JP2019063778A - Catalytic oxidation system, and purification method of carbon dioxide - Google Patents

Catalytic oxidation system, and purification method of carbon dioxide Download PDF

Info

Publication number
JP2019063778A
JP2019063778A JP2017194809A JP2017194809A JP2019063778A JP 2019063778 A JP2019063778 A JP 2019063778A JP 2017194809 A JP2017194809 A JP 2017194809A JP 2017194809 A JP2017194809 A JP 2017194809A JP 2019063778 A JP2019063778 A JP 2019063778A
Authority
JP
Japan
Prior art keywords
catalyst
tank
carbon dioxide
temperature
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017194809A
Other languages
Japanese (ja)
Other versions
JP7017897B2 (en
Inventor
宏貴 山内
Hirotaka Yamauchi
宏貴 山内
晃裕 桑名
Akihiro Kuwana
晃裕 桑名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Priority to JP2017194809A priority Critical patent/JP7017897B2/en
Publication of JP2019063778A publication Critical patent/JP2019063778A/en
Application granted granted Critical
Publication of JP7017897B2 publication Critical patent/JP7017897B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

To provide a catalytic oxidation system suitable for suppressing thermal deterioration of a catalyst, and for utilizing the catalyst efficiently.SOLUTION: A catalytic oxidation system X1 for oxidizing, by a catalyst, a hydrocarbon-based compound from raw material gas containing noncombustible gas as a principal component, and containing the hydrocarbon-based compound as impurities, includes a plurality of catalyst tanks 1 filled with the catalyst, in which the plurality of catalyst tanks 1 include low-temperature catalyst tanks 11, 12, 13 in which an upper limit temperature in the tanks is a relatively low temperature, and a high-temperature catalyst tank 14 in which the upper limit temperature in the tank is a relatively high temperature.SELECTED DRAWING: Figure 1

Description

本発明は、不燃性ガス中に含まれる炭化水素系化合物を触媒酸化させるためのシステム、および不燃性ガスたる二酸化炭素中に含まれる炭化水素系化合物(不純物)を触媒酸化させることにより二酸化炭素を濃化する二酸化炭素の精製方法に関する。   The present invention provides a system for catalytically oxidizing a hydrocarbon compound contained in a nonflammable gas, and carbon dioxide by catalytically oxidizing a hydrocarbon compound (impurity) contained in carbon dioxide which is a nonflammable gas. The present invention relates to a method for purifying concentrated carbon dioxide.

化学工場から排出される二酸化炭素や、半導体工場から排出されるヘリウムやアルゴン等の不燃性排ガスは、回収された後に精製され、再利用される場合が多い。これら不燃性排ガスは、メタン、エタンをはじめとするパラフィン類、エチレン、プロピレンなどのオレフィン類、またベンゼン、トルエンなどの芳香族類、さらには炭化水素以外の蟻酸や酢酸などのカルボン酸類、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類に代表される炭化水素系化合物が含まれている場合が多い。これら炭化水素系化合物を除去する方法としては、活性炭などを用いた吸着除去や触媒酸化により二酸化炭素および水へ変換して除去する方法(例えば特許文献1,2を参照)が知られている。   Carbon dioxide emitted from a chemical plant and noncombustible exhaust gas such as helium and argon emitted from a semiconductor plant are often purified and reused after being recovered. These noncombustible exhaust gases include paraffins such as methane and ethane, olefins such as ethylene and propylene, aromatics such as benzene and toluene, and carboxylic acids such as formic acid and acetic acid other than hydrocarbons, formaldehyde, In many cases, hydrocarbon compounds represented by aldehydes such as acetaldehyde are contained. As a method of removing these hydrocarbon compounds, there is known a method of removing and converting to carbon dioxide and water by adsorption removal using activated carbon or the like or catalytic oxidation (see, for example, Patent Documents 1 and 2).

特開平05−306396号公報Japanese Patent Application Laid-Open No. 05-306396 特開2000−281327号公報JP 2000-281327 A

しかしながら、特許文献1に開示された方法では、不純物として含まれるメタンを酸化するために400℃以上まで触媒槽の温度を上げる必要がある。また、特許文献2に開示された方法においても、触媒槽の温度を350〜800℃と高温にする必要がある。その結果、高温に晒される触媒に熱劣化が起こるという問題があった。   However, in the method disclosed in Patent Document 1, it is necessary to raise the temperature of the catalyst tank to 400 ° C. or higher in order to oxidize methane contained as an impurity. Also in the method disclosed in Patent Document 2, the temperature of the catalyst tank needs to be as high as 350 to 800 ° C. As a result, there is a problem that the catalyst exposed to high temperature is thermally deteriorated.

本発明は、このような事情の下で考え出されたものであって、触媒の熱劣化を抑制し、触媒を効率よく利用するのに適した触媒酸化システムを提供することを主たる課題とする。   The present invention has been conceived under such circumstances, and has as its main object to provide a catalytic oxidation system suitable for suppressing thermal deterioration of the catalyst and efficiently using the catalyst. .

上記課題について本発明者らが鋭意検討した結果、触媒が充填された触媒槽を複数設け、これら触媒層を、稼働時の上限温度が相対的に低温である低温触媒槽と、上限温度が相対的に高温である高温触媒槽とに区別することで、低温触媒槽では主にメタン等の低級パラフィン以外の炭化水素系化合物の触媒酸化を進行させつつ、主にメタン等の低級パラフィンの触媒酸化反応を高温触媒槽で進行させることで、触媒の熱劣化を抑制することが可能であることを見出し、本発明を完成させるに至った。   The inventors of the present invention have intensively studied the above problems, and as a result, a plurality of catalyst vessels filled with catalyst are provided, and these catalyst layers are compared with the low temperature catalyst vessel whose upper limit temperature during operation is relatively low, and the upper limit temperature is relative In the low temperature catalyst tank, the catalytic oxidation of lower paraffins such as methane is mainly progressed while the catalytic oxidation of hydrocarbon compounds other than the lower paraffins such as methane is mainly progressed in the low temperature catalyst tank by distinguishing them from high temperature catalyst tanks that are The inventors have found that it is possible to suppress the thermal deterioration of the catalyst by advancing the reaction in a high temperature catalyst tank, and have completed the present invention.

