JP2019060630A - Method for measuring conductivity of decationized water and measurement system - Google Patents

Method for measuring conductivity of decationized water and measurement system Download PDF

Info

Publication number
JP2019060630A
JP2019060630A JP2017183369A JP2017183369A JP2019060630A JP 2019060630 A JP2019060630 A JP 2019060630A JP 2017183369 A JP2017183369 A JP 2017183369A JP 2017183369 A JP2017183369 A JP 2017183369A JP 2019060630 A JP2019060630 A JP 2019060630A
Authority
JP
Japan
Prior art keywords
water
conductivity
decationized
treated
decationization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017183369A
Other languages
Japanese (ja)
Other versions
JP6916702B2 (en
Inventor
建持 千佳
Chika Kenmochi
千佳 建持
山中 弘次
Koji Yamanaka
弘次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2017183369A priority Critical patent/JP6916702B2/en
Publication of JP2019060630A publication Critical patent/JP2019060630A/en
Application granted granted Critical
Publication of JP6916702B2 publication Critical patent/JP6916702B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

To provide a method for measuring the conductivity of decationized water, the decationization efficiency of which is high and the load of which on a device is small.SOLUTION: Diluted water is added to the water to be processed that includes cations and anions, and the diluted water to be processed having had its pH lowered is generated. Then, this diluted water to be processed is supplied to a decationizing device 3 and decationized water is generated. Then, the decationized water generated by the decationizing device 3 is supplied to a conductivity meter 4 and the conductivity of the decationized water is measured.SELECTED DRAWING: Figure 1

Description

本発明は脱陽イオン水の導電率の測定方法及び測定システムに関し、特に発電所における復水の導電率の測定方法に関する。   The present invention relates to a method and system for measuring the conductivity of decationized water, and more particularly to a method for measuring the conductivity of condensate in a power plant.

火力発電所や原子力発電所(以下、発電所という)では、ボイラ等の蒸気発生手段で生成された高温高圧の水蒸気が蒸気タービンに導入され、蒸気タービンから排出された排蒸気が復水器で凝縮されて復水となり、復水が蒸気発生手段に給水として供給されるという水循環が行われている。復水中には腐食生成物などの不純物が蓄積するため、発電所には定常運転時に復水からこれらの不純物を除去する復水脱塩装置が設置されている。復水器が海水冷却方式である場合、復水脱塩装置は復水に混入する可能性のある海水に含まれる塩化ナトリウム等を一定時間にわたり捕捉して復水系を保護する機能も有している。しかし、一定量を上回る量の海水が流入すると復水脱塩装置の運転許容範囲を超えるため、発電所には、復水中の海水成分を検出することを目的として導電率計が設けられている。   In thermal power plants and nuclear power plants (hereinafter referred to as power plants), high-temperature, high-pressure steam generated by steam generation means such as a boiler is introduced to a steam turbine, and exhaust steam discharged from the steam turbine is Water circulation is performed in which the water is condensed to be condensed, and the condensed water is supplied to the steam generation means as water supply. Since impurities such as corrosion products accumulate in the condensate, the power plant is equipped with a condensate demineralizer that removes these impurities from the condensate during steady operation. When the condenser is a seawater cooling system, the condensate demineralizer also has a function to capture sodium chloride etc. contained in seawater that may be mixed in the condensate for a certain period of time to protect the condensate system. There is. However, when seawater in excess of a certain amount flows in, it exceeds the operation allowable range of the condensate demineralizer, so the power plant is provided with a conductivity meter for the purpose of detecting the seawater component in the condensate. .

一方、発電所においては復水系の配管等の腐食を抑制するため、復水にアンモニア等のpH調整剤を添加し、復水をアルカリ性にする運用が行われている。このため、復水は比抵抗が低く導電率が高い状態にあり、微量の海水が復水系に混入しても比抵抗ないし導電率の変化が少ない。従って、導電率計で海水の混入を精度よく検知することが難しい。この課題を解決するため、アンモニア等の陽イオンを予め脱陽イオン装置で除去し、導電率の低下した復水を導電率計に供給する方法がとられることがある(特許文献1,2)。この方法によれば、海水に由来する陰イオンの検出精度が高められ、海水の混入を精度よく検知することができる。   On the other hand, in a power plant, in order to suppress corrosion of piping etc. of a condensate system, pH control agents such as ammonia are added to condensate to make the condensate alkaline. For this reason, the condensate has a low specific resistance and a high conductivity, and even if a small amount of seawater is mixed in the condensate, the change in the specific resistance or the conductivity is small. Therefore, it is difficult to detect mixing of seawater with a conductivity meter accurately. In order to solve this problem, a method may be taken in which cations such as ammonia are previously removed by a decationization apparatus, and condensed water with reduced conductivity is supplied to a conductivity meter (Patent Documents 1 and 2) . According to this method, detection accuracy of anions derived from seawater can be enhanced, and mixing of seawater can be detected with high accuracy.

特許4671272公報Patent No. 4671272 特許3704289公報Patent 3704289 gazette

復水のpHは従来8.5〜9.8程度とされてきたが、JIS B8223「ボイラの給水及びボイラ水の水質」の改定に伴い、近年10を超える値で運用されることもある。これに伴い、pH調整剤であるアンモニア等の添加量が増え、脱陽イオン装置の負荷も増加しつつある。カチオン交換樹脂を用いた脱陽イオン装置では貫流容量に達するまでの時間が短くなり、カチオン交換樹脂のより頻繁な交換、薬品再生が必要となる。電気再生式脱陽イオン装置の場合、この問題は生じないが電流値が不足しアンモニア等を十分に除去することができない。また、電流値を上げると装置の劣化が早まる。   The pH of the condensate has been conventionally about 8.5 to 9.8, but it may be operated at a value exceeding 10 in recent years with the revision of JIS B 8223 "water quality of boiler feed water and boiler water". Along with this, the addition amount of ammonia which is a pH adjusting agent is increased, and the load of the decationizing apparatus is also increased. In the decationization apparatus using a cation exchange resin, the time to reach the through flow capacity is shortened, and more frequent exchange of the cation exchange resin and chemical regeneration are required. In the case of the electric regenerative decationization apparatus, this problem does not occur, but the current value is insufficient and ammonia and the like can not be sufficiently removed. In addition, when the current value is increased, the deterioration of the device is accelerated.

本発明は、脱陽イオン効率が高く装置への負荷も小さい脱陽イオン水の導電率の測定方法及び測定システムを提供することを目的とする。   An object of the present invention is to provide a method and a system for measuring the conductivity of decationized water having a high decationization efficiency and a small load on the apparatus.

