperature sensitive resistor pair 11 and the Vref side potential of the temperature sensitive resistor pair 12 are output. The voltage difference (potential difference) between the first intermediate voltage and the second intermediate voltage changes in accordance with the flow rate of the fluid, and the flow rate can be detected from this potential difference. The configurations of the heat generating resistor 3, the temperature sensitive resistors 4 and 5, and the bridge circuit can use various configurations conventionally known.

検出抵抗15は流量検出素子1と同一の基板上に設けられているため、Vs電圧は流量検出素子1(すなわち感温抵抗体4,5)の温度に応じて変化する。   Since the detection resistor 15 is provided on the same substrate as the flow rate detection element 1, the Vs voltage changes in accordance with the temperature of the flow rate detection element 1 (that is, the temperature sensitive resistors 4 and 5).

第1中間電圧、第2中間電圧、及びVs電圧はAD変換回路19に入力され、アナログ値がデジタル値に変換される。デジタル値に変換された第1中間電圧、第2中間電圧、及びVs電圧は、流量演算部47に入力され、第1中間電圧と第2中間電圧との電圧差と、Vs電圧と、に基づいて流体流量(流量信号)が演算される。この流体流量の演算方法について、従来知られた種々の方法を用いることができる。   The first intermediate voltage, the second intermediate voltage, and the Vs voltage are input to the AD conversion circuit 19, and the analog value is converted to a digital value. The first intermediate voltage, the second intermediate voltage, and the Vs voltage converted into digital values are input to the flow rate calculation unit 47, and based on the voltage difference between the first intermediate voltage and the second intermediate voltage and the Vs voltage. The fluid flow rate (flow rate signal) is calculated. Various methods conventionally known can be used to calculate the fluid flow rate.

流量検出素子1から出力されたVs電圧はAD変換回路18に入力され、アナログ値がデジタル値に変換される。デジタル値に変換されたVs電圧は、温度特性補正定数演算回路(温度特性補正定数演算処理部)20に入力される。Vs電圧の測定結果(ずなわち流量検出素子1の温度)に基づいて多項式関数もしくはマップ方式の温度特性補正定数演算回路20により補正量を算出し、流量検出素子1の検出結果(流量信号)をオフセット補正する。   The Vs voltage output from the flow rate detection element 1 is input to the AD conversion circuit 18, and the analog value is converted to a digital value. The Vs voltage converted into the digital value is input to a temperature characteristic correction constant calculation circuit (temperature characteristic correction constant calculation processing unit) 20. Based on the measurement result of Vs voltage (that is, the temperature of the flow rate detection element 1), the correction amount is calculated by the polynomial function or map type temperature characteristic correction constant calculation circuit 20, and the detection result of the flow rate detection element 1 (flow rate signal) Offset correction.

なお温度特性補正定数演算回路20は、単に補正量演算部と呼んで説明する場合もある。   The temperature characteristic correction constant calculation circuit 20 may be simply referred to as a correction amount calculation unit.

図11は、検出抵抗を信号処理回路に設けた場合の温度特性補正処理部の構成を示すブロック図である。図11では、検出抵抗15を、流量検出素子1の基板とは異なる信号処理回路基板上に設けた場合を示している。   FIG. 11 is a block diagram showing the configuration of the temperature characteristic correction processing unit when the detection resistor is provided in the signal processing circuit. FIG. 11 shows the case where the detection resistor 15 is provided on a signal processing circuit board different from the substrate of the flow rate detection element 1.

信号処理回路基板は、AD変換回路18、AD変換回路19、温度特性補正定数演算回路20、及び流量演算部47が設けられる基板である。また、この基板はLSI32を構成する基板であってもよいし、LSI32や他の電子部品を搭載する基板であってもよい。   The signal processing circuit board is a board on which the AD conversion circuit 18, the AD conversion circuit 19, the temperature characteristic correction constant calculation circuit 20, and the flow rate calculation unit 47 are provided. Further, this substrate may be a substrate constituting the LSI 32, or may be a substrate on which the LSI 32 and other electronic components are mounted.