本発明の第1の側面によれば、主成分として不燃性ガスを含み、かつ不純物として炭化水素系化合物を含む原料ガスから前記炭化水素系化合物を触媒により酸化させる触媒酸化システムであって、前記触媒が充填された複数の触媒槽を備え、前記複数の触媒槽は、槽内の上限温度が相対的に低温である低温触媒槽と、槽内の上限温度が相対的に高温である高温触媒槽と、を含む、触媒酸化システムが提供される。   According to a first aspect of the present invention, there is provided a catalytic oxidation system in which a hydrocarbon compound is oxidized by a catalyst from a raw material gas containing a noncombustible gas as a main component and a hydrocarbon compound as an impurity, A plurality of catalyst vessels filled with a catalyst, wherein the plurality of catalyst vessels are a low temperature catalyst vessel whose upper limit temperature in the vessel is relatively low, and a high temperature catalyst whose upper limit temperature in the vessel is relatively high A catalytic oxidation system is provided, comprising: a vessel.

好ましくは、前記低温触媒槽における槽内の上限温度は、400℃未満である。   Preferably, the upper temperature limit in the low temperature catalyst tank is less than 400 ° C.

好ましくは、前記低温触媒槽は複数設けられており、複数の前記低温触媒槽の各々の上流側の流路には、酸素を供給するための酸素供給部が設けられている。   Preferably, a plurality of the low temperature catalyst vessels are provided, and an oxygen supply unit for supplying oxygen is provided in a flow path on the upstream side of each of the plurality of low temperature catalyst vessels.

好ましくは、複数の前記低温触媒槽の隣接相互間の流路には、当該流路を流れるガスを冷却するための冷却器が設けられている。   Preferably, the flow path between the adjacent ones of the plurality of low temperature catalyst vessels is provided with a cooler for cooling the gas flowing through the flow path.

好ましくは、前記不燃性ガスは、二酸化炭素である。   Preferably, the noncombustible gas is carbon dioxide.

本発明の第2の側面によれば、主成分として二酸化炭素を含み、かつ不純物として炭化水素系化合物を含む原料ガスから前記炭化水素系化合物を触媒により酸化させて二酸化炭素を濃化する二酸化炭素の精製方法であって、槽内の上限温度が相対的に低温である低温触媒槽と、槽内の上限温度が相対的に高温である高温触媒槽と、を用いて前記原料ガス中の前記炭化水素系化合物を触媒酸化させる、二酸化炭素の精製方法が提供される。   According to the second aspect of the present invention, carbon dioxide is used to oxidize the hydrocarbon compound from the raw material gas containing carbon dioxide as the main component and hydrocarbon compound as the impurity by means of a catalyst to concentrate carbon dioxide. Using the low-temperature catalyst tank whose upper limit temperature in the tank is relatively low, and the high-temperature catalyst tank whose upper limit temperature in the tank is relatively high; A method of purifying carbon dioxide is provided which catalyzes the oxidation of hydrocarbonaceous compounds.

好ましくは、前記低温触媒槽における槽内の上限温度は、400℃未満である。   Preferably, the upper temperature limit in the low temperature catalyst tank is less than 400 ° C.

好ましくは、前記低温触媒槽は複数設けられており、複数の前記低温触媒槽の各々に酸素を供給しつつ前記炭化水素系化合物を触媒酸化させる。   Preferably, a plurality of the low temperature catalyst vessels are provided, and catalytic oxidation of the hydrocarbon compound is performed while supplying oxygen to each of the plurality of low temperature catalyst vessels.

本発明のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。   Other features and advantages of the present invention will become more apparent from the detailed description given below with reference to the accompanying drawings.

本発明に係る触媒酸化システムの一実施形態を示す概略構成図である。It is a schematic block diagram which shows one Embodiment of the catalyst oxidation system which concerns on this invention.

以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本発明に係る触媒酸化システムの一実施形態を示している。本実施形態の触媒酸化システムX1は、複数の触媒槽1と、ヒータ2と、冷却器3と、酸素供給部4と、これら要素を連結する流路51〜55と、を備え、不純物として炭化水素系化合物を含む原料ガスから炭化水素系化合物を触媒により酸化させるものである。   FIG. 1 illustrates one embodiment of a catalytic oxidation system according to the present invention. The catalyst oxidation system X1 of the present embodiment includes a plurality of catalyst vessels 1, a heater 2, a cooler 3, an oxygen supply unit 4, and flow paths 51 to 55 connecting these elements, and carbonized as an impurity. A hydrocarbon-based compound is oxidized by a catalyst from a raw material gas containing a hydrogen-based compound.

ここで、炭化水素系化合物とは、炭素と水素からなる「炭化水素」を含む他、炭素および水素と、酸素とからなる化合物を含むものとする。炭化水素としては、例えばメタン、エタンをはじめとするパラフィン類、エチレン、プロピレンなどのオレフィン類、またベンゼン、トルエンなどの芳香族類が挙げられる。炭化水素以外の炭化水素系化合物としては、蟻酸や酢酸などのカルボン酸類、ホルムアルデヒド、アセトアルデヒドなどのアルデヒド類が挙げられる。   Here, the hydrocarbon-based compound includes a “hydrocarbon” composed of carbon and hydrogen, and further includes a compound composed of carbon and hydrogen and oxygen. Examples of hydrocarbons include paraffins such as methane and ethane, olefins such as ethylene and propylene, and aromatics such as benzene and toluene. Examples of hydrocarbon compounds other than hydrocarbons include carboxylic acids such as formic acid and acetic acid, and aldehydes such as formaldehyde and acetaldehyde.

原料ガスは、主成分として不燃性ガスを含む。この不燃性ガスとしては、例えば、酸素、窒素、二酸化炭素、ヘリウム、アルゴンなどが挙げられる。回収して再利用する価値を考慮すると、二酸化炭素、ヘリウム、アルゴンが好ましい。炭化水素系化合物を酸化すると二酸化炭素が生成されるので、不燃性ガスとしては、二酸化炭素がより好ましい。なお、不燃性ガスが二酸化炭素以外である場合、炭化水素系化合物の酸化により生成する二酸化炭素については、アルカリ吸収、吸着、蒸留、膜分離などの適宜手段により除去すればよい。   The source gas contains a noncombustible gas as a main component. Examples of the nonflammable gas include oxygen, nitrogen, carbon dioxide, helium, argon and the like. Carbon dioxide, helium and argon are preferred in view of their recovery and recycling value. Carbon dioxide is more preferable as the noncombustible gas because carbon dioxide is generated when the hydrocarbon-based compound is oxidized. When the noncombustible gas is other than carbon dioxide, carbon dioxide generated by oxidation of a hydrocarbon compound may be removed by an appropriate means such as alkali absorption, adsorption, distillation, membrane separation and the like.

