WO2023233729A1 - Negative-ion detecting device - Google Patents

Negative-ion detecting device Download PDF

Info

Publication number
WO2023233729A1
WO2023233729A1 PCT/JP2023/005835 JP2023005835W WO2023233729A1 WO 2023233729 A1 WO2023233729 A1 WO 2023233729A1 JP 2023005835 W JP2023005835 W JP 2023005835W WO 2023233729 A1 WO2023233729 A1 WO 2023233729A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample water
water
section
heating
steam
Prior art date
Application number
PCT/JP2023/005835
Other languages
French (fr)
Japanese (ja)
Inventor
雄太 中土
徹哉 澤津橋
彰弘 濱崎
遥 木戸
任善 岩藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023233729A1 publication Critical patent/WO2023233729A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • G01N27/08Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid which is flowing continuously
    • G01N27/10Investigation or analysis specially adapted for controlling or monitoring operations or for signalling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present disclosure relates to an anion detection device.
  • This application claims priority to Japanese Patent Application No. 2022-88221 filed in Japan on May 31, 2022, the contents of which are incorporated herein.
  • the water and steam cycles of power plants are strictly controlled to prevent the contamination of components that cause corrosion, such as chloride ions and sulfate ions.
  • the above-mentioned impurity components may be mixed into the water/steam cycle. If impurities are mixed in, in order to minimize the range of contamination and corrosion effects caused by impurities, remove the impurities from the system by blowing with system water, add chemicals to prevent the pH from dropping, plug the leaking piping, and It is necessary to take immediate measures such as shutting down operations. To this end, it is important to promptly detect impurity contamination, and acid electrical conductivity is measured in many plants to monitor impurities during the water/steam cycle.
  • Acid electrical conductivity is a method in which the electrical conductivity is measured after sample water collected from a water/steam cycle is first passed through a cation exchange resin to remove cation components.
  • Water treatment agents such as ammonia are added to the water/steam cycle to inhibit corrosion.
  • the concentration of the water treatment agent is much higher than the concentration of the impurity, so the change in electrical conductivity due to the addition of impurities is very small compared to the electrical conductivity due to the water treatment agent, and the change in electrical conductivity due to the addition of impurities is very small compared to the electrical conductivity due to the water treatment agent. Even if conductivity is measured, it is not possible to confirm the presence of impurities.
  • Patent Document 1 listed below discloses a degassing acid electrical conductivity meter as a method for measuring acid electrical conductivity by removing carbon dioxide from feed water and steam. This method measures acid electrical conductivity without the influence of dissolved gas by pre-treating the sample for degassing before measuring acid electrical conductivity. In this method, by heating the target sample to degas and remove carbon dioxide, the system is able to measure acid electrical conductivity without the influence of carbon dioxide.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an anion detection device that can efficiently and inexpensively detect anions.
  • an anion detection device includes a supply pipe through which sample water containing multiple types of ions flows, and a preheater provided on the supply pipe to preheat the sample water. , a heating tank for further heating the preheated sample water to separate it into drain water and steam containing a substance originating from the ions to be separated among the plurality of types of the ions; a discharge pipe for taking out the drain water from the tank; an ion exchange section provided on the discharge pipe and having an ion exchange resin for removing the ions to be separated remaining in the drain water; a concentration detection section that is provided downstream of the ion exchange section and detects the concentration of the anions contained in the drain water, and the heating tank is provided with a tank main body and an upper part of the tank main body.
  • a supply section for supplying the preheated sample water; a filler disposed inside the tank body; and a storage section provided below the tank body, in which the preheated sample water is stored.
  • a heating section that is provided in the storage section and that heats the sample water to generate steam; and a discharge section that discharges the steam to the outside of the tank body; The sample water is preheated until it is in a liquid phase and the vapor pressure of the sample water is equal to atmospheric pressure.
  • an anion detection device that can efficiently and inexpensively detect anions.
  • FIG. 1 is a schematic diagram showing the configuration of an anion detection device according to an embodiment of the present disclosure.
  • FIG. 1 is a cross-sectional view showing the configuration of a heating tank according to an embodiment of the present disclosure. It is a sectional view showing a first modification of the heating tank according to the embodiment of the present disclosure. It is a sectional view showing a second modification of the heating tank according to the embodiment of the present disclosure.
  • FIG. 7 is an enlarged sectional view of a main part showing a third modification example of the heating tank according to the embodiment of the present disclosure.
  • This anion detection device 1 is a device for detecting and measuring the concentration of anions contained in feed water, condensate water, drum water, and steam of a steam turbine plant.
  • a steam turbine plant is provided with a condenser for returning high-temperature steam to a liquid phase.
  • a condenser is a heat exchanger that exchanges heat between seawater and steam by using seawater or the like as a cooling medium. If the refrigerant piping in the condenser is damaged, there is a risk that the refrigerant, such as seawater, will leak into the water supply and damage the piping and various devices.
  • the anion detection device 1 is used for the purpose of detecting anions containing corrosion-causing components such as chloride ions (Cl-) as anions to be detected.
  • corrosion-causing components such as chloride ions (Cl-)
  • chemical solutions such as ammonia and hydrazine are injected into the water supply to prevent corrosion of pipes.
  • the anion detection device 1 detects and measures the concentration of anions such as chloride ions without being affected by these chemical solutions.
  • the anion detection device 1 includes a supply pipe 10, a preheater 11, a heating tank 12, a discharge pipe 13, an ion exchange section 14, a concentration detection section 15, and a first heat exchanger. 16a, a second heat exchanger 16b, a first flowmeter 17a, a second flowmeter 17b, a steam exhaust pipe 18, and a pump 19.
  • the supply pipe 10 is a pipe through which water supply and condensate of a steam turbine plant, drum water, and sample water collected from steam flow.
  • the supply pipe 10 extends from the inlet, which is the upstream end, to the heating tank 12 .
  • a first flow meter 17a, a first heat exchanger 16a, a second heat exchanger 16b, and a preheater 11 are arranged on the supply pipe 10 in this order from the upstream side to the downstream side.
  • the first flow meter 17a measures the flow rate of the sample water flowing through the supply pipe 10 and transmits it to the outside as a numerical value.
  • heat exchange is performed between the steam led from the heating tank 12, the drain water, and the sample water.
  • the preheater 11 further heats the sample water using a heat medium supplied from the outside. More specifically, the preheater 11 heats the sample water to a state where its vapor pressure becomes equal to atmospheric pressure while maintaining the sample water in a liquid phase state. That is, the sample water that has passed through the preheater 11 is in a boiling state due to sensible heat.
  • sample water in this state may be referred to simply as "preheated sample water.”
  • the heating tank 12 includes a tank body 21 , a supply section 22 , a filler 23 , a storage section 24 , a heating section 25 , and a discharge section 26 .
  • the tank body 21 has a cylindrical shape extending in the vertical direction. Note that the term "cylindrical” used herein includes cylindrical shapes, rectangular cylindrical shapes, and cylindrical shapes having polygonal cross-sectional shapes.
  • a supply section 22 connected to the supply pipe 10 described above is provided at the upper part of the tank body 21. Preheated sample water flows into the tank body 21 through this supply section 22 .
  • a filling material 23 is arranged inside the tank body 21.
  • the filler 23 is provided to promote mixing of fluids within the tank body 21 and to increase the contact area.
  • Specific examples of the filler 23 include a shape called a Raschig ring or a Berle saddle.
  • a storage section 24 is provided below the tank body 21.
  • the storage section 24 is a container for storing the sample water that has flowed downward through the supply section 22 into the tank body 21 .
  • a heating section 25 is provided inside the storage section 24 .
  • the heating unit 25 heats the preheated sample water, that is, provides latent heat to generate steam.
  • an electric heater whose heating temperature can be adjusted is suitably used.
  • a ceramic heater or the like can also be used as the heating section 25.
  • the sample water overflowing from the storage section 24 is discharged to the outside through piping (not shown).
  • the discharge pipe 13 is connected to the storage section 24.
  • the discharge pipe 13 extends from the storage section 24 to the concentration detection section 15 .
  • a pump 19 On the discharge pipe 13, a pump 19, a first heat exchanger 16a, a second flowmeter 17b, an ion exchange section 14, and a concentration detection section 15 are arranged in this order.
  • the liquid sample water stored in the storage section 24 is pumped by the pump 19 and sent to the first heat exchanger 16a.
  • the sample water flowing through the supply pipe 10 and the high temperature sample water pumped from the storage section 24 exchange heat. As a result, the sample water flowing through the supply pipe 10 is heated, and the sample water flowing through the discharge pipe 13 is cooled.