本発明の一態様によれば、脱陽イオン水の導電率の測定方法は、陽イオンと陰イオンを含む被処理水に希釈水を添加して、pHが下げられた希釈被処理水を生成することと、希釈被処理水を脱陽イオン装置に供給して、脱陽イオン水を生成することと、脱陽イオン装置で生成された脱陽イオン水を導電率計に供給して、脱陽イオン水の導電率を測定することと、を有する。また、本発明の一態様によれば、脱陽イオン水の導電率の測定システムは、陽イオンと陰イオンを含む被処理水に希釈水を添加して、pHが下げられた希釈被処理水を生成する希釈装置と、希釈被処理水から脱陽イオン水を生成する脱陽イオン装置と、脱陽イオン装置で生成された脱陽イオン水の導電率を測定する導電率計と、を有する。   According to one aspect of the present invention, a method of measuring conductivity of decationized water comprises adding diluted water to treated water containing cations and anions to produce diluted treated water having a lowered pH. , Supplying the diluted treated water to the decationizing apparatus to form decationizing water, and supplying the decationizing water generated by the decationizing apparatus to the conductivity meter to remove Measuring the conductivity of the cationic water. Further, according to one aspect of the present invention, a system for measuring conductivity of decationized water comprises adding diluted water to treated water containing cations and anions to lower the pH of the diluted treated water. And a decationizing device for producing decationized water from diluted treated water, and a conductivity meter for measuring the conductivity of the decationized water produced by the decationizing device. .

本発明によれば、脱陽イオン効率が高く装置への負荷も小さい脱陽イオン水の導電率の測定方法及び測定システムを提供することができる。   According to the present invention, it is possible to provide a method and a system for measuring the conductivity of decationized water with high decationization efficiency and small load on the apparatus.

本発明の第1の実施形態に係る脱陽イオン水の導電率測定システムの概念図である。It is a conceptual diagram of the conductivity measurement system of decationic ion water concerning a 1st embodiment of the present invention. 本発明の第2の実施形態に係る脱陽イオン水の導電率測定システムの概念図である。It is a conceptual diagram of the conductivity measurement system of decationic ion water concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係る脱陽イオン水の導電率測定システムの概念図である。It is a conceptual diagram of the conductivity measurement system of decationic ion water concerning a 3rd embodiment of the present invention.

以下、図面を参照して本発明のいくつかの実施形態を説明する。各実施形態において、被処理水は火力発電所または原子力発電所の復水である。すなわち、本発明の各実施形態における導電率の測定システムは火力発電所または原子力発電所が備えるシステムである。しかし、本発明はこれに限定されず、脱陽イオン装置で生成される脱陽イオン水の導電率を測定する方法とシステムに適用することができる。   Hereinafter, some embodiments of the present invention will be described with reference to the drawings. In each embodiment, the water to be treated is a condensate of a thermal power plant or a nuclear power plant. That is, the measurement system of the conductivity in each embodiment of the present invention is a system with which a thermal power plant or a nuclear power plant is provided. However, the present invention is not limited thereto, and can be applied to a method and system for measuring the conductivity of decationized water produced by the decationization apparatus.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る脱陽イオン水の導電率測定システム1(以下、システム1という)の概念図を示している。システム1は脱陽イオン装置3と、導電率計4と、流量計2と、弁7とを有している。これらの装置は復水配管8から分岐する配管6上に設置されている。導電率計4の出口はドレン配管9に接続されている。また、システム1は希釈装置10を有している。希釈装置10は、ドレン配管9から分岐して配管6に接続される希釈水供給ライン11と、希釈水供給ライン11上に設けられた移送ポンプ12、弁13及び流量計14と、を有する。復水配管8から供給される復水は希釈装置10から供給される希釈水によって希釈され、希釈被処理水となる。脱陽イオン装置3は陽イオンと陰イオンを含む希釈被処理水から脱陽イオン水を生成する。導電率計4は、脱陽イオン装置3で生成された脱陽イオン水の導電率を測定する。流量計2は脱陽イオン装置3に流入する希釈被処理水の流量を測定する。弁7は通常開かれているが、システム1を復水系から隔離する必要があるときに閉じられる。
First Embodiment
FIG. 1 shows a conceptual view of a decationized water conductivity measuring system 1 (hereinafter referred to as a system 1) according to a first embodiment of the present invention. The system 1 comprises a decationizing device 3, a conductivity meter 4, a flow meter 2 and a valve 7. These devices are installed on the pipe 6 branched from the condensate pipe 8. The outlet of the conductivity meter 4 is connected to the drain pipe 9. The system 1 also comprises a dilution device 10. The dilution device 10 has a dilution water supply line 11 branched from the drain pipe 9 and connected to the pipe 6, a transfer pump 12 provided on the dilution water supply line 11, a valve 13, and a flow meter 14. The condensed water supplied from the condensed water pipe 8 is diluted by the dilution water supplied from the dilution device 10 to be diluted treated water. The decationization apparatus 3 generates decationized water from diluted treated water containing cations and anions. The conductivity meter 4 measures the conductivity of the decationized water produced by the decationization apparatus 3. The flow meter 2 measures the flow rate of the diluted treated water flowing into the decationizing apparatus 3. The valve 7 is normally open but closed when it is necessary to isolate the system 1 from the condensate system.

脱陽イオン装置3は脱塩室31と脱塩室31の両側にカチオン交換膜34,35を介して配置された一対の濃縮室32,33と、を有している。濃縮室32には正極36が、濃縮室33には負極37が配置され、濃縮室32,33は電極室を兼ねている。正極36と負極37は直流電源38に接続されている。脱塩室31にはカチオン交換体39が充填されている。カチオン交換体39の構成はカチオン成分を捕捉、除去できる限り限定されないが、カチオン交換樹脂またはモノリス状多孔質陽イオン交換体(以下、単に「モノリス」という。)、繊維状多孔質陽イオン交換体、粒子凝集型多孔質イオン交換体を好適に用いることができる。   The decationizing apparatus 3 has a deionization chamber 31 and a pair of concentration chambers 32 and 33 disposed on both sides of the deionization chamber 31 with cation exchange membranes 34 and 35 interposed therebetween. The positive electrode 36 is disposed in the concentration chamber 32, the negative electrode 37 is disposed in the concentration chamber 33, and the concentration chambers 32 and 33 double as electrode chambers. The positive electrode 36 and the negative electrode 37 are connected to a DC power supply 38. The deionization chamber 31 is filled with a cation exchanger 39. The constitution of the cation exchanger 39 is not limited as long as it can capture and remove the cation component, but a cation exchange resin or monolithic porous cation exchanger (hereinafter simply referred to as "monolith"), fibrous porous cation exchanger A particle aggregation type porous ion exchanger can be suitably used.

モノリスとしては、互いにつながっているマクロポアとマクロポアの壁内に平均径が1〜1000μm、好ましくは10〜100μmのメソポアを有する連続気泡構造を有し、全細孔容積が1〜50ml/g、好ましくは4〜20ml/gであり、イオン交換基が均一に分布され、イオン交換容量が0.5mg当量/g乾燥多孔質体以上のものが挙げられる。モノリスのその他の物性及びその製造方法は、例えば特開2003−334560号公報に開示されている。   The monolith has an open cell structure having mesopores having an average diameter of 1 to 1000 μm, preferably 10 to 100 μm in the macropores and macropores connected to each other, and the total pore volume is preferably 1 to 50 ml / g, Is 4 to 20 ml / g, and ion exchange groups are uniformly distributed, and those having an ion exchange capacity of 0.5 mg equivalent / g dry porous body or more can be mentioned. The other physical properties of the monolith and the method for producing the same are disclosed, for example, in JP-A-2003-334560.

