JP2019063757A - Manufacturing method of hollow fiber membrane-like adsorbent - Google Patents

Manufacturing method of hollow fiber membrane-like adsorbent Download PDF

Info

Publication number
JP2019063757A
JP2019063757A JP2017193716A JP2017193716A JP2019063757A JP 2019063757 A JP2019063757 A JP 2019063757A JP 2017193716 A JP2017193716 A JP 2017193716A JP 2017193716 A JP2017193716 A JP 2017193716A JP 2019063757 A JP2019063757 A JP 2019063757A
Authority
JP
Japan
Prior art keywords
adsorbent
slurry
hollow fiber
fiber membrane
spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017193716A
Other languages
Japanese (ja)
Inventor
長瀬 多加子
Takako Nagase
多加子 長瀬
剛一 佐藤
Koichi Sato
剛一 佐藤
嘉道 清住
Yoshimichi Kiyozumi
嘉道 清住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017193716A priority Critical patent/JP2019063757A/en
Publication of JP2019063757A publication Critical patent/JP2019063757A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Artificial Filaments (AREA)

Abstract

To provide a method for manufacturing a hollow fiber membrane-like adsorbent mainly containing a fine powdery adsorbent, fixed at a state that the fine powdery adsorbent and reaction efficiency close to time of powder single use is maintained, and excellent in pressure resistance and flexibility.SOLUTION: A manufacturing method of a hollow fiber membrane-like adsorbent includes a spinning process for discharging a spinning slurry from a slurry discharge port by using a dry wet type spinning device and discharging a core liquid from a core liquid discharge port and injecting the same to a coagulation bath to obtain a hollow fiber membrane-like adsorbent, in which the hollow fiber membrane-like adsorbent contains a fine powdery adsorbent and an organic polymer binder, has percentage content of the fine powdery adsorbent in a range of 70 wt.% to 80 wt.%, membrane thickness in a range of 0.3 mm to 1.3 mm, and a slit structure in a diameter direction in an inner side, the spinning slurry is manufactured by dissolving the organic polymer binder in a solvent and dispersing the fine powdery adsorbent, and has viscosity of 1.0 Pa s to 6.5 Pa s, and dissolved residue amount of gas is saturated amount or more at a slurry discharge temperature.SELECTED DRAWING: Figure 1

Description

本発明は、中空糸膜状吸着材の製造方法に関する。   The present invention relates to a method for producing a hollow fiber membrane-like adsorbent.

中空糸膜は、一般的には有機高分子膜であり、その孔径サイズや用途によって精密濾過膜(MF(Microfiltration)膜)や限外ろ過膜(UF(Ultrafiltration)膜)、ナノ濾過膜(NF(Nanofiltration)膜、逆浸透膜(RO(Reverse Osmosis)膜)などの種類がある。これらの有機高分子の中空糸膜は、通常は、複数本を束ねてカートリッジモジュールにして浄水の用途に使用される。   Hollow fiber membranes are generally organic polymer membranes, and microfiltration membranes (MF (Microfiltration) membranes), ultrafiltration membranes (UF (Ultrafiltration) membranes), nanofiltration membranes (NF) depending on the pore size and use There are various types such as (Nanofiltration) membrane, reverse osmosis membrane (RO (Reverse Osmosis) membrane), etc. Hollow fiber membranes of these organic polymers are usually bundled in plural to make a cartridge module and used for clean water application Be done.

また、有機高分子フィルターは、空気清浄の用途に使用される。この有機高分子フィルターとして、特定の有害物質の除去機能を付与するために、二酸化チタンやゼオライトなどの無機系光触媒や無機系吸着剤を複合化した商品が知られている。例えば、ゼオライトを主成分とした有機高分子フィルターを空気中の脱臭剤や、排ガスフィルターに使用した商品が知られている。   Organic polymer filters are also used for air freshening applications. As this organic polymer filter, there is known a product in which an inorganic photocatalyst such as titanium dioxide or zeolite or an inorganic adsorbent is compounded in order to impart a specific harmful substance removing function. For example, products using an organic polymer filter containing zeolite as a main component in the air as a deodorizing agent or an exhaust gas filter are known.

これらの有機高分子フィルターは、例えば、ゼオライトなどをバインダーとしての有機高分子と共に練りこんだり、ゼオライトなどを有機高分子フィルターに吹き付けたりする手法で製造される。特許文献1には、脱臭性酵素を担持してなる脱臭性濾材を備えた空気清浄フィルターが開示されている。この脱臭性濾材は、脱臭性酵素と共にゼオライトなどの無機系吸着脱臭剤を、合成繊維を使用した不織布や織布などの基材に、塗工や含浸、原料への練りこみ、などの方法で担持して製造されている。   These organic polymer filters are manufactured, for example, by kneading zeolite or the like with an organic polymer as a binder, or spraying zeolite or the like onto the organic polymer filter. Patent Document 1 discloses an air purifying filter provided with a deodorizing filter medium carrying a deodorizing enzyme. This deodorizing filter medium is a method such as coating, impregnating, kneading into raw materials, or the like, an inorganic adsorptive deodorizing agent such as zeolite together with a deodorizing enzyme into a base material such as a nonwoven fabric or woven fabric using synthetic fibers. It is manufactured to carry.

他の担持方法としては、有機高分子の不織布等にゼオライトの原料を含浸させ、ゼオライトを結晶化させてゼオライトを固定する技術がある。特許文献2には、無機多孔結晶−親水性高分子複合体から造られる繊維を有する織物が開示されている。この無機多孔結晶−親水性高分子複合体(ゼオライト担持パルプ)は、パルプをメタケイ酸ナトリウム・9水和物の水溶液に含浸させ後、アルミン酸ナトリウムおよび水酸化ナトリウムの混合水溶液を加え、90℃で浸漬させる方法で製造されている。   Another supporting method is a technique of impregnating a non-woven fabric of an organic polymer or the like with a raw material of zeolite to crystallize the zeolite to fix the zeolite. Patent Document 2 discloses a woven fabric having fibers made of an inorganic porous crystal-hydrophilic polymer composite. The inorganic porous crystal-hydrophilic polymer composite (zeolite-supporting pulp) is prepared by impregnating the pulp with an aqueous solution of sodium metasilicate / 9-hydrate, adding a mixed aqueous solution of sodium aluminate and sodium hydroxide, 90 ° C. It is manufactured by the method of immersing with.

特許文献3には、金属元素のイオンを含有してなる金属イオン含有セルロース繊維を含む衛生薄葉紙が開示されているとともに、前述の特許文献2の技術に関し、ゼオライトがセルロース繊維内に物理的に担持されているため、ゼオライトが脱落し易いといった問題や、ゼオライト等をセルロース繊維に担持させる際の反応により繊維が変形、損傷して短くなるといった問題があることが指摘されている。   Patent Document 3 discloses a hygienic tissue paper containing metal ion-containing cellulose fibers containing ions of metal elements, and relates to the technology of Patent Document 2 described above, wherein the zeolite is physically supported in the cellulose fibers It has been pointed out that, because of this, there is a problem that the zeolite is easily detached, and there is a problem that the fiber is deformed, damaged and shortened due to the reaction when supporting the zeolite or the like on the cellulose fiber.

また、本発明者らは、特許文献4において、天然ゼオライト中空糸多孔体を開示している。この天然ゼオライト中空糸多孔体は、天然ゼオライト粉末と、3〜50重量%の有機高分子によって構成されており、有機高分子をバインダーとし、液相分離の手法で湿式紡糸したものである。この天然ゼオライト中空糸多孔体は、細孔径が0.01〜100ミクロンの範囲に複数の径の細孔が分布する多元多孔体であり、吸着剤の粒界を有機高分子が保持することによって、浸水可能な耐水性を有し、かつ元の天然ゼオライトの性質が維持されている。   Moreover, the present inventors disclose a natural zeolite hollow fiber porous body in Patent Document 4. The natural zeolite hollow fiber porous body is composed of natural zeolite powder and 3 to 50% by weight of an organic polymer, and is obtained by wet spinning using an organic polymer as a binder and liquid phase separation. This natural zeolite hollow fiber porous body is a multi-purpose porous body in which pores with a plurality of diameters are distributed in the range of 0.01 to 100 microns in pore diameter, and the organic polymer holds the grain boundary of the adsorbent. It has water resistance that can be flooded, and the properties of the original natural zeolite are maintained.

特開2004−041276号公報JP, 2004-041276, A 特許第4149066号公報Patent No. 4149066 国際公開第2016/031749号International Publication No. 2016/031749 特開2012−72534号公報JP 2012-72534 A

特許文献1に記載の技術では、基材に大量の脱臭性酵素や無機系吸着脱臭剤を強固に固定することは困難である。   In the technique described in Patent Document 1, it is difficult to firmly fix a large amount of deodorizing enzymes and inorganic adsorptive deodorizing agents on a substrate.

また、特許文献2に記載の技術は、特許文献3が示す問題点に加え、ゼオライトの種類によっては適用が困難という問題点がある。例えば、MFI型ゼオライトは、高アルカリ、高温条件で長時間合成しなければならないので、特許文献2に記載の技術に適用すると、担体となる有機高分子繊維の強度が低下したり、分解したりすると考えられる。   Moreover, in addition to the problem which patent document 3 shows, the technique of patent document 2 has the problem that application is difficult depending on the kind of zeolite. For example, since MFI-type zeolite must be synthesized for a long time under high alkali conditions under high alkali conditions, when applied to the technology described in Patent Document 2, the strength of the organic polymer fiber as a carrier may be reduced or decomposed. It is thought that.

また、特許文献1や特許文献2に記載の技術は、空気清浄用途などの気相系での使用が想定されている。これらに用いられているゼオライトなどの無機系吸着剤の多くは、ナノないしミクロンサイズ以下の微粒子であり、かつ親水性が高いものである。その結果、無機系吸着剤を気相系ではなく液相系で使用すると、結晶粒子サイズで溶液に分散してしまい、濾過フィルターを用いても完全に分離するのは困難である。   In addition, the techniques described in Patent Document 1 and Patent Document 2 are assumed to be used in a gas phase system such as an air cleaning application. Most of the inorganic adsorbents such as zeolites used for these are fine particles of nano to micron size or less, and are highly hydrophilic. As a result, when the inorganic adsorbent is used not in a gas phase but in a liquid phase, it disperses in solution with crystal particle size, and it is difficult to completely separate it even using a filter.

そのため、微粒子状の無機系吸着剤を液相系で使用する場合には、例えば、焼結性のある粘土鉱物や酸化チタンなどと共に固め、ペレットなどの焼結体として利用されることがある。しかし、無機系吸着剤をペレット型焼結体にすると、吸着剤としての性能が元の吸着剤より低下してしまうことが多い。また、ペレット型焼結体の反応性を上げるために比表面積を大きくすると、耐圧性や耐水性が低くなり、崩れ易くなることが多い。さらに、ペレット型焼結体の物理的強度を上げるために緻密に固めると、外表面のみしか反応に利用できなくなり、反応性が下がることがある。このように、ペレット型焼結体は、反応性と、耐圧性や耐水性、物理的強度とを両立させることは難しい。   Therefore, when using a particulate inorganic adsorbent in a liquid phase system, for example, it may be solidified together with a sinterable clay mineral, titanium oxide, etc. and used as a sintered body such as pellets. However, when the inorganic adsorbent is a pellet-type sintered body, the performance as the adsorbent is often lower than that of the original adsorbent. In addition, when the specific surface area is increased to increase the reactivity of the pellet-type sintered body, the pressure resistance and the water resistance become low, and in many cases, they are easily broken. Furthermore, if the pellet-type sintered body is compacted densely to increase the physical strength, only the outer surface can be used for the reaction, and the reactivity may be lowered. Thus, it is difficult for the pellet-type sintered body to have both reactivity, pressure resistance, water resistance, and physical strength.

特許文献4に記載の天然ゼオライト中空糸多孔体は、前述の微粉末状吸着剤のペレット型焼結体の問題点を解決しているが、更に、濾過処理量を上げることが求められるようになってきている。   Although the natural zeolite hollow fiber porous body described in Patent Document 4 solves the problems of the pellet-type sintered body of the fine powdery adsorbent as described above, it is further required to increase the filtration processing amount. It has become to.

特許文献4に記載されているような天然ゼオライト中空糸多孔体の濾過処理量を上げる方法としては、微粉末状吸着剤の含有率を上げる方法が考えられる。また、中空糸多孔体の空隙率を高くしたり、中空糸多孔体の膜厚を薄くしたり、中空糸多孔体の耐圧性持たせて液圧を上げたりして、濾液の成形体内部への拡散効果を上げる方法が考えられる。また、通常の有機高分子膜の場合に濾過処理量を上げる方法としては、外径が細く膜厚が薄い多数の中空糸を束ねてモジュール化し、接液面積を増す方法が考えられる。   As a method of raising the amount of filtration processing of the natural zeolite hollow fiber porous body which is described in patent document 4, the method of raising the content rate of fine powdery adsorbent can be considered. In addition, the porosity of the hollow fiber porous body can be increased, the film thickness of the hollow fiber porous body can be reduced, or the pressure resistance of the hollow fiber porous body can be increased to increase the fluid pressure, and the filtrate can be formed inside There is a way to increase the diffusion effect of Further, as a method of increasing the amount of filtration processing in the case of a normal organic polymer membrane, a method of bundling a large number of hollow fibers having a small outer diameter and a thin film thickness to form a module and increasing the wetted area can be considered.