  • the second flow meter 17b measures the flow rate of the sample water flowing through the discharge pipe 13, and transmits it to the outside as a numerical value.
  • the ion exchange unit 14 uses an ion exchange resin to remove cations including ammonia ions derived from the above-mentioned chemical solution from the sample water flowing through the discharge pipe 13 .
  • the sample water that has passed through the ion exchange section 14 substantially contains only nonvolatile anions (chloride ions, for example), which are one of the detection targets.
  • This concentration detection unit 15 detects and measures the concentration of nonvolatile anions including chloride ions, and transmits the detected value to the outside as a numerical value.
  • the concentration detection section 15 is an electrical conductivity meter. Since the electrical conductivity changes based on the concentration of anions in the sample water, the concentration detection unit 15 is able to finally obtain the concentration of anions by measuring the electrical conductivity. .
  • a discharge section 26 is provided at the top of the tank body 21. Steam generated by heating by the heating section 25 is discharged from a discharge section 26 provided at the upper part of the tank body 21.
  • a steam exhaust pipe 18 extends between the exhaust section 26 and the second heat exchanger 16b. The steam discharged from the discharge section 26 flows into the second heat exchanger 16b through the steam discharge pipe 18. In the second heat exchanger 16b, heat exchange is performed between this steam and the sample water flowing through the supply pipe 10. As a result, the sample water is heated, and the steam becomes a liquid phase state or a gas-liquid mixed phase state and is discharged to the outside.
  • sample water is first passed through the supply pipe 10. At this time, it is assumed that the sample water contains, in addition to chloride ions to be detected, ammonia ions derived from the chemical solution and carbonate ions derived from carbon dioxide in the atmosphere.
  • the sample water passes through the first heat exchanger 16a, the second heat exchanger 16b, and the preheater 11, and as described above, all or most of it is in a liquid phase state. While maintaining , the vapor pressure becomes equal to atmospheric pressure.
  • This preheated sample water flows into the heating tank 12 via the supply section 22.
  • the sample water passes through gaps between the fillers 23 and flows into the storage section 24 below.
  • the sample water that has reached the storage section 24 is heated (given latent heat) by the heating section 25 and becomes steam.
  • the steam does not contain ammonia and carbon dioxide, or contains only a very low concentration of ammonia and carbon dioxide.
  • This drain water passes through the discharge pipe 13 to the first heat exchanger 16a and the second flow meter 17b, and then flows into the ion exchange section 14.
  • the ion exchange section 14 ammonia ions contained in the drain water are removed by the action of the ion exchange resin.
  • the drain water that has passed through the ion exchange section 14 contains only nonvolatile anions including chloride ions to be detected. Thereafter, the concentration of nonvolatile anions in this drain water is detected and measured by an electrical conductivity meter serving as the concentration detection section 15.
  • the steam that comes into contact with the preheated sample water while flowing upward in the tank body 21 contains ammonia and carbon dioxide. After this steam is sent to the second heat exchanger 16b through the steam exhaust pipe 18, it is discharged to the outside in a liquid phase state or a gas-liquid mixed phase state.
  • ammonia and carbon dioxide move from the sample water in the liquid phase toward the sample water in the gas phase (steam) based on the difference in the concentrations of ammonia and carbon dioxide between the two. That is, the concentrations of ammonia and carbon dioxide contained in the liquid sample water decrease as they move downward.
  • the sample water and steam come into contact with each other from opposite directions as described above, it is necessary to maintain a large difference in concentration of ammonia and carbon dioxide between the sample water and steam in the vertical direction within the tank body 21. I can do it. Therefore, it becomes possible to promote the movement of ions based on the double-layer theory.
  • the concentrations of ammonia and carbon dioxide in the drain water stored in the storage section 24 are maintained at a low level. Thereafter, the ion exchange section 14 removes ammonia contained in the drain water to be separated. Subsequently, the concentration detection unit 15 detects the concentration of nonvolatile anions (chloride ions as an example) to be detected. In this way, after removing ammonia and carbon dioxide to be separated in advance, it is possible to accurately measure only the concentration of nonvolatile anions to be detected. As a result, when operating a steam turbine plant, for example, it is possible to immediately and accurately detect whether foreign matter such as seawater is mixed into the water supply. Therefore, it becomes possible to operate the steam turbine plant more stably and smoothly.
  • the concentration of ammonia ions contained in the drain water flowing into the ion exchange section 14 is already low. Therefore, the load on the ion exchange resin of the ion exchange section 14 can be reduced. Therefore, it is possible to secure a long time for the ion exchange resin to break through, and it is possible to stably perform the treatment over a longer period of time. As a result, it becomes possible to significantly reduce the operating cost of the device.
  • the heating unit 25 since a heater (electric heater) whose heating temperature can be adjusted is used as the heating unit 25, the amount of steam generated from the stored drain water can be precisely controlled. becomes possible. Thereby, the amount of steam generated can be maintained at an appropriate level at all times.
  • flooding may occur in which the sample water flows backwards, and normal measurements may not be possible.
  • flooding can be avoided.
  • the sample water on the supply pipe 10 passes through the first heat exchanger 16a, so that the heat of the drain water can be transferred to the sample water.
  • the sample water is in a heated state prior to being preheated by the preheater 11.
  • the output required of the preheater 11 decreases. In other words, the performance requirements of the preheater 11 can be relaxed. This makes it possible to reduce the manufacturing cost and operating cost of the device.
  • the temperature of the sample water flowing through the supply pipe 10 is further increased prior to preheating by the preheater 11. becomes possible. This further reduces the output required of the preheater 11, making it possible to further reduce the manufacturing cost and operating cost of the device.
  • a heater serving as an auxiliary heating section 27 that covers the tank body 21 may be provided on the outer peripheral side of the tank body 21.
  • the auxiliary heating section 27 covers the periphery of the tank body 21, the temperature of the liquid sample water moving downward in the tank body 21 is kept high, that is, preheated. It can be maintained in the same state as it was immediately after. This makes it possible to continuously maintain the movement of ammonia and carbon dioxide anions from the sample water in the liquid phase to the steam based on the concentration equilibrium described above.
  • a heater serving as an internal heating section 28 may be provided inside the tank body 21 so as to extend through the filler 23. According to this configuration, since the internal heating section 28 is provided in the tank body 21, the temperature of the sample water in the liquid phase moving downward in the tank body 21 is maintained at a higher temperature stably. can be maintained.
  • a plurality of baffle plates 29 may be provided below the supply section 22 in the tank body 21 to disperse the flow direction of the sample water. According to this configuration, the sample water can be spread over a wider area within the tank body 21. Therefore, more sample water can be processed in a shorter time, making it possible to operate the apparatus more efficiently.
  • the anion detection device 1 described in each embodiment can be understood, for example, as follows.
  • the anion detection device 1 includes a supply pipe 10 through which sample water containing a plurality of types of ions flows, and a preheater 11 provided on the supply pipe 10 to preheat the sample water. and a heating tank 12 that further heats the preheated sample water to separate it into steam and drain water containing a substance originating from the ions to be separated among the plurality of types of ions; a discharge pipe 13 for taking out the drain water from the heating tank 12; and an ion exchange section 14 provided on the discharge pipe 13 and having an ion exchange resin for removing the ions to be separated remaining in the drain water.
  • a concentration detection section 15 that is provided on the downstream side of the ion exchange section 14 on the discharge pipe 13 and detects the concentration of anions contained in the drain water
  • the heating tank 12 is connected to the tank body 21.
  • a supply section 22 provided at the top of the tank body 21 and supplying the preheated sample water, a filler 23 disposed inside the tank body 21 , and a supply section 22 provided below the tank body 21 .
  • a storage section 24 in which the preheated sample water is stored; a heating section 25 provided in the storage section 24 that heats the sample water to generate steam; and a heating section 25 that heats the sample water to generate steam; and a discharge section 26 for discharging the sample water to the sample water, and the preheater 11 preheats the sample water until the sample water is in a liquid phase and the vapor pressure of the sample water is equal to atmospheric pressure. .
  • the sample water after being preheated by the preheater 11, the sample water maintains a liquid phase state and its vapor pressure becomes equal to atmospheric pressure. Thereafter, the sample water that has moved downward in the tank body 21 through the gap between the fillers 23 comes into contact with the heating section 25 in the storage section 24 and becomes vapor, that is, in a gas phase state. At this time, the concentration of anions contained in the steam becomes lower than the concentration of anions contained in the liquid-phase sample water (drain water) stored in the storage section 24. When this steam moves upward within the tank body 21, it comes into contact with new sample water flowing from above.