陽イオン交換体としてモノリスを用いれば、細孔容積や比表面積を格段に大きくすることができる。このため、電気再生式脱陽イオン装置の脱イオン効率が著しく向上し非常に有利である。また、モノリスの全細孔容積が1ml/g未満であると、単位断面積当りの通水量が小さくなってしまい、処理能力が低下してしまうため好ましくない。一方、全細孔容積が50ml/gを超えると、骨格部分の占める割合が低下し、多孔質体の強度が著しく低下してしまうため好ましくない。全細孔容積が1〜50ml/gであるモノリスを電気再生式脱陽イオン装置のイオン交換体として使用した場合、多孔質体の強度と脱イオン効率を共に満足したものとすることができる点で好ましい。また、モノリスのイオン交換容量が0.5mg当量/g乾燥多孔質体未満であると、イオン吸着容量が不足して好ましくない。また、イオン交換基の分布が不均一であると、多孔質陽イオン交換体内のイオン移動が不均一となり、吸着されたイオンの迅速な排除が阻害されるので好ましくない。   By using a monolith as a cation exchanger, the pore volume and the specific surface area can be significantly increased. For this reason, the deionization efficiency of the electrodeionization apparatus is remarkably improved, which is very advantageous. In addition, if the total pore volume of the monolith is less than 1 ml / g, the amount of water flow per unit cross-sectional area becomes small, and the processing capacity is unfavorably reduced. On the other hand, when the total pore volume exceeds 50 ml / g, the proportion of the skeleton portion is reduced, and the strength of the porous body is significantly reduced. When a monolith having a total pore volume of 1 to 50 ml / g is used as an ion exchanger of the electrodeionization apparatus of electric regeneration type, it is possible to satisfy both the strength and the deionization efficiency of the porous body. Preferred. In addition, if the ion exchange capacity of the monolith is less than 0.5 mg equivalent / g dry porous material, the ion adsorption capacity is not sufficient, which is not preferable. In addition, if the distribution of the ion exchange groups is not uniform, the ion transfer within the porous cation exchanger becomes uneven, which is not preferable because the rapid elimination of the adsorbed ions is inhibited.

繊維状多孔質イオン交換体としては、例えば特開平5−64726号公報に記載の単繊維や単繊維の集合体である織布及び不織布、さらにこれらの加工品に放射線グラフト重合を利用してイオン交換基を導入し、加工成形したものが挙げられる。また、粒子凝集型多孔質イオン交換体としては、例えば特開平10−192716号公報、特開平10−192717号公報に記載の熱可塑性ポリマーと熱硬化性ポリマーの混合ポリマー、あるいは架橋性ポリマーを用いてイオン交換樹脂粒子を結合し、加工成形したものが挙げられる。   As fibrous porous ion exchangers, for example, woven fabrics and non-woven fabrics which are single fibers and aggregates of single fibers described in JP-A-5-64726, and ions of the processed products using radiation graft polymerization. What introduce | transduced the exchange group and processed and formed is mentioned. Further, as the particle aggregation type porous ion exchanger, for example, a mixed polymer of a thermoplastic polymer and a thermosetting polymer described in JP-A-10-192716 and JP-A-10-192717, or a crosslinkable polymer is used. And ion-exchange resin particles bonded and processed.

本実施形態の脱陽イオン装置3は電気再生式脱陽イオン装置(EDI)である。EDIでは、カチオン交換体39によってカチオン成分(Na、Ca2+、Mg2+等)が捕捉されるのと同時に、脱塩室31内で水の解離反応が起こり、水素イオンと水酸化物イオンが発生する。カチオン交換体39に捕捉されたカチオン成分は、水素イオンと交換されてカチオン交換体39から遊離する。遊離したカチオン成分はカチオン交換体39を伝って負極37側のカチオン交換膜35まで電気泳動し、カチオン交換膜35で電気透析されて濃縮室33へ移動する。濃縮室33に移動したカチオン成分は、濃縮室33を流れる濃縮水と共に排出される。カチオン交換体39の交換基はカチオン成分と結合後、カチオン成分を遊離させて水素イオンと再結合するため、カチオン交換体39は連続的に再生されることとなる。このように、EDIにおいては、カチオン成分の除去とカチオン交換体39の再生が自動的かつ連続的に行われるため、基本的にカチオン交換体39の再生を別工程で行う必要がない。なお、脱陽イオン装置3はEDIに限定されず、カチオン交換体39が充填されない電気透析装置(ED)であってもよい。また、脱陽イオン装置3はカチオン交換樹脂が充填されたカチオン交換塔でもよい。カチオン交換塔は通水負荷量が交換容量に達すると、塩酸などの薬品によって再生することで希釈被処理水に含まれるカチオン成分(陽イオン)の除去性能を再生する。 The decationization apparatus 3 of the present embodiment is an electroregenerative decationization apparatus (EDI). In EDI, at the same time the cation component (Na + , Ca 2+ , Mg 2+ etc.) is captured by the cation exchanger 39, the dissociation reaction of water occurs in the deionization chamber 31 and hydrogen ions and hydroxide ions Occur. The cation component trapped in the cation exchanger 39 is exchanged with hydrogen ions and released from the cation exchanger 39. The liberated cation component travels along the cation exchanger 39 and is electrophoresed to the cation exchange membrane 35 on the negative electrode 37 side, and electrodialyzed by the cation exchange membrane 35 to move to the concentration chamber 33. The cation component transferred to the concentration chamber 33 is discharged together with the concentrated water flowing in the concentration chamber 33. After the exchange group of the cation exchanger 39 binds to the cation component, it liberates the cation component to recombine with hydrogen ions, so that the cation exchanger 39 is continuously regenerated. As described above, in the EDI, since the removal of the cation component and the regeneration of the cation exchanger 39 are performed automatically and continuously, the regeneration of the cation exchanger 39 basically does not have to be performed in a separate step. The decationizing device 3 is not limited to EDI, and may be an electrodialysis device (ED) in which the cation exchanger 39 is not filled. Moreover, the decationization apparatus 3 may be a cation exchange column filled with a cation exchange resin. When the water exchange load reaches the exchange capacity, the cation exchange column is regenerated with a chemical such as hydrochloric acid to regenerate the removal performance of the cation component (cation) contained in the diluted treated water.

以下、システム1の運転方法について述べる。発電所の運転中は、復水配管8を復水が流れている。弁7は開かれ、復水が配管6を通って脱陽イオン装置3に導入される。また、導電率計4から排出された脱陽イオン水は移送ポンプ12、弁13、流量計14を介して配管6に供給される。従って、復水配管8から供給された復水(被処理水)は脱陽イオン水に希釈されて希釈被処理水となる。脱陽イオン装置3に導入される希釈被処理水の流量は脱陽イオン装置3の上流に設置された流量計2で測定される。   Hereinafter, an operation method of the system 1 will be described. During operation of the power plant, condensed water is flowing through the condensed water pipe 8. The valve 7 is opened and condensed water is introduced into the decationizing apparatus 3 through the pipe 6. In addition, decationized water discharged from the conductivity meter 4 is supplied to the pipe 6 through the transfer pump 12, the valve 13, and the flow meter 14. Therefore, the condensate (to-be-treated water) supplied from the condensate pipe 8 is diluted with decationized water to be diluted to-be-treated water. The flow rate of the diluted treated water introduced into the decationizing apparatus 3 is measured by the flow meter 2 installed upstream of the decationizing apparatus 3.