微粉末状吸着剤の含有率を上げる方法に関しては、微粉末状吸着剤の含有率が50重量%程度まで高くなると、有機高分子同士の結合が微粉末状吸着剤の分散によって弱められ、通常の有機高分子のみからなる膜のような強度は得難く、充分な耐圧性が得られないという問題がある。また、通常の有機高分子膜の場合と同様に、モジュール化して接液面積を増やすために、中空糸の外径を細く膜厚を薄くすると充分な耐圧性が得られないという問題がある。   Regarding the method of increasing the content of the fine powder adsorbent, when the content of the fine powder adsorbent is as high as about 50% by weight, the bonds between the organic polymers are weakened by the dispersion of the fine powder adsorbent, usually There is a problem that it is difficult to obtain strength as in the case of a film made of only the organic polymer of the above, and sufficient pressure resistance can not be obtained. Further, as in the case of a normal organic polymer film, there is a problem that sufficient pressure resistance can not be obtained if the outer diameter of the hollow fiber is thin and the film thickness is thin in order to modularize and increase the liquid contact area.

更に、微粉末状吸着剤の含有率が50重量%程度まで高い場合には、外径を細くしたり膜厚を薄くすると、供給液が高粘度のときに、内圧供給では中空糸が破損し、外圧供給では中空糸が潰れて濾過効率が低下するという問題がある。   Furthermore, when the content of the fine powdery adsorbent is as high as about 50% by weight, if the outer diameter is made smaller or the film thickness is made thinner, the hollow fiber is broken by the internal pressure supply when the supply liquid has a high viscosity. External pressure supply has a problem that the hollow fiber is crushed and the filtration efficiency is reduced.

このように、微粉末状吸着剤による除去・抽出効果を高めるために、中空糸膜中の微粉末状吸着剤の含有率を増やすと、バインダーとして機能する有機高分子の含有率が減るため、充分な耐圧性が得られず、加圧条件下での使用が困難になるという問題があった。   As described above, when the content of the fine powder adsorbent in the hollow fiber membrane is increased to enhance the removal / extraction effect by the fine powder adsorbent, the content of the organic polymer functioning as a binder decreases, There is a problem that sufficient pressure resistance can not be obtained, and the use under pressured conditions becomes difficult.

したがって、本発明の課題は、主成分が微粉末状吸着剤であり、その微粉末状吸着剤を安定に、粉末単独使用時に近い反応効率を維持した状態で固定化され、かつ、耐圧性と柔軟性に優れた、中空糸膜状吸着材を製造する方法を提供することである。   Therefore, the problem of the present invention is that the main component is a fine powdery adsorbent, and the fine powdery adsorbent is stably immobilized in a state in which the reaction efficiency is maintained close to that at the time of using the powder alone, It is an object of the present invention to provide a method for producing a hollow fiber membrane-like adsorbent excellent in flexibility.

本発明者らは、前記課題を達成すべく鋭意検討を行った。そして、中空糸膜状吸着材について、吸着剤の含有率を減らすことなく、耐圧性と濾過処理量を向上させるために、中空糸膜の膜厚を1mm前後まで増加させ、更に内側にスリット構造を意図的に多く形成させた中空糸膜状吸着材を作成した。そして、そのような構造は、濾過処理量を維持し、分離効率を上げつつも、浸液による抵抗を軽減できるということを見出した。   The present inventors diligently studied to achieve the above object. And in order to improve pressure resistance and the amount of filtration processing without reducing the content rate of the adsorbent for the hollow fiber membrane adsorbent, the film thickness of the hollow fiber membrane is increased to about 1 mm, and the slit structure is further inside. A hollow fiber membrane-like adsorbent was formed by intentionally forming a large amount of. And, it has been found that such a structure can reduce the resistance due to the immersion liquid while maintaining the filtration processing amount and increasing the separation efficiency.

また、そのような中空糸膜状吸着材を製造する方法を検討し、中空糸膜成形時に欠陥形成抑制のために一般的に行う紡糸用スラリーの脱気が、スリット構造形成を妨げるだけではなく、破断伸度の低下をもたらすことを見出した。そして、それらを防ぐためには、気体溶存量を高く保った紡糸用スラリーを調製することが重要であることを見出した。   In addition, considering the method of manufacturing such hollow fiber membrane adsorbing material, degassing of the slurry for spinning generally performed to suppress defect formation at the time of hollow fiber membrane formation not only hinders formation of the slit structure. , It was found to bring about a decrease in elongation at break. And in order to prevent them, it discovered that it was important to prepare the slurry for spinning which kept the amount of gas dissolved high.

更に、このような紡糸用スラリーを用いて紡糸した、内側にスリット構造を多く有する中空糸膜状吸着材は、膜モジュールへの成形や繰り返し使用によるダメージを軽減する柔軟性を有していることを見出した。   Furthermore, the hollow fiber membrane-like adsorbent having a large number of slit structures on the inside, which is spun using such a slurry for spinning, has flexibility to reduce damage to the membrane module by molding and repeated use. Found out.

また、乾湿式紡糸法での紡糸条件に於いて、中空糸内側のスリット構造は芯液と紡糸用スラリーとの二液界面で形成される。そのため、特許文献4の技術では、スリット構造が創出されるのは、紡糸用スラリー中の有機高分子バインダーの混合量が成形体の約33%以上である場合に限定されていた。しかし、紡糸用スラリーの調製条件や、粘度をコントロールすると、微粉末状吸着剤の含有率を上げ、有機高分子バインダーの含有率が成形体の20%程度まで低減しても、中空糸内側にスリット構造が創出されることを見出した。   In addition, under the spinning conditions in the dry-wet spinning method, the slit structure inside the hollow fiber is formed at the two-liquid interface between the core liquid and the spinning slurry. Therefore, in the technique of Patent Document 4, the slit structure is created only when the mixing amount of the organic polymer binder in the spinning slurry is about 33% or more of that of the molded body. However, when the preparation conditions of the slurry for spinning and the viscosity are controlled, the content of the fine powdery adsorbent is increased, and the content of the organic polymer binder is reduced to about 20% of the molded body, It was found that a slit structure was created.

本発明者らは、これらの知見に基づき本発明を完成するに至った。   The present inventors have completed the present invention based on these findings.

すなわち本発明は、以下の態様を含む。   That is, the present invention includes the following aspects.

中空糸膜状吸着材の製造方法であって、
前記中空糸膜状吸着材は、微粉末状吸着剤と有機高分子バインダーとを含み、
前記微粉末状吸着剤の含有率が70重量%〜80重量%の範囲にあり、
前記有機高分子バインダーの含有率が20重量%〜30重量%の範囲にあり、
膜厚が0.3mm〜1.3mmの範囲にあり、
内側に径方向のスリット構造を有し、
芯液吐出口とその外周に位置するスラリー吐出口とを有する2重口ノズルを備えた乾湿式紡糸装置を用い、前記スラリー吐出口から、紡糸用スラリーを吐出すると共に、前記芯液吐出口から芯液を吐出して、凝固浴液に空走距離を設けて射出し、中空糸膜状吸着材を得る紡糸工程、を含み、
前記紡糸用スラリーは、溶媒に前記有機高分子バインダーが溶解し、前記微粉末状吸着剤が分散し、粘度が1.0Pa.s以上6.5Pa.s以下で、かつ気体の溶存量がスラリー吐出温度における飽和量以上である、中空糸膜状吸着材の製造方法。
A method for producing a hollow fiber membrane adsorbent, which comprises
The hollow fiber membrane adsorbent comprises a fine powder adsorbent and an organic polymer binder,
The content of the fine powdery adsorbent is in the range of 70% by weight to 80% by weight,
The content of the organic polymer binder is in the range of 20% by weight to 30% by weight,
The film thickness is in the range of 0.3 mm to 1.3 mm,
Has a radial slit structure inside,
The spinning slurry is discharged from the slurry discharge port using a dry-wet spinning apparatus provided with a double-opening nozzle having a core liquid discharge port and a slurry discharge port located on the outer periphery thereof, and from the core liquid discharge port The core solution is discharged, and the coagulation bath solution is provided with a free running distance and injected to obtain a hollow fiber membrane-like adsorbent;
In the slurry for spinning, the organic polymer binder is dissolved in a solvent, the finely powdered adsorbent is dispersed, and the viscosity is 1.0 Pa.s. s or more 6.5 Pa. The manufacturing method of the hollow fiber membrane-like adsorbent whose s or less and the dissolved amount of gas are more than the saturation amount in slurry discharge temperature.

前記紡糸用スラリーの吐出時の気体溶存量は、スラリー吐出温度における飽和量より多いと好ましい。   It is preferable that the amount of dissolved gas at the time of discharge of the slurry for spinning is larger than the amount of saturation at the slurry discharge temperature.

前記紡糸用スラリーは、
前記有機高分子バインダーと前記溶媒とを含み、温度が前記スラリー吐出温度より低温で、前記気体が溶存している混合液を、前記スラリー吐出温度まで攪拌しながら昇温して、前記有機高分子バインダーを溶媒に溶解し、気体飽和量に対する気体溶存量の割合を高くしたバインダー溶液を得るバインダー溶液調製工程と、
前記バインダー溶液を攪拌しながら、微粉末状吸着剤を、液面の発泡を抑えるように複数回に分けて添加する、スラリー調製工程と、によって得る、と好ましい。
The spinning slurry is
The temperature of the mixed solution containing the organic polymer binder and the solvent, the temperature is lower than the slurry discharge temperature, and the gas is dissolved, and the temperature is raised while stirring to the slurry discharge temperature. A binder solution preparing step of dissolving a binder in a solvent and obtaining a binder solution in which the ratio of the amount of dissolved gas to the amount of gas saturation is increased;
It is preferable that the fine powdery adsorbent be obtained by a slurry preparation step in which the fine powdery adsorbent is added in plural times so as to suppress the foaming of the liquid surface while stirring the binder solution.

前記バインダー溶液調製工程の前に、前記溶媒に気体を溶解させる気体溶解工程を更に含む、と好ましい。   It is preferable to further include a gas dissolving step of dissolving a gas in the solvent before the binder solution preparing step.

前記紡糸工程において、前記紡糸用スラリーと前記芯液の吐出温度が、前記紡糸用スラリーが前記芯液に接触して起きる相分離に際して、溶存空気をスラリーから溶脱させて芯液の拡散を容易にし、中空糸膜状吸着材の内側にマクロなスリット状構造を形成させる温度である、と好ましい。   In the spinning step, the temperature at which the spinning slurry and the core liquid are discharged causes dissolution of the dissolved air from the slurry to facilitate diffusion of the core liquid during phase separation which occurs when the spinning slurry contacts the core liquid. It is preferable that the temperature is such that a macro slit-like structure is formed inside the hollow fiber membrane adsorbent.

前記有機高分子バインダーは、ポリエチレンポリビニルアルコール共重合樹脂又はポリエーテルサルホンであり、前記微粉末状吸着剤は、ゼオライト微粉末である、と好ましい。   The organic polymer binder is preferably a polyethylene polyvinyl alcohol copolymer resin or polyether sulfone, and the fine powder adsorbent is preferably a fine zeolite powder.

前記スラリーの吐出温度は、20℃〜80℃の範囲であり、
前記芯液は、吐出温度が20℃〜40℃の範囲である、水又は水溶液であり、
前記凝固浴液は、温度が20℃〜50℃の範囲である、水又は水溶液である、と好ましい。
The discharge temperature of the slurry is in the range of 20 ° C. to 80 ° C.,
The core liquid is water or an aqueous solution having a discharge temperature in the range of 20 ° C. to 40 ° C.,
The coagulation bath liquid is preferably water or an aqueous solution having a temperature in the range of 20 ° C to 50 ° C.

前記中空糸膜状吸着材の破断伸度は、10%以上である、と好ましい。   The breaking elongation of the hollow fiber membrane adsorbent is preferably 10% or more.

本発明によれば、主成分が微粉末状吸着剤であり、その微粉末状吸着剤を安定に、粉末単独使用時に近い反応効率を維持した状態で固定化され、かつ、耐圧性と柔軟性に優れた、中空糸膜状吸着材を製造する方法が提供される。   According to the present invention, the main component is a fine powdery adsorbent, and the fine powdery adsorbent is stably immobilized in a state in which the reaction efficiency is maintained close to that at the time of using the powder alone, and pressure resistance and flexibility A method of producing a hollow fiber membrane-like adsorbent excellent in

実施例1の中空糸膜状吸着材の断面SEM像Cross-sectional SEM image of the hollow fiber membrane-like adsorbent of Example 1 図1の高倍率SEM像High-magnification SEM image of Figure 1 実施例1の中空糸膜状吸着材を束ねた膜モジュールの写真Photograph of a membrane module obtained by bundling the hollow fiber membrane adsorbent of Example 1 比較例2の中空糸膜状吸着材の断面SEM像Cross-sectional SEM image of the hollow fiber membrane-like adsorbent of Comparative Example 2

次に、本発明の好適な実施の形態を説明する。なお、本発明において、数値範囲の記載は、両端値のみならず、その中に含まれる全ての任意の中間値を含むものである。   Next, a preferred embodiment of the present invention will be described. In the present invention, the description of the numerical range includes not only both end values but all arbitrary intermediate values included therein.

本発明は、中空糸膜状吸着材の製造方法である。本発明に係る中空糸膜状吸着材は、微粉末状吸着剤と有機高分子バインダーとを含み、微粉末状吸着剤の含有率が70重量%〜80重量%の範囲にあり、有機高分子バインダーの含有率が20重量%〜30重量%の範囲にある。また、本発明に係る中空糸膜状吸着材は、膜厚は、0.3mm〜1.3mmの範囲にあり、内側に径方向のスリット構造を有する。
また、本発明の製造方法は、芯液吐出口とその外周に位置するスラリー吐出口とを有する2重口ノズルを備えた乾湿式紡糸装置を用い、スラリー吐出口から、紡糸用スラリーを吐出すると共に、芯液吐出口から芯液を吐出して、凝固浴液に空走距離を設けて射出し、中空糸膜状吸着材を得る紡糸工程を含む。
ここで、紡糸用スラリーは、溶媒に有機高分子バインダーが溶解し、微粉末状吸着剤が分散し、粘度が1.0Pa.s以上6.5Pa.s以下で、かつ気体の溶存量がスラリー吐出温度における飽和量以上である。
The present invention is a method for producing a hollow fiber membrane-like adsorbent. The hollow fiber membrane-like adsorbent according to the present invention contains a fine powder adsorbent and an organic polymer binder, and the content of the fine powder adsorbent is in the range of 70% by weight to 80% by weight, and the organic polymer The binder content is in the range of 20% by weight to 30% by weight. The hollow fiber membrane-like adsorbent according to the present invention has a film thickness in the range of 0.3 mm to 1.3 mm, and has a slit structure in the radial direction on the inner side.
In addition, the manufacturing method of the present invention discharges the spinning slurry from the slurry discharge port using a dry-wet spinning apparatus provided with a double port nozzle having a core liquid discharge port and a slurry discharge port positioned on the outer periphery thereof. At the same time, the core liquid is discharged from the core liquid discharge port, and the coagulation bath liquid is provided with a free running distance and injected, and a spinning step for obtaining a hollow fiber membrane adsorbent is included.
Here, in the slurry for spinning, the organic polymer binder is dissolved in a solvent, the finely powdered adsorbent is dispersed, and the viscosity is 1.0 Pa.s. s or more 6.5 Pa. The amount of dissolved gas is equal to or more than the amount of saturation at the slurry discharge temperature.