  • anions move from the sample water in the liquid phase toward the sample water in the gas phase (steam) based on the difference in concentration between the two anions. That is, the concentration of anions contained in the sample water in the liquid phase decreases as it goes downward.
  • the anion concentration of the drain water stored in the storage section 24 is maintained in a low state.
  • the anion to be separated contained in the drain water is removed by the ion exchange section 14.
  • the concentration detection unit 15 detects the concentration of the anion to be detected. In this way, after removing the anions to be separated in advance, it is possible to accurately measure only the concentration of the anions to be detected.
  • the anion detection device 1 according to the second aspect is the anion detection device 1 according to the first aspect, and further includes an auxiliary heating section 27 that covers the periphery of the tank body 21.
  • the auxiliary heating section 27 covers the periphery of the tank body 21, the temperature of the sample water in a liquid phase moving downward within the tank body 21 can be maintained at a high temperature. I can do it. This makes it possible to continuously maintain the movement of anions from the sample water in the liquid phase to the steam based on the concentration equilibrium described above.
  • the anion detection device 1 according to the third aspect is the anion detection device 1 according to the first or second aspect, and further includes an internal heating section 28 provided inside the tank body 21.
  • the internal heating section 28 is provided in the tank body 21, the temperature of the sample water in the liquid phase moving downward in the tank body 21 is maintained at a higher temperature stably. can be maintained.
  • the anion detection device 1 according to the fourth aspect is the anion detection device 1 according to any one of the first to third aspects, in which the heating section 25 is configured to heat the sample water. This is a heater whose heating temperature can be adjusted.
  • the heating unit 25 since a heater whose heating temperature can be adjusted is used as the heating unit 25, it is possible to precisely control the amount of steam generated from the stored drain water. This makes it possible to avoid flooding that occurs when the flow rate of steam exceeds the flow rate of sample water.
  • An anion detection device 1 according to a fifth aspect is the anion detection device 1 according to any one of the first to fourth aspects, in which the preheater 11 on the supply pipe 10 A first heat exchanger 16a that heats the sample water by exchanging heat between the sample water flowing through the supply pipe 10 and the drain water led from the discharge pipe 13; Furthermore, it is equipped with.
  • the heat of the drain water can be transferred to the sample water through the first heat exchanger 16a.
  • the sample water is in a heated state prior to being preheated by the preheater 11.
  • the output required of the preheater 11 is reduced, making it possible to reduce the manufacturing cost and operating cost of the device.
  • An anion detection device 1 according to a sixth aspect is the anion detection device 1 according to any one of the first to fifth aspects, in which the preheater 11 on the supply pipe 10 A second heat exchanger 16b is provided on the upstream side of the sample water and heats the sample water by exchanging heat between the sample water flowing through the supply pipe 10 and the steam discharged from the discharge part 26. Be prepared for more.
  • the present disclosure relates to an anion detection device that can efficiently and inexpensively detect anions.

Abstract

 A negative-ion detecting device according to the present invention is provided with: supply piping (10) through which sample water containing a plurality of kinds of ions is circulated; a preheater (11); a heating bath (12) that further heats preheated sample water to isolate the preheated sample water into vapor and drainage water, the vapor containing a substance originating from ions to be isolated; discharge piping (13) for discharging the drainage water from the heating bath; an ion exchange part (14) that is provided on the discharge piping and that includes an ion exchange resin for removing remaining ions to be isolated; and a concentration detecting part (15) that detects the concentration of negative ions contained in the drainage water. The heating bath (12) includes: a bath body (21); a storage section (24) in which the preheated sample water is stored; a heater (25) that is provided in the storage section and that heats the sample water to generate vapor; and a discharge section for discharging the vapor to the outside of the bath body. The preheater (11) preheats the sample water while the sample water is in a liquid phase state and until the sample water reaches a state in which the vapor pressure thereof is equal to the atmospheric pressure.

Description

陰イオン検出装置Anion detection device
 本開示は、陰イオン検出装置に関する。
 本願は、2022年5月31日に日本に出願された特願2022-88221号に対して優先権を主張し、その内容をここに援用する。
The present disclosure relates to an anion detection device.
This application claims priority to Japanese Patent Application No. 2022-88221 filed in Japan on May 31, 2022, the contents of which are incorporated herein.
 発電プラントの水・蒸気サイクルでは、系統の機器や配管が腐食により損傷するのを防ぐために、塩化物イオンや硫酸イオンをはじめとした腐食原因となる成分が混入しないよう厳しく管理がなされている。しかしながら、復水器の冷却配管の破損による海水漏洩や、補給水製造装置の動作不良などの要因により、上記の不純物成分が水・蒸気サイクルに混入してしまう場合もある。不純物が混入した場合は、不純物による汚染範囲および腐食影響をできる限り最小限にとどめるために、系統水ブローによる不純物の系外排出、pH低下防止のための薬品添加、漏洩発生配管の施栓、プラント運転停止などの対策を早急に実施する必要がある。そのためには不純物混入を速やかに検知することが重要であり、水・蒸気サイクル中の不純物監視のために多くのプラントで酸電気伝導率の計測が行われている。 In order to prevent system equipment and piping from being damaged by corrosion, the water and steam cycles of power plants are strictly controlled to prevent the contamination of components that cause corrosion, such as chloride ions and sulfate ions. However, due to factors such as seawater leakage due to damage to the cooling piping of the condenser or malfunction of the make-up water production device, the above-mentioned impurity components may be mixed into the water/steam cycle. If impurities are mixed in, in order to minimize the range of contamination and corrosion effects caused by impurities, remove the impurities from the system by blowing with system water, add chemicals to prevent the pH from dropping, plug the leaking piping, and It is necessary to take immediate measures such as shutting down operations. To this end, it is important to promptly detect impurity contamination, and acid electrical conductivity is measured in many plants to monitor impurities during the water/steam cycle.
 酸電気伝導率は、水・蒸気サイクルから採取した試料水をまず陽イオン交換樹脂に通水するなどして陽イオン成分を除去した後に電気伝導率を計測する手法である。水・蒸気サイクルには、腐食抑制のためにアンモニアなどの水処理剤が添加されている。微量の不純物が混入した場合は、不純物濃度よりも水処理剤濃度の方がはるかに大きいため、不純物混入による電気伝導率の変化は水処理剤による電気伝導率に比べて非常に小さく、そのまま電気伝導率を計測しても不純物の混入を確認することはできない。そこで、水処理剤(アンモニアなど)を陽イオン交換樹脂で除去することにより、水処理剤による電気伝導率上昇をなくし、かつ、陽イオンのカウンターイオンをH+に交換して不純物濃度あたりの電気伝導率を大きくすることで、電気伝導率による高感度な不純物混入検知を可能としている。 Acid electrical conductivity is a method in which the electrical conductivity is measured after sample water collected from a water/steam cycle is first passed through a cation exchange resin to remove cation components. Water treatment agents such as ammonia are added to the water/steam cycle to inhibit corrosion. When a small amount of impurity is mixed in, the concentration of the water treatment agent is much higher than the concentration of the impurity, so the change in electrical conductivity due to the addition of impurities is very small compared to the electrical conductivity due to the water treatment agent, and the change in electrical conductivity due to the addition of impurities is very small compared to the electrical conductivity due to the water treatment agent. Even if conductivity is measured, it is not possible to confirm the presence of impurities. Therefore, by removing the water treatment agent (ammonia, etc.) with a cation exchange resin, we can eliminate the increase in electrical conductivity caused by the water treatment agent, and exchange the counter ion of the cation with H+ to increase the electrical conductivity per impurity concentration. By increasing the rate, it is possible to detect impurity contamination with high sensitivity based on electrical conductivity.
 この種の検知方法・装置の具体例として、下記特許文献1に記載されたものが知られている。下記特許文献1には、給水および蒸気中の二酸化炭素を除去して酸電気伝導率を計測する手法として、脱ガス酸電気伝導率計が開示されている。試料の脱ガス前処理を行ってから酸電気伝導率の計測を行うことで、溶存ガスの影響なく酸電気伝導率を計測する手法である。本手法では、対象試料を加熱して二酸化炭素を脱気除去することで、二酸化炭素の影響なく酸電気伝導率が計測可能なシステムとしている。 As a specific example of this type of detection method/device, the one described in Patent Document 1 below is known. Patent Document 1 listed below discloses a degassing acid electrical conductivity meter as a method for measuring acid electrical conductivity by removing carbon dioxide from feed water and steam. This method measures acid electrical conductivity without the influence of dissolved gas by pre-treating the sample for degassing before measuring acid electrical conductivity. In this method, by heating the target sample to degas and remove carbon dioxide, the system is able to measure acid electrical conductivity without the influence of carbon dioxide.