復水(被処理水)には、復水系の配管や設備の腐食を防止するため、アンモニアやヒドラジンが含まれている。これらは復水のpHを調整するために復水に添加されるpH調整剤である。復水のpHは従来の火力発電所では8.5(アンモニア1mg/L)〜9.8(アンモニア5mg/L)程度とされていたが、近年では10以上で運用されることもある。アンモニアは通常NH、またはNHの形態で復水中に存在している。被処理水中の陽イオンは脱陽イオン装置3のカチオン交換体39に捕捉され、カチオン交換膜35を通って負極37側の濃縮室33に排出される。脱陽イオン装置3でカチオン成分を除去された処理水はほぼ純水の状態となる。このため、導電率計4で測定される処理水の導電率は0.1μS/cm以下となる。 Ammonia and hydrazine are contained in the condensate (water to be treated) in order to prevent the corrosion of the piping and equipment of the condensate system. These are pH adjusters added to condensate to adjust the pH of the condensate. The pH of the condensed water is about 8.5 (1 mg / L of ammonia) to 9.8 (5 mg / L of ammonia) in the conventional thermal power plant, but may be operated at 10 or more in recent years. Ammonia is usually present in the condensate in the form of NH + or NH 3 . The cations in the water to be treated are trapped by the cation exchanger 39 of the decationizing apparatus 3 and discharged through the cation exchange membrane 35 to the concentration chamber 33 on the negative electrode 37 side. The treated water from which the cation component has been removed by the decationization apparatus 3 is almost in the state of pure water. For this reason, the conductivity of the treated water measured by the conductivity meter 4 is 0.1 μS / cm or less.

海水冷却方式の復水器に接続された復水系には海水が混入する可能性がある。すなわち、復水器内では蒸気側が減圧されているため、復水器内の海水が流れる細管にピンホールなどが生じると、海水が細管から蒸気側に侵入し、復水の塩類濃度が著しく上昇する。海水に含まれる塩としてはNaCl,NaSOなどが挙げられる。これらの塩が混入した復水が脱陽イオン装置3に導入されると、カチオン交換体39でNaが捕捉され、Cl、SO −2などを含む処理水が脱陽イオン装置3から排出される。導電率計4はHCl、HSOを検出する。このため、導電率計4で測定される処理水の導電率は通常よりも大きな値(例えば0.1μS/cm以上)となる。このように、陽イオンがほとんど除去され、塩素イオン等の海水由来の陰イオンを含む処理水の導電率を導電率計4で測定することによって、海水の復水への混入を検出することができる。このような導電率計4は酸導電率計と呼ばれることもある。 There is a possibility that seawater may be mixed in the condensate system connected to the seawater cooling type condenser. That is, since the steam side is depressurized in the condenser, if a pinhole etc. occur in the capillary through which the seawater in the condenser flows, seawater intrudes from the capillary from the capillary to the vapor side, and the salt concentration of the condensate significantly increases Do. Examples of salts contained in seawater include NaCl, Na 2 SO 4 and the like. When the condensed water mixed with these salts is introduced into the decationizing apparatus 3, Na + is trapped by the cation exchanger 39, and the treated water containing Cl , SO 4 −2 and the like is removed from the decationizing apparatus 3. Exhausted. The conductivity meter 4 detects HCl and H 2 SO 4 . For this reason, the conductivity of the treated water measured by the conductivity meter 4 becomes a value larger than usual (for example, 0.1 μS / cm or more). As described above, it is possible to detect the contamination of the seawater into the condensate by measuring the conductivity of the treated water containing almost all cations and containing anions derived from seawater such as chloride ions with the conductivity meter 4 it can. Such conductivity meter 4 may be called an acid conductivity meter.

上述のように被処理水のpHが高いと脱陽イオン装置3の負荷が高くなる。脱陽イオン装置3がEDIの場合、カチオン交換体は連続的に再生されるため、負荷が高くなってもカチオン交換体の薬品再生は不要である。しかし除去すべき陽イオンが多いため電流が不足し、短時間で陽イオンを除去することができない。電流を増加させるために電圧を高めると脱陽イオン装置3の劣化を早める可能性がある。EDについても同様の問題がある。カチオン脱塩塔の場合、カチオン交換樹脂が早く飽和するため樹脂の交換、再生の頻度が高まる。   As described above, when the pH of the water to be treated is high, the load on the decationizing apparatus 3 is high. When the decationizing apparatus 3 is EDI, since the cation exchanger is regenerated continuously, chemical regeneration of the cation exchanger is unnecessary even if the load is high. However, since there are many cations to be removed, the current is insufficient, and the cations can not be removed in a short time. Increasing the voltage to increase the current may accelerate the degradation of the decationization device 3. There is a similar problem with ED. In the case of a cation deionization tower, the frequency of replacement and regeneration of the resin is increased because the cation exchange resin is quickly saturated.

これに対して、本実施形態では復水配管8から導入された復水が脱陽イオン水で希釈されるため、脱陽イオン装置3における陽イオンの負荷の増加を抑えることができる。例えばアンモニアの純水希釈液のpHが9.7である場合(以下、比較例とする)、アンモニアの濃度は0.9mg/Lとなり、pHが10.3である場合、アンモニアの濃度は3.6mg/Lとなり、4倍に増加する。従って、pHが10.3の復水を4倍に希釈し、かつ脱陽イオン装置3に供給される希釈被処理水の流量を比較例と同等とすれば、脱陽イオン装置3の負荷は比較例の復水を処理するときの負荷とほぼ変わらないことになる。この場合、復水配管8から導入される復水の流量と、希釈水の流量の比率が1:3となるように弁7,13の開度を調整すればよい。弁7,13の開度は流量計2,14の測定値に基づき制御することができる。流量の比率は移送ポンプ12の出力を調整することでも可能である。導電率計4から排出される脱陽イオン水のうち希釈水として用いられるのは全体の約1/2〜3/4であり、残りの脱陽イオン水は電極水として利用し、濃縮水として廃棄される。なお、上記の例の場合、脱陽イオン装置3に供給される希釈被処理水の流量は比較例と同程度であることが望ましいが、比較例より少なくてもよい。導電率計4の許容流量は一定の幅があり、脱陽イオン装置3に供給される希釈被処理水の流量が許容流量の範囲内で比較例に対して減少しても問題はない。比較例と比べて脱陽イオン装置3に供給される希釈被処理水の流量が減少する場合、脱陽イオン装置3に偏流が生じていないかを確認することが望ましい。   On the other hand, in the present embodiment, the condensed water introduced from the condensed water pipe 8 is diluted with decationized water, so it is possible to suppress an increase in the load of cations in the decationization apparatus 3. For example, when the pH of the pure water dilution of ammonia is 9.7 (hereinafter referred to as a comparative example), the concentration of ammonia is 0.9 mg / L, and when the pH is 10.3, the concentration of ammonia is 3 It becomes .6 mg / L and increases 4 times. Therefore, if the condensed water having a pH of 10.3 is diluted four times, and if the flow rate of the diluted treated water supplied to the decationizing apparatus 3 is equal to that of the comparative example, the load of the decationizing apparatus 3 is It will be almost the same as the load when treating the condensate of the comparative example. In this case, the opening degree of the valves 7 and 13 may be adjusted so that the ratio of the flow rate of the condensate introduced from the condensate pipe 8 to the flow rate of the dilution water is 1: 3. The opening degree of the valves 7 and 13 can be controlled based on the measurement values of the flow meters 2 and 14. The ratio of the flow rates can also be adjusted by adjusting the output of the transfer pump 12. Of the decationized water discharged from conductivity meter 4, about 1/2 to 3/4 of the whole is used as dilution water, and the remaining decationized water is used as electrode water and as concentrated water Discarded. In the case of the above example, the flow rate of the diluted treated water to be supplied to the decationization apparatus 3 is desirably about the same as that of the comparative example, but may be smaller than that of the comparative example. The allowable flow rate of the conductivity meter 4 has a certain range, and there is no problem even if the flow rate of the diluted treated water supplied to the decationization apparatus 3 is reduced relative to the comparative example within the allowable flow rate range. When the flow rate of the diluted treated water supplied to the decationizing apparatus 3 is reduced as compared with the comparative example, it is desirable to confirm whether or not the decationizing apparatus 3 has a polarized flow.