本発明の製造方法により得られる中空糸膜状吸着材は、微粉末状吸着剤と有機高分子バインダーとを含み、中空糸膜の形状をした吸着材である。この中空糸膜状吸着材は、微粉末状吸着剤を主成分とし、一般的な浄水用の中空糸膜(膜厚50μm〜300μm未満)に比べて肉厚であり、また、断面構造が内壁側に径方向のスリット構造を有する多元多孔体である。   The hollow fiber membrane-like adsorbent obtained by the production method of the present invention is an adsorbent in the form of a hollow fiber membrane, which contains a fine powder adsorbent and an organic polymer binder. This hollow fiber membrane-like adsorbent is mainly composed of a fine powdery adsorbent, and is thicker than a general hollow fiber membrane for water purification (film thickness 50 μm to less than 300 μm), and its cross-sectional structure is an inner wall It is a multi-purpose porous body having a radial slit structure on the side.

(微粉末状吸着剤)
本発明に用いる微粉末状吸着剤は、物質を吸着できる固体の粉末粒子であれば特に限定されないが、例えば、酸性白土や、天然又は合成ゼオライトなどの粒子が挙げられる。中でも、天然又は合成ゼオライトが好ましく、合成ゼオライトがより好ましい。
(Fine powdery adsorbent)
The fine powdery adsorbent used in the present invention is not particularly limited as long as it is a solid powder particle capable of adsorbing a substance, and examples thereof include particles such as acid clay and natural or synthetic zeolite. Among them, natural or synthetic zeolite is preferable, and synthetic zeolite is more preferable.

微粉末状吸着剤の粒径は特に限定されないが、0.5mm以下であると好ましく、サブミクロンサイズ〜ミクロンサイズであるとより好ましく、0.1μm〜5μmであると更に好ましい。微粉末状吸着剤の粒径は、例えば、レーザー回折散乱法、動的光散乱法、コールター法、遠心沈降法などの粒径分布測定装置による分析を用いたり、走査型電子顕微鏡(SEM)などの顕微鏡写真から任意の粒子を10個選んで、その表面積平均直径として測定することができる。測定法としては、SEM写真による測定が好ましい。ここで粒径は、スラリー調製に用いる微粉末状吸着剤の凝集粒子の平均粒子径であり、凝集粒子は、この範囲より小さい結晶粒子径の粒子が凝集塊を形成して分離していないものを含む。   The particle size of the finely powdered adsorbent is not particularly limited, but is preferably 0.5 mm or less, more preferably submicron size to micron size, and still more preferably 0.1 μm to 5 μm. The particle size of the fine powdery adsorbent is, for example, analysis using a particle size distribution measuring apparatus such as laser diffraction scattering method, dynamic light scattering method, Coulter method, centrifugal sedimentation method, scanning electron microscope (SEM), etc. Ten arbitrary particles can be selected from the photomicrograph of and measured as their surface area average diameter. As a measuring method, the measurement by a SEM photograph is preferable. Here, the particle size is the average particle size of the agglomerated particles of the fine powdery adsorbent used in the preparation of the slurry, and the agglomerated particles are not separated due to the formation of agglomerates of particles having a grain size smaller than this range. including.

微粉末状吸着剤は、単独であっても複数種であってもよいが、複数種による混合体であると、一つの中空糸膜状吸着材で同時に複数種の物質を選択的に吸着又は除去できるなど、中空糸膜状吸着材を多機能化できる。   The fine powdery adsorbent may be used singly or in combination of two or more kinds, but when it is a mixture of two or more kinds, one hollow fiber membrane adsorbent selectively adsorbs a plurality of kinds of substances simultaneously or The hollow fiber membrane-like adsorbent can be made multifunctional, such as being removable.

本発明に係る中空糸膜状吸着材の微粉末状吸着剤の含有率は、70重量%〜80重量%の範囲にある。本発明の中空糸膜状吸着材は、従来の中空糸膜状吸着材に較べて、微粉末状吸着剤の含有率が高く、中空糸膜状吸着材の吸着性能が特に高い。   The content of the finely powdered adsorbent of the hollow fiber membrane-like adsorbent according to the present invention is in the range of 70% by weight to 80% by weight. The hollow fiber membrane adsorbent of the present invention is higher in content of the fine powder adsorbent than the conventional hollow fiber membrane adsorbent, and the hollow fiber membrane adsorbent has particularly high adsorption performance.

(有機高分子バインダー)
本発明に用いる有機高分子バインダーは、バインダー(結着剤)としての機能を有し、前記の微粉末状吸着剤の微粒子を接着して成形できるものであれば特に限定されないが、後述の液相分離の手法で微粉末状吸着剤を成形できるものが好ましい。このような有機高分子バインダーとしては、ポリサルホン、ポリエーテルサルホン、ポリエーテルイミド、ポリアミドイミド、ポリエチレンポリビニルアルコール共重合樹脂などが挙げられる。
(Organic polymer binder)
The organic polymer binder used in the present invention is not particularly limited as long as it has a function as a binder (binding agent) and can be formed by bonding fine particles of the fine powder adsorbent as described above, but the liquid described later It is preferable that the fine powdery adsorbent can be formed by the phase separation method. As such an organic polymer binder, polysulfone, polyether sulfone, polyether imide, polyamide imide, polyethylene polyvinyl alcohol copolymer resin etc. are mentioned.

また、有機高分子バインダーは、ジメチルスルホキシドに可溶な有機高分子であると好ましく、このような有機高分子バインダーとしては、ポリエーテルサルホンやポリエチレンポリビニルアルコール共重合樹脂が挙げられる。中でも、ポリエチレンポリビニルアルコール共重合樹脂のうち、エチレンのモノマー単位のモル比率が44%以上であるものが好ましい。なお、ポリエチレン−ポリビニルアルコール共重合樹脂を用いた中空糸膜状吸着材は、150℃以上に加熱すると、樹脂が硬化して柔軟性や反応性が低下するので、室温での保管が望ましい。   The organic polymer binder is preferably an organic polymer soluble in dimethyl sulfoxide, and examples of such an organic polymer binder include polyether sulfone and polyethylene polyvinyl alcohol copolymer resin. Among the polyethylene-polyvinyl alcohol copolymer resins, those having a molar ratio of ethylene monomer units of 44% or more are preferable. The hollow fiber membrane-like adsorbent made of polyethylene-polyvinyl alcohol copolymer resin is preferably stored at room temperature because when heated to 150 ° C. or higher, the resin hardens and the flexibility and reactivity decrease.

本発明に係る中空糸膜状吸着材の有機高分子バインダーの含有率は、20重量%〜30重量%の範囲にある。有機高分子バインダーの含有率がこの範囲にあると、中空糸膜状吸着材の機械的な安定性、連用可能性の点で特に優れる。   The content rate of the organic polymer binder of the hollow fiber membrane-like adsorbent according to the present invention is in the range of 20% by weight to 30% by weight. When the content of the organic polymer binder is in this range, the hollow fiber membrane adsorbent is particularly excellent in mechanical stability and possibility of continuous use.

(中空糸膜状吸着材)
以下、本発明に係る中空糸膜状吸着材の構造について図を用いて説明する。図1は、本発明に係る中空糸膜状吸着材の一態様の断面SEM像であり、図2は、その高倍率の断面SEM像である。
(Hollow fiber membrane adsorbent)
Hereinafter, the structure of the hollow fiber membrane-like adsorbent according to the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional SEM image of one embodiment of a hollow fiber membrane-like adsorbent according to the present invention, and FIG. 2 is a high-magnification cross-sectional SEM image of the same.

本発明に係る中空糸膜状吸着材は、中空糸膜の形状をしている。中空糸膜の厚み(膜厚)は、0.3mm〜1.3mmの範囲にある。図1では、膜厚が約0.9mmの中空糸膜状吸着材が示されている。一般的に市販されている浄水用の中空糸膜の膜厚は0.05mm以上0.3mm未満であり、これに比べて肉厚である。本発明に係る中空糸膜状吸着材の厚み(膜厚)は、0.3mm〜1.3mmであると好ましく、0.5mm〜0.9mmであるとより好ましい。膜厚がこの範囲にあると膜を透過する溶液中の被吸着物質と、微粉末状吸着剤との接触率を上げ、吸着効果を高めることができる。中空糸膜状吸着材の外径は特に限定されないが、1.5mm〜4mmであると好ましく、2mm〜3mmであるとより好ましい。図1では、外径が約3mmの中空糸膜状吸着材が示されている。   The hollow fiber membrane-like adsorbent according to the present invention is in the form of a hollow fiber membrane. The thickness (film thickness) of the hollow fiber membrane is in the range of 0.3 mm to 1.3 mm. In FIG. 1, a hollow fiber membrane-like adsorbent having a thickness of about 0.9 mm is shown. The film thickness of the hollow fiber membrane for water purification generally marketed is 0.05 mm or more and less than 0.3 mm, and is thicker than this. The thickness (film thickness) of the hollow fiber membrane-like adsorbent according to the present invention is preferably 0.3 mm to 1.3 mm, and more preferably 0.5 mm to 0.9 mm. When the film thickness is in this range, the contact ratio between the substance to be adsorbed in the solution which permeates the membrane and the fine powdery adsorbent can be increased to enhance the adsorption effect. The outer diameter of the hollow fiber membrane-like adsorbent is not particularly limited, but is preferably 1.5 mm to 4 mm, and more preferably 2 mm to 3 mm. In FIG. 1, a hollow fiber membrane-like adsorbent having an outer diameter of about 3 mm is shown.

本発明に係る中空糸膜状吸着材は、内側に径方向のスリット構造を有する。図1に見られるように、スリット構造が中空糸の中心軸から外周方向に放射状のスリット構造が形成されている。スリット構造の幅は、0.1mm〜0.01mm程度で、外周側のスリットの幅が大きい傾向にある。図1には、内側から外周方向に向けて、大きなスリット構造を多数有する中空糸膜状吸着材が示されている。このスリット構造により、中空糸膜状吸着材の柔軟性が高まる。また、有機高分子バインダーの含有率が低い場合にも、加圧供給に対する膜の耐圧性や柔軟性を得ることが可能となる。また、中空糸膜状吸着材の内側にひだ状のスリット構造が有ると、供給液を供給する際に、供給液が微粉末状吸着剤と接触する面積を広げ、吸着効果を高めることができる。スリット構造は、中空糸膜状吸着材の内側に形成されており、中空糸膜状吸着材の外周には別途、凝固浴槽内で形成される浅いスリットが存在する。中空糸膜状吸着材のスリット構造が形成されている領域は、内側に膜厚の50%以上に形成されていると好ましく、60%以上に形成されているとより好ましく、70%以上に形成されていると特に好ましい。このスリット構造を形成する構造体とスリット構造のない外周の構造とが中空糸膜状吸着材の柔軟性や強度に影響を与える。   The hollow fiber membrane-like adsorbent according to the present invention has a radial slit structure inside. As seen in FIG. 1, the slit structure is formed so that the slit structure is formed radially outward from the central axis of the hollow fiber. The width of the slit structure is about 0.1 mm to 0.01 mm, and the width of the slits on the outer peripheral side tends to be large. FIG. 1 shows a hollow fiber membrane-like adsorbent having a large number of large slit structures from the inside toward the outer peripheral direction. This slit structure enhances the flexibility of the hollow fiber membrane-like adsorbent. In addition, even when the content of the organic polymer binder is low, it is possible to obtain the pressure resistance and the flexibility of the film against the pressure supply. In addition, when the hollow fiber membrane adsorbent has a pleated slit structure inside, the area where the feed liquid contacts the fine powder adsorbent can be expanded when supplying the feed liquid, and the adsorption effect can be enhanced. . The slit structure is formed on the inner side of the hollow fiber membrane-like adsorbent, and a shallow slit formed in the coagulation bath is separately present on the outer periphery of the hollow fiber membrane-like adsorbent. The region in which the slit structure of the hollow fiber membrane adsorbent is formed is preferably 50% or more of the film thickness on the inner side, more preferably 60% or more, and 70% or more. It is particularly preferred that The structure forming the slit structure and the structure of the outer periphery without the slit structure affect the flexibility and strength of the hollow fiber membrane adsorbent.

図2では、直径数μmの微粉末状吸着剤と、その微粉末状吸着剤を接着しかつスリット構造を形成している有機高分子バインダーが観察できる。有機高分子バインダーは、微粉末状吸着剤の担体になっており、微粉末状吸着剤の表面の一部が有機高分子バインダーか形成する構造の表面に現れている。また、スリット構造は、連続している。従って、スリット構造は、被吸着物質と媒質を中空糸の外側又は内側から微粉末状吸着剤に輸送する経路にもなる。   In FIG. 2, it is possible to observe a fine powdery adsorbent having a diameter of several μm and an organic polymer binder in which the fine powdery adsorbent is adhered and which forms a slit structure. The organic polymer binder is a carrier of the fine powder adsorbent, and appears on the surface of the structure in which a part of the surface of the fine powder adsorbent forms the organic polymer binder. In addition, the slit structure is continuous. Therefore, the slit structure also provides a path for transporting the adsorbed substance and the medium from the outside or the inside of the hollow fiber to the finely powdered adsorbent.