特許第6108021号公報Patent No. 6108021
 ここで、近年では、給水に注入するアンモニア濃度を従来よりも高くして、腐食に対する耐性を高めたいという強い要請がある。しかしながら、従来のシステムでは、始めに樹脂でアンモニアを除去するため、給水のアンモニア濃度が高くなった場合には樹脂の破過時間が短くなり、樹脂交換頻度が増加してしまう。その結果、装置の運用コストの上昇を招く虞がある。 In recent years, there has been a strong demand to increase the ammonia concentration injected into the water supply to a higher level than before to improve resistance to corrosion. However, in conventional systems, since ammonia is first removed with resin, when the ammonia concentration in the feed water becomes high, the breakthrough time of the resin becomes short, and the frequency of resin replacement increases. As a result, there is a possibility that the operating cost of the device will increase.
 本開示は上記課題を解決するためになされたものであって、陰イオンを効率的かつ安価に検出することが可能な陰イオン検出装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an anion detection device that can efficiently and inexpensively detect anions.
 上記課題を解決するために、本開示に係る陰イオン検出装置は、複数種類のイオンを含む試料水が流通する供給管と、該供給管上に設けられ、前記試料水を予熱する予熱器と、前記予熱された前記試料水をさらに加熱することで、前記複数種類の前記イオンのうち、分離対象となる前記イオンに由来する物質を含む蒸気とドレン水とに分離する加熱槽と、前記加熱槽から前記ドレン水を取り出す排出管と、前記排出管上に設けられ、前記ドレン水に残存した前記分離対象となる前記イオンを除去するイオン交換樹脂を有するイオン交換部と、前記排出管上における前記イオン交換部の下流側に設けられ、前記ドレン水に含まれる前記陰イオンの濃度を検出する濃度検出部と、を備え、前記加熱槽は、槽本体と、該槽本体の上部に設けられ、前記予熱された前記試料水を供給する供給部と、該槽本体の内部に配置された充填物と、前記槽本体の下方に設けられ、前記予熱された試料水が貯留される貯留部と、該貯留部に設けられ、前記試料水を加熱して蒸気を発生させる加熱部と、前記蒸気を槽本体の外部に排出する排出部と、を有し、前記予熱器は、前記試料水が液相状態で、かつ該試料水の蒸気圧が大気圧と等しくなる状態となるまで前記試料水を予熱する。 In order to solve the above problems, an anion detection device according to the present disclosure includes a supply pipe through which sample water containing multiple types of ions flows, and a preheater provided on the supply pipe to preheat the sample water. , a heating tank for further heating the preheated sample water to separate it into drain water and steam containing a substance originating from the ions to be separated among the plurality of types of the ions; a discharge pipe for taking out the drain water from the tank; an ion exchange section provided on the discharge pipe and having an ion exchange resin for removing the ions to be separated remaining in the drain water; a concentration detection section that is provided downstream of the ion exchange section and detects the concentration of the anions contained in the drain water, and the heating tank is provided with a tank main body and an upper part of the tank main body. , a supply section for supplying the preheated sample water; a filler disposed inside the tank body; and a storage section provided below the tank body, in which the preheated sample water is stored. , a heating section that is provided in the storage section and that heats the sample water to generate steam; and a discharge section that discharges the steam to the outside of the tank body; The sample water is preheated until it is in a liquid phase and the vapor pressure of the sample water is equal to atmospheric pressure.
 本開示によれば、陰イオンを効率的かつ安価に検出することが可能な陰イオン検出装置を提供することができる。 According to the present disclosure, it is possible to provide an anion detection device that can efficiently and inexpensively detect anions.
本開示の実施形態に係る陰イオン検出装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing the configuration of an anion detection device according to an embodiment of the present disclosure. 本開示の実施形態に係る加熱槽の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a heating tank according to an embodiment of the present disclosure. 本開示の実施形態に係る加熱槽の第一変形例を示す断面図である。It is a sectional view showing a first modification of the heating tank according to the embodiment of the present disclosure. 本開示の実施形態に係る加熱槽の第二変形例を示す断面図である。It is a sectional view showing a second modification of the heating tank according to the embodiment of the present disclosure. 本開示の実施形態に係る加熱槽の第三変形例を示す要部拡大断面図である。FIG. 7 is an enlarged sectional view of a main part showing a third modification example of the heating tank according to the embodiment of the present disclosure.
 以下、本開示の実施形態に係る陰イオン検出装置1について、図1と図2を参照して説明する。この陰イオン検出装置1は、蒸気タービンプラントの給水や復水、ドラム水、及び蒸気中に含まれる陰イオンの濃度を検出・測定するための装置である。蒸気タービンプラントでは、高温の蒸気を液相状態に戻すための復水器が設けられている。復水器は、海水等を冷却媒体として用いることで、当該海水と蒸気との間で熱交換をさせる熱交換器である。ここで、復水器中の冷媒配管が破損した場合には、海水等の冷媒が給水中に漏洩し、配管や各種の装置を損壊する虞がある。 Hereinafter, an anion detection device 1 according to an embodiment of the present disclosure will be described with reference to FIGS. 1 and 2. This anion detection device 1 is a device for detecting and measuring the concentration of anions contained in feed water, condensate water, drum water, and steam of a steam turbine plant. A steam turbine plant is provided with a condenser for returning high-temperature steam to a liquid phase. A condenser is a heat exchanger that exchanges heat between seawater and steam by using seawater or the like as a cooling medium. If the refrigerant piping in the condenser is damaged, there is a risk that the refrigerant, such as seawater, will leak into the water supply and damage the piping and various devices.
 そこで、陰イオン検出装置1は、検出対象の陰イオンとしての塩化物イオン(Cl-)などの腐食原因成分を含む陰イオンを検出することを目的として用いられる。他方で、給水中には、配管の腐食防止のため、アンモニアやヒドラジン等の薬液が注入されている。陰イオン検出装置1は、これら薬液による影響を受けずに塩化物イオン等の陰イオンの濃度を検出・測定する。 Therefore, the anion detection device 1 is used for the purpose of detecting anions containing corrosion-causing components such as chloride ions (Cl-) as anions to be detected. On the other hand, chemical solutions such as ammonia and hydrazine are injected into the water supply to prevent corrosion of pipes. The anion detection device 1 detects and measures the concentration of anions such as chloride ions without being affected by these chemical solutions.
 図1に示すように、陰イオン検出装置1は、供給管10と、予熱器11と、加熱槽12と、排出管13と、イオン交換部14と、濃度検出部15と、第一熱交換器16aと、第二熱交換器16bと、第一流量計17aと、第二流量計17bと、蒸気排出管18と、ポンプ19と、を備える。 As shown in FIG. 1, the anion detection device 1 includes a supply pipe 10, a preheater 11, a heating tank 12, a discharge pipe 13, an ion exchange section 14, a concentration detection section 15, and a first heat exchanger. 16a, a second heat exchanger 16b, a first flowmeter 17a, a second flowmeter 17b, a steam exhaust pipe 18, and a pump 19.
 供給管10は、蒸気タービンプラントの給水や復水、ドラム水、及び蒸気中から採取された試料水が流通する配管である。供給管10は、上流側の端部である入口から加熱槽12にかけて延びている。供給管10上には、上流側から下流側に向かって順に、第一流量計17a、第一熱交換器16a、第二熱交換器16b、及び予熱器11が配置されている。 The supply pipe 10 is a pipe through which water supply and condensate of a steam turbine plant, drum water, and sample water collected from steam flow. The supply pipe 10 extends from the inlet, which is the upstream end, to the heating tank 12 . A first flow meter 17a, a first heat exchanger 16a, a second heat exchanger 16b, and a preheater 11 are arranged on the supply pipe 10 in this order from the upstream side to the downstream side.