検出抵抗15が設けられた信号処理回路基板の温度を計測し、図11に示すように、Vs電圧の測定結果に応じた信号処理回路基板の温度により多項式関数もしくはマップ方式の温度特性補正定数演算回路(温度特性補正定数演算処理部)20により補正量を算出し、流量検出素子1の検出結果をオフセット補正する。   The temperature of the signal processing circuit board provided with the detection resistor 15 is measured, and as shown in FIG. 11, the temperature characteristic correction constant calculation of the polynomial function or the map system according to the temperature of the signal processing circuit board according to the measurement result of Vs voltage The correction amount is calculated by the circuit (temperature characteristic correction constant calculation processing unit) 20, and the detection result of the flow rate detection element 1 is offset corrected.

なお図11では、検出抵抗15が設けられた信号処理回路基板の温度は、ブリッジ回路、すなわち感温抵抗体4,5が設けられた流量検出素子1の温度と異なる可能性がある。そこで図11では、検出抵抗15の温度を検出する温度検出回路17を設けている。温度検出回路17は検出抵抗15の電圧(アナログ値)をデジタル値に変換する機能を有する。   In FIG. 11, the temperature of the signal processing circuit board provided with the detection resistor 15 may be different from the temperature of the bridge circuit, that is, the temperature of the flow rate detection element 1 provided with the temperature sensitive resistors 4 and 5. So, in FIG. 11, the temperature detection circuit 17 which detects the temperature of the detection resistance 15 is provided. The temperature detection circuit 17 has a function of converting the voltage (analog value) of the detection resistor 15 into a digital value.

本実施例では、温度検出回路17の出力信号(すなわち信号処理回路基板の温度)とVs電圧とを温度特性補正定数演算回路20に入力して、補正量を算出する。この場合、検出抵抗15の電圧とVs電圧との関係(分圧比)から、流量検出素子1の温度(すなわち感温抵抗体4,5の温度)を検出することができる
図12は、温度特性補正後の熱式流量計の流量計測誤差の例を示す図である。感温抵抗体4,5の温度、すなわち環境温度の変化に応じて流量検出素子1の検出結果を補正することで、熱式流量計45の流量検出誤差を低減することができる。特に熱式流量計45の極めて低い流量領域での流量検出誤差を低減することができ、高精度な熱式流量計45を提供することができる。
In the present embodiment, the output signal of the temperature detection circuit 17 (that is, the temperature of the signal processing circuit board) and the Vs voltage are input to the temperature characteristic correction constant calculation circuit 20 to calculate the correction amount. In this case, the temperature of the flow detection element 1 (that is, the temperature of the temperature sensitive resistors 4 and 5) can be detected from the relationship (voltage division ratio) between the voltage of the detection resistor 15 and the Vs voltage. It is a figure which shows the example of the flow measurement error of the thermal type flow meter after correction | amendment. The flow rate detection error of the thermal flowmeter 45 can be reduced by correcting the detection result of the flow rate detection element 1 according to the temperature of the temperature sensitive resistors 4 and 5, that is, the change of the environmental temperature. In particular, the flow rate detection error in the extremely low flow rate area of the thermal flow meter 45 can be reduced, and the high-precision thermal flow meter 45 can be provided.

[実施例2]
実施例2について図13〜16を用いて説明する。実施例2の構成は実施例1の感温抵抗体に替えて、温度検出素子4,5として熱電対を用いた場合について説明する。実施例1と重複する内容については実施例1と同じ符号を付し、説明を省略する。
Example 2
A second embodiment will be described with reference to FIGS. The configuration of the second embodiment will be described in the case where a thermocouple is used as the temperature detection elements 4 and 5 instead of the temperature sensitive resistor of the first embodiment. About the contents which overlap with Example 1, the same numerals as Example 1 are attached, and explanation is omitted.

図13は、温度検出素子として熱電対を用いた場合の流量検出素子のメンブレン部断面における、発熱抵抗体加熱時の温度分布イメージを示す図である。図14は、メンブレン部の温度分布の偏りを検出するための熱電対回路図である。メンブレン部2の温度分布は実施例1と同様であるが、熱電対の場合は温度検出の仕方が異なる。   FIG. 13 is a view showing a temperature distribution image at the time of heating the heating resistor in a cross section of the membrane part of the flow rate detection element when a thermocouple is used as the temperature detection element. FIG. 14 is a thermocouple circuit diagram for detecting deviation of temperature distribution in the membrane part. Although the temperature distribution of the membrane part 2 is the same as that of Example 1, in the case of a thermocouple, the method of temperature detection is different.