(スラリーの調製)
本発明では、まず、有機高分子バインダーが溶媒に溶解している溶液に、微粉末状吸着剤が分散しているスラリーを調製し、そのスラリーを用いて後述する紡糸工程で相分離法によって中空糸膜状吸着材を成形する。スラリーは、粘度が1.0Pa.s以上6.5Pa.s以下で、かつ気体の溶存量が、後述するスラリー吐出温度における飽和量以上であるものを調製する。
(Preparation of slurry)
In the present invention, first, a slurry in which a fine powdery adsorbent is dispersed is prepared in a solution in which an organic polymer binder is dissolved in a solvent, and the slurry is used to make hollow by the phase separation method in the spinning step described later. A yarn film adsorbent is formed. The slurry had a viscosity of 1.0 Pa.s. s or more 6.5 Pa. The s or less, and the dissolved amount of gas is more than the saturation amount in the slurry discharge temperature mentioned later are prepared.

スラリーの粘度を1.0Pa.s以上6.5Pa.s以下にすることで膜厚の厚い中空糸膜状吸着材を成形することが可能となり、また、スラリーの気体の溶存量をスラリー吐出温度における飽和量以上にすることで、その膜厚の厚い中空糸膜状吸着材の内側に多数の径方向のスリット構造を形成することが可能となる。   The viscosity of the slurry was 1.0 Pa.s. s or more 6.5 Pa. By setting the thickness to s or less, it becomes possible to form a thick hollow fiber membrane-like adsorbent, and by making the dissolved amount of the slurry gas more than the saturation amount at the slurry discharge temperature, it is possible to form a thick membrane. It is possible to form a large number of radial slit structures inside the hollow fiber membrane adsorbent.

本発明に用いる溶媒は、有機高分子バインダーを溶解できるものであれば特に限定されないが、比較的引火点が高く、微粉末状吸着剤や有機高分子バインダーと化学的もしくは物理的反応を起こすことなく、これらを溶解又は均一に分散させることが可能で、成形体である中空糸膜状吸着材中に残存しにくいものが好ましい。例えば、一般に有機溶媒として用いられているものを用いることができるが、有機高分子バインダーとしてポリエチレンポリビニルアルコール共重合樹脂やポリエーテルサルホンを用いた場合には、ジメチルスルホキシドやノルマルメチルピロリドンが好ましい。   The solvent used in the present invention is not particularly limited as long as it can dissolve the organic polymer binder, but has a relatively high flash point and causes a chemical or physical reaction with the fine powder adsorbent or the organic polymer binder. However, it is preferable that they can be dissolved or uniformly dispersed, and that they do not easily remain in the hollow fiber membrane-like adsorbent which is a molded body. For example, although what is generally used as an organic solvent can be used, when using a polyethylene polyvinyl alcohol copolymer resin or polyether sulfone as an organic polymer binder, dimethyl sulfoxide or normal methyl pyrrolidone is preferable.

溶媒と微粉末状吸着剤及び有機高分子バインダーの混合の順番、スラリー吐出温度まで昇温する順番は特に限定されないが、スラリーの気体の溶存量をスラリー吐出温度における飽和量以上にするには、低温度の溶媒に有機高分子バインダーを加え、混合・加熱してバインダー溶液を調製し、そのバインダー溶液と微粉末状吸着剤を混合してスラリーを得る方法が好ましい。   The order of mixing the solvent, the fine powdery adsorbent and the organic polymer binder, and the order of raising the temperature to the slurry discharge temperature are not particularly limited, but in order to make the dissolved amount of the slurry gas more than the saturation amount at the slurry discharge temperature, It is preferable to add an organic polymer binder to a low temperature solvent, mix and heat to prepare a binder solution, and mix the binder solution with a finely powdered adsorbent to obtain a slurry.

より具体的には、有機高分子バインダーと溶媒とを含み、温度がスラリーを吐出する温度より低温で、気体が溶存している混合液を、スラリーの吐出温度まで攪拌しながら昇温して、有機高分子バインダーを溶解し、気体飽和量に対する気体溶存量の割合を高くしたバインダー溶液を得(バインダー溶液調製工程)、そのバインダー溶液を攪拌しながら、微粉末状吸着剤を、液面の発泡を抑えるように複数回に分けて添加する(スラリー調製工程)ことによりスラリーを得る、比較的低温で短時間に均一で粘度が高いスラリーを得やすいので好ましい。以下、本態様について詳細に説明する。   More specifically, the temperature is raised while stirring the mixed solution in which the gas is dissolved at a temperature lower than the temperature at which the slurry is discharged, and containing an organic polymer binder and a solvent, to a temperature at which the slurry is discharged, Obtain a binder solution in which the organic polymer binder is dissolved and the ratio of dissolved gas amount to gas saturation amount is increased (binder solution preparation step), and while stirring the binder solution, the finely powdered adsorbent is foamed on the liquid surface It is preferable to obtain a slurry by adding in a plurality of times in a divided manner so as to suppress the above (slurry preparation step) and to easily obtain a uniform slurry with high viscosity in a short time at a relatively low temperature. Hereinafter, this aspect will be described in detail.

(バインダー溶液調製工程)
気体の溶媒への溶解度は、一般的に高温ほど小さい。そのため、スラリーの吐出温度より低い温度(例えば、室温(25℃)以下)の空気溶存量の多い溶媒に有機高分子バインダーを添加し、ゆっくり攪拌・昇温して有機高分子バインダーを溶解し、所定の温度(例えばスラリーの吐出温度)まで昇温することにより、気体飽和量に対する気体溶存量の割合を高くしたバインダー溶液を調製することができる。
(Binder solution preparation process)
The solubility of a gas in a solvent is generally smaller at higher temperatures. Therefore, the organic polymer binder is added to a solvent with a large amount of dissolved air at a temperature lower than the discharge temperature of the slurry (for example, room temperature (25 ° C. or less)), and the organic polymer binder is dissolved by slowly stirring and heating. By raising the temperature to a predetermined temperature (for example, the discharge temperature of the slurry), it is possible to prepare a binder solution in which the ratio of the amount of dissolved gas to the amount of gas saturation is increased.

有機高分子バインダーを添加する前の溶媒に、予めエアコンプレッサーなどで、加圧下で空気を溶媒に溶解させて、空気溶存量の高い溶媒を調製することもできる。この場合は、液面の発泡が起きないように攪拌することが好ましい。撹拌が激しすぎて発泡が顕著になると、発泡によって白濁した溶媒が得られるが、その気泡が、溶媒中に合一して抜け、結果的に脱気操作と同様な悪影響を与え、溶媒中の空気溶存量が低下する。この場合、合一して大きくなった気泡が成形体の欠陥になったり、脱気効果によってスリットが形成されにくくなる傾向がある。例えば、攪拌翼が一般的な軸流撹拌用の2枚羽根(半月型)の場合、攪拌翼の回転数が500rpmを越えると液面の発泡が顕著になるので、500rpm未満が好ましく、350rpm以下がより好ましく、300rpm以下が特に好ましい。   It is also possible to prepare a solvent with a high amount of dissolved air by dissolving air in a solvent under pressure with an air compressor or the like beforehand in a solvent before adding the organic polymer binder. In this case, it is preferable to stir so that foaming of the liquid level does not occur. When the agitation is too intense and foaming becomes remarkable, a bubbled solvent is obtained by foaming, but the bubbles coalesce into the solvent, resulting in the same adverse effect as the degassing operation, and in the solvent Air content decreases. In this case, there is a tendency that the bubbles which are united and enlarged become defects of the molded body, or the slit is difficult to be formed due to the degassing effect. For example, when the stirring blade is a common two-blade (half-moon type) for axial flow stirring, if the rotation speed of the stirring blade exceeds 500 rpm, foaming on the liquid surface becomes remarkable, so less than 500 rpm is preferable, 350 rpm or less Is more preferable, and 300 rpm or less is particularly preferable.

バインダー溶液調製における有機高分子バインダーの使用量は、通常、得られる中空糸膜状吸着材中の含有率が全重量(乾燥後)に対して20重量%〜30重量%となる量を用いるが、20重量%〜25重量%となる量を用いることが好ましい。含有率が下限より多いと、連続的な加圧濾過に十分耐えうる程度の機械的強度の中空糸膜状吸着材が得られる点で好ましい。また、含有率が上限より少ないと、微粉末状吸着剤の含有率を増加させることを意味するので、反応効率の観点で好ましい。中空糸膜状吸着材中の有機高分子バインダーの含有率は、通常、溶媒が紡糸工程で除去されるので、スラリー(有機高分子バインダーと微粉末状吸着剤と溶媒とを含む混合物)の重量から溶媒の重量を除いた値、即ち使用する有機高分子バインダーと微粉末状吸着剤との総和、に対する使用する有機高分子バインダーの量である。   The amount of the organic polymer binder used in the preparation of the binder solution is usually such that the content in the obtained hollow fiber membrane-like adsorbent is from 20% by weight to 30% by weight based on the total weight (after drying). It is preferable to use an amount of 20% by weight to 25% by weight. When the content is higher than the lower limit, it is preferable in that a hollow fiber membrane-like adsorbent having mechanical strength sufficient to withstand continuous pressure filtration can be obtained. In addition, when the content is less than the upper limit, it means that the content of the fine powdery adsorbent is increased, and thus it is preferable from the viewpoint of reaction efficiency. Since the content of the organic polymer binder in the hollow fiber membrane adsorbent is usually such that the solvent is removed in the spinning step, the weight of the slurry (a mixture containing the organic polymer binder, the fine powder adsorbent and the solvent) is used. The amount of the organic polymer binder used is the value obtained by subtracting the weight of the solvent from the above, ie, the sum of the organic polymer binder used and the finely powdered adsorbent.

バインダー溶液調製における溶媒の使用量は、有機高分子バインダーが溶媒に完全に溶解しうる量以上で、後述する粘度の調整、紡糸し易さの観点で、微粉末状吸着剤の種類によって適宜決定される。例えば、微粉末状吸着剤がゼオライトである場合は、紡糸用スラリー中の有機高分子バインダーの濃度が7%〜20%の間となる量であることが好ましい。バインダー溶液の濃度が下限より高いと芯液の吐出や凝固浴でスラリーが分散せずに、液相分離による成形体の形成が容易である。バインダー溶液の濃度が上限より低いと、微粒子との均一なスラリーの調整が容易であり、成形体に欠陥が生じにくい。   The amount of the solvent used in the preparation of the binder solution is appropriately determined depending on the kind of the fine powdery adsorbent from the viewpoint of adjustment of viscosity and easiness of spinning described later by an amount that the organic polymer binder can be completely dissolved in the solvent. Be done. For example, when the fine powdery adsorbent is a zeolite, it is preferable that the concentration of the organic polymer binder in the spinning slurry is between 7% and 20%. When the concentration of the binder solution is higher than the lower limit, the slurry is not dispersed in the discharge of the core liquid or in the coagulation bath, and the formation of the compact by liquid phase separation is facilitated. When the concentration of the binder solution is lower than the upper limit, adjustment of a uniform slurry with the fine particles is easy, and defects in the molded body are less likely to occur.

バインダー溶液の温度は、溶媒の融点以上で、有機高分子バインダーの全量が溶媒に溶解する温度であれば特に限定されないが、溶媒を加熱する際の安全性の観点で、引火点未満の温度であることが好ましい。更に、有機高分子バインダーのTg(ガラス転移温度)以下ではスラリーの流動性が低いので、Tg以上の温度が好ましい。具体的には、有機高分子バインダーを溶媒に溶解する溶解温度は、20℃〜80℃であると好ましく、30℃〜50℃であると好ましく、40℃〜50℃であるとより好ましい。   The temperature of the binder solution is not particularly limited as long as it is a temperature at which the entire amount of the organic polymer binder dissolves in the solvent above the melting point of the solvent, but from the viewpoint of safety when heating the solvent, a temperature below the flash point Is preferred. Furthermore, since the fluidity of the slurry is low below the Tg (glass transition temperature) of the organic polymer binder, a temperature above Tg is preferred. Specifically, the dissolution temperature at which the organic polymer binder is dissolved in a solvent is preferably 20 ° C. to 80 ° C., preferably 30 ° C. to 50 ° C., and more preferably 40 ° C. to 50 ° C.

有機高分子バインダーを溶媒に溶解する際、室温など、溶解温度よりも低温で混合し、前記のバインダー溶液の温度までゆっくり昇温する方法が、溶媒中の気体の溶存量を減じにくいので好ましい。昇温速度としては、5℃/min.〜1℃/min.であると好ましく、3℃/min.〜1℃/min.であるとより好ましい。   When dissolving the organic polymer binder in a solvent, the method of mixing at a temperature lower than the dissolving temperature, such as room temperature, and slowly raising the temperature to the temperature of the binder solution is preferable because it is difficult to reduce the amount of gas dissolved in the solvent. As a temperature rising rate, 5 ° C./min. To 1 ° C./min. And preferably 3 ° C./min. To 1 ° C./min. It is more preferable that

攪拌時間は、有機高分子バインダーが溶媒に溶解するまで行えば特に限定されないが、1時間以上攪拌を継続することが好ましい。   The stirring time is not particularly limited as long as the organic polymer binder is dissolved in the solvent, but the stirring is preferably continued for 1 hour or more.