 第一流量計17aは、供給管10を流れる試料水の流量を計測し、外部に数値として送信する。詳しくは後述するが、第一熱交換器16a、及び第二熱交換器16bでは、加熱槽12から導かれた蒸気、及びドレン水と試料水との間で熱交換が行われる。これにより、試料水は加熱されて高温となる。予熱器11は、外部から供給された熱媒により、試料水をさらに加熱する。より具体的には、予熱器11は、試料水が液相状態を維持しつつ、その蒸気圧が大気圧と等しくなる状態まで試料水を加熱する。つまり、予熱器11を経た試料水は、顕熱によって沸騰した状態となっている。以下の説明では、この状態の試料水を指して、単に「予熱された試料水」と呼ぶことがある。 The first flow meter 17a measures the flow rate of the sample water flowing through the supply pipe 10 and transmits it to the outside as a numerical value. Although details will be described later, in the first heat exchanger 16a and the second heat exchanger 16b, heat exchange is performed between the steam led from the heating tank 12, the drain water, and the sample water. As a result, the sample water is heated to a high temperature. The preheater 11 further heats the sample water using a heat medium supplied from the outside. More specifically, the preheater 11 heats the sample water to a state where its vapor pressure becomes equal to atmospheric pressure while maintaining the sample water in a liquid phase state. That is, the sample water that has passed through the preheater 11 is in a boiling state due to sensible heat. In the following explanation, sample water in this state may be referred to simply as "preheated sample water."
 次いで、加熱槽12の構成について、図2を参照して説明する。加熱槽12は、槽本体21と、供給部22と、充填物23と、貯留部24と、加熱部25と、排出部26と、を有する。 Next, the configuration of the heating tank 12 will be explained with reference to FIG. 2. The heating tank 12 includes a tank body 21 , a supply section 22 , a filler 23 , a storage section 24 , a heating section 25 , and a discharge section 26 .
 槽本体21は、上下方向に延びる筒状をなしている。なお、ここで言う「筒状」とは、円筒状や角筒状、多角形の断面形状を有する筒形状も含むものである。槽本体21の上部には、上述した供給管10に接続された供給部22が設けられている。この供給部22を通じて、予熱された試料水が槽本体21内に流入する。 The tank body 21 has a cylindrical shape extending in the vertical direction. Note that the term "cylindrical" used herein includes cylindrical shapes, rectangular cylindrical shapes, and cylindrical shapes having polygonal cross-sectional shapes. A supply section 22 connected to the supply pipe 10 described above is provided at the upper part of the tank body 21. Preheated sample water flows into the tank body 21 through this supply section 22 .
 槽本体21の内部には、充填物23が配置されている。充填物23は、槽本体21内における流体の混合を促進し、かつ接触面積を増大させるために設けられている。充填物23の具体例としては、ラシヒリングやベルルサドルと呼ばれる形状のものが挙げられる。 A filling material 23 is arranged inside the tank body 21. The filler 23 is provided to promote mixing of fluids within the tank body 21 and to increase the contact area. Specific examples of the filler 23 include a shape called a Raschig ring or a Berle saddle.
 槽本体21の下方には、貯留部24が設けられている。貯留部24は、供給部22を経て槽本体21内を下方へ流れてきた試料水を貯留するための容器である。貯留部24の内部には、加熱部25が設けられている。加熱部25は、予熱された試料水を加熱して、つまり潜熱を与えて蒸気を発生させる。加熱部25の一例として具体的には、加熱温度を調節することが可能な電気ヒータが好適に用いられる。その他、セラミックヒータ等も加熱部25として用いることが可能である。また、貯留部24からあふれ出た試料水は、不図示の配管を通じて外部に排出される。 A storage section 24 is provided below the tank body 21. The storage section 24 is a container for storing the sample water that has flowed downward through the supply section 22 into the tank body 21 . A heating section 25 is provided inside the storage section 24 . The heating unit 25 heats the preheated sample water, that is, provides latent heat to generate steam. Specifically, as an example of the heating unit 25, an electric heater whose heating temperature can be adjusted is suitably used. In addition, a ceramic heater or the like can also be used as the heating section 25. Further, the sample water overflowing from the storage section 24 is discharged to the outside through piping (not shown).
 貯留部24には、排出管13が接続されている。排出管13は、この貯留部24から濃度検出部15にかけて延びている。排出管13上には、ポンプ19、第一熱交換器16a、第二流量計17b、イオン交換部14、及び濃度検出部15がこの順で配置されている。貯留部24に貯留された液相状態の試料水は、ポンプ19によって圧送されることで、第一熱交換器16aに送られる。第一熱交換器16a内では、供給管10を流れる試料水と、貯留部24から圧送された高温の試料水とが熱交換する。これにより、供給管10を流れる試料水は加熱され、排出管13を流れる試料水は冷却される。 The discharge pipe 13 is connected to the storage section 24. The discharge pipe 13 extends from the storage section 24 to the concentration detection section 15 . On the discharge pipe 13, a pump 19, a first heat exchanger 16a, a second flowmeter 17b, an ion exchange section 14, and a concentration detection section 15 are arranged in this order. The liquid sample water stored in the storage section 24 is pumped by the pump 19 and sent to the first heat exchanger 16a. In the first heat exchanger 16a, the sample water flowing through the supply pipe 10 and the high temperature sample water pumped from the storage section 24 exchange heat. As a result, the sample water flowing through the supply pipe 10 is heated, and the sample water flowing through the discharge pipe 13 is cooled.
 第二流量計17bは、排出管13を流れる試料水の流量を計測し、外部に数値として送信する。イオン交換部14は、排出管13を流れる試料水に含まれるイオンのうち、上述した薬液に由来するアンモニアイオンを含む陽イオンをイオン交換樹脂によって試料水中から除去する。つまり、イオン交換部14を経た試料水中には、検出対象の一つである不揮発性の陰イオン(一例として塩化物イオン)のみが実質的に含まれている状態となる。この濃度検出部15は、塩化物イオンを含む不揮発性の陰イオンの濃度を検出・測定し、外部に数値として送信する。濃度検出部15は、具体的には電気伝導率計である。試料水中の陰イオンの濃度に基づいて電気伝導率は変化するため、濃度検出部15は、電気伝導率を計測することで、最終的に陰イオンの濃度を取得することが可能とされている。 The second flow meter 17b measures the flow rate of the sample water flowing through the discharge pipe 13, and transmits it to the outside as a numerical value. The ion exchange unit 14 uses an ion exchange resin to remove cations including ammonia ions derived from the above-mentioned chemical solution from the sample water flowing through the discharge pipe 13 . In other words, the sample water that has passed through the ion exchange section 14 substantially contains only nonvolatile anions (chloride ions, for example), which are one of the detection targets. This concentration detection unit 15 detects and measures the concentration of nonvolatile anions including chloride ions, and transmits the detected value to the outside as a numerical value. Specifically, the concentration detection section 15 is an electrical conductivity meter. Since the electrical conductivity changes based on the concentration of anions in the sample water, the concentration detection unit 15 is able to finally obtain the concentration of anions by measuring the electrical conductivity. .
 槽本体21の上部には排出部26が設けられている。加熱部25によって加熱されることで発生した蒸気は、槽本体21の上部に設けられた排出部26から排出される。図1に示すように、排出部26と第二熱交換器16bとの間には、蒸気排出管18が延びている。排出部26から排出された蒸気は、蒸気排出管18を通じて第二熱交換器16bに流れ込む。第二熱交換器16b内では、この蒸気と、供給管10中を流れる試料水との間で熱交換が行われる。これにより、試料水は加熱され、蒸気は液相状態、又は気液混相状態となって外部に排出される。 A discharge section 26 is provided at the top of the tank body 21. Steam generated by heating by the heating section 25 is discharged from a discharge section 26 provided at the upper part of the tank body 21. As shown in FIG. 1, a steam exhaust pipe 18 extends between the exhaust section 26 and the second heat exchanger 16b. The steam discharged from the discharge section 26 flows into the second heat exchanger 16b through the steam discharge pipe 18. In the second heat exchanger 16b, heat exchange is performed between this steam and the sample water flowing through the supply pipe 10. As a result, the sample water is heated, and the steam becomes a liquid phase state or a gas-liquid mixed phase state and is discharged to the outside.
(作用効果)
 続いて、陰イオン検出装置1の動作について説明する。陰イオン検出装置1を動作させるに当たっては、まず供給管10に試料水を流通させる。このとき、試料水には、検出対象としての塩化物イオンに加えて、薬液に由来するアンモニアイオン、及び大気中の二酸化炭素に由来する炭酸イオンが含まれていると仮定する。供給管10を流通する中途で、試料水は第一熱交換器16a、第二熱交換器16b、及び予熱器11を経ることで、上述したように、その全体又は大部分は、液相状態を維持しつつ、その蒸気圧が大気圧と等しくなる状態となる。
(effect)
Next, the operation of the anion detection device 1 will be explained. In operating the anion detection device 1, sample water is first passed through the supply pipe 10. At this time, it is assumed that the sample water contains, in addition to chloride ions to be detected, ammonia ions derived from the chemical solution and carbonate ions derived from carbon dioxide in the atmosphere. On the way through the supply pipe 10, the sample water passes through the first heat exchanger 16a, the second heat exchanger 16b, and the preheater 11, and as described above, all or most of it is in a liquid phase state. While maintaining , the vapor pressure becomes equal to atmospheric pressure.