熱電対24,25は冷接点と温接点との温度差に応じて生じる熱起電力の大きさにより冷接点と温接点との温度差を計測する。発熱抵抗体3に近い位置の接点が温接点22となり、流体が流れる方向においてメンブレン部2の端部に近い接点(発熱抵抗体3から離れた接点)が冷接点23となる。温度差を計測したい位置に接点を配置することで、計測を行い、温接点22、冷接点23を一組として、温接点22と冷接点23とを順々に直列接続することで、熱起電力(温度差)の和を計測することができる。すなわち、熱電対24の熱起電力としてVが得られ、熱電対25の熱起電力としてV’が得られる。   The thermocouples 24 and 25 measure the temperature difference between the cold junction and the hot junction by the magnitude of the thermoelectromotive force generated according to the temperature difference between the cold junction and the hot junction. The contact at a position close to the heating resistor 3 is a hot contact 22, and the contact (contact away from the heating resistor 3) near the end of the membrane portion 2 in the fluid flow direction is a cold contact 23. A contact is placed at a position where the temperature difference is to be measured to perform measurement, and the hot contact 22 and the cold contact 23 are serially connected in series to form a thermal contact. The sum of the power (temperature difference) can be measured. That is, V is obtained as the thermoelectromotive force of the thermocouple 24, and V ′ is obtained as the thermoelectromotive force of the thermocouple 25.

本実施例では、流量演算部(流量演算回路)48は、熱電対24の熱起電力Vと熱電対25の熱起電力V’との差分に基づいて、流体流量(流量信号)を演算する。   In the present embodiment, the flow rate calculating unit (flow rate calculating circuit) 48 calculates the fluid flow rate (flow rate signal) based on the difference between the thermoelectromotive force V of the thermocouple 24 and the thermoelectromotive force V 'of the thermocouple 25. .

図13では、熱電対24において、環境温度Ta=T1の場合に温接点22と冷接点23との間にdT1aの温度差が生じ、環境温度Ta=T0の場合に温接点22と冷接点23との間にdT0aの温度差が生じ、環境温度Ta=T2の場合に温接点22と冷接点23との間にdT2aの温度差が生じる。そして、熱電対24には、環境温度Ta=T1の場合に温度差dT1aに応じた熱起電力が生じ、環境温度Ta=T0の場合に温度差dT0aに応じた熱起電力が生じ、環境温度Ta=T2の場合に温度差dT2aに応じた熱起電力が生じる。一方、熱電対25においては、環境温度Ta=T1の場合に温接点22と冷接点23との間にdT1bの温度差が生じ、環境温度Ta=T0の場合に温接点22と冷接点23との間にdT0bの温度差が生じ、環境温度Ta=T2の場合に温接点22と冷接点23との間にdT2bの温度差が生じる。そして、熱電対25には、環境温度Ta=T1の場合に温度差dT1bに応じた熱起電力が生じ、環境温度Ta=T0の場合に温度差dT0bに応じた熱起電力が生じ、環境温度Ta=T2の場合に温度差dT2bに応じた熱起電力が生じる。   In FIG. 13, in the thermocouple 24, when the environmental temperature Ta = T 1, a temperature difference of dT 1 a occurs between the hot contact 22 and the cold contact 23, and when the environmental temperature Ta = T 0, the hot contact 22 and the cold contact 23 In the case of environmental temperature Ta = T2, a temperature difference of dT2a occurs between the hot junction 22 and the cold junction 23. Then, a thermoelectromotive force corresponding to the temperature difference dT1a is generated in the thermocouple 24 when the environmental temperature Ta = T1, and a thermoelectromotive power corresponding to the temperature difference dT0a is generated when the environmental temperature Ta = T0. When Ta = T2, a thermoelectromotive force corresponding to the temperature difference dT2a is generated. On the other hand, in the thermocouple 25, when the environmental temperature Ta = T1, a temperature difference of dT1b occurs between the hot junction 22 and the cold junction 23, and when the environmental temperature Ta = T0, the hot junction 22 and the cold junction 23 In the case of environmental temperature Ta = T2, a temperature difference of dT2b occurs between the warm junction 22 and the cold junction 23 when the ambient temperature Ta = T2. Then, a thermoelectromotive force corresponding to the temperature difference dT1b is generated in the thermocouple 25 when the environmental temperature Ta = T1, and a thermoelectromotive power corresponding to the temperature difference dT0b is generated when the environmental temperature Ta = T0. When Ta = T2, a thermoelectromotive force corresponding to the temperature difference dT2b is generated.