有機高分子バインダーを溶解させる時の撹拌速度は、液面の発泡が起きないように調整することが好ましい。攪拌翼の回転数が速すぎて発泡が顕著になると、その気泡が溶液中に合一して抜け、結果的に脱気操作を行うのと同様な悪影響を与える。具体的には、攪拌翼が一般的な軸流撹拌用の2枚羽根(半月型)の場合、攪拌翼の回転数が500rpmを越えると液面の発泡が顕著になるので、500rpm未満が好ましく、350rpm以下がより好ましく200rpm以下が特に好ましい。   The stirring speed at the time of dissolving the organic polymer binder is preferably adjusted so that foaming of the liquid surface does not occur. If the number of revolutions of the stirring blade is too fast and the foaming becomes remarkable, the bubbles merge into the solution and drop out, resulting in the same adverse effect as the degassing operation. Specifically, when the stirring blade is a common two-blade (half-moon type) for axial flow stirring, if the rotation speed of the stirring blade exceeds 500 rpm, foaming on the liquid surface becomes remarkable, so less than 500 rpm is preferable. 350 rpm or less is more preferable, and 200 rpm or less is particularly preferable.

(スラリー調製工程)
スラリー調製工程では、バインダー溶液調製工程で調製したバインダー溶液に微粉末状吸着剤を添加・攪拌して粘度が1.0Pa.s以上6.5Pa.s以下(スラリー吐出温度)の紡糸用スラリーを調製する。紡糸用スラリーの粘度は、有機高分子バインダーと微粉末状吸着剤と溶媒との割合、紡糸用スラリーの温度で調整することができる。溶媒に対する有機高分子バインダーの比が大きいと粘度が高くなる傾向がある。また、紡糸用スラリーの温度が高いと粘度が下がる傾向がある。
(Slurry preparation process)
In the slurry preparation step, a fine powdery adsorbent is added to the binder solution prepared in the binder solution preparation step and the mixture is stirred to give a viscosity of 1.0 Pa.s. s or more 6.5 Pa. Prepare a spinning slurry of s or less (slurry discharge temperature). The viscosity of the spinning slurry can be adjusted by the ratio of the organic polymer binder, the finely powdered adsorbent and the solvent, and the temperature of the spinning slurry. When the ratio of the organic polymer binder to the solvent is large, the viscosity tends to be high. In addition, when the temperature of the spinning slurry is high, the viscosity tends to decrease.

微粉末状吸着剤の使用量は、通常、得られる中空糸膜状吸着材中の微粉末状吸着剤の含有率が中空糸膜状吸着材の全重量に対して70重量%〜80重量%となる量である。中空糸膜状吸着材中の微粉末状吸着剤の含有率が下限より多いと、反応効率の観点で好ましい。紡糸用スラリーの調製に用いる溶媒は、通常、紡糸工程などで除去されるので、紡糸用スラリー中の微粉末状吸着剤と有機高分子バインダーとの総和に対する微粉末状吸着剤の重量を70重量%〜80重量%とすることで、微粉末状吸着剤の含有率が中空糸膜状吸着材の全重量に対して70重量%〜80重量%となる中空糸膜状吸着材を得ることができる。   The amount of the fine powder adsorbent used is usually 70% by weight to 80% by weight of the content of the fine powder adsorbent in the obtained hollow fiber membrane adsorbent to the total weight of the hollow fiber adsorbent The amount is If the content of the fine powdery adsorbent in the hollow fiber membrane-like adsorbent is larger than the lower limit, it is preferable from the viewpoint of reaction efficiency. Since the solvent used for preparation of the spinning slurry is usually removed in the spinning step etc., the weight of the fine powder adsorbent to the total of the fine powder adsorbent and the organic polymer binder in the slurry for spinning is 70 weight The hollow fiber membrane adsorbent having a content of fine powdery adsorbent of 70% by weight to 80% by weight based on the total weight of the hollow fiber membrane adsorbent can be obtained by setting it to 80% by weight. it can.

微粉末状吸着剤は、乾燥した状態で用いると好ましい。また、微粉末状吸着剤をバインダー溶液に少量ずつ添加投入して、分散させると好ましい。このように微粉末状吸着剤を添加すると、比較的低温で短時間に均一で粘度が高い紡糸用スラリーを得やすい。   The finely powdered adsorbent is preferably used in a dry state. In addition, it is preferable to add the finely powdered adsorbent little by little to the binder solution and disperse it. Thus, when the fine powdery adsorbent is added, it is easy to obtain a slurry having a high viscosity and a uniform viscosity in a short time at a relatively low temperature.

スラリー調製工程では微粉末状吸着剤の分散のため攪拌を行う。この時の撹拌速度は、液面に発泡が起きないように調整することが好ましい。撹拌が激しすぎて発泡が顕著になると、その気泡がスラリー調製中に合一して抜け、結果的に紡糸用スラリーを脱気するのと同様な悪影響を与える。例えば、攪拌翼が一般的な軸流撹拌用の2枚羽根(半月型)の場合、攪拌翼の回転数が500rpmを越えると液面の発泡が顕著になるので、500rpm未満が好ましく、350rpm以下がより好ましく、300rpm以下が特に好ましい。   In the slurry preparation step, stirring is performed to disperse the fine powdery adsorbent. The stirring speed at this time is preferably adjusted so that foaming does not occur on the liquid surface. If the agitation is too vigorous and foaming becomes pronounced, the bubbles coalesce out during slurry preparation, resulting in the same negative effect as degassing the spinning slurry. For example, when the stirring blade is a common two-blade (half-moon type) for axial flow stirring, if the rotation speed of the stirring blade exceeds 500 rpm, foaming on the liquid surface becomes remarkable, so less than 500 rpm is preferable, 350 rpm or less Is more preferable, and 300 rpm or less is particularly preferable.

攪拌温度は、最終的に紡糸工程のスラリー温度となる条件が好ましい。得られるスラリー温度は特に限定されないが、溶媒の融点以上引火点未満の温度であることが好ましく、例えばジメチルスルホキシドやノルマルメチルピロリドンであれば、20〜80℃であると好ましく、30℃〜50℃であるとより好ましく、30℃〜45℃であると特に好ましい。   The stirring temperature is preferably such that the temperature finally becomes the slurry temperature of the spinning process. The temperature of the obtained slurry is not particularly limited, but is preferably a temperature not lower than the melting point of the solvent and lower than the flash point, for example, dimethylsulfoxide or normal methyl pyrrolidone preferably 20-80 ° C, 30 ° C-50 ° C. It is more preferable that it is, and it is especially preferable that it is 30 to 45 degreeC.

攪拌時間は、微粉末状吸着剤がスラリー中に均一に分散する時間以上であれば特に限定されないが、5時間以上が好ましく、8時間(一晩)以上がより好ましい。攪拌時間が短いと特に微粒子径が1μm径以下の場合、見た目が均一でも、バインダー溶液への微粒子の分散が不充分で、成形できない場合がある。   The stirring time is not particularly limited as long as it is the time for the finely powdered adsorbent to be uniformly dispersed in the slurry, but is preferably 5 hours or more, and more preferably 8 hours (overnight) or more. If the stirring time is short, particularly when the particle size is 1 μm or less, even if the appearance is uniform, the dispersion of the particles in the binder solution may be insufficient and molding may not be possible.

紡糸用スラリーの粘度は、1.0Pa.s以上6.5Pa.s以下に調整する。溶媒の割合が大きいほど粘度が下がる傾向にある。紡糸用スラリーの粘度の下限は、1.2Pa.s以上であると好ましく、1.5Pa.s以上であるとより好ましい。また紡糸用スラリーの粘度の上限は、5.0Pa.s以下であると好ましく、4.5Pa.s以下であるとより好ましい。紡糸用スラリーの粘度が、前記の下限を下回ると、後述の紡糸工程において、ノズルのスラリー吐出口径を広く、更に芯液の吐出口径を狭くしても、外径が細く窄まるか、もしくは芯液の吐出圧力が勝り、充分な膜厚が得られないことがある。ここで、紡糸用スラリーの粘度は、JIS Z8803に従い、粘度計(株式会社エー・アンド・デイ製、音叉振動式粘度計SV−100)を用いて測定した値を紡糸用スラリーの密度で除した値(粘度の絶対値)であり、紡糸工程において紡糸用スラリーを吐出する際の温度における粘度である。   The viscosity of the spinning slurry was 1.0 Pa.s. s or more 6.5 Pa. Adjust to s or less. The viscosity tends to decrease as the proportion of the solvent increases. The lower limit of the viscosity of the slurry for spinning is 1.2 Pa.s. It is preferable that it is s or more, and 1.5 Pa.s. It is more preferable that it is s or more. The upper limit of the viscosity of the spinning slurry is 5.0 Pa.s. It is preferable that it is s or less, and 4.5 Pa.s. It is more preferable that it is s or less. If the viscosity of the slurry for spinning falls below the above-mentioned lower limit, in the later-described spinning process, the slurry discharge diameter of the nozzle is increased, and the outer diameter narrows even if the discharge diameter of the core liquid is narrowed. The discharge pressure of the liquid may be superior and a sufficient film thickness may not be obtained. Here, the viscosity of the slurry for spinning was determined by dividing the value measured using a viscometer (manufactured by A & D Corporation, tuning fork vibration viscometer SV-100) according to JIS Z 8803 by the density of the slurry for spinning It is a value (absolute value of viscosity), and is a viscosity at a temperature at which the spinning slurry is discharged in the spinning step.

(紡糸工程)
本発明の中空糸膜状吸着材の製造方法は、紡糸工程において、芯液吐出口とその外周に位置するスラリー吐出口とを有する2重口ノズルを備えた乾湿式紡糸装置を用い、前記スラリー吐出口から、紡糸用スラリーを吐出すると共に、前記芯液吐出口から芯液を吐出して、凝固浴液に空走距離を設けて射出し、中空糸膜状吸着材を得る。
(Spinning process)
In the method for producing a hollow fiber membrane-like adsorbent according to the present invention, in the spinning step, the slurry is produced using a dry-wet spinning apparatus provided with a double port nozzle having a core liquid outlet and a slurry outlet located on the outer periphery thereof. The spinning slurry is discharged from the discharge port, and the core liquid is discharged from the core liquid discharge port, and the coagulation bath liquid is provided with a free running distance, and the hollow bath-like adsorbent is obtained.

本発明に用いる乾湿式紡糸装置は、2重口ノズルを備える。2重口ノズルは、芯液吐出口とその外周に位置するスラリー吐出口とを有する。スラリー吐出口の形状が中空糸膜状吸着材の断面形状に対応する。中空糸膜状吸着材の外径は一般的にノズルの吐出口の外径に比べて小さくなるため、ノズルの吐出口の外径は成形物の予定外径の1.5倍程度であることが好ましい。また、中空糸膜内径は、一般的にノズルの芯液吐出口径より広くなるため、予定内径より狭い方が好ましい。   The dry-wet spinning apparatus used in the present invention comprises a double-mouthed nozzle. The double port nozzle has a core liquid discharge port and a slurry discharge port located on the outer periphery thereof. The shape of the slurry discharge port corresponds to the cross-sectional shape of the hollow fiber membrane-like adsorbent. Since the outer diameter of the hollow fiber membrane adsorbent is generally smaller than the outer diameter of the discharge port of the nozzle, the outer diameter of the discharge port of the nozzle should be about 1.5 times the planned outer diameter of the molding Is preferred. In addition, the inner diameter of the hollow fiber membrane is generally larger than the diameter of the core liquid discharge port of the nozzle, so it is preferable to be smaller than the planned inner diameter.

スラリーを、乾湿式紡糸装置に移す際は、ストレーナー等で除去できるサイズの気泡は除去することが好ましい。   When the slurry is transferred to a dry-wet spinning apparatus, it is preferable to remove air bubbles of a size that can be removed by a strainer or the like.

紡糸工程の前に、スラリーに減圧脱気処理などの脱気操作を行わないことが好ましい。紡糸工程の前に、スラリーに脱気操作を行うと、スラリーの粘度が下がる。その結果、得られる中空糸の径が小さくなる。また、スリット構造が形成されにくくなり、より微粉末状吸着剤の粒子の詰まった緻密な構造となり、得られる中空糸膜状吸着材の柔軟性が低くなる。そのため、有機高分子バインダーの種類によっては、モジュール等の成形加工が困難になる。   Preferably, the slurry is not subjected to a degassing operation such as vacuum degassing before the spinning step. If the slurry is subjected to a degassing operation prior to the spinning step, the viscosity of the slurry is reduced. As a result, the diameter of the obtained hollow fiber is reduced. In addition, a slit structure is difficult to be formed, and a dense structure in which particles of a fine powdery adsorbent are packed is formed, and the flexibility of the hollow fiber membrane adsorbent obtained is lowered. Therefore, depending on the type of the organic polymer binder, molding processing of a module or the like becomes difficult.

膜厚の厚い中空糸膜を紡糸するために微粒子濃度が高いスラリーを用いる場合、スラリー吐出口の幅を広げて、吐出されるスラリーの厚みを厚くすると、従来のような脱気スラリーであれば凝固用の芯液がスラリー中に拡散しにくくなるが、本発明で用いるスラリーは、空気が多く溶存しているので、芯液がスラリー中に拡散しやすく、凝固時に多孔性が増すと同時に、空気と芯液と溶媒とが抜け出すことで中空糸膜状吸着材にスリット構造が形成しやすくなる。   In the case of using a slurry having a high concentration of fine particles to spin a thick hollow fiber membrane, if the width of the slurry discharge port is increased and the thickness of the discharged slurry is increased, the conventional degassed slurry can be obtained. Although the core liquid for coagulation hardly diffuses in the slurry, the slurry used in the present invention is easily dissolved in the slurry because a large amount of air is dissolved, and the core liquid is easily diffused in the slurry, and at the same time porosity increases during coagulation. By the air, the core liquid and the solvent coming out, the slit structure is easily formed in the hollow fiber membrane-like adsorbent.