複数の触媒槽1は、各々、両端にガス通過口1a,1bを有し、ガス通過口1a,1bの間において、触媒が充填されている。各触媒槽1に充填される触媒としては、特に限定されるものではないが、例えばPd系またはPt系の触媒が用いられ、Pd−Pt合金などを用いてもよい。触媒を担持する担体は特に限定されるものではなく、球状アルミナやハニカム状セラミックなどを用いてもよい。   Each of the plurality of catalyst vessels 1 has gas passage ports 1a and 1b at both ends, and a catalyst is filled between the gas passage ports 1a and 1b. The catalyst filled in each catalyst tank 1 is not particularly limited, but, for example, a Pd-based or Pt-based catalyst is used, and a Pd-Pt alloy or the like may be used. The support for supporting the catalyst is not particularly limited, and spherical alumina, honeycomb ceramic, or the like may be used.

本実施形態において、複数の触媒槽1は、3つの低温触媒槽11,12,13と、高温触媒槽14とを含む。低温触媒槽11〜13は、槽内の上限温度が相対的に低温とされている。低温触媒槽11〜13の上限温度は、触媒の劣化を防止する観点から例えば400℃未満とされ、好ましくは350℃未満である。低温触媒槽11〜13では、主に、メタン等の低級パラフィン以外の炭化水素系化合物を触媒酸化させる。触媒酸化を適切に進行させる観点から、低温触媒槽11〜13の槽内の温度は例えば200℃以上とされる。本実施形態では、3つの低温触媒槽11〜13が流路52,53を介して直列に設けられている。   In the present embodiment, the plurality of catalyst vessels 1 include three low temperature catalyst vessels 11, 12, 13 and a high temperature catalyst vessel 14. In the low temperature catalyst tank 11 to 13, the upper limit temperature in the tank is relatively low. The upper limit temperature of the low temperature catalyst tank 11 to 13 is, for example, less than 400 ° C., preferably less than 350 ° C., from the viewpoint of preventing deterioration of the catalyst. In the low temperature catalyst tanks 11 to 13, mainly hydrocarbon compounds other than lower paraffins such as methane are catalytically oxidized. The temperature in the low-temperature catalyst tank 11 to 13 is, for example, 200 ° C. or higher from the viewpoint of appropriately advancing the catalytic oxidation. In the present embodiment, three low temperature catalyst vessels 11 to 13 are provided in series via the flow paths 52 and 53.

高温触媒槽14は、槽内の上限温度が相対的に高温とされている。高温触媒槽14の上限温度は、例えば400℃以上である。高温触媒槽14では、主に、メタン等の低級パラフィンを触媒酸化させる。触媒の熱劣化を抑制する観点から、高温触媒槽14の上限温度は、好ましくは400〜600℃の範囲とされる。本実施形態では、1つの高温触媒槽14が流路54を介して低温触媒槽13の下流側に直列に設けられている。   The high temperature catalyst tank 14 has a relatively high upper limit temperature in the tank. The upper limit temperature of the high temperature catalyst tank 14 is, for example, 400 ° C. or more. In the high temperature catalyst tank 14, mainly, low-grade paraffin such as methane is catalytically oxidized. From the viewpoint of suppressing thermal deterioration of the catalyst, the upper limit temperature of the high temperature catalyst tank 14 is preferably in the range of 400 to 600 ° C. In the present embodiment, one high temperature catalyst tank 14 is provided in series downstream of the low temperature catalyst tank 13 via the flow path 54.

各触媒槽1の形状としては、角筒型、円筒型、多管式(シェル&チューブ式)型等が用いられるが、ガスの均一拡散性や充填作業の負荷の観点からは円筒型、角型が好ましい。また、各触媒槽1について、水平式と上下式のどちらを用いても良い。   The shape of each catalyst tank 1 may be a rectangular cylinder type, a cylindrical type, a multi-tubular type (shell & tube type), etc., but from the viewpoint of uniform diffusibility of gas and the load of filling operation The mold is preferred. In addition, either horizontal or vertical type may be used for each catalyst tank 1.

本実施形態において、触媒槽1(低温触媒槽11〜13および高温触媒槽14)に充填される触媒の量は、当該触媒槽1を通流するガスの流量にも依存するが、空間速度(SV)にして、例えば100〜300,000/hであり、反応効率やコストの観点から、好ましくは5000〜100,000/hである。なお、複数の触媒槽1について充填される触媒の量(空間速度)は、それぞれ異なっていてもよい。   In the present embodiment, the amount of catalyst charged in the catalyst tank 1 (low temperature catalyst tanks 11 to 13 and high temperature catalyst tank 14) also depends on the flow rate of the gas flowing through the catalyst tank 1, but the space velocity ( For example, it is 100 to 300,000 / h, and preferably from 5000 to 100,000 / h from the viewpoint of reaction efficiency and cost. In addition, the quantity (space velocity) of the catalyst charged about several catalyst tanks 1 may each differ.

ヒータ2は、触媒槽1に導入されるガスが所望温度となるように加熱するものである。本実施形態において、ヒータ2は、1番目の低温触媒槽11の上流側につながる流路51と、高温触媒槽14の上流側につながる流路54との2箇所に設けられている。   The heater 2 heats the gas introduced into the catalyst tank 1 to a desired temperature. In the present embodiment, the heater 2 is provided at two places, the flow path 51 connected to the upstream side of the first low temperature catalyst tank 11 and the flow path 54 connected to the upstream side of the high temperature catalyst tank 14.

冷却器3は、低温触媒槽11〜13の隣接相互間の流路52,53に設けられている。冷却器3は、低温触媒槽11,12から排出されて流路52,53を流れるガスを冷却するものであり、例えば液体冷媒との熱交換により流路52,53を流れるガスの温度を降下させる。   The cooler 3 is provided in the flow paths 52 and 53 between adjacent low temperature catalyst tanks 11 to 13. The cooler 3 cools the gas which is discharged from the low temperature catalyst tanks 11 and 12 and flows through the flow paths 52 and 53. For example, the temperature of the gas flowing through the flow paths 52 and 53 is lowered by heat exchange with liquid refrigerant. Let

本実施形態において、流路52,53には、冷却器3を迂回するバイパス流路521,531が設けられている。流路52,53において冷却器3の上流近傍には、自動弁52a,53aが設けられている。また、バイパス流路521,531には、自動弁521a,531aが設けられている。これら自動弁52a,53a,521a,531aは、それぞれ、開状態と閉状態との間を切り替わることが可能なバルブである。   In the present embodiment, the flow paths 52 and 53 are provided with bypass flow paths 521 and 531 for bypassing the cooler 3. Near the upstream of the cooler 3 in the flow paths 52 and 53, automatic valves 52a and 53a are provided. Further, automatic valves 521 a and 531 a are provided in the bypass flow channels 521 and 531. These automatic valves 52a, 53a, 521a, 531a are valves which can switch between an open state and a closed state, respectively.