熱電対24,25として例えばポリシリコンとアルミの熱電対が良く用いられる。熱電対は組み合わされる材料の物性により温度に対する熱起電力の大きさが決まるが、例えばポリシリコンの不純物の種類や濃度によって熱起電力の大きさが変化してしまう。冷接点23と温接点22との温度差が環境温度に対して変化しない場合であっても、熱電対24,25の温度感度がばらつくと、熱起電力の大きさ(温度感度)が変化してしまう。   For example, polysilicon and aluminum thermocouples are often used as the thermocouples 24 and 25. Although the magnitude of the thermoelectromotive force with respect to temperature is determined by the physical properties of the materials to be combined, the magnitude of the thermoelectromotive force changes depending on, for example, the type and concentration of the impurity of polysilicon. Even if the temperature difference between the cold junction 23 and the hot junction 22 does not change with the ambient temperature, if the temperature sensitivity of the thermocouples 24 and 25 varies, the magnitude (temperature sensitivity) of the thermoelectromotive force changes. It will

図15は、熱電対の温度特性ばらつきを示す模式図である。図15では、冷接点23と温接点22との温度差が一定で環境温度が変化した場合の温度特性を示している。   FIG. 15 is a schematic view showing temperature characteristic variation of the thermocouple. FIG. 15 shows the temperature characteristic when the temperature difference between the cold junction 23 and the hot junction 22 is constant and the environmental temperature changes.

例えば発熱抵抗体3の上流側に配置された上流側熱電対24の温度感度が高く、もう一方の下流側に配置された下流側熱電対25の温度感度が低い場合、上流側熱電対24の熱起電力は27のような温度特性を有し、下流側熱電対24の熱起電力は28のような温度特性28を有することになる。   For example, when the temperature sensitivity of the upstream thermocouple 24 disposed upstream of the heating resistor 3 is high and the temperature sensitivity of the downstream thermocouple 25 disposed downstream of the other is low, the temperature of the upstream thermocouple 24 is low. The thermoelectromotive force has a temperature characteristic such as 27 and the thermoelectromotive force of the downstream thermocouple 24 has a temperature characteristic 28 such as 28.

この場合、流体の流れが生じていない場合であっても、環境温度Ta=T1においては上流側熱電対24の熱起電力と下流側熱電対25の熱起電力との間にVT1−VT1’の起電力差が生じ、環境温度Ta=T0においては上流側熱電対24の熱起電力と下流側熱電対25の熱起電力との間にVT0−VT0’の起電力差が生じ、環境温度Ta=T2においては上流側熱電対24の熱起電力と下流側熱電対25の熱起電力との間にVT2−VT2’の起電力差が生じる。このため、各起電力差29に応じた流量の検出誤差が生じる。   In this case, even if no fluid flow occurs, VT1-VT1 'between the thermoelectromotive force of the upstream thermocouple 24 and the thermoelectromotive force of the downstream thermocouple 25 at the environmental temperature Ta = T1. An electromotive force difference of VT0-VT0 'occurs between the thermoelectromotive force of the upstream thermocouple 24 and the thermoelectromotive force of the downstream thermocouple 25 when the environmental temperature Ta = T0. At Ta = T2, an electromotive force difference of VT2-VT2 'occurs between the thermoelectromotive force of the upstream side thermocouple 24 and the thermoelectromotive force of the downstream side thermocouple 25. For this reason, the detection error of the flow rate according to each electromotive force difference 29 arises.

図16は、熱電対の温度と熱起電力差の温度特性を示す図である。環境温度が高くなると、図16に示す冷接点温度Tcが高くなり、熱起電力の差(V−V’)が大きくなってしまう。このため、流量の検出誤差は環境温度が高くなるほど大きくなる。   FIG. 16 is a graph showing the temperature characteristics of the temperature of the thermocouple and the thermoelectromotive force difference. When the environmental temperature becomes high, the cold junction temperature Tc shown in FIG. 16 becomes high, and the difference in thermal electromotive force (V−V ′) becomes large. Therefore, the detection error of the flow rate becomes larger as the environmental temperature becomes higher.