スリット構造は、紡糸工程中、スラリー吐出口と凝固浴液の槽の間の空走部分で芯液がスラリー側に拡散して形成される。従って、芯液のスラリー側への拡散が速いことと、芯液の張力が大きいことが望ましい。スラリー中、微粉末状吸着剤の含有率が高く粒子間隙が少ないと芯液の拡散流路は微粒子間を縫うようになる。そのため、スリット構造が形成されにくくなり、スリット構造が形成されないまま、凝固浴で外側から凝固するようになる傾向にある。しかし、スラリーの微粉末状吸着剤の含有率が同じでも、スラリーの気体溶存量を多くすることによって、スリット構造の形成を促進することができる。   The slit structure is formed by diffusion of the core liquid to the slurry side in the free running portion between the slurry discharge port and the bath of the coagulation bath during the spinning process. Therefore, it is desirable that the diffusion of the core liquid to the slurry side be fast and that the tension of the core liquid be large. In the slurry, when the content of the fine powdery adsorbent is high and the particle gap is small, the diffusion channel of the core liquid will sew between fine particles. Therefore, it becomes difficult to form a slit structure, and it tends to coagulate from the outside in a coagulation bath without forming a slit structure. However, even if the content of the fine powdery adsorbent in the slurry is the same, the formation of the slit structure can be promoted by increasing the amount of gas dissolved in the slurry.

本発明に係る紡糸工程では、芯液吐出口と凝固浴液の間に空走距離を設ける。空走距離は特に限定されないが、5cmから20cmの範囲にあると好ましい。空走距離が上記下限より長いとスリット構造がより深く入り易い傾向にある。また、空走距離が上記上限より短いと、中空糸の外径が細くなりすぎない傾向がある。   In the spinning step according to the present invention, a free running distance is provided between the core liquid discharge port and the coagulation bath liquid. The free running distance is not particularly limited, but is preferably in the range of 5 cm to 20 cm. If the free running distance is longer than the above lower limit, the slit structure tends to get deeper. If the free running distance is shorter than the above upper limit, the outer diameter of the hollow fiber tends not to be too thin.

本発明に用いる芯液は、紡糸用スラリー中の有機高分子バインダーと微粉末状吸着剤を分離することなく凝集させることができ、また、その際にスリット構造を形成できる表面張力を有するものであれば特に限定されない。芯液としては、例えば水又は水溶液が挙げられる。芯液の温度は特に限定されないが、20℃〜40℃であると好ましく、20℃〜35℃であるとより好ましい。また、芯液は予め脱気することができる。   The core liquid used in the present invention can be coagulated without separating the organic polymer binder and the finely powdered adsorbent in the slurry for spinning, and also has a surface tension capable of forming a slit structure at that time. There is no particular limitation as long as it is. As a core liquid, water or aqueous solution is mentioned, for example. The temperature of the core liquid is not particularly limited, but is preferably 20 ° C to 40 ° C, and more preferably 20 ° C to 35 ° C. Also, the core liquid can be degassed in advance.

本発明に用いる凝固浴液は、紡糸用スラリー中の溶媒と異なる液体であり、紡糸用スラリーを凝固させる液体である。具体的には、有機高分子バインダーを溶解せず、溶媒と相溶又は混合し得る液体である。より具体的には、水、アルコール、及び水溶液が挙げられる。凝固浴液の温度は特に限定されないが、20〜50℃であると好ましく、30〜45℃であるとより好ましい。これにより、微粉末状吸着剤をサブミクロンから数ミクロン径のマクロ孔を有する多元多孔体に成形することができる。   The coagulation bath liquid used in the present invention is a liquid different from the solvent in the spinning slurry, and is a liquid that coagulates the spinning slurry. Specifically, it is a liquid that does not dissolve the organic polymer binder and can be compatible or mixed with the solvent. More specifically, water, alcohol and aqueous solution can be mentioned. The temperature of the coagulation bath liquid is not particularly limited, but is preferably 20 to 50 ° C., and more preferably 30 to 45 ° C. Thereby, the fine powdery adsorbent can be formed into a multi-purpose porous body having macropores of submicron to several micron diameter.

スラリー吐出温度は、特に限定されないが、紡糸用スラリーと芯液の吐出温度が、紡糸用スラリーが芯液に接触して起きる相分離に際して、溶存空気をスラリーから溶脱させて芯液の拡散を容易にし、中空糸膜状吸着材の内側にマクロなスリット状構造を形成させる温度であり、具体的には、20℃〜80℃であると好ましく、30℃〜50℃であるとより好ましい。スラリー吐出温度が高いほど粘度が下がる傾向が有るため、温度によって粘度を調製することもできる。   The slurry discharge temperature is not particularly limited, but the temperature at which the spinning slurry and the core liquid are discharged causes dissolution of the dissolved air from the slurry to facilitate diffusion of the core liquid in phase separation caused by the spinning slurry coming into contact with the core liquid. And a temperature at which a macro slit-like structure is formed inside the hollow fiber membrane-like adsorbent, specifically, preferably 20 ° C. to 80 ° C., and more preferably 30 ° C. to 50 ° C. Since the viscosity tends to decrease as the slurry discharge temperature increases, the viscosity can also be adjusted by the temperature.

本発明の製造方法によって得られる中空糸膜状吸着材は、60℃以下などでの低温乾燥後は、アルコール類への浸漬によって柔軟性を取り戻すことが可能である。150℃以上での加熱は、柔軟性が失われる傾向にあるため、150℃未満で、保存や加工をすることが好ましい。また、中空糸膜状吸着材は、乾燥せずにそのまま水中もしくはアルコール中で保管すれば、フレキシビリティを保ったまま使用することが可能である。   The hollow fiber membrane-like adsorbent obtained by the production method of the present invention can recover its flexibility by immersion in alcohols after low-temperature drying at 60 ° C. or lower. Since heating at 150 ° C. or higher tends to lose flexibility, it is preferable to store and process at less than 150 ° C. The hollow fiber membrane-like adsorbent can be used with its flexibility maintained if it is stored in water or alcohol as it is without drying.

本発明の製造方法によって得られる中空糸膜状吸着材は、微粉末状吸着剤の含量が高く、肉厚であると同時に、内側のスリット構造のため内表面積が広いので、200kPa以上の加圧に対しての耐圧性、且つモジュール加工可能な折れ曲がりに対する柔軟性と粘度液体に対しても7g/cm/h.以上の濾過性能を有する。そのため中空糸膜状吸着材を束ねて、特定成分除去・抽出用の中空糸膜モジュールにすることができる。 The hollow fiber membrane-like adsorbent obtained by the production method of the present invention has a high content of fine powdery adsorbent, is thick and at the same time has a large internal surface area due to the inner slit structure, Against pressure resistance, and also flexibility against bending that can be modularized and viscosity against liquid 7 g / cm 2 / h. It has the above filtration performance. Therefore, hollow fiber membrane adsorbents can be bundled to form a hollow fiber membrane module for removing and extracting specific components.

本発明の製造方法によって得られる中空糸膜状吸着材は、流通条件下で特定成分と連続的に反応して、これを除去もしくは抽出できる。例えば、前記中空糸膜状吸着材の反応活性が、原料の微粉末状吸着剤の60%以上である。また、産業上有用になりえる基準の高い反応効率と単位時間当たりの濾過処理量、モジュール化が可能な柔軟性及び連用・再生可能な耐久性を全て両立できる。すなわち、本発明の製造方法によれば、吸着剤の混合量を増加させる、すなわち、有機高分子バインダーの量を減らす対策をしながら、同時に耐圧性と濾過処理量を増加させるという相反する条件を両立させる、中空糸膜状吸着材が得られるこの、   The hollow fiber membrane-like adsorbent obtained by the production method of the present invention can be continuously reacted with specific components under flowing conditions to remove or extract it. For example, the reaction activity of the hollow fiber membrane adsorbent is 60% or more of the fine powder adsorbent of the raw material. In addition, the reaction efficiency which can be industrially useful, the filtration throughput per unit time, the flexibility which can be modularized, and the continuous use / renewable durability can all be compatible. That is, according to the manufacturing method of the present invention, the contradictory conditions of increasing the pressure resistance and the amount of filtration processing simultaneously while increasing the mixing amount of the adsorbent, that is, reducing the amount of the organic polymer binder A hollow fiber membrane-like adsorbent which is compatible with this, is obtained

中空糸膜状吸着材は、例えばカラメル飲料の製造工程で4メチルイミダゾール(4MI)を含有する原料から連続的に80%以上の4MIを低減することが可能になる。また、排水中の有害なイオンや微粒子の除去システムに使用できる。   The hollow fiber membrane-like adsorbent, for example, can continuously reduce 4MI of 80% or more from the raw material containing 4methylimidazole (4MI) in the production process of caramel beverage. In addition, it can be used for removing harmful ions and particulates in waste water.

(実施例)
次に、実施例に基づいて本発明をさらに詳細に説明するが、本発明は以下の実施例等によって何ら限定されるものではない。
(Example)
Next, the present invention will be described in more detail based on examples, but the present invention is not limited at all by the following examples and the like.

物性の測定は以下の方法で行った。
(1)中空糸膜状吸着材の微粉末状吸着剤含有率
TG−DTA測定によって有機高分子バインダーの焼成による減量の割合から計算する。
(2)中空糸膜状吸着材の外径、内径、膜厚、断面組織
ノギスによる計測やSEM観察などによって確認する。
(3)柔軟性
引張り試験時の破断伸度を指標にする。引張り試験時の試験片は実効長80mmであり、引張り速度は10mm/min.で行なった。
(4)細孔容積・空隙率・細孔分布
水銀ポロシメーター(Micromeritics社製、オートポアIV9500)を用いて水銀注入法により測定した。
(5)スラリー粘度
スラリー粘度は、JIS Z8803に従い、粘度計(株式会社エー・アンド・デイ製、音叉振動式粘度計SV−100)を用いて測定した値をスラリーの密度で除した値(粘度の絶対値)を用いた。測定温度した温度については併記する。なお、実施例及び比較例のスラリーの密度は、1.26〜1.33g/cmであった。
The physical properties were measured by the following method.
(1) Fine Powdered Adsorbent Content of Hollow Fiber Membrane Adsorbent The TG-DTA measurement is carried out from the weight loss ratio of the organic polymer binder by calcination.
(2) The outer diameter, the inner diameter, the film thickness, and the cross-sectional structure of the hollow fiber membrane adsorbent are confirmed by measurement with a caliper or SEM observation.
(3) Flexibility The breaking elongation at the time of tensile test is used as an index. The test piece at the time of the tensile test has an effective length of 80 mm, and the tensile speed is 10 mm / min. I did it.
(4) Pore Volume, Porosity, Pore Distribution Measurement was carried out by a mercury injection method using a mercury porosimeter (manufactured by Micromeritics, Autopore IV 9500).
(5) Slurry viscosity The slurry viscosity is a value obtained by dividing the value measured using a viscometer (a tuning product vibration viscometer SV-100, manufactured by A & D Co., Ltd. according to JIS Z 8803) by the density of the slurry (viscosity (Absolute value of) was used. The temperatures measured are also described. In addition, the density of the slurry of an Example and a comparative example was 1.26-1.33 g / cm < 3 >.

(実施例1)
有機高分子バインダーとしてのポリエチレンポリビニルアルコール共重合樹脂(株式会社クラレ、エバールG156B、融点160℃、Tg50℃、ペレット)25.0gを溶媒としてのジメチルスルホキシド(和光純薬工業株式会社、特級)155.3gに室温(25℃)・大気圧(0.1013MPa)下で、空気を取り込みながら混合して空気が飽和に溶存した混合液を得、更に軸流撹拌用半月型2枚羽根(フロン工業株式会社、オールPTFE被覆攪拌棒(羽根付)F−4012−001)を用いて200rpm〜300rpmで攪拌しながら、液面を泡立てないように43℃までゆっくり昇温(昇温速度3℃/min.)し、更に3時間攪拌してポリエチレンポリビニルアルコール共重合樹脂を完全に溶解させて溶液を得た。
Example 1
Dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd., special grade) 155. 25.0 g of polyethylene polyvinyl alcohol copolymer resin (Kuraray Co., Ltd., Eval G 156 B, melting point 160 ° C., Tg 50 ° C., pellet) as an organic polymer binder as a solvent Mixed with 3 g of air taken in at room temperature (25 ° C.) and atmospheric pressure (0.1013 MPa) to obtain a mixed solution in which air is dissolved in saturation, and a half-moon type two-blade impeller for axial flow stirring (Freon industrial stock While stirring at 200 rpm to 300 rpm, using an all PTFE-coated stirring bar (with blades) F-4012-001), slowly raise the temperature to 43 ° C. (heating rate: 3 ° C./min.) So as not to foam the liquid surface. The mixture was further stirred for 3 hours to completely dissolve the polyethylene polyvinyl alcohol copolymer resin to obtain a solution.

得られた溶液をそのまま43℃に加温・攪拌しながら、これに、微粉末状吸着剤として合成ハイシリカゼオライト粉末(東ソー株式会社、HSZ−820NHA、粒子径5μm、結晶粒子径0.1〜0.5μm、予め120℃にて一晩以上乾燥させたものを用いた。)100gを、液面を泡立てないように少量ずつロートで添加して、そのまま更に一晩、液面を泡立てないように攪拌し、空気溶存量の高い多孔体成形用のスラリーを調製した。この時のスラリー中の微粉末状吸着剤の濃度は36重量%であり、中空糸膜状吸着材に対する微粉末状吸着剤の仕込量は80重量%である。また、一晩攪拌した後の、得られたスラリーの粘度は、43℃で2.6Pa.s(密度1.29g/cm)であった。 The resulting solution is heated and stirred as it is at 43 ° C., and as a fine powdery adsorbent, synthetic high silica zeolite powder (Tosoh Corp. HSZ-820 NHA, particle diameter 5 μm, crystal particle diameter 0.1 to 10) 0.5g, which was previously dried at 120 ° C for one night or more was used.) 100g was added little by little with a funnel so as not to foam the liquid surface, and the liquid surface was not bubbling still overnight The mixture was stirred to prepare a slurry for forming a porous body with a high amount of dissolved air. At this time, the concentration of the fine powdery adsorbent in the slurry is 36% by weight, and the amount of the fine powdery adsorbent charged in the hollow fiber membrane-like adsorbent is 80% by weight. Moreover, the viscosity of the obtained slurry after stirring overnight is 2.6 Pa.s at 43 ° C. It was s (density 1.29 g / cm < 3 >).