酸素供給部4は、触媒槽1の上流側の流路に酸素を供給し、当該触媒槽1に酸素を添加するものである。本実施形態において、酸素供給部4は、各触媒槽1(複数の低温触媒槽11〜13および高温触媒槽14の各々)の上流側の流路51〜54に分枝状に設けられている。これら酸素供給部4により、流路51〜54を流れるガスに酸素が供給される。   The oxygen supply unit 4 supplies oxygen to the flow path on the upstream side of the catalyst tank 1 and adds oxygen to the catalyst tank 1. In the present embodiment, the oxygen supply unit 4 is branched in the flow paths 51 to 54 on the upstream side of each catalyst tank 1 (each of the plurality of low temperature catalyst tanks 11 to 13 and the high temperature catalyst tank 14). . The oxygen supply unit 4 supplies oxygen to the gas flowing in the flow paths 51 to 54.

上記構成の触媒酸化システムX1において、原料ガスが流路51の上流端から供給されると、当該供給ガスは複数の触媒槽1(低温触媒槽11〜13および高温触媒槽14)を順次通過する。各触媒槽1では、不純物たる炭化水素系化合物が触媒酸化され、二酸化炭素が生成する。低温触媒槽11〜13では、主にメタン等の低級パラフィン以外の炭化水素系化合物が触媒酸化される。高温触媒槽14では、主にメタン等の低級パラフィンが触媒酸化される。高温触媒槽14を通過したガス(二酸化炭素濃化ガス)が、流路55を介して取り出される。ここで「濃化」とは、各触媒槽1において、供給されるガスのうち炭化水素系化合物が触媒酸化されて二酸化炭素が生成し、二酸化炭素濃度が高められることを言う。   In the catalyst oxidation system X1 configured as described above, when the raw material gas is supplied from the upstream end of the flow path 51, the supplied gas sequentially passes through the plurality of catalyst tanks 1 (low temperature catalyst tanks 11 to 13 and high temperature catalyst tank 14). . In each catalyst tank 1, the hydrocarbon compound as an impurity is catalytically oxidized to generate carbon dioxide. In the low temperature catalyst tanks 11 to 13, hydrocarbon compounds other than lower paraffins such as methane are catalytically oxidized. In the high temperature catalyst tank 14, mainly low-grade paraffin such as methane is catalytically oxidized. The gas (carbon dioxide-enriched gas) which has passed through the high temperature catalyst tank 14 is taken out through the flow path 55. Here, "enrichment" means that in each catalyst tank 1, hydrocarbon-based compounds among the supplied gases are catalytically oxidized to generate carbon dioxide and the carbon dioxide concentration is increased.

本実施形態において、複数の触媒槽1は、低温触媒槽11〜13と高温触媒槽14とを含む。高温触媒槽14においては、例えば槽内の上限温度が400℃以上とされており、触媒の熱劣化が生ずるが、複数の触媒槽1について、上限温度が異なる低温槽と高温槽とに区別することで、触媒の熱劣化の影響を高温触媒槽14だけに限定することができる。したがって、触媒を交換する際に交換すべき触媒の量を減らすことができるとともに触媒交換作業の手間を削減することができ、その結果、触媒酸化システムX1の稼働コストを低減することができる。   In the present embodiment, the plurality of catalyst vessels 1 include low temperature catalyst vessels 11 to 13 and a high temperature catalyst vessel 14. In the high temperature catalyst tank 14, for example, the upper limit temperature in the tank is set to 400 ° C. or higher, and thermal degradation of the catalyst occurs, but a plurality of catalyst tanks 1 are distinguished between a low temperature tank and a high temperature tank having different upper limit temperatures. Thus, the influence of the thermal deterioration of the catalyst can be limited to the high temperature catalyst tank 14 only. Therefore, the amount of catalyst to be replaced when replacing the catalyst can be reduced, and the time and effort of the catalyst replacement operation can be reduced, and as a result, the operation cost of the catalyst oxidation system X1 can be reduced.

原料ガスについて、不燃性ガス中の炭化水素系化合物(不純物)の含有量としては特に制限はない。炭化水素系化合物(不純物)の含有量が多い場合には、触媒酸化反応時の発熱量が多くなる。本実施形態においては、複数の低温触媒槽11〜13を具備し、これら低温触媒槽の各々の上流側の流路には、酸素を供給するための酸素供給部4を具備するので、酸素の供給量によって反応(反応熱)を制御することが可能である。また、これら低温触媒槽11〜13の隣接相互間の流路52,53において冷却器3によりガスを冷却することが可能である。したがって、炭化水素系化合物(不純物)の含有量が多い場合であっても、触媒槽1を順次通過するガスの過度な温度上昇を抑制することができる。   Regarding the source gas, the content of the hydrocarbon-based compound (impurity) in the noncombustible gas is not particularly limited. When the content of the hydrocarbon-based compound (impurity) is large, the calorific value at the time of the catalytic oxidation reaction increases. In the present embodiment, a plurality of low temperature catalyst vessels 11 to 13 are provided, and the flow path on the upstream side of each of the low temperature catalyst vessels is provided with the oxygen supply unit 4 for supplying oxygen. It is possible to control the reaction (heat of reaction) by the amount supplied. Further, it is possible to cool the gas by the cooler 3 in the flow paths 52, 53 between the adjacent low temperature catalyst vessels 11 to 13. Therefore, even when the content of the hydrocarbon-based compound (impurity) is large, it is possible to suppress an excessive temperature rise of the gas sequentially passing through the catalyst tank 1.

また、本実施形態において、冷却器3が設けられた流路52,53には、当該冷却器3を迂回するバイパス流路521,531が設けられている。このような構成によれば、炭化水素系化合物の含有量(触媒酸化反応時の発熱量)に応じ、低温触媒槽11,12から排出されるガスについて、冷却器3により冷却する場合と冷却器3を迂回して冷却しない場合とを適宜選択することができる。これにより、後段の低温触媒槽12,13に導入されるガスの温度を適切に管理することができる。   Further, in the present embodiment, in the flow paths 52 and 53 in which the cooler 3 is provided, bypass flow paths 521 and 531 for bypassing the cooler 3 are provided. According to such a configuration, the case where the gas discharged from the low temperature catalyst tank 11, 12 is cooled by the cooler 3 and the cooler according to the content of the hydrocarbon compound (the calorific value at the time of the catalytic oxidation reaction) The case where it bypasses 3 and does not cool can be selected suitably. Thereby, the temperature of the gas introduced into the low temperature catalyst tank 12, 13 in the latter stage can be appropriately managed.