 この予熱された試料水は、供給部22を経て加熱槽12に流入する。加熱槽12の槽本体21内では、充填物23同士の間の隙間を通り抜けて、試料水が下方の貯留部24へと流れる。貯留部24に到達した試料水は、加熱部25によって加熱されて(潜熱を与えられて)、蒸気となる。この時、蒸気には、アンモニア、及び二酸化炭素が含まれていないか、又はごく低い濃度のみ含まれている状態となる。 This preheated sample water flows into the heating tank 12 via the supply section 22. In the tank body 21 of the heating tank 12, the sample water passes through gaps between the fillers 23 and flows into the storage section 24 below. The sample water that has reached the storage section 24 is heated (given latent heat) by the heating section 25 and becomes steam. At this time, the steam does not contain ammonia and carbon dioxide, or contains only a very low concentration of ammonia and carbon dioxide.
 この蒸気は、槽本体21内を上方へ向かって流れる。その中途で、上方から流れ込む液相状態の試料水と接触する。このとき、二重境膜説に基づいて、液相状態の試料水に含まれるアンモニアイオン、及び炭酸イオンが、蒸気に移動する。つまり、液相状態の試料水は、下方に流れるにつれて、互いに対向する方向から蒸気に長時間接触するため、当該試料水に含まれるアンモニアイオン、及び炭酸イオンの濃度が下方へ向かうにつれて低くなる。このサイクルが繰り返されることで定常状態となる。定常状態では、貯留部24に貯留されている液相状態の試料水(ドレン水)には、極微量のアンモニアイオンのみが含まれた状態となる。 This steam flows upward within the tank body 21. Midway through, it comes into contact with liquid sample water flowing from above. At this time, based on the double-layer theory, ammonia ions and carbonate ions contained in the sample water in the liquid phase migrate to the vapor. That is, as the sample water in the liquid phase flows downward, it comes into contact with steam from opposite directions for a long time, so the concentrations of ammonia ions and carbonate ions contained in the sample water decrease as it flows downward. A steady state is reached by repeating this cycle. In the steady state, the liquid sample water (drain water) stored in the storage section 24 contains only a trace amount of ammonia ions.
 このドレン水は、排出管13を通じて第一熱交換器16a、及び第二流量計17bに通過した後、イオン交換部14に流れ込む。このイオン交換部14では、イオン交換樹脂の作用によって、ドレン水に含まれるアンモニアイオンが除去される。つまり、イオン交換部14を通過したドレン水には、検出対象である塩化物イオンを含む不揮発性の陰イオンのみが含まれている状態となる。その後、このドレン水における不揮発性の陰イオン濃度が、濃度検出部15としての電気伝導率計によって検出・計測される。 This drain water passes through the discharge pipe 13 to the first heat exchanger 16a and the second flow meter 17b, and then flows into the ion exchange section 14. In the ion exchange section 14, ammonia ions contained in the drain water are removed by the action of the ion exchange resin. In other words, the drain water that has passed through the ion exchange section 14 contains only nonvolatile anions including chloride ions to be detected. Thereafter, the concentration of nonvolatile anions in this drain water is detected and measured by an electrical conductivity meter serving as the concentration detection section 15.
 一方で、槽本体21内を上方へ流れる中途で予熱された試料水に接触した蒸気には、アンモニア、及び二酸化炭素が含まれた状態となる。この蒸気は、蒸気排出管18を通じて第二熱交換器16bに送られた後、液相状態、又は気液混相状態となって外部に排出される。 On the other hand, the steam that comes into contact with the preheated sample water while flowing upward in the tank body 21 contains ammonia and carbon dioxide. After this steam is sent to the second heat exchanger 16b through the steam exhaust pipe 18, it is discharged to the outside in a liquid phase state or a gas-liquid mixed phase state.
 以上、説明したように、上記構成によれば、予熱器11による予熱を経て、試料水の全体又は大部分は液相状態を維持しつつ、その蒸気圧が大気圧と等しい状態となる。その後、充填物23の隙間を通じて槽本体21内を下方に移動した試料水は、貯留部24で加熱部25に接触して蒸気、つまり気相状態となる。このとき、当該蒸気に含まれるアンモニア、及び二酸化炭素の濃度は、貯留部24に貯留されている液相状態の試料水(ドレン水)に含まれるアンモニア、及び二酸化炭素の濃度よりも低くなる。この蒸気が槽本体21内を上方へ移動する際に、上方から流れて来る新たな試料水に接触する。このとき、両者のアンモニア、及び二酸化炭素の濃度差に基づいて、液相状態の試料水から気相状態(蒸気)の試料水に向かってアンモニア、及び二酸化炭素が移動する。つまり、液相状態の試料水に含まれるアンモニア、及び二酸化炭素の濃度が下方へ向かうにつれて低くなる。特に、上記のように試料水と蒸気とが互いに対向する方向から接触するため、槽本体21内における上下方向で、試料水と蒸気との間のアンモニア、及び二酸化炭素の濃度差を大きく保つことができる。このため、二重境膜説に基づくイオンの移動を促進することが可能となる。 As explained above, according to the above configuration, after being preheated by the preheater 11, all or most of the sample water maintains a liquid phase state, and its vapor pressure becomes equal to atmospheric pressure. Thereafter, the sample water that has moved downward in the tank body 21 through the gap between the fillers 23 comes into contact with the heating section 25 in the storage section 24 and becomes vapor, that is, in a gas phase state. At this time, the concentrations of ammonia and carbon dioxide contained in the steam become lower than the concentrations of ammonia and carbon dioxide contained in the liquid sample water (drain water) stored in the storage section 24. When this steam moves upward within the tank body 21, it comes into contact with new sample water flowing from above. At this time, ammonia and carbon dioxide move from the sample water in the liquid phase toward the sample water in the gas phase (steam) based on the difference in the concentrations of ammonia and carbon dioxide between the two. That is, the concentrations of ammonia and carbon dioxide contained in the liquid sample water decrease as they move downward. In particular, since the sample water and steam come into contact with each other from opposite directions as described above, it is necessary to maintain a large difference in concentration of ammonia and carbon dioxide between the sample water and steam in the vertical direction within the tank body 21. I can do it. Therefore, it becomes possible to promote the movement of ions based on the double-layer theory.
 このサイクルが連続的に生じることで、貯留部24に貯留されたドレン水のアンモニア、及び二酸化炭素の濃度が低い状態で維持される。その後、イオン交換部14によって、ドレン水に含まれる分離対象となるアンモニアが除去される。続いて、濃度検出部15では、検出対象となる不揮発性の陰イオン(一例として塩化物イオン)の濃度が検出される。このように、分離対象となるアンモニア、及び二酸化炭素を予め除去した上で、検出対象となる不揮発性の陰イオンの濃度のみを正確に計測することが可能となる。その結果、例えば蒸気タービンプラントを運用するに際して、給水中に海水等の異物が混入していないかどうかを即時かつ正確に検知することができる。したがって、蒸気タービンプラントをさらに安定的、かつ円滑に運用することが可能となる。 As this cycle occurs continuously, the concentrations of ammonia and carbon dioxide in the drain water stored in the storage section 24 are maintained at a low level. Thereafter, the ion exchange section 14 removes ammonia contained in the drain water to be separated. Subsequently, the concentration detection unit 15 detects the concentration of nonvolatile anions (chloride ions as an example) to be detected. In this way, after removing ammonia and carbon dioxide to be separated in advance, it is possible to accurately measure only the concentration of nonvolatile anions to be detected. As a result, when operating a steam turbine plant, for example, it is possible to immediately and accurately detect whether foreign matter such as seawater is mixed into the water supply. Therefore, it becomes possible to operate the steam turbine plant more stably and smoothly.
 特に、加熱槽12による処理を経ることで、イオン交換部14に流れ込むドレン水に含まれるアンモニアイオンの濃度は予め低い状態となっている。このため、イオン交換部14のイオン交換樹脂に対する負荷を減らすことができる。したがって、イオン交換樹脂が破過するまでの時間を長く確保でき、より長期にわたって安定的に処理を行うことができる。その結果、装置の運用コストを大幅に削減することが可能となる。 In particular, by undergoing the treatment in the heating tank 12, the concentration of ammonia ions contained in the drain water flowing into the ion exchange section 14 is already low. Therefore, the load on the ion exchange resin of the ion exchange section 14 can be reduced. Therefore, it is possible to secure a long time for the ion exchange resin to break through, and it is possible to stably perform the treatment over a longer period of time. As a result, it becomes possible to significantly reduce the operating cost of the device.