本実施例の熱式流量計においては図15に示すような熱電対のばらつきによる熱起電力の温特(温度特性)を、冷接点23の温度を計測することで補正し、高精度な熱式流量計45を提供する。   In the thermal flow meter of the present embodiment, the temperature characteristic (temperature characteristic) of the thermoelectromotive force due to the variation of the thermocouple as shown in FIG. 15 is corrected by measuring the temperature of the cold junction 23 to obtain high accuracy thermal power. A flow meter 45 is provided.

図16に示すように冷接点23の温度と熱起電力差の関係30を予め調べておき、関係30に基づいて熱電対24,25のばらつきによる温度特性を補正する。   As shown in FIG. 16, the relationship 30 between the temperature of the cold junction 23 and the thermoelectromotive force difference is checked in advance, and based on the relationship 30, the temperature characteristic due to the variation of the thermocouples 24 and 25 is corrected.

図17は、実施例2に係る温度特性補正処理部の構成を示すブロック図である。図17に示すように、冷接点23の温度を計測する温度計測用素子46の検出信号を温度検出回路31に入力して冷接点23の温度を検出する。さらに、温度検出回路31の出力から温度特性の補正量を温度特性補正定数演算回路(温度特性補正定数演算処理部)20により算出し、補正量に応じて流量検出素子1の検出結果をオフセット補正する。補正後の熱式流量計45の計測誤差は図12と同様に低減することができる。   FIG. 17 is a block diagram of the configuration of the temperature characteristic correction processing unit according to the second embodiment. As shown in FIG. 17, the temperature detection circuit 31 receives a detection signal of the temperature measuring element 46 for measuring the temperature of the cold junction 23 to detect the temperature of the cold junction 23. Further, the temperature characteristic correction constant calculation circuit (temperature characteristic correction constant calculation processing unit) 20 calculates the correction amount of the temperature characteristic from the output of the temperature detection circuit 31 and offsets the detection result of the flow rate detection element 1 according to the correction amount. Do. The measurement error of the thermal flowmeter 45 after correction can be reduced as in FIG.

温度計測用素子46は、熱電対24または熱電対25のいずれか一方に設けることにより、流量検出素子1の温度(すなわち熱電対24,25の温度)を検出することができる。温度計測用素子46は、熱電対24と熱電対25の両方に設けてもよい。   The temperature measuring element 46 can detect the temperature of the flow rate detecting element 1 (that is, the temperature of the thermocouples 24 and 25) by being provided in one of the thermocouple 24 and the thermocouple 25. The temperature measuring element 46 may be provided on both the thermocouple 24 and the thermocouple 25.

温度計測用素子46は、感温抵抗体やダイオードを使用した温度素子の他、温度を検出可能な種々の検出素子を使用することができる。   The temperature measuring element 46 can use various detection elements capable of detecting temperature, in addition to a temperature element using a temperature sensitive resistor or a diode.

本実施例では、熱電対24,25のいずれか一方が第1温度検出素子、他方が第2温度検出素子を構成する。そして温度計測用素子46は、第3温度検出素子を構成する。   In the present embodiment, one of the thermocouples 24 and 25 constitutes a first temperature detection element, and the other constitutes a second temperature detection element. The temperature measurement element 46 constitutes a third temperature detection element.

本実施例においても、実施例1と同様に、流量検出素子1の検出結果を補正することで熱式流量計45の極めて低い流量領域での流量誤差を低減することができ、高精度な熱式流量計を提供することができる。   Also in the present embodiment, as in the first embodiment, by correcting the detection result of the flow rate detecting element 1, it is possible to reduce the flow rate error in the extremely low flow rate region of the thermal flowmeter 45, and high accuracy thermal A flow meter can be provided.

上述した各実施例では、流量演算部47をAD変換回路の次段に配置しているが、流量演算部47に温度特性補正定数演算回路20の出力信号とAD変換回路19の出力信号とを入力し、流量演算部47で温度誤差をオフセット補正された流量信号を演算するようにしてもよい。   In each of the above-described embodiments, the flow rate operation unit 47 is disposed at the next stage of the AD conversion circuit, but the flow rate operation unit 47 outputs the output signal of the temperature characteristic correction constant operation circuit 20 and the output signal of the AD conversion circuit 19 The flow rate signal may be calculated by offsetting the temperature error by the flow rate calculation unit 47.