以上、本発明の具体的な実施形態を説明したが、本発明はこれに限定されるものではなく、発明の思想から逸脱しない範囲内で種々の変更が可能である。例えば、本発明に係る触媒酸化システムを構成する触媒槽の数は、上記実施形態の態様に限定されるものではない。低温触媒槽の数について、上記実施形態の3つに限定されず、1つ、2つまたは4つ以上であってもよい。   As mentioned above, although specific embodiment of this invention was described, this invention is not limited to this, A various change is possible within the range which does not deviate from the thought of invention. For example, the number of catalyst vessels constituting the catalyst oxidation system according to the present invention is not limited to the aspect of the above embodiment. The number of low temperature catalyst vessels is not limited to three in the above embodiment, and may be one, two or four or more.

また、高温触媒槽について、複数(2つ以上)設けてもよい。複数の高温触媒槽を具備する場合、これら高温触媒槽を並列的に配置し、いずれの高温触媒槽にガスを流すか適宜選択できるように構成してもよい。複数の高温触媒槽を並列的に配置する場合において、劣化した触媒を交換する際には、触媒交換の対象ではない高温触媒槽にガスを流すことで触媒酸化システムの稼働を中断することなく触媒の交換作業を行うことが可能である。なお、原料ガスにおけるメタン等の低級パラフィンの含有量が多い場合、複数の高温触媒槽を直列に配置するとともにこれら高温触媒槽の隣接相互間を流れるガスを冷却し、過度な温度上昇を抑制するようにしてもよい。   In addition, a plurality (two or more) of high temperature catalyst tanks may be provided. When a plurality of high temperature catalyst vessels are provided, these high temperature catalyst vessels may be arranged in parallel, and it may be configured to be able to appropriately select which high temperature catalyst vessel the gas flows. When arranging a plurality of high temperature catalyst vessels in parallel, when replacing a deteriorated catalyst, the catalyst oxidation system is not interrupted by interrupting the operation of the catalytic oxidation system by flowing a gas to the high temperature catalyst vessel which is not a target of catalyst exchange. It is possible to carry out the replacement work of When the content of lower paraffins such as methane in the raw material gas is high, a plurality of high temperature catalyst vessels are arranged in series and the gas flowing between adjacent high temperature catalyst vessels is cooled to suppress an excessive temperature rise. You may do so.

次に、本発明の有用性を実施例により説明する。   Next, the utility of the present invention will be described by way of examples.

〔実施例1〕
主成分(不燃性ガス)としての二酸化炭素と、不純物(炭化水素系化合物)としてのメタン200vol.ppm、エチレン5000vol.ppm、プロピレン5000vol.ppmとからなる原料ガス500 ml/minを200 ℃ に予熱した後、アルミナ担持Pd触媒(エヌイーケムキャット製、粒状)6.1mLをステンレス製反応容器(内径20.8mm 、長さ18.0mm)にそれぞれ充填してなる第1ないし第3の触媒槽に通して反応させた。各触媒槽における空間速度(SV)は、約5,000/hであった。酸素の供給は、第1および第2の触媒槽の入口でそれぞれ9.4ml/min添加し、第3の触媒槽の入口で2.1ml/min添加した。第1の触媒槽(低温触媒槽)の反応温度は230 ℃、第2の触媒槽(低温触媒槽)の反応温度は230℃、第3の触媒槽(高温触媒槽)の反応温度は430℃であった。第3の触媒槽から排出されるガスの組成は、酸素0.38vol%、メタン5vol.ppm未満(検出下限値未満)、エチレン1vol.ppm未満(検出下限値未満)、プロピレン1vol.ppm未満(検出下限値未満)であった。本実施例の結果を表1に示した。
Example 1
Carbon dioxide as the main component (noncombustible gas) and methane 200 vol.% As impurities (hydrocarbon compounds). ppm, ethylene 5000 vol. ppm, propylene 5000 vol. After preheating to 500 ° C. the raw material gas consisting of 500 ppm of raw material gas to 200 ° C., 6.1 mL of Pd-on-Alumina-supported catalyst (manufactured by ENCHEM Cat, granular) is placed in a stainless steel reaction vessel (inner diameter 20.8 mm, length 18.0 mm) The reaction was conducted through the first to third catalyst baths respectively filled. The space velocity (SV) in each catalyst tank was about 5,000 / h. The oxygen supply was added at 9.4 ml / min at the inlet of the first and second catalyst vessels, and 2.1 ml / min at the inlet of the third catalyst tank. The reaction temperature of the first catalyst tank (low temperature catalyst tank) is 230 ° C, the reaction temperature of the second catalyst tank (low temperature catalyst tank) is 230 ° C, and the reaction temperature of the third catalyst tank (high temperature catalyst tank) is 430 ° C Met. The composition of the gas discharged from the third catalyst tank was 0.38 vol% oxygen, 5 vol. Less than ppm (less than detection lower limit), ethylene 1 vol. Less than ppm (less than detection lower limit), propylene 1 vol. It was less than ppm (less than the detection lower limit). The results of this example are shown in Table 1.

〔実施例2〕
主成分(不燃性ガス)としての二酸化炭素と、不純物(炭化水素系化合物)としてのメタン200vol.ppm、エチレン10000vol.ppm、プロピレン4000vol.ppmとからなる原料ガス300mL/minを200 ℃ に予熱した後、Pd−Pt合金触媒(日揮ユニバーサル製、ハニカム状)3.4mLをステンレス製反応容器(外径20.8mm、長さ10.0mm)にそれぞれ充填してなる第1ないし第3の触媒槽に通して反応させた。各触媒槽における空間速度(SV)は、約5,000/hであった。酸素の供給は、第1および第2の触媒槽の入口でそれぞれ7.2ml/min添加し、第3の触媒槽の入口で0.1ml/min添加した。第1の触媒槽(低温触媒槽)の反応温度は210 ℃、第2の触媒槽(低温触媒槽)の反応温度は210℃、第3の触媒槽(高温触媒槽)の反応温度は400℃であった。第3の触媒槽から排出されるガスの組成は、酸素20vol.ppm、メタン5vol.ppm未満(検出下限値未満)、エチレン1vol.ppm未満(検出下限値未満)、プロピレン1vol.ppm未満(検出下限値未満)であった。本実施例の結果を表2に示した。
Example 2
Carbon dioxide as the main component (noncombustible gas) and methane 200 vol.% As impurities (hydrocarbon compounds). ppm, ethylene 10000 vol. ppm, propylene 4000 vol. After preheating 300 mL / min of raw material gas consisting of ppm to 200 ° C, 3.4 mL of Pd-Pt alloy catalyst (manufactured by JGC Universal Corporation, honeycomb shape) is a stainless steel reaction vessel (outer diameter 20.8 mm, length 10.0 mm) The reaction is passed through first to third catalyst vessels respectively filled in The space velocity (SV) in each catalyst tank was about 5,000 / h. Oxygen was added at 7.2 ml / min each at the inlet of the first and second catalyst vessels and at 0.1 ml / min at the inlet of the third catalyst vessel. The reaction temperature of the first catalyst tank (low temperature catalyst tank) is 210 ° C, the reaction temperature of the second catalyst tank (low temperature catalyst tank) is 210 ° C, and the reaction temperature of the third catalyst tank (high temperature catalyst tank) is 400 ° C Met. The composition of the gas discharged from the third catalyst tank is oxygen 20 vol. ppm, methane 5 vol. Less than ppm (less than detection lower limit), ethylene 1 vol. Less than ppm (less than detection lower limit), propylene 1 vol. It was less than ppm (less than the detection lower limit). The results of this example are shown in Table 2.