 さらに、上記構成によれば、加熱部25として、加熱温度を調節することが可能なヒータ(電気ヒータ)が用いられることから、貯留されたドレン水から発生する蒸気の量を精緻にコントロールすることが可能となる。これにより、蒸気の発生量を常時適正な状態とすることができる。ここで、過剰な蒸気が発生した場合、試料水が逆流するフラッディングが発生し、正常な計測が行えなくなる可能性がある。しかしながら、上記の構成を用いることでフラッディングを回避することが可能となる。 Furthermore, according to the above configuration, since a heater (electric heater) whose heating temperature can be adjusted is used as the heating unit 25, the amount of steam generated from the stored drain water can be precisely controlled. becomes possible. Thereby, the amount of steam generated can be maintained at an appropriate level at all times. Here, if excessive steam is generated, flooding may occur in which the sample water flows backwards, and normal measurements may not be possible. However, by using the above configuration, flooding can be avoided.
 また、上記構成によれば、供給管10上の試料水が第一熱交換器16aを経ることで、ドレン水の熱を当該試料水に伝達することができる。これにより、試料水は予熱器11による予熱に先立って加熱された状態となる。その結果、予熱器11に要求される出力が下がる。つまり、予熱器11の性能要件を緩和することができる。これにより、装置の製造コストや運用コストを削減することが可能となる。 Furthermore, according to the above configuration, the sample water on the supply pipe 10 passes through the first heat exchanger 16a, so that the heat of the drain water can be transferred to the sample water. Thereby, the sample water is in a heated state prior to being preheated by the preheater 11. As a result, the output required of the preheater 11 decreases. In other words, the performance requirements of the preheater 11 can be relaxed. This makes it possible to reduce the manufacturing cost and operating cost of the device.
 さらに、上記構成によれば、第一熱交換器16aに加えて、第二熱交換器16bを経ることで、予熱器11による予熱に先立って、供給管10を流れる試料水の温度をさらに上げることが可能となる。これにより、予熱器11に要求される出力がさらに下がるため、装置の製造コストや運用コストをより一層削減することが可能となる。 Furthermore, according to the above configuration, by passing through the second heat exchanger 16b in addition to the first heat exchanger 16a, the temperature of the sample water flowing through the supply pipe 10 is further increased prior to preheating by the preheater 11. becomes possible. This further reduces the output required of the preheater 11, making it possible to further reduce the manufacturing cost and operating cost of the device.
(その他の実施形態)
 以上、本開示の実施形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and may include design changes without departing from the gist of the present disclosure.
 例えば、第一変形例として図3に示すように、槽本体21の外周側に当該槽本体21を覆う補助加熱部27としてのヒータを設けてもよい。この構成によれば、補助加熱部27が槽本体21の周囲を覆っていることから、当該槽本体21内を下方へ向かって移動する液相状態の試料水の温度を高い状態、つまり予熱された直後の状態で維持することができる。これにより、上述した濃度平衡に基づく、液相状態の試料水から蒸気へのアンモニア、及び二酸化炭素陰イオンの移動を継続的に維持することが可能となる。 For example, as shown in FIG. 3 as a first modification, a heater serving as an auxiliary heating section 27 that covers the tank body 21 may be provided on the outer peripheral side of the tank body 21. According to this configuration, since the auxiliary heating section 27 covers the periphery of the tank body 21, the temperature of the liquid sample water moving downward in the tank body 21 is kept high, that is, preheated. It can be maintained in the same state as it was immediately after. This makes it possible to continuously maintain the movement of ammonia and carbon dioxide anions from the sample water in the liquid phase to the steam based on the concentration equilibrium described above.
 さらに、第二変形例として図4に示すように、槽本体21の内部に充填物23を貫通するようにして延びる内部加熱部28としてのヒータを設けてもよい。この構成によれば、槽本体21内に内部加熱部28が設けられていることから、当該槽本体21内を下方へ向かって移動する液相状態の試料水の温度をさらに安定的に高い状態で維持することができる。 Furthermore, as a second modification, as shown in FIG. 4, a heater serving as an internal heating section 28 may be provided inside the tank body 21 so as to extend through the filler 23. According to this configuration, since the internal heating section 28 is provided in the tank body 21, the temperature of the sample water in the liquid phase moving downward in the tank body 21 is maintained at a higher temperature stably. can be maintained.
 また、第三変形例として図5に示すように、槽本体21内における供給部22の下方に、試料水の流れ方向を分散させるための複数の邪魔板29を設けてもよい。この構成によれば、槽本体21内におけるより広い範囲にかけて試料水を行き渡らせることができる。したがって、短い時間でより多くの試料水を処理できることから、さらに効率的に装置を運用することが可能となる。 As a third modification, as shown in FIG. 5, a plurality of baffle plates 29 may be provided below the supply section 22 in the tank body 21 to disperse the flow direction of the sample water. According to this configuration, the sample water can be spread over a wider area within the tank body 21. Therefore, more sample water can be processed in a shorter time, making it possible to operate the apparatus more efficiently.
<付記>
 各実施形態に記載の陰イオン検出装置1は、例えば以下のように把握される。
<Additional notes>
The anion detection device 1 described in each embodiment can be understood, for example, as follows.
(1)第1の態様に係る陰イオン検出装置1は、複数種類のイオンを含む試料水が流通する供給管10と、該供給管10上に設けられ、前記試料水を予熱する予熱器11と、前記予熱された前記試料水をさらに加熱することで、前記複数種類の前記イオンのうち、分離対象となる前記イオンに由来する物質を含む蒸気とドレン水とに分離する加熱槽12と、前記加熱槽12から前記ドレン水を取り出す排出管13と、前記排出管13上に設けられ、前記ドレン水に残存した前記分離対象となる前記イオンを除去するイオン交換樹脂を有するイオン交換部14と、前記排出管13上における前記イオン交換部14の下流側に設けられ、前記ドレン水に含まれる陰イオンの濃度を検出する濃度検出部15と、を備え、前記加熱槽12は、槽本体21と、該槽本体21の上部に設けられ、前記予熱された前記試料水を供給する供給部22と、該槽本体21の内部に配置された充填物23と、前記槽本体21の下方に設けられ、前記予熱された試料水が貯留される貯留部24と、該貯留部24に設けられ、前記試料水を加熱して蒸気を発生させる加熱部25と、前記蒸気を前記槽本体21の外部に排出する排出部26と、を有し、前記予熱器11は、前記試料水が液相状態で、かつ該試料水の蒸気圧が大気圧と等しくなる状態となるまで前記試料水を予熱する。 (1) The anion detection device 1 according to the first aspect includes a supply pipe 10 through which sample water containing a plurality of types of ions flows, and a preheater 11 provided on the supply pipe 10 to preheat the sample water. and a heating tank 12 that further heats the preheated sample water to separate it into steam and drain water containing a substance originating from the ions to be separated among the plurality of types of ions; a discharge pipe 13 for taking out the drain water from the heating tank 12; and an ion exchange section 14 provided on the discharge pipe 13 and having an ion exchange resin for removing the ions to be separated remaining in the drain water. , a concentration detection section 15 that is provided on the downstream side of the ion exchange section 14 on the discharge pipe 13 and detects the concentration of anions contained in the drain water, and the heating tank 12 is connected to the tank body 21. , a supply section 22 provided at the top of the tank body 21 and supplying the preheated sample water, a filler 23 disposed inside the tank body 21 , and a supply section 22 provided below the tank body 21 . a storage section 24 in which the preheated sample water is stored; a heating section 25 provided in the storage section 24 that heats the sample water to generate steam; and a heating section 25 that heats the sample water to generate steam; and a discharge section 26 for discharging the sample water to the sample water, and the preheater 11 preheats the sample water until the sample water is in a liquid phase and the vapor pressure of the sample water is equal to atmospheric pressure. .