なお、本発明は上記した各実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   The present invention is not limited to the above-described embodiments, but includes various modifications. For example, the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations. Also, part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. In addition, with respect to a part of the configuration of each embodiment, it is possible to add, delete, and replace other configurations.

1 流量検出素子
2 メンブレン
3 発熱抵抗体
4 上流側温度検出素子(第1温度検出素子又は第2温度検出素子)
5 下流側温度検出素子(第2温度検出素子又は第1温度検出素子)
6 ZeroFlow時の温度分布
7 流量流れが生じたときの温度分布
8 温度検出素子のばらつきによる温度に依存した流量検出誤差の例
9 ばらつきを持った上流側感温抵抗体の温度特性例
10 ばらつきを持った下流側感温抵抗体の温度特性例
11 感温抵抗体対
12 感温抵抗体対
13 理想的な感温抵抗体におけるブリッジ回路の出力温度特性
14 現実的なばらつきを持った感温抵抗体におけるブリッジ回路の出力温度特性
15 感温抵抗体の温度を計測するための検出抵抗(第3温度検出素子)
16 検出抵抗による感温抵抗体温度の検出特性
17 検出抵抗温度検出回路
18 感温抵抗体の温度検出用AD変換回路
19 空気流量信号用AD変換回路
20 温度特性補正定数演算回路(補正量演算部)
21 温度検出素子のばらつきによる温度特性を補正したときの流量検出誤差
22 熱電対の温接点
23 熱電対の冷接点
24 上流側熱電対
25 下流側熱電対
26 冷接点の温度検出素子
27 ばらつきを持った上流側熱電対の温度特性例
28 ばらつきを持った下流側熱電対の温度特性例
29 上流側熱電対と下流側熱電対の熱起電力差
30 現実的なばらつきを持った熱電対の熱起電力差の温度特性
31 冷接点の温度検出回路
32 LSI
33 吸気温度検出用感温抵抗体
34 チップコンデンサ
35 リードフレーム
36 チップパッケージ
37 熱硬化性樹脂
38 入出力端子
39 回路室
40 ハウジング
41 副通路
42 吸気管通路
43 コネクタ端子
44 コネクタ
45 熱式流量計
46 温度検出素子(第3温度検出素子)
47 流量演算部(流量演算回路)
48 流量演算部(流量演算回路)
1 flow rate detection element 2 membrane 3 heating resistor 4 upstream temperature detection element (first temperature detection element or second temperature detection element)
5 downstream temperature detection element (second temperature detection element or first temperature detection element)
6 Temperature distribution at time of Zero Flow 7 Temperature distribution at the time of flow flow generation 8 Example of flow detection error depending on temperature due to dispersion of temperature detection element 9 Temperature characteristic example of upstream temperature-sensitive resistor with dispersion 10 Dispersion Temperature characteristic example of the downstream side temperature-sensitive resistor 11 having temperature-sensitive resistor pair 12 temperature-sensitive resistor pair 13 output temperature characteristic of bridge circuit in ideal temperature-sensitive resistor 14 temperature-sensitive resistance with realistic variation Output Temperature Characteristic of Bridge Circuit in Body 15 Detection Resistance for Measuring Temperature of Temperature-Sensitive Resistor (3rd Temperature Detection Element)
16 Detection Characteristic of Temperature-Sensitive Resistor Temperature by Detection Resistance 17 Detection Resistance Temperature Detection Circuit 18 AD Conversion Circuit for Temperature Detection of Temperature-Sensitive Resistor 19 AD Conversion Circuit for Air Flow Rate Signal 20 Temperature Characteristic Correction Constant Arithmetic Circuit (Correction Amount Operation Unit )
21 Flow rate detection error 22 when temperature characteristics are corrected due to variations in temperature detection element 22 hot junction of thermocouple 23 cold junction 24 of thermocouple upstream thermocouple 25 downstream thermocouple 26 temperature detection element 27 of cold junction with variation Example of temperature characteristics of upstream thermocouples 28 Example of temperature characteristics of downstream thermocouples having variations Example 29: Thermoelectric power difference between upstream thermocouples and downstream thermocouples 30: Thermoelectricity of thermocouples having realistic variations Temperature characteristic of power difference 31 Temperature detection circuit of cold junction 32 LSI
33: Intake temperature detection temperature sensing resistor 34: Chip capacitor 35: Lead frame 36: Chip package 37: Thermosetting resin 38: I / O terminal 39: Circuit chamber 40: Housing 41: Subpassage 42: Intake passage 43: Connector terminal 44: Connector 45: Thermal flowmeter 46 Temperature detection element (third temperature detection element)
47 Flow rate calculation unit (flow rate calculation circuit)
48 Flow rate calculation unit (flow rate calculation circuit)