〔比較例1〕
主成分(不燃性ガス)としての二酸化炭素と、不純物(炭化水素系化合物)としてのメタン200vol.ppm、エチレン5000vol.ppm、プロピレン5000vol.ppmとからなる原料ガス500mL/minを200 ℃ に予熱した後、アルミナ担持Pd触媒(エヌイーケムキャット製、粒状)6.1mLをステンレス製反応容器(外径20.8mm、長さ18.0mm)にそれぞれ充填してなる第1ないし第3の触媒槽に通して反応させた。各触媒槽における空間速度(SV)は、約5,000/hであった。酸素の供給は、第1および第2の触媒槽の入口でそれぞれ9.4ml/min添加し、第3の触媒槽の入口で2.1ml/min添加した。第1の触媒槽の反応温度は230 ℃、第2の触媒槽の反応温度は230℃、第3の触媒槽の反応温度は340℃であった。第3の触媒槽から排出されるガスの組成は、酸素0.39vol%、メタン60vol.ppm、エチレン1vol.ppm未満(検出下限値未満)、プロピレン1vol.ppm未満(検出下限値未満)であった。本比較例の結果を表1に示した。
Comparative Example 1
Carbon dioxide as the main component (noncombustible gas) and methane 200 vol.% As impurities (hydrocarbon compounds). ppm, ethylene 5000 vol. ppm, propylene 5000 vol. After preheating to 500 ° C. the raw material gas 500 mL / min consisting of ppm, 6.1 mL of Pd supported on alumina catalyst (manufactured by ENCHEM Cat, granular) 6.1 mL is made into a stainless steel reaction vessel (outside diameter 20.8 mm, length 18.0 mm) The reaction was conducted through the first to third catalyst baths respectively filled. The space velocity (SV) in each catalyst tank was about 5,000 / h. The oxygen supply was added at 9.4 ml / min at the inlet of the first and second catalyst vessels, and 2.1 ml / min at the inlet of the third catalyst tank. The reaction temperature of the first catalyst vessel was 230 ° C., the reaction temperature of the second catalyst vessel was 230 ° C., and the reaction temperature of the third catalyst vessel was 340 ° C. The composition of the gas discharged from the third catalyst tank was 0.39 vol% oxygen, 60 vol. ppm, ethylene 1 vol. Less than ppm (less than detection lower limit), propylene 1 vol. It was less than ppm (less than the detection lower limit). The results of this comparative example are shown in Table 1.

〔比較例2〕
主成分(不燃性ガス)としての二酸化炭素と、不純物(炭化水素系化合物)としてのメタン200vol.ppm、エチレン10000vol.ppm、プロピレン4000vol.ppmとからなる原料ガス300mL/minを200 ℃ に予熱した後、Pd−Pt合金触媒(日揮ユニバーサル製、ハニカム状)3.4mLをステンレス製反応容器(外径20.8mm、長さ10.0mm)にそれぞれ充填してなる第1ないし第3の触媒槽に通して反応させた。各触媒槽における空間速度(SV)は、約5,000/hであった。酸素の供給は、第1および第2の触媒槽の入口でそれぞれ7.2ml/min添加し、第3の触媒槽の入口で0.1ml/min添加した。第1の触媒槽の反応温度は210 ℃、第2の触媒槽の反応温度は210℃、第3の触媒槽の反応温度は350℃であった。第3の触媒槽から排出されるガスの組成は、酸素250vol.ppm、メタン110vol.ppm、エチレン1vol.ppm未満(検出下限値未満)、プロピレン1vol.ppm未満(検出下限値未満)であった。本比較例の結果を表2に示した。
Comparative Example 2
Carbon dioxide as the main component (noncombustible gas) and methane 200 vol.% As impurities (hydrocarbon compounds). ppm, ethylene 10000 vol. ppm, propylene 4000 vol. After preheating 300 mL / min of raw material gas consisting of ppm to 200 ° C, 3.4 mL of Pd-Pt alloy catalyst (manufactured by JGC Universal Corporation, honeycomb shape) is a stainless steel reaction vessel (outer diameter 20.8 mm, length 10.0 mm) The reaction is passed through first to third catalyst vessels respectively filled in The space velocity (SV) in each catalyst tank was about 5,000 / h. Oxygen was added at 7.2 ml / min each at the inlet of the first and second catalyst vessels and at 0.1 ml / min at the inlet of the third catalyst vessel. The reaction temperature of the first catalyst vessel was 210 ° C., the reaction temperature of the second catalyst vessel was 210 ° C., and the reaction temperature of the third catalyst vessel was 350 ° C. The composition of the gas discharged from the third catalyst tank is oxygen 250 vol. ppm, methane 110 vol. ppm, ethylene 1 vol. Less than ppm (less than detection lower limit), propylene 1 vol. It was less than ppm (less than the detection lower limit). The results of this comparative example are shown in Table 2.