導電率計4に供給される希釈被処理水に含まれる検出対象イオン(Clイオン等)の濃度は希釈によって比較例より小さくなるが、導電率計4の感度は十分に高いため、海水漏洩の検知に必要な感度の確保は可能である。例えば、濃度100μg/LのNaClが海水漏洩によって復水に混入した場合、希釈される前の復水の導電率計4で検出される導電率(脱陽イオンされ、HClとして検出される導電率)は0.73μS/cmとなる。5倍に希釈した場合でも希釈被処理水の導電率は0.16μS/cmであり、既存の導電率計で十分に測定可能である。 Although the concentration of detection target ions (Cl - ions etc.) contained in the diluted treated water supplied to conductivity meter 4 is smaller than that of the comparative example by dilution, the sensitivity of conductivity meter 4 is sufficiently high, so that the seawater leaks. It is possible to ensure the sensitivity required for the detection of For example, when NaCl having a concentration of 100 μg / L is mixed in with condensate due to seawater leakage, the conductivity detected by conductivity meter 4 of the condensate before being diluted (conductivity as decationized and detected as HCl) ) Is 0.73 μS / cm. Even when diluted by a factor of 5, the conductivity of the diluted treated water is 0.16 μS / cm, which can be sufficiently measured by the existing conductivity meter.

希釈水としては、追加の設備を最小限に抑える観点から導電率計4の排水を利用することが好ましいが、例えば発電所の純水供給系から供給される純水でも構わない。希釈水はできるだけ陽イオンを含まないことが好ましいが、被処理水より陽イオン濃度の低い水(低陽イオン濃度水)であればよい。   As the dilution water, it is preferable to use the drainage of the conductivity meter 4 from the viewpoint of minimizing additional equipment, but pure water supplied from a pure water supply system of a power plant, for example, may be used. The dilution water preferably contains as little cation as possible, but it may be water having a cation concentration lower than that of the water to be treated (water having a low cation concentration).

(第2の実施形態)
図2は、本発明の第2の実施形態に係る脱陽イオン水の導電率測定システム101(以下、システム101という)の概念図を示している。以下の説明では主に第1の実施形態と異なる構成について述べる。第2の実施形態は第1の実施形態に対して希釈装置10が省略されている。すなわち、被処理水の流量を絞るだけでも、脱陽イオン装置3に供給される陽イオンの量を抑制することができる。この場合、導電率計4に供給される脱陽イオン水の流量も減少することになる。流量が減少した場合、脱陽イオン装置3に偏流が生じていないかを確認することが望ましい。流量は導電率計4の最小許容流量以上とすることが望ましく、最小許容流量を下回る場合、導電率計4を微小流量タイプに変更することが望ましい。本実施形態では流量を絞るために弁7を用いているが、その目的が達成される限り任意の流路抵抗部材を用いることができる。すなわち、流路抵抗部材は圧力抵抗が当該流路抵抗部材の上流及び下流側より大きいものであれば限定されず、例えばオリフィスのように流路断面が当該オリフィスの上流及び下流側より絞られているもの、壁面の粗さないし凹凸がその上流及び下流側より大きいもの、エルボなどの曲管などであってもよい。
Second Embodiment
FIG. 2 shows a conceptual view of a decationized water conductivity measuring system 101 (hereinafter referred to as a system 101) according to a second embodiment of the present invention. In the following description, configurations different from the first embodiment will be mainly described. The second embodiment has the dilution device 10 omitted from the first embodiment. That is, only by throttling the flow rate of the water to be treated, the amount of cations supplied to the decationizing apparatus 3 can be suppressed. In this case, the flow rate of deionized water supplied to the conductivity meter 4 also decreases. When the flow rate decreases, it is desirable to confirm whether or not the decationization device 3 has a drift. The flow rate is desirably equal to or higher than the minimum allowable flow rate of the conductivity meter 4, and when below the minimum allowable flow rate, it is desirable to change the conductivity meter 4 to a minute flow rate type. In the present embodiment, the valve 7 is used to reduce the flow rate, but any flow path resistance member can be used as long as the purpose is achieved. That is, the flow path resistance member is not limited as long as the pressure resistance is larger than the upstream and downstream sides of the flow path resistive member, for example, the flow path cross section is narrowed from the upstream and downstream sides of the orifice The roughness or unevenness of the wall surface may be larger than the upstream and downstream sides, or may be a curved pipe such as an elbow.

(第3の実施形態)
図3は、本発明の第2の実施形態に係る脱陽イオン水の導電率測定システム201(以下、システム201という)の概念図を示している。以下の説明では主に第1の実施形態と異なる構成について述べる。説明を省略した構成については第1の実施形態と同様である。配管6上には被処理水を加温する加温手段15が設けられている。加温手段15の構成は特に限定されず、熱交換器、リボンヒータなどを用いることができる。復水の温度は通常40℃程度であるが、導電率計4の設置位置では20〜30℃まで低下している。加温手段15は被処理水を50℃程度まで加温する。これによって脱陽イオン装置3の電流効率が向上する。これは、モル導電率の変化がHイオンやOHイオンよりもNaイオンやClイオンのほうが大きく、高温ほどNaイオンが動きやすいためである。しかし、脱陽イオン装置3のカチオン交換膜34,35、カチオン交換体39の劣化を防止するため、50℃を超える被処理水を脱陽イオン装置3に供給することは好ましくない。よって、被処理水は40〜50℃の範囲で加温することが望ましい。加温手段15は脱陽イオン装置3の電流効率を向上させるためのものであるため、本実施形態の脱陽イオン装置3はEDIまたはEDに限定される。
Third Embodiment
FIG. 3 shows a conceptual view of a decationized water conductivity measuring system 201 (hereinafter referred to as a system 201) according to a second embodiment of the present invention. In the following description, configurations different from the first embodiment will be mainly described. About the structure which abbreviate | omitted description, it is the same as that of 1st Embodiment. A heating means 15 for heating the water to be treated is provided on the pipe 6. The structure of the heating means 15 is not specifically limited, A heat exchanger, a ribbon heater, etc. can be used. The temperature of the condensate is usually around 40 ° C., but at the installation position of the conductivity meter 4 it has dropped to 20-30 ° C. The heating means 15 heats the water to be treated to about 50 ° C. This improves the current efficiency of the decationization apparatus 3. This change in the molar conductivity H + ions and OH - Na + ions and Cl than ion - larger towards the ion because the high temperature as Na + ions easy to move. However, in order to prevent deterioration of the cation exchange membranes 34 and 35 of the decationizing device 3 and the cation exchanger 39, it is not preferable to supply treated water exceeding 50 ° C. to the decationizing device 3. Therefore, it is desirable that the water to be treated be heated in the range of 40 to 50 ° C. Since the heating means 15 is for improving the current efficiency of the decationization device 3, the decationization device 3 of the present embodiment is limited to EDI or ED.