その後、得られたスラリー(43℃)と、芯液となる水(34℃)をそれぞれ別の、シリンダーポンプに接続された容器に入れ、乾湿式紡糸装置にセットして、芯液吐出口径0.7mm、スラリー吐出口径3.0mmの2重口ノズルを用い、直下に、芯液を流量19.0ml/min.(流速21cm/s)で、スラリーを流量32ml/min.(流速;2cm/s)で、43℃の湯浴に空走距離5cmで射出して中空糸状に製膜し、中空糸膜状吸着材1を得た。   Thereafter, the obtained slurry (43 ° C.) and water (34 ° C.) to be the core liquid are placed in separate containers connected to a cylinder pump, respectively, and set in the dry-wet spinning apparatus to set the core liquid discharge aperture 0 The core solution was flowed at a flow rate of 19.0 ml / min. At a flow rate of 21 cm / s, the slurry was flowed at a flow rate of 32 ml / min. The hollow fiber membrane-like adsorbent 1 was obtained by injecting into a 43 ° C. water bath at a free flow distance of 5 cm at a flow velocity of 2 cm / s and forming a hollow fiber membrane.

作製した中空糸膜状吸着材1は外径2.8mm、内径1.0mm、膜厚0.9mm前後で、内側に多くのスリット構造を有していた(図1)。スリット構造は、紡糸工程の相分離に際し、スラリーへの芯液の拡散と、スラリーから溶脱した空気によって生じると考えられる。中空糸膜状吸着材1を160℃で一晩乾燥した後に、細孔容積・細孔分布を測定した。細孔容積が1.2mL/gで、0.3〜13μmの範囲にマクロポアを有する多元多孔体であった。中空糸膜状吸着材1中の微粉末状吸着剤の含量は、熱分析によると有機高分子バインダーの分解による減量から算出すると、77重量%である。また、引張り試験時の破断伸度は12%と柔軟であり、通水試験やモジュール加工が可能であった。スラリーの粘度、中空糸膜状吸着材1の物性値等を表1に示す。   The produced hollow fiber membrane-like adsorbent 1 had an outer diameter of 2.8 mm, an inner diameter of 1.0 mm, and a film thickness of about 0.9 mm, and had a large number of slit structures inside (FIG. 1). The slit structure is considered to be generated by the diffusion of the core liquid into the slurry and the air leached out of the slurry during phase separation of the spinning process. After drying the hollow fiber membrane-like adsorbent 1 at 160 ° C. overnight, the pore volume and pore distribution were measured. It was a multi-purpose porous body having macropores in the range of 0.3 to 13 μm with a pore volume of 1.2 mL / g. The content of the fine powdery adsorbent in the hollow fiber membrane-like adsorbent 1 is 77% by weight calculated from the loss due to the decomposition of the organic polymer binder by thermal analysis. Moreover, the breaking elongation at the time of a tension test was flexible with 12%, and a water flow test and module processing were possible. The viscosity of the slurry, the physical property values of the hollow fiber membrane adsorbent 1, etc. are shown in Table 1.

(実施例2)
実施例1において有機高分子バインダーの溶液の昇温後の温度およびスラリーの温度を46℃とし(スラリーの粘度;46℃で2.3Pa.s)、微粉末状吸着剤の乾燥温度が60℃であり、芯液として36℃の水を25.0ml/min.で流した他は実施例1と同様にして、中空糸膜状吸着材2を得た。
(Example 2)
In Example 1, the temperature after the temperature rise of the solution of the organic polymer binder and the temperature of the slurry are 46 ° C. (slurry viscosity; 2.3 Pa · s at 46 ° C.), and the drying temperature of the fine powdery adsorbent is 60 ° C. And 25.0 ml / min of water at 36 ° C. as a core liquid. A hollow fiber membrane adsorbent 2 was obtained in the same manner as in Example 1 except that the reaction was carried out.

作製した中空糸膜状吸着材2は外径3.0mm、内径1.4mm、膜厚0.8mm前後で、60℃で一晩乾燥した後に、水銀ポロシメーターで測定すると細孔容積が0.9mL/g以上で、0.4〜7.3μmの範囲にマクロポアを有する多元多孔体であった。中空糸膜状吸着材中の微粉末状吸着剤の含量は、熱分析によると有機高分子バインダーの分解による減量から算出すると、72重量%である。また、引張り試験時の破断伸度は10%であり、通水試験やモジュール加工が可能であった。スラリーの粘度、中空糸膜状吸着材2の物性値等を表1に示す。   The hollow fiber membrane-like adsorbent 2 thus prepared has an outer diameter of 3.0 mm, an inner diameter of 1.4 mm, a film thickness of about 0.8 mm, and is dried overnight at 60 ° C., and then has a pore volume of 0.9 mL as measured by a mercury porosimeter. It was a multi-purpose porous body having macropores in the range of 0.4 to 7.3 μm at not less than 1 / g. The content of the fine powdery adsorbent in the hollow fiber membrane adsorbent is 72% by weight, as calculated from the loss due to the decomposition of the organic polymer binder, by thermal analysis. Moreover, the breaking elongation at the time of a tension test is 10%, and a water flow test and module processing were possible. The viscosity of the slurry, physical property values of the hollow fiber membrane-like adsorbent 2 and the like are shown in Table 1.

(実施例3)
有機高分子バインダーとしてのポリエーテルサルホン(ソルベイアドバンストポリマーズ株式会社、ベラデル3000P)30.0gを溶媒としてのジメチルスルホキシド(和光純薬工業株式会社、特級)180.5gに室温(25℃)・大気圧(0.1013MPa)下で、空気を取り込みながら混合して空気が飽和に溶存した混合液を得、更に200rpm〜300rpmで攪拌しながら、液面を泡立てないように50℃までゆっくり昇温(昇温速度3℃/min.)し、更に3時間攪拌してポリエチレンポリビニルアルコール共重合樹脂を完全に溶解させて溶液を得た。
(Example 3)
Large room temperature (25 ° C) · 180.5 g of dimethyl sulfoxide (Wako Pure Chemical Industries, Ltd., special grade) as a solvent, 30.0 g of polyether sulfone (Solvay Advanced Polymers, Inc., Veradel 3000P) as an organic polymer binder Under air pressure (0.1013MPa), the mixture is mixed while taking in air to obtain a mixed solution in which the air is dissolved, and the temperature is slowly raised to 50 ° C so as not to foam the liquid surface while stirring at 200rpm to 300rpm. The temperature was increased at a rate of 3 ° C./min., And the mixture was further stirred for 3 hours to completely dissolve the polyethylene polyvinyl alcohol copolymer resin to obtain a solution.

得られた溶液をそのまま50℃に加温攪拌しながら、そこに、微粉末状吸着剤(実施例1と同じ合成ハイシリカゼオライト粉末を、予め60℃にて一晩以上乾燥させたものを用いた。)100gを、液面を泡立てないように少量ずつ投入添加して、そのまま更に一晩攪拌し、空気溶存量の高い多孔体成形用のスラリーを調製した。この時のスラリー中の微粉末状吸着剤の濃度は32重量%であり、中空糸膜状吸着材に対する吸着剤の仕込量は77重量%であった。一晩攪拌した後、得られたスラリーは2.4Pa.s(密度1.29g/cm)であり、芯液吐出口0.7mm、スラリー吐出口径6.0mmの2重口ノズルを用い、芯液として25℃の水を11.7ml/min.、スラリーを40ml/min.で、42℃の湯浴に射出する他は実施例1と同様にして中空糸膜状吸着材3を得た。 While the resulting solution was heated and stirred at 50 ° C. as it was, a finely powdered adsorbent (the same synthetic high silica zeolite powder as in Example 1 was previously dried at 60 ° C. overnight or more) was used. 100 g was added little by little so as not to foam the liquid surface, and the mixture was further stirred overnight to prepare a slurry for forming a porous body with a high amount of dissolved air. The concentration of the fine powdery adsorbent in the slurry at this time was 32% by weight, and the charged amount of the adsorbent to the hollow fiber membrane-like adsorbent was 77% by weight. After stirring overnight, the resulting slurry had a pressure of 2.4 Pa.s. s (density: 1.29 g / cm 3 ), using a double-opening nozzle with a core liquid discharge port of 0.7 mm and a slurry discharge port of 6.0 mm, 11.7 ml / min. , 40 ml / min. A hollow fiber membrane adsorbent 3 was obtained in the same manner as in Example 1 except that the solution was injected into a 42 ° C. water bath.

作製した中空糸膜状吸着材3は外径3.8mm、内径1.5mm、膜厚1.15mmであった。60℃で一晩乾燥した後に、水銀ポロシメーターで測定すると細孔容積が0.88mL/g以上で、40nm〜7μmの範囲にマクロポアを有する多元多孔体であった。中空糸膜状吸着材中の微粉末状吸着剤の含量は、熱分析によると有機高分子バインダーの分解による減量から算出すると、74重量%である。また、引張り試験時の破断伸度は35%であり、通水試験やモジュール加工が可能であった。スラリーの粘度、中空糸膜状吸着材3の物性値等を表1に示す。   The produced hollow fiber membrane-like adsorbent 3 had an outer diameter of 3.8 mm, an inner diameter of 1.5 mm, and a film thickness of 1.15 mm. After drying at 60 ° C. overnight, it was a multi-purpose porous body having a pore volume of 0.88 mL / g or more and a macropore in the range of 40 nm to 7 μm as measured by a mercury porosimeter. The content of the fine powdery adsorbent in the hollow fiber membrane adsorbent is 74% by weight as calculated from the loss due to the decomposition of the organic polymer binder according to the thermal analysis. Moreover, the breaking elongation at the time of a tension test is 35%, and a water flow test and module processing were possible. The viscosity of the slurry, the physical property values of the hollow fiber membrane adsorbent 3 and the like are shown in Table 1.

(実施例4)
有機高分子バインダーを20.5g、微粉末状吸着剤を81g使用した他は、実施例2と同様にして、中空糸成形用のスラリーを調製した。紡糸時のスラリー粘度は、46℃で1.1Pa.s(密度1.26g/cm)であった。他は実施例2と同様に中空糸状に吸着剤を成形した。得られた中空糸膜状吸着材は外径2.1mm、厚みが0.3mmと、外径が細く、厚みも薄い中空糸となった。60℃で一晩乾燥した後に、水銀ポロシメーターで測定すると細孔容積が1.0mL/gで、空隙率58%、0.4〜1.3μmの範囲にマクロポアを有する多元多孔体であった。中空糸膜状吸着材中の微粉末状吸着剤の含量は、熱分析によると有機高分子バインダーの分解による減量から算出すると、71重量%である。また、引張り試験時の破断伸度は15%と柔軟であった。スラリーの粘度、中空糸膜状吸着材4の物性値等を表1に示す。
(Example 4)
A hollow fiber-forming slurry was prepared in the same manner as in Example 2 except that 20.5 g of an organic polymer binder and 81 g of a finely powdered adsorbent were used. The slurry viscosity at the time of spinning is 1.1 Pa.s at 46 ° C. It was s (density 1.26 g / cm < 3 >). The other adsorbents were formed into hollow fibers in the same manner as in Example 2. The obtained hollow fiber membrane-like adsorbent was a hollow fiber having a small outer diameter and a thin thickness, such as an outer diameter of 2.1 mm and a thickness of 0.3 mm. After drying at 60 ° C. overnight, the pore volume was 1.0 mL / g as measured by a mercury porosimeter, and it was a multi-purpose porous body having a porosity of 58% and macropores in the range of 0.4 to 1.3 μm. The content of the fine powdery adsorbent in the hollow fiber membrane adsorbent is 71% by weight as calculated from the loss due to the decomposition of the organic polymer binder according to the thermal analysis. Moreover, the breaking elongation at the time of a tension test was flexible with 15%. The viscosity of the slurry, the physical property values of the hollow fiber membrane adsorbent 4, etc. are shown in Table 1.

(比較例1)
成形用のスラリー調製中及び成形直前に820rpmで30分脱気を行なった他は、実施例1と同様にスラリー調製を行ない、中空糸状に吸着剤を成形し、中空糸膜状吸着材R1を得た。スラリー粘度は43℃で2.5Pa.s(密度1.37g/cm)に低下していた。得られた中空糸膜状吸着材R1の外径は2.6mm,厚みは0.6mmで、断面の内スリット構造はごく浅く認められるが、全体的に緻密な構造を有する中空糸となった。引張り試験時の破断伸度は、5.0%前後と柔軟性が大幅に低下し、加工や溶液を加圧供給しての濾過作業に使用することはできなかった。スラリーの粘度、中空糸膜状吸着材R1の物性値等を表1に示す。
(Comparative example 1)
A slurry was prepared in the same manner as in Example 1 except that degassing was performed at 820 rpm for 30 minutes while preparing a slurry for molding and immediately before molding, and an adsorbent was molded into a hollow fiber shape to obtain a hollow fiber membrane adsorbent R1. Obtained. The slurry viscosity is 2.5 Pa.s at 43.degree. It was reduced to s (density 1.37 g / cm 3 ). The outer diameter of the obtained hollow fiber membrane-like adsorbent R1 was 2.6 mm and the thickness was 0.6 mm, and although the internal slit structure of the cross section was very shallow, it became a hollow fiber having a dense structure as a whole. . The breaking elongation at the time of the tensile test was about 5.0% and the flexibility was greatly reduced, and it could not be used for filtration work with processing and pressure supply of solution. The viscosity of the slurry, the physical property values of the hollow fiber membrane adsorbent R1, etc. are shown in Table 1.