〔比較例3〕
主成分(不燃性ガス)としての二酸化炭素と、不純物(炭化水素系化合物)としてのメタン200vol.ppm、エチレン10000vol.ppm、プロピレン4000vol.ppmとからなる原料ガス300mL/minを200 ℃ に予熱した後、Pd−Pt合金触媒(日揮ユニバーサル製、ハニカム状)3.4mLをステンレス製反応容器(外径20.8mm、長さ10.0mm)にそれぞれ充填してなる第1ないし第3の触媒槽に通して反応させた。各触媒槽における空間速度(SV)は、約5,000/hであった。酸素の供給は、第1および第2の触媒槽の入口でそれぞれ7.2ml/min添加し、第3の触媒槽の入口で0.1ml/min添加した。第1の触媒槽の反応温度は210 ℃、第2の触媒槽の反応温度は210℃、第3の触媒槽の反応温度は380℃であった。第3の触媒槽から排出されるガスの組成は、酸素120vol.ppm、メタン40vol.ppm、エチレン1vol.ppm未満(検出下限値未満)、プロピレン1vol.ppm未満(検出下限値未満)であった。本比較例の結果を表2に示した。
Comparative Example 3
Carbon dioxide as the main component (noncombustible gas) and methane 200 vol.% As impurities (hydrocarbon compounds). ppm, ethylene 10000 vol. ppm, propylene 4000 vol. After preheating 300 mL / min of raw material gas consisting of ppm to 200 ° C, 3.4 mL of Pd-Pt alloy catalyst (manufactured by JGC Universal Corporation, honeycomb shape) is a stainless steel reaction vessel (outer diameter 20.8 mm, length 10.0 mm) The reaction is passed through first to third catalyst vessels respectively filled in The space velocity (SV) in each catalyst tank was about 5,000 / h. Oxygen was added at 7.2 ml / min each at the inlet of the first and second catalyst vessels and at 0.1 ml / min at the inlet of the third catalyst vessel. The reaction temperature of the first catalyst vessel was 210 ° C., the reaction temperature of the second catalyst vessel was 210 ° C., and the reaction temperature of the third catalyst vessel was 380 ° C. The composition of the gas discharged from the third catalyst tank is oxygen 120 vol. ppm, methane 40 vol. ppm, ethylene 1 vol. Less than ppm (less than detection lower limit), propylene 1 vol. It was less than ppm (less than the detection lower limit). The results of this comparative example are shown in Table 2.

Figure 2019063778
Figure 2019063778

Figure 2019063778
Figure 2019063778

X1 触媒酸化システム
1 触媒槽
1a ガス通過口
1b ガス通過口
11 低温触媒槽
12 低温触媒槽
13 低温触媒槽
14 高温触媒槽
2 ヒータ
3 冷却器
4 酸素供給部
51 流路
52 流路
52a 自動弁
521 バイパス流路
521a 自動弁
53 流路
53a 自動弁
531 バイパス流路
531a 自動弁
54 流路
55 流路
X1 catalyst oxidation system 1 catalyst tank 1a gas passage port 1b gas passage port 11 low temperature catalyst tank 12 low temperature catalyst tank 13 low temperature catalyst tank 14 high temperature catalyst tank 2 heater 3 cooler 4 oxygen supply unit 51 flow path 52 flow path 52a automatic valve 521 Bypass flow channel 521a Automatic valve 53 flow channel 53a Automatic valve 531 Bypass flow channel 531a Automatic valve 54 flow channel 55 flow channel

Claims (8)

主成分として不燃性ガスを含み、かつ不純物として炭化水素系化合物を含む原料ガスから前記炭化水素系化合物を触媒により酸化させる触媒酸化システムであって、
前記触媒が充填された複数の触媒槽を備え、
前記複数の触媒槽は、槽内の上限温度が相対的に低温である低温触媒槽と、槽内の上限温度が相対的に高温である高温触媒槽と、を含む、触媒酸化システム。
A catalytic oxidation system in which a hydrocarbon compound is oxidized by a catalyst from a raw material gas containing a noncombustible gas as a main component and a hydrocarbon compound as an impurity,
A plurality of catalyst vessels filled with the catalyst;
The catalyst oxidation system, wherein the plurality of catalyst vessels include a low temperature catalyst vessel whose upper limit temperature in the vessel is relatively low, and a high temperature catalyst vessel whose upper limit temperature in the vessel is relatively high.
前記低温触媒槽における槽内の上限温度は、400℃未満である、請求項1に記載の触媒酸化システム。   The catalytic oxidation system according to claim 1, wherein the upper limit temperature in the low temperature catalyst tank is less than 400 ° C. 前記低温触媒槽は複数設けられており、
複数の前記低温触媒槽の各々の上流側の流路には、酸素を供給するための酸素供給部が設けられている、請求項1または2に記載の触媒酸化システム。
A plurality of the low temperature catalyst tanks are provided,
3. The catalytic oxidation system according to claim 1, wherein an upstream side flow path of each of the plurality of low temperature catalyst vessels is provided with an oxygen supply unit for supplying oxygen. 4.
複数の前記低温触媒槽の隣接相互間の流路には、当該流路を流れるガスを冷却するための冷却器が設けられている、請求項3に記載の触媒酸化システム。   The catalyst oxidation system according to claim 3, wherein a flow passage between adjacent ones of the plurality of low temperature catalyst vessels is provided with a cooler for cooling a gas flowing through the flow passage. 前記不燃性ガスは、二酸化炭素である、請求項1ないし4のいずれかに記載の触媒酸化システム。   The catalytic oxidation system according to any one of claims 1 to 4, wherein the noncombustible gas is carbon dioxide. 主成分として二酸化炭素を含み、かつ不純物として炭化水素系化合物を含む原料ガスから前記炭化水素系化合物を触媒により酸化させて二酸化炭素を濃化する二酸化炭素の精製方法であって、
槽内の上限温度が相対的に低温である低温触媒槽と、槽内の上限温度が相対的に高温である高温触媒槽と、を用いて前記原料ガス中の前記炭化水素系化合物を触媒酸化させる、二酸化炭素の精製方法。
A method of purifying carbon dioxide comprising: oxidizing a hydrocarbon compound from a raw material gas containing carbon dioxide as a main component and a hydrocarbon compound as an impurity by means of a catalyst to concentrate carbon dioxide,
The above hydrocarbon-based compounds in the raw material gas are catalytically oxidized using a low temperature catalyst tank whose upper limit temperature in the tank is relatively low and a high temperature catalyst tank whose upper limit temperature in the tank is relatively high Let the carbon dioxide purification method.
前記低温触媒槽における槽内の上限温度は、400℃未満である、請求項6に記載の二酸化炭素の精製方法。   The purification method of carbon dioxide according to claim 6, wherein the upper limit temperature in the low temperature catalyst tank is less than 400C. 前記低温触媒槽は複数設けられており、
複数の前記低温触媒槽の各々に酸素を供給しつつ前記炭化水素系化合物を触媒酸化させる、請求項6または7に記載の二酸化炭素の精製方法。
A plurality of the low temperature catalyst tanks are provided,
The method for purifying carbon dioxide according to claim 6 or 7, wherein the hydrocarbon-based compound is catalytically oxidized while supplying oxygen to each of the plurality of low-temperature catalyst vessels.
JP2017194809A 2017-10-05 2017-10-05 Catalyzed oxidation system and carbon dioxide purification method Active JP7017897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017194809A JP7017897B2 (en) 2017-10-05 2017-10-05 Catalyzed oxidation system and carbon dioxide purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017194809A JP7017897B2 (en) 2017-10-05 2017-10-05 Catalyzed oxidation system and carbon dioxide purification method