第3の実施形態は第1及び第2の実施形態と組み合わせることも可能である。例えば、第1の実施形態において、配管6の希釈水供給ライン11との合流点から脱陽イオン装置3の入口までの間に第3の実施形態の加温手段15を設けることができる。第2の実施形態においては、配管6の弁7から脱陽イオン装置3の入口までの間に第3の実施形態の加温手段15を設けることができる。   The third embodiment can be combined with the first and second embodiments. For example, in the first embodiment, the heating means 15 of the third embodiment can be provided between the junction of the pipe 6 with the dilution water supply line 11 and the inlet of the decationizing apparatus 3. In the second embodiment, the heating means 15 of the third embodiment can be provided between the valve 7 of the pipe 6 and the inlet of the decationizing apparatus 3.

(実施例)
第1〜第3の実施形態の脱陽イオン水の導電率測定システムに海水を模擬した模擬水を供給して、発電所の定常運転時における海水漏洩検知能力を確認した。脱陽イオン装置3としてはEDIを用い、負極37にはSUS304製の網目板を、正極36にはチタン製網目板に白金を被覆したものを用いた。カチオン交換膜34,35には、スチレン−ジビニルベンゼン共重合体母体にスルホン酸基を導入した強酸性陽イオン交換膜(ネオセプタCMX(徳山曹達社製))を使用した。脱塩室31には、モノリスを充填した。モノリスのイオン交換容量は、乾燥多孔質体換算で4.0mg当量/gであり、EPMAを用いた硫黄原子のマッピングにより、スルホン酸基が多孔質体に均一に導入されていることを確認した。また、SEM観察の結果、この多孔質体の内部構造は、連続気泡構造を有しており、平均径30μmのマクロポアの大部分が重なり合い、マクロポアとマクロポアの重なりで形成されるメソポアの直径の平均値は5μm、全細孔容積は、10.1ml/gであった。導電率計4としてフォックスボロ製875CR(モニター)、同871CC(センサー)を用いた。
(Example)
The simulated water simulating seawater was supplied to the conductivity measuring system of decationized ionic water of the first to third embodiments, and the seawater leakage detection capability at the time of steady operation of the power plant was confirmed. An EDI was used as the decationizing device 3, and a mesh plate made of SUS 304 was used as the negative electrode 37, and a meshed plate made of titanium was coated with platinum as the positive electrode 36. For the cation exchange membranes 34, 35, a strongly acidic cation exchange membrane (NEOCEPTA CMX (manufactured by Tokuyama Soda Co., Ltd.)) in which a sulfonic acid group is introduced into a styrene-divinylbenzene copolymer matrix was used. The demineralization chamber 31 was filled with monolith. The ion exchange capacity of the monolith was 4.0 mg equivalent / g in terms of dry porous material, and mapping of sulfur atoms using EPMA confirmed that the sulfonic acid group was uniformly introduced into the porous material. . Further, as a result of SEM observation, the internal structure of this porous body has an open cell structure, most of macropores having an average diameter of 30 μm overlap, and the average diameter of mesopores formed by the overlap of macropores and macropores The value was 5 μm and the total pore volume was 10.1 ml / g. As conductivity meter 4, 875 CR (monitor) and 871 CC (sensor) manufactured by Foxboro Corp. were used.

模擬水(被処理水)として、比抵抗18.2MΩ・cm(導電率0.054μS/cm)の純水にアンモニアを溶解したアンモニア水を用いた。海水漏洩を模擬するために、このアンモニア水に更に塩化ナトリウムを添加した。被処理水の流量は、50l/h、正極36〜負極37間に印加した直流電流は1.0A、電圧は40Vであった。   As simulated water (water to be treated), ammonia water in which ammonia was dissolved in pure water with a specific resistance of 18.2 MΩ · cm (conductivity: 0.054 μS / cm) was used. Sodium chloride was further added to the ammonia water to simulate seawater leakage. The flow rate of the water to be treated was 50 l / h, the direct current applied between the positive electrode 36 and the negative electrode 37 was 1.0 A, and the voltage was 40 V.

(比較例)アンモニア濃度2.0mg/L(pH10.0)の模擬水では、脱陽イオン装置3の出口水の導電率は0.06μs/cmであり、アンモニア濃度3.6mg/L(pH10.3)の模擬水では、脱陽イオン装置3の出口水の導電率が0.095μS/cm、アンモニア5μg/Lであった。これより、一部のアンモニアを除去できていないことがわかった。   (Comparative example) In simulated water with an ammonia concentration of 2.0 mg / L (pH 10.0), the conductivity of the outlet water of the decationization device 3 is 0.06 μs / cm, and the ammonia concentration is 3.6 mg / L (pH 10) In the simulated water of .3), the conductivity of the outlet water of the decationization apparatus 3 was 0.095 μS / cm and ammonia 5 μg / L. From this, it was found that some ammonia could not be removed.

(実施例1:第1の実施形態に対応)純水にアンモニア水を添加してpH10.3のアンモニア水を作成し、これにNaClを0.5mg/L(実施例1−1)及び1mg/L(実施例1−2)添加した模擬水を作成した。このpH10.3の模擬水と純水を1:4の容積比で混合しpH9.7の模擬水(5倍希釈水)を作成し、脱陽イオン装置3で脱陽イオン処理を行い、処理水の導電率を測定した。   (Example 1: Corresponds to the first embodiment) Ammonia water is added to pure water to prepare ammonia water of pH 10.3, and 0.5 mg / L NaCl (Example 1-1) and 1 mg are added thereto. / L (Example 1-2) The simulated water added was created. The simulated water of pH 10.3 and the pure water are mixed at a volume ratio of 1: 4 to prepare simulated water of pH 9.7 (5 times diluted water), and the decationization treatment is carried out by the decationization device 3 and the treatment The conductivity of the water was measured.