Claims (5)

主通路に流れる流体の一部を取り込む副通路と、前記副通路内に設けられ前記副通路内に取り込まれた流体の流量に応じた信号を出力する流量検出素子と、前記流量検出素子が出力する出力信号に基づいて流量信号を演算する流量演算部と、を備え、
前記流量検出素子は、発熱抵抗体と、流体の流れる方向において前記発熱抵抗体に対して上流側の温度と下流側の温度とを検出する複数の温度検出素子と、を備え、
前記温度検出素子の温度変化に対応した信号を前記出力信号として前記流量信号を演算する流量計測装置において、
前記温度検出素子の温度を計測する温度計測用素子と、前記温度計測用素子を用いて計測される前記温度検出素子の温度に基づいて前記温度検出素子の温度特性に基づく流量信号の誤差を補正する補正量を演算する補正量演算部と、を備え、
前記補正量に基づいて検出される流量を補正することを特徴とする流量計測装置。
An auxiliary passage for taking in part of the fluid flowing in the main passage, a flow rate detection element provided in the auxiliary passage and outputting a signal according to the flow rate of the fluid taken in the auxiliary passage, and the flow rate detection element A flow rate calculating unit that calculates a flow rate signal based on the output signal to be
The flow rate detection element includes a heat generation resistor, and a plurality of temperature detection elements for detecting the temperature on the upstream side and the temperature on the downstream side with respect to the heat generation resistor in the fluid flow direction,
In a flow rate measuring device which calculates the flow rate signal by using a signal corresponding to a temperature change of the temperature detection element as the output signal,
The error of the flow rate signal based on the temperature characteristic of the temperature detection element is corrected based on the temperature measurement element for measuring the temperature of the temperature detection element and the temperature of the temperature detection element measured using the temperature measurement element A correction amount calculation unit that calculates a correction amount to be
A flow rate measuring apparatus characterized by correcting a flow rate detected based on the correction amount.
請求項1に記載の流量計測装置において、
前記温度検出素子は、流体の流れる方向において前記発熱抵抗体に対して上流側に配置される第1感温抵抗体と、流体の流れる方向において前記発熱抵抗体に対して下流側に配置される第2感温抵抗体と、を備えて構成され、
前記第1感温抵抗体及び前記第2感温抵抗体により構成されるブリッジ回路と、前記温度計測用素子として前記ブリッジ回路と直列に接続される基準抵抗と、を備え、
前記補正量演算部は、前記ブリッジ回路の合成抵抗に基づいて前記第1感温抵抗体及び前記第2感温抵抗体の温度を検出し、前記第1感温抵抗体及び前記第2感温抵抗体の温度に応じて前記流量信号をオフセットすることにより検出される流量を補正することを特徴とする流量計測装置。
In the flow rate measuring device according to claim 1,
The temperature detection element is disposed downstream of the heat-generating resistor with respect to the first temperature-sensitive resistor, which is disposed upstream of the heat-generating resistor in the fluid flow direction, and in the fluid flow direction. And a second temperature sensitive resistor.
A bridge circuit configured of the first temperature sensitive resistor and the second temperature sensitive resistor; and a reference resistor connected in series to the bridge circuit as the temperature measurement element;
The correction amount calculation unit detects the temperature of the first temperature sensitive resistor and the second temperature sensitive resistor based on the combined resistance of the bridge circuit, and the first temperature sensitive resistor and the second temperature sensitive device. A flow rate measuring device characterized by correcting a flow rate detected by offsetting the flow rate signal according to a temperature of a resistor.
請求項2に記載の流量計測装置において、
前記温度計測用素子を前記流量検出素子上に設けたことを特徴とする流量計測装置。
In the flow rate measuring device according to claim 2,
A flow rate measuring device comprising the temperature measuring element provided on the flow rate detecting element.
請求項2のいずれか一項に記載の流量計測装置において、
前記補正量演算部が設けられる信号処理回路基板を備え、
前記温度計測用素子は前記信号処理回路基板に設けられ、
前記補正量演算部は、前記信号処理回路基板の温度と前記温度検出素子の温度とに基づいて補正量を算出し、前記補正量により前記流量信号をオフセットすることを特徴とする流量計測装置。
The flow rate measuring device according to any one of claims 2 to
A signal processing circuit board provided with the correction amount calculation unit;
The temperature measurement element is provided on the signal processing circuit board,
The flow rate measuring device, wherein the correction amount calculation unit calculates the correction amount based on the temperature of the signal processing circuit board and the temperature of the temperature detection element, and offsets the flow rate signal by the correction amount.
請求項1に記載の流量計測装置において、
前記温度検出素子は、流体の流れる方向において前記発熱抵抗体に対して上流側に配置される第1熱電対と、流体の流れる方向において前記発熱抵抗体に対して下流側に配置される第2熱電対と、を備えて構成され、
前記流量演算部は、前記第1熱電対の起電力と前記第2熱電対の起電力との差に基づいて前記流量信号を演算し、
前記温度計測用素子は、前記第1熱電対又は前記第2熱電対の少なくともいずれか一方の冷接点の温度を計測するように設けられ、
前記補正量演算部は、前記温度計測用素子により計測された前記冷接点の温度に応じて前記流量信号をオフセットすることにより検出される流量を補正することを特徴とする流量計測装置。
In the flow rate measuring device according to claim 1,
The temperature detection element includes a first thermocouple disposed upstream with respect to the heating resistor in the fluid flow direction, and a second thermocouple disposed downstream with respect to the heating resistor in the fluid flow direction. Comprising a thermocouple,
The flow rate calculating unit calculates the flow rate signal based on a difference between an electromotive force of the first thermocouple and an electromotive force of the second thermocouple,
The temperature measurement element is provided to measure a temperature of a cold junction of at least one of the first thermocouple and the second thermocouple.
The said correction amount calculating part correct | amends the flow detected by offsetting the said flow signal according to the temperature of the said cold junction measured by the element for temperature measurement.
JP2017190412A 2017-09-29 2017-09-29 Flow rate measuring device Pending JP2019066253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017190412A JP2019066253A (en) 2017-09-29 2017-09-29 Flow rate measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017190412A JP2019066253A (en) 2017-09-29 2017-09-29 Flow rate measuring device