Publications (2)

Publication Number Publication Date
JP2019063778A true JP2019063778A (en) 2019-04-25
JP7017897B2 JP7017897B2 (en) 2022-02-09

Family

ID=66338714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017194809A Active JP7017897B2 (en) 2017-10-05 2017-10-05 Catalyzed oxidation system and carbon dioxide purification method

Country Status (1)

Country Link
JP (1) JP7017897B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685659B2 (en) 2021-11-24 2023-06-27 Uop Llc Processes and apparatuses for reducing carbon monoxide levels in a gaseous stream

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127613A (en) * 1984-11-22 1986-06-14 Mitsui Toatsu Chem Inc Purifying method of carbon dioxide
JPS61151013A (en) * 1984-12-21 1986-07-09 Mitsui Toatsu Chem Inc Method of purifying carbon dioxide
JPH07157305A (en) * 1993-12-03 1995-06-20 Mitsui Touatsu Liquid Kaabonitsuku Kk Refining method of crude carbon dioxide gas
JP2000281327A (en) * 1999-03-29 2000-10-10 Tokyo Gas Co Ltd Production of high purity carbon dioxide
CN101262926A (en) * 2005-08-08 2008-09-10 琳德股份有限公司 Method and apparatus for purifying a gas
JP2009513465A (en) * 2005-08-08 2009-04-02 リンデ・インコーポレーテッド Method and apparatus for purifying gas
US20100290977A1 (en) * 2009-05-15 2010-11-18 Bowers Charles W Method of removing hydrocarbon impurities from a gas
JP2011083731A (en) * 2009-10-16 2011-04-28 Tokuyama Corp Method for treating exhaust gas including halogenated aliphatic hydrocarbon
CN102410704A (en) * 2011-08-12 2012-04-11 湖南凯美特气体股份有限公司 Production method of food grade liquid carbon dioxide product for recycling resurgent gases
CN103058187A (en) * 2012-12-31 2013-04-24 惠州凯美特气体有限公司 Method for producing improved food-grade liquid carbon dioxide product
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
CN104567273A (en) * 2014-11-27 2015-04-29 惠州凯美特气体有限公司 Expansion and liquefaction method for gas carbon dioxide

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127613A (en) * 1984-11-22 1986-06-14 Mitsui Toatsu Chem Inc Purifying method of carbon dioxide
JPS61151013A (en) * 1984-12-21 1986-07-09 Mitsui Toatsu Chem Inc Method of purifying carbon dioxide
JPH07157305A (en) * 1993-12-03 1995-06-20 Mitsui Touatsu Liquid Kaabonitsuku Kk Refining method of crude carbon dioxide gas
JP2000281327A (en) * 1999-03-29 2000-10-10 Tokyo Gas Co Ltd Production of high purity carbon dioxide
CN101262926A (en) * 2005-08-08 2008-09-10 琳德股份有限公司 Method and apparatus for purifying a gas
JP2009513465A (en) * 2005-08-08 2009-04-02 リンデ・インコーポレーテッド Method and apparatus for purifying gas
US20100290977A1 (en) * 2009-05-15 2010-11-18 Bowers Charles W Method of removing hydrocarbon impurities from a gas
JP2011083731A (en) * 2009-10-16 2011-04-28 Tokuyama Corp Method for treating exhaust gas including halogenated aliphatic hydrocarbon
CN102410704A (en) * 2011-08-12 2012-04-11 湖南凯美特气体股份有限公司 Production method of food grade liquid carbon dioxide product for recycling resurgent gases
JP2013124193A (en) * 2011-12-13 2013-06-24 Sumitomo Seika Chem Co Ltd Method and apparatus for purifying helium gas
CN103058187A (en) * 2012-12-31 2013-04-24 惠州凯美特气体有限公司 Method for producing improved food-grade liquid carbon dioxide product
CN104567273A (en) * 2014-11-27 2015-04-29 惠州凯美特气体有限公司 Expansion and liquefaction method for gas carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11685659B2 (en) 2021-11-24 2023-06-27 Uop Llc Processes and apparatuses for reducing carbon monoxide levels in a gaseous stream

Also Published As

Publication number Publication date
JP7017897B2 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
BR112019022309B1 (en) CHEMICAL COMPLEX AND PROCESS FOR THE OXIDATIVE DEHYDROGENATION OF LOWER ALKANES TO A CORRESPONDING ALKENE
CN101394922B (en) Oxygen removal
KR20200101425A (en) ODH complex device with online mixer unit and feed line cleaning
JP2007099528A (en) Method for producing high purity hydrogen
JP7006886B2 (en) Hydrogen production equipment and hydrogen production method
JP2020535094A (en) Methods and equipment for the production of hydrogen
JP7017897B2 (en) Catalyzed oxidation system and carbon dioxide purification method
US8258356B2 (en) Selective CO oxidation for acetylene converter feed CO control
JP5243860B2 (en) Hydrogen production method
JP5243859B2 (en) Hydrogen production apparatus and hydrogen production method
CN106999844A (en) Oxygen is removed from gas containing hydrocarbon mixture
KR20120102047A (en) Method and device for separating gaseous mixtures by means of permeation
CN115362126B (en) Hydrogen supply system
KR101910205B1 (en) A process for removing nitrous oxide from a gas stream
JP2016040218A (en) Dehydrogenation system and operation method of dehydrogenation system
JP2009084257A (en) Method for producing aromatic compound
CN117177935A (en) Method and system for providing purified hydrogen
JP6259375B2 (en) Hydrogen and olefin purification system
US10160698B2 (en) Use of membrane for oxidative-dehydrogenation process
JP2017065937A (en) Hydrogen production apparatus and hydrogen production method
JP4328845B2 (en) Gas flow treatment method and gas purification device
JPH09323028A (en) Method for removing oxygen and carbon monoxide from gas stream and device therefor
EP4129892A1 (en) Hydrogen supply system
JP2018002486A (en) Hydrogen production system
JP6376999B2 (en) Hydrogen production apparatus and hydrogen production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220128

R150 Certificate of patent or registration of utility model

Ref document number: 7017897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150