実施例1−1(希釈後NaCl濃度0.1mg/L)の電気伝導率は1.2μS/cm、実施例1−2(希釈後NaCl濃度0.2mg/L)の電気伝導率は2.4μS/cmであった。これはClが塩酸となったときの電気伝導率の理論値に相当する。これより海水漏洩を検知できることがわかった。   The electrical conductivity of Example 1-1 (NaCl concentration after dilution: 0.1 mg / L) is 1.2 μS / cm, and the conductivity of Example 1-2 (NaCl concentration after dilution: 0.2 mg / L) is 1. It was 4 μS / cm. This corresponds to the theoretical value of the electrical conductivity when Cl becomes hydrochloric acid. It turned out that a seawater leak can be detected from this.

(実施例2:第2の実施形態に対応)アンモニア水のpHを比較例の10.0(アンモニア濃度2.0mg/L)から10.3(アンモニア濃度3.6mg/L)に変更した。このアンモニア水にNaClを0.5mg/L(実施例2−1)及び1mg/L(実施例2−2)添加した模擬水を作成した。脱陽イオン装置3及び導電率計4に供給する模擬水の流量を比較例の1/2にした。実施例2−1(NaCl濃度0.5mg/L)では電気伝導率は3.6μS/cm、実施例2−2(NaCl濃度1mg/L)では電気伝導率は7.2μS/cmであった。これはClが塩酸となったときの電気伝導率の理論値に相当する。これより海水漏洩を検知できることがわかった。   Example 2 (corresponding to the second embodiment) The pH of the ammonia water was changed from 10.0 (ammonia concentration 2.0 mg / L) to 10.3 (ammonia concentration 3.6 mg / L) of the comparative example. The simulated water which added 0.5 mg / L (Example 2-1) and 1 mg / L (Example 2-2) of NaCl to this ammonia water was created. The flow rate of the simulated water supplied to the decationizing apparatus 3 and the conductivity meter 4 was reduced to half of the comparative example. In Example 2-1 (NaCl concentration 0.5 mg / L), the conductivity was 3.6 μS / cm, and in Example 2-2 (NaCl concentration 1 mg / L), the conductivity was 7.2 μS / cm. . This corresponds to the theoretical value of the electrical conductivity when Cl becomes hydrochloric acid. It turned out that a seawater leak can be detected from this.

(実施例3:第3の実施形態に対応)アンモニア水のpHを比較例の10.0(アンモニア濃度2.0mg/L)から10.3(アンモニア濃度3.6mg/L)に変更した。このアンモニア水にNaClを0.5mg/L(実施例3−1)及び1mg/L(実施例3−2)添加した模擬水を作成した。模擬水を50℃に加温し、脱陽イオン装置3に供給した。実施例3−1(NaCl濃度0.5mg/L)では電気伝導率は3.6μS/cm、実施例2−3(NaCl濃度1mg/L)では電気伝導率は7.2μS/cmであった。これはClが塩酸となったときの電気伝導率の理論値に相当する。これより海水漏洩を検知できることがわかった。   (Example 3: Correspond to the third embodiment) The pH of the ammonia water was changed from 10.0 (ammonia concentration 2.0 mg / L) of the comparative example to 10.3 (ammonia concentration 3.6 mg / L). The simulated water which added 0.5 mg / L (Example 3-1) and 1 mg / L (Example 3-2) of NaCl to this ammonia water was created. The simulated water was heated to 50 ° C. and supplied to the decationizing apparatus 3. In Example 3-1 (NaCl concentration 0.5 mg / L), the conductivity was 3.6 μS / cm, and in Example 2-3 (NaCl concentration 1 mg / L), the conductivity was 7.2 μS / cm. . This corresponds to the theoretical value of the electrical conductivity when Cl becomes hydrochloric acid. It turned out that a seawater leak can be detected from this.

1,101,201 導電率測定システム
2 流量計
3 脱陽イオン装置
4 導電率計
6 配管
7 弁
8 復水配管
10 希釈装置
15 加温手段
31 脱塩室
32,33 濃縮室
38 電源
39 カチオン交換体
1,101,201 conductivity measurement system 2 flow meter 3 deionization apparatus 4 conductivity meter 6 piping 7 valve 8 condensate piping 10 dilution device 15 heating means 31 demineralization room 32, 33 concentration room 38 power supply 39 cation exchange body

Claims (11)

陽イオンと陰イオンを含む被処理水に希釈水を添加して、pHが下げられた希釈被処理水を生成することと、
前記希釈被処理水を脱陽イオン装置に供給して、脱陽イオン水を生成することと、
前記脱陽イオン装置で生成された脱陽イオン水を導電率計に供給して、前記脱陽イオン水の導電率を測定することと、を有する、脱陽イオン水の導電率の測定方法。
Adding diluted water to treated water containing cations and anions to produce diluted treated water having a lowered pH;
Supplying the diluted treated water to a decationization apparatus to produce decationized water;
Supplying the decationized water generated by the decationization apparatus to a conductivity meter to measure the conductivity of the decationized water.
前記被処理水のpHは10以上である、請求項1に記載の脱陽イオン水の導電率の測定方法。   The method of measuring the conductivity of decationized water according to claim 1, wherein the pH of the water to be treated is 10 or more. 前記希釈水は前記脱陽イオン装置で予め生成された脱陽イオン水である、請求項1または2に記載の脱陽イオン水の導電率の測定方法。   The method for measuring the conductivity of decationized water according to claim 1 or 2, wherein the dilution water is decationized water previously generated by the decationization apparatus. 陽イオンと陰イオンを含む被処理水を、圧力抵抗がその上流及び下流側より大きい流路抵抗部材に通すことと、
前記流路抵抗部材を通された前記被処理水を脱陽イオン装置に供給して、脱陽イオン水を生成することと、
前記脱陽イオン装置で生成された脱陽イオン水を導電率計に供給して、前記脱陽イオン水の導電率を測定することと、を有する、脱陽イオン水の導電率の測定方法。
Passing treated water containing positive ions and negative ions through a flow path resistance member whose pressure resistance is greater on the upstream side and on the downstream side;
Supplying the treated water passed through the flow path resistance member to a decationizing apparatus to generate decationizing water;
Supplying the decationized water generated by the decationization apparatus to a conductivity meter to measure the conductivity of the decationized water.
陽イオンと陰イオンを含む被処理水を加温することと、
加温された前記被処理水を脱陽イオン装置に供給して、脱陽イオン水を生成することと、
前記脱陽イオン装置で生成された脱陽イオン水を導電率計に供給して、前記脱陽イオン水の導電率を測定することと、を有する、脱陽イオン水の導電率の測定方法。
Heating water to be treated containing positive and negative ions;
Supplying the heated treated water to a decationization apparatus to generate decationized water;
Supplying the decationized water generated by the decationization apparatus to a conductivity meter to measure the conductivity of the decationized water.
前記被処理水は火力発電所または原子力発電所の復水である、請求項1から5のいずれか1項に記載の脱陽イオン水の導電率の測定方法。   The method for measuring the conductivity of decationized ion water according to any one of claims 1 to 5, wherein the water to be treated is a condensate of a thermal power plant or a nuclear power plant. 陽イオンと陰イオンを含む被処理水に希釈水を添加して、pHが下げられた希釈被処理水を生成する希釈装置と、
前記希釈被処理水から脱陽イオン水を生成する脱陽イオン装置と、
前記脱陽イオン装置で生成された脱陽イオン水の導電率を測定する導電率計と、を有する、脱陽イオン水の導電率の測定システム。
A dilution device that adds diluted water to treated water containing cations and anions to generate diluted treated water whose pH is lowered;
A decationizing apparatus for generating decationized water from the diluted treated water;
And a conductivity meter for measuring the conductivity of the decationized water produced by the decationization device.
前記希釈装置は、前記脱陽イオン装置で生成され前記導電率計を通った脱陽イオン水を貯蔵する容器と、前記容器を前記脱陽イオン装置の入口に接続する水供給ラインと、前記水供給ライン上に設けられた移送ポンプと、を有している、請求項7に記載の脱陽イオン水の導電率の測定システム。   The dilution device includes a container for storing decationized water generated by the decationization device and passed through the conductivity meter, a water supply line connecting the container to the inlet of the decationization device, and the water The system for measuring the conductivity of decationized water according to claim 7, further comprising: a transfer pump provided on the supply line. 陽イオンと陰イオンを含む被処理水が通され、圧力抵抗がその上流及び下流側より大きい流路抵抗部材と、
前記流路抵抗部材を通された前記被処理水から脱陽イオン水を生成する脱陽イオン装置と、
前記脱陽イオン装置で生成された脱陽イオン水の導電率を測定する導電率計と、を有する、脱陽イオン水の導電率の測定システム。
A treated water containing positive ions and negative ions is passed through, and the pressure resistance is larger in its upstream and downstream flow path resistance members,
A decationizing apparatus for generating decationized water from the treated water passed through the flow path resistance member;
And a conductivity meter for measuring the conductivity of the decationized water produced by the decationization device.
陽イオンと陰イオンを含む被処理水を加温する加温手段と、
前記加温手段で加温された前記被処理水から脱陽イオン水を生成する脱陽イオン装置と、
前記脱陽イオン装置で生成された脱陽イオン水の導電率を測定する導電率計と、を有する、脱陽イオン水の導電率の測定システム。
Heating means for heating the water to be treated containing positive and negative ions;
A decationizing apparatus for generating decationized water from the treated water heated by the heating unit;
And a conductivity meter for measuring the conductivity of the decationized water produced by the decationization device.
前記被処理水は火力発電所の復水である、請求項7から10のいずれか1項に記載の脱陽イオン水の導電率の測定システム。   The system for measuring the conductivity of decationized ion water according to any one of claims 7 to 10, wherein the water to be treated is a condensate of a thermal power plant.
JP2017183369A 2017-09-25 2017-09-25 Measurement method and measurement system for conductivity of decationized water Active JP6916702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017183369A JP6916702B2 (en) 2017-09-25 2017-09-25 Measurement method and measurement system for conductivity of decationized water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017183369A JP6916702B2 (en) 2017-09-25 2017-09-25 Measurement method and measurement system for conductivity of decationized water