Publications (1)

Publication Number Publication Date
JP2019066253A true JP2019066253A (en) 2019-04-25

Family

ID=66340521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017190412A Pending JP2019066253A (en) 2017-09-29 2017-09-29 Flow rate measuring device

Country Status (1)

Country Link
JP (1) JP2019066253A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203583A1 (en) 2019-03-29 2020-10-08 日油株式会社 Method for producing terminal carboxyl group-containing polyethylene glycol and method for producing activated polyethylene glycol

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020203583A1 (en) 2019-03-29 2020-10-08 日油株式会社 Method for producing terminal carboxyl group-containing polyethylene glycol and method for producing activated polyethylene glycol

Similar Documents

Publication Publication Date Title
US7269999B2 (en) Thermal airflow meter
US8874387B2 (en) Air flow measurement device and air flow correction method
JP5327262B2 (en) Thermal air flow meter
US9939300B2 (en) Hot-type fluid measurement device with electronic elements
EP2154489A1 (en) Heat flowmeter
EP2924405B1 (en) Intake air temperature sensor and flow measurement device
JP4558647B2 (en) Thermal fluid flow meter
TWI470188B (en) Flow sensor
JP5542505B2 (en) Thermal flow sensor
JPWO2003016833A1 (en) Thermal flow meter
JP5577198B2 (en) Gas flow measuring device
JP2021124415A (en) Temperature sensor module
JP6592200B2 (en) Thermal humidity measuring device
CN111954793B (en) Thermal flowmeter
JP2007071889A (en) Thermal air flowmeter
JP2019066253A (en) Flow rate measuring device
JP5644674B2 (en) Thermal flow meter
JP2010216906A (en) Automobile-use flowmeter
CN106840287B (en) Flow sensor, flowmeter and flow detection method
JP5062720B2 (en) Flow detection device
JP2010281758A (en) Thermal air flowmeter
JP2005037404A (en) Thermal type airflow meter
JP2002228501A (en) Thermal air flow meter
JP2017219426A (en) Gas flow measurement device
JP2015155810A (en) Adjustment method of physical quantity detection device