(比較例2)
スラリーを倍量調製し、有機高分子バインダーの溶解過程で25分間脱気を行ない、更に微粉末状吸着剤添加時に5分間800rpm以上で高速攪拌しながら脱気を行ない、紡糸用ノズルとしてスラリー吐出口径3.8mmのものを使用し、スラリーの吐出速度を90mL/min.、芯液の吐出速度を80mL/min.とした他は実施例2と同様にして中空糸状に吸着剤を成形し中空糸膜状吸着材R2を得た。得られた中空糸膜状吸着材は、外径が2.5mm、厚みが1.0mmで、図4のように、断面構造のスリットは潰れたような状態であった。引張り試験時の破断伸度は2%前後と非常に脆くなり、また、空隙率も50%未満に低下して、溶液を加圧供給しての濾過作業に使用することはできなかった。スラリーの粘度、中空糸膜状吸着材2の物性値等を表1に示す。
(Comparative example 2)
The slurry is prepared in double volume, deaerated for 25 minutes in the dissolution process of the organic polymer binder, and deaerated while stirring at high speed over 800 rpm for 5 minutes when adding fine powdery adsorbent, and the slurry is discharged as a nozzle for spinning Using the one with a caliber of 3.8 mm, the discharge rate of the slurry is 90 mL / min. , Discharge rate of the core liquid 80 mL / min. In the same manner as in Example 2 except that the adsorbent was formed into a hollow fiber shape, a hollow fiber membrane adsorbent R2 was obtained. The obtained hollow fiber membrane-like adsorbent had an outer diameter of 2.5 mm and a thickness of 1.0 mm, and as shown in FIG. 4, the slit having the cross-sectional structure was in a collapsed state. The breaking elongation at the time of the tensile test became very brittle at around 2%, and the porosity also decreased to less than 50%, so that the solution could not be used for filtration work by pressure feeding. The viscosity of the slurry, physical property values of the hollow fiber membrane-like adsorbent 2 and the like are shown in Table 1.

(実施例5〜7:4MI吸着除去試験)
実施例1〜3で得られた中空糸膜状吸着材1〜3其々について30cm長さで10本を束ねたパイロットスケール膜モジュール(図3参照)を作製した。其々について、20%カラメル水溶液を連続的に通液し、4MI吸着除去試験を行ない、モジュールの連用性についての検討を行なった。通液試験はクロスフローの条件で行い、内圧供給でカラメル水溶液を一定の通液速度で供給した。この時の、カラメル水溶液の濾過量が1200−1800gとなるごとに、モジュールの洗浄・再生処理として1%水酸化ナトリウム水溶液の通液を行なった。それぞれの結果について表2に示す。
(Examples 5 to 7: 4MI adsorption removal test)
A pilot scale membrane module (see FIG. 3) was produced by bundling ten hollow fiber membrane-like adsorbents 1 to 3 obtained in each of Examples 1 to 3 at a length of 30 cm. In each case, a 20% caramel aqueous solution was continuously passed through, a 4MI adsorption removal test was conducted, and a study was made on the continuous use of the module. The pouring test was conducted under cross flow conditions, and caramel aqueous solution was supplied at a constant pouring speed by internal pressure supply. At this time, a 1% sodium hydroxide aqueous solution was passed as washing and regeneration treatment of the module every time the filtered amount of the caramel aqueous solution reached 1200 to 1800 g. The results are shown in Table 2.

Claims (8)

中空糸膜状吸着材の製造方法であって、
前記中空糸膜状吸着材は、微粉末状吸着剤と有機高分子バインダーとを含み、
前記微粉末状吸着剤の含有率が70重量%〜80重量%の範囲にあり、
前記有機高分子バインダーの含有率が20重量%〜30重量%の範囲にあり、
膜厚が0.3mm〜1.3mmの範囲にあり、
内側に径方向のスリット構造を有し、
芯液吐出口とその外周に位置するスラリー吐出口とを有する2重口ノズルを備えた乾湿式紡糸装置を用い、前記スラリー吐出口から、紡糸用スラリーを吐出すると共に、前記芯液吐出口から芯液を吐出して、凝固浴液に空走距離を設けて射出し、中空糸膜状吸着材を得る紡糸工程、を含み、
前記紡糸用スラリーは、溶媒に前記有機高分子バインダーが溶解し、前記微粉末状吸着剤が分散し、粘度が1.0Pa.s以上6.5Pa.s以下で、かつ気体の溶存量がスラリー吐出温度における飽和量以上である、中空糸膜状吸着材の製造方法。
A method for producing a hollow fiber membrane adsorbent, which comprises
The hollow fiber membrane adsorbent comprises a fine powder adsorbent and an organic polymer binder,
The content of the fine powdery adsorbent is in the range of 70% by weight to 80% by weight,
The content of the organic polymer binder is in the range of 20% by weight to 30% by weight,
The film thickness is in the range of 0.3 mm to 1.3 mm,
Has a radial slit structure inside,
The spinning slurry is discharged from the slurry discharge port using a dry-wet spinning apparatus provided with a double-opening nozzle having a core liquid discharge port and a slurry discharge port located on the outer periphery thereof, and from the core liquid discharge port The core solution is discharged, and the coagulation bath solution is provided with a free running distance and injected to obtain a hollow fiber membrane-like adsorbent;
In the slurry for spinning, the organic polymer binder is dissolved in a solvent, the finely powdered adsorbent is dispersed, and the viscosity is 1.0 Pa.s. s or more 6.5 Pa. The manufacturing method of the hollow fiber membrane-like adsorbent whose s or less and the dissolved amount of gas are more than the saturation amount in slurry discharge temperature.
前記紡糸用スラリーの吐出時の気体溶存量は、スラリー吐出温度における飽和量より多い、ことを特徴とする請求項1に記載の製造方法。   The manufacturing method according to claim 1, wherein the amount of dissolved gas at the time of discharge of the slurry for spinning is larger than the amount of saturation at the slurry discharge temperature. 前記紡糸用スラリーは、
前記有機高分子バインダーと前記溶媒とを含み、温度が前記スラリー吐出温度より低温で、前記気体が溶存している混合液を、前記スラリー吐出温度まで攪拌しながら昇温して、前記有機高分子バインダーを溶媒に溶解し、気体飽和量に対する気体溶存量の割合を高くしたバインダー溶液を得るバインダー溶液調製工程と、
前記バインダー溶液を攪拌しながら、微粉末状吸着剤を、液面の発泡を抑えるように複数回に分けて添加する、スラリー調製工程と、によって得る、ことを特徴とする請求項1又は2に記載の、中空糸膜状吸着材の製造方法。
The spinning slurry is
The temperature of the mixed solution containing the organic polymer binder and the solvent, the temperature is lower than the slurry discharge temperature, and the gas is dissolved, and the temperature is raised while stirring to the slurry discharge temperature. A binder solution preparing step of dissolving a binder in a solvent and obtaining a binder solution in which the ratio of the amount of dissolved gas to the amount of gas saturation is increased;
3. The slurry preparation process according to claim 1, wherein the fine powdery adsorbent is added in plural times so as to suppress foaming of the liquid surface while stirring the binder solution. The manufacturing method of the hollow fiber membrane adsorbent as described.
前記バインダー溶液調製工程の前に、前記溶媒に気体を溶解させる気体溶解工程を更に含む、ことを特徴とする請求項3に記載の中空糸膜状吸着材の製造方法。   The method for producing a hollow fiber membrane-like adsorbent according to claim 3, further comprising a gas dissolving step of dissolving a gas in the solvent before the binder solution preparing step. 前記紡糸工程において、 前記紡糸用スラリーと前記芯液の吐出温度が、前記紡糸用スラリーが前記芯液に接触して起きる相分離に際して、溶存空気をスラリーから溶脱させて芯液の拡散を容易にし、中空糸膜状吸着材の内側にマクロなスリット状構造を形成させる温度である、ことを特徴とする請求項1〜4のいずれか1項に記載の製造方法。   In the spinning step, the temperature at which the spinning slurry and the core liquid are discharged causes dissolution of the dissolved air from the slurry to facilitate diffusion of the core liquid during phase separation which occurs when the spinning slurry contacts the core liquid. The method according to any one of claims 1 to 4, wherein the temperature is such that a macro slit-like structure is formed inside the hollow fiber membrane-like adsorbent. 前記有機高分子バインダーは、ポリエチレンポリビニルアルコール共重合樹脂又はポリエーテルサルホンであり、前記微粉末状吸着剤は、ゼオライト微粉末である、ことを特徴とする請求項1〜5のいずれか1項に記載の製造方法。   The organic polymer binder is a polyethylene polyvinyl alcohol copolymer resin or polyether sulfone, and the fine powdery adsorbent is a zeolite fine powder. The manufacturing method described in. 前記スラリーの吐出温度は、20℃〜80℃の範囲であり、
前記芯液は、吐出温度が20℃〜40℃の範囲である、水又は水溶液であり、
前記凝固浴液は、温度が20℃〜50℃の範囲である、水又は水溶液である、請求項1〜6のいずれか1項に記載の製造方法。
The discharge temperature of the slurry is in the range of 20 ° C. to 80 ° C.,
The core liquid is water or an aqueous solution having a discharge temperature in the range of 20 ° C. to 40 ° C.,
The method according to any one of claims 1 to 6, wherein the coagulation bath liquid is water or an aqueous solution having a temperature in the range of 20 ° C to 50 ° C.
前記中空糸膜状吸着材の破断伸度は、10%以上である、ことを特徴とする請求項1〜7のいずれか1項に記載の製造方法。   The manufacturing method according to any one of claims 1 to 7, wherein a breaking elongation of the hollow fiber membrane-like adsorbent is 10% or more.
JP2017193716A 2017-10-03 2017-10-03 Manufacturing method of hollow fiber membrane-like adsorbent Pending JP2019063757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017193716A JP2019063757A (en) 2017-10-03 2017-10-03 Manufacturing method of hollow fiber membrane-like adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017193716A JP2019063757A (en) 2017-10-03 2017-10-03 Manufacturing method of hollow fiber membrane-like adsorbent

Publications (1)

Publication Number Publication Date
JP2019063757A true JP2019063757A (en) 2019-04-25

Family

ID=66339126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017193716A Pending JP2019063757A (en) 2017-10-03 2017-10-03 Manufacturing method of hollow fiber membrane-like adsorbent

Country Status (1)

Country Link
JP (1) JP2019063757A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533207A (en) * 2020-06-23 2020-08-14 董晓明 Adsorbent for printing and dyeing wastewater treatment and preparation method thereof
CN115845825A (en) * 2022-11-29 2023-03-28 北京碧水源膜科技有限公司 Preparation method of lithium adsorbent and equipment for implementing method
CN115996790A (en) * 2020-09-14 2023-04-21 大金工业株式会社 Adsorbent and granulated material
CN116371384A (en) * 2022-12-28 2023-07-04 北京碧水源膜科技有限公司 Forming method of titanium-based lithium ion sieve powder
CN116714156A (en) * 2023-06-08 2023-09-08 中国热带农业科学院农产品加工研究所 Frost-spraying barrier film, preparation method thereof and method for inhibiting rubber frosting

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111533207A (en) * 2020-06-23 2020-08-14 董晓明 Adsorbent for printing and dyeing wastewater treatment and preparation method thereof
CN115996790A (en) * 2020-09-14 2023-04-21 大金工业株式会社 Adsorbent and granulated material
CN115845825A (en) * 2022-11-29 2023-03-28 北京碧水源膜科技有限公司 Preparation method of lithium adsorbent and equipment for implementing method
CN115845825B (en) * 2022-11-29 2023-09-19 北京碧水源膜科技有限公司 Preparation method of lithium adsorbent and equipment for realizing method
CN116371384A (en) * 2022-12-28 2023-07-04 北京碧水源膜科技有限公司 Forming method of titanium-based lithium ion sieve powder
CN116371384B (en) * 2022-12-28 2024-04-16 北京碧水源膜科技有限公司 Forming method of titanium-based lithium ion sieve powder
CN116714156A (en) * 2023-06-08 2023-09-08 中国热带农业科学院农产品加工研究所 Frost-spraying barrier film, preparation method thereof and method for inhibiting rubber frosting

Similar Documents

Publication Publication Date Title
JP2019063757A (en) Manufacturing method of hollow fiber membrane-like adsorbent
JP5305296B2 (en) Polyamide hollow fiber membrane and method for producing the same
JP5431347B2 (en) Porous membrane, method for producing porous membrane, method for producing clarified liquid, and porous membrane module
US10406487B2 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
WO2000063122A1 (en) Method for purifying turbid water
JP5878288B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
EP2913098B1 (en) Hollow fiber membrane having hexagonal voids
JP2010227757A (en) Composite separation membrane
JPWO2006087963A1 (en) Vinylidene fluoride resin hollow fiber porous membrane, water filtration method using the same, and production method thereof
KR20160090536A (en) Dual-layer hollow fiber membrane containing nanoparticles and manufacturing method thereof
JP3805634B2 (en) Porous hollow fiber membrane and method for producing the same
JPH08108053A (en) Cellulose acetate hollow-fiber separation membrane and its production
JPH07163849A (en) Polysulfone hollow fiber membrane and production thereof
JP5730851B2 (en) Filtration of undegassed liquid
WO2018181579A1 (en) Microporous film
KR20040089886A (en) Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
JP4781497B2 (en) Cellulose acetate hollow fiber separation membrane
JP2010075851A (en) Porous film and method for manufacturing the same
KR20120077011A (en) Water treatment membrane of poly(ethylenechlorotrifluoroethylene) and manufacturing method thereof
JP5894687B2 (en) Highly permeable polyamide hollow fiber membrane and method for producing the same
JP5655856B2 (en) Method for dissolving and defoaming polymer and method for producing porous membrane
KR101308996B1 (en) The Preparation method of hollow fiber membrane with high permeation using hydrophilic polyvinylidenefluoride composites for water treatment
Refaat et al. Efficient removal of bovine serum albumin from water by cellulose acetate membranes modified with clay and titania nano particles
JP2010082509A (en) Porous membrane
JP2005193200A (en) Hollow fiber membrane having excellent mechanical strength and its production method