Publications (2)

Publication Number Publication Date
JP2019060630A true JP2019060630A (en) 2019-04-18
JP6916702B2 JP6916702B2 (en) 2021-08-11

Family

ID=66177227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017183369A Active JP6916702B2 (en) 2017-09-25 2017-09-25 Measurement method and measurement system for conductivity of decationized water

Country Status (1)

Country Link
JP (1) JP6916702B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251220A (en) * 1978-10-30 1981-02-17 Larson Thurston E Apparatus for and method of determining high pressure, high temperature feedwater contaminants
US4251219A (en) * 1978-10-30 1981-02-17 Larson Thurston E Apparatus for and method of determining contaminants on low pressure condensate
JPH0611406A (en) * 1992-06-25 1994-01-21 Nikkiso Co Ltd Sea water leak sensing device
JPH09210943A (en) * 1995-11-30 1997-08-15 Ebara Corp Sensing device for negative ion in water
JPH1130564A (en) * 1997-07-10 1999-02-02 Kansai Electric Power Co Inc:The Seawater-leakage detector
JP2008215753A (en) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd Impurity monitoring device and method for boiler water system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP2011078936A (en) * 2009-10-09 2011-04-21 Panasonic Corp Water treatment apparatus and water heater
JP2015148411A (en) * 2014-02-07 2015-08-20 富士電機株式会社 Cooling water leakage diagnostic system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4251220A (en) * 1978-10-30 1981-02-17 Larson Thurston E Apparatus for and method of determining high pressure, high temperature feedwater contaminants
US4251219A (en) * 1978-10-30 1981-02-17 Larson Thurston E Apparatus for and method of determining contaminants on low pressure condensate
JPH0611406A (en) * 1992-06-25 1994-01-21 Nikkiso Co Ltd Sea water leak sensing device
JPH09210943A (en) * 1995-11-30 1997-08-15 Ebara Corp Sensing device for negative ion in water
JPH1130564A (en) * 1997-07-10 1999-02-02 Kansai Electric Power Co Inc:The Seawater-leakage detector
JP2008215753A (en) * 2007-03-06 2008-09-18 Kurita Water Ind Ltd Impurity monitoring device and method for boiler water system
JP2008229506A (en) * 2007-03-20 2008-10-02 Kurita Water Ind Ltd Pure water production system
JP2011078936A (en) * 2009-10-09 2011-04-21 Panasonic Corp Water treatment apparatus and water heater
JP2015148411A (en) * 2014-02-07 2015-08-20 富士電機株式会社 Cooling water leakage diagnostic system

Also Published As

Publication number Publication date
JP6916702B2 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
US5980716A (en) Water treatment apparatus for a fuel cell system
CN102381799B (en) Reverse osmosis device
ES2707605T3 (en) Water treatment using a bipolar membrane
TW200516059A (en) Water treatment system and method
JP2007175647A (en) Electric deionized water production apparatus and deionized water production method
Dzyazko et al. Electrodeionization of low-concentrated multicomponent Ni2+-containing solutions using organic–inorganic ion-exchanger
JP6108021B1 (en) Anion detection system
JP4828242B2 (en) Electric deionized water production apparatus and deionized water production method
JP3760033B2 (en) Secondary water treatment system for pressurized water nuclear power plant
JP4671272B2 (en) Method and apparatus for detecting anion in liquid
US5788828A (en) Apparatus for detecting anions in water
JP2019060630A (en) Method for measuring conductivity of decationized water and measurement system
JP4152544B2 (en) Deionized water production method and apparatus
JP7064394B2 (en) Measurement system and measurement method of conductivity of decationized water
CN107153085A (en) Thermal power plant condensate polishing treatment separate unit mixed bed water outlet conductivity control method
WO2019058779A1 (en) Decationized water electrical conductivity measuring method and measuring system
JP2011127825A (en) Water heater
JP2011020012A (en) pH ADJUSTING METHOD AND pH ADJUSTER OF BOILER WATER SYSTEM
JP7146568B2 (en) Organic solvent purification method and purification apparatus
JP2022070103A (en) Cation removal device, cation removal method and anion detection device
JP3707940B2 (en) Condensate treatment system and condensate treatment method
WO2023233729A1 (en) Negative-ion detecting device
KR20190134290A (en) Softening system
JP2015059903A (en) Sampling device and sampling method
JP2013245656A (en) Steam turbine plant and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210716

R150 Certificate of patent or registration of utility model

Ref document number: 6916702

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150