 上記構成によれば、予熱器11による予熱を経て、試料水は液相状態を維持しつつ、その蒸気圧が大気圧と等しい状態となる。その後、充填物23の隙間を通じて槽本体21内を下方に移動した試料水は、貯留部24で加熱部25に接触して蒸気、つまり気相状態となる。このとき、当該蒸気に含まれる陰イオンの濃度は、貯留部24に貯留されている液相状態の試料水(ドレン水)に含まれる陰イオンの濃度よりも低くなる。この蒸気が槽本体21内を上方へ移動する際に、上方から流れて来る新たな試料水に接触する。このとき、両者の陰イオンの濃度差に基づいて、液相状態の試料水から気相状態(蒸気)の試料水に向かって陰イオンが移動する。つまり、液相状態の試料水に含まれる陰イオンの濃度が下方へ向かうにつれて低くなる。このサイクルが連続的に生じることで、貯留部24に貯留されたドレン水の陰イオン濃度が低い状態で維持される。その後、イオン交換部14によって、ドレン水に含まれる分離対象となる陰イオンが除去される。続いて、濃度検出部15では、検出対象となる陰イオンの濃度が検出される。このように、分離対象となる陰イオンを予め除去した上で、検出対象となる陰イオンの濃度のみを正確に計測することが可能となる。 According to the above configuration, after being preheated by the preheater 11, the sample water maintains a liquid phase state and its vapor pressure becomes equal to atmospheric pressure. Thereafter, the sample water that has moved downward in the tank body 21 through the gap between the fillers 23 comes into contact with the heating section 25 in the storage section 24 and becomes vapor, that is, in a gas phase state. At this time, the concentration of anions contained in the steam becomes lower than the concentration of anions contained in the liquid-phase sample water (drain water) stored in the storage section 24. When this steam moves upward within the tank body 21, it comes into contact with new sample water flowing from above. At this time, anions move from the sample water in the liquid phase toward the sample water in the gas phase (steam) based on the difference in concentration between the two anions. That is, the concentration of anions contained in the sample water in the liquid phase decreases as it goes downward. As this cycle occurs continuously, the anion concentration of the drain water stored in the storage section 24 is maintained in a low state. Thereafter, the anion to be separated contained in the drain water is removed by the ion exchange section 14. Subsequently, the concentration detection unit 15 detects the concentration of the anion to be detected. In this way, after removing the anions to be separated in advance, it is possible to accurately measure only the concentration of the anions to be detected.
(2)第2の態様に係る陰イオン検出装置1は、前記第1の態様の陰イオン検出装置1であって、前記槽本体21の周囲を覆う補助加熱部27をさらに有する。 (2) The anion detection device 1 according to the second aspect is the anion detection device 1 according to the first aspect, and further includes an auxiliary heating section 27 that covers the periphery of the tank body 21.
 上記構成によれば、補助加熱部27が槽本体21の周囲を覆っていることから、当該槽本体21内を下方へ向かって移動する液相状態の試料水の温度を高い状態で維持することができる。これにより、上述した濃度平衡に基づく、液相状態の試料水から蒸気への陰イオンの移動を継続的に維持することが可能となる。 According to the above configuration, since the auxiliary heating section 27 covers the periphery of the tank body 21, the temperature of the sample water in a liquid phase moving downward within the tank body 21 can be maintained at a high temperature. I can do it. This makes it possible to continuously maintain the movement of anions from the sample water in the liquid phase to the steam based on the concentration equilibrium described above.
(3)第3の態様に係る陰イオン検出装置1は、前記第1又は第2の態様の陰イオン検出装置1であって、前記槽本体21の内部に設けられた内部加熱部28をさらに有する。 (3) The anion detection device 1 according to the third aspect is the anion detection device 1 according to the first or second aspect, and further includes an internal heating section 28 provided inside the tank body 21. have
 上記構成によれば、槽本体21内に内部加熱部28が設けられていることから、当該槽本体21内を下方へ向かって移動する液相状態の試料水の温度をさらに安定的に高い状態で維持することができる。 According to the above configuration, since the internal heating section 28 is provided in the tank body 21, the temperature of the sample water in the liquid phase moving downward in the tank body 21 is maintained at a higher temperature stably. can be maintained.
(4)第4の態様に係る陰イオン検出装置1は、前記第1から第3の態様のいずれか一つに係る陰イオン検出装置1であって、前記加熱部25は、前記試料水を加熱する温度を調節可能なヒータである。 (4) The anion detection device 1 according to the fourth aspect is the anion detection device 1 according to any one of the first to third aspects, in which the heating section 25 is configured to heat the sample water. This is a heater whose heating temperature can be adjusted.
 上記構成によれば、加熱部25として、加熱温度を調節することが可能なヒータが用いられることから、貯留されたドレン水から発生する蒸気の量を精緻にコントロールすることが可能となる。これにより、蒸気の流量が試料水の流量を上回ることで発生するフラッディングを回避することができる。 According to the above configuration, since a heater whose heating temperature can be adjusted is used as the heating unit 25, it is possible to precisely control the amount of steam generated from the stored drain water. This makes it possible to avoid flooding that occurs when the flow rate of steam exceeds the flow rate of sample water.
(5)第5の態様に係る陰イオン検出装置1は、前記第1から第4の態様のいずれか一つに係る陰イオン検出装置1であって、前記供給管10上における前記予熱器11の上流側に設けられ、前記供給管10を流通する前記試料水と、前記排出管13から導かれた前記ドレン水とを熱交換させることで、前記試料水を加熱する第一熱交換器16aをさらに備える。 (5) An anion detection device 1 according to a fifth aspect is the anion detection device 1 according to any one of the first to fourth aspects, in which the preheater 11 on the supply pipe 10 A first heat exchanger 16a that heats the sample water by exchanging heat between the sample water flowing through the supply pipe 10 and the drain water led from the discharge pipe 13; Furthermore, it is equipped with.
 上記構成によれば、第一熱交換器16aを経ることで、ドレン水の熱を試料水に伝達することができる。これにより、試料水は予熱器11による予熱に先立って加熱された状態となる。その結果、予熱器11に要求される出力が下がるため、装置の製造コストや運用コストを削減することが可能となる。 According to the above configuration, the heat of the drain water can be transferred to the sample water through the first heat exchanger 16a. Thereby, the sample water is in a heated state prior to being preheated by the preheater 11. As a result, the output required of the preheater 11 is reduced, making it possible to reduce the manufacturing cost and operating cost of the device.
(6)第6の態様に係る陰イオン検出装置1は、前記第1から第5の態様のいずれか一つに係る陰イオン検出装置1であって、前記供給管10上における前記予熱器11の上流側に設けられ、前記供給管10を流通する前記試料水と、前記排出部26から排出された前記蒸気とを熱交換させることで、前記試料水を加熱する第二熱交換器16bをさらに備える。 (6) An anion detection device 1 according to a sixth aspect is the anion detection device 1 according to any one of the first to fifth aspects, in which the preheater 11 on the supply pipe 10 A second heat exchanger 16b is provided on the upstream side of the sample water and heats the sample water by exchanging heat between the sample water flowing through the supply pipe 10 and the steam discharged from the discharge part 26. Be prepared for more.
 上記構成によれば、第二熱交換器16bを経ることで、予熱器11による予熱に先立って、試料水の温度をさらに上げることが可能となる。これにより予熱器11に要求される出力がさらに下がるため、装置の製造コストや運用コストをより一層削減することが可能となる。 According to the above configuration, by passing through the second heat exchanger 16b, it is possible to further increase the temperature of the sample water prior to preheating by the preheater 11. This further reduces the output required of the preheater 11, making it possible to further reduce the manufacturing cost and operating cost of the device.
 本開示は、陰イオンを効率的かつ安価に検出することが可能な陰イオン検出装置に関する。 The present disclosure relates to an anion detection device that can efficiently and inexpensively detect anions.
1…陰イオン検出装置
10…供給管
11…予熱器
12…加熱槽
13…排出管
14…イオン交換部
15…濃度検出部
16a…第一熱交換器
16b…第二熱交換器
17a…第一流量計
17b…第二流量計
18…蒸気排出管
19…ポンプ
21…槽本体
22…供給部
23…充填物
24…貯留部
25…加熱部
26…排出部
27…補助加熱部
28…内部加熱部
29…邪魔板
1... Anion detection device 10... Supply pipe 11... Preheater 12... Heating tank 13... Discharge pipe 14... Ion exchange section 15... Concentration detection section 16a... First heat exchanger 16b... Second heat exchanger 17a... First Flowmeter 17b...Second flowmeter 18...Steam discharge pipe 19...Pump 21...Tank body 22...Supply section 23...Filling material 24...Storage section 25...Heating section 26...Discharge section 27...Auxiliary heating section 28...Internal heating section 29...Baffle board

Claims (6)

  1.  複数種類のイオンを含む試料水が流通する供給管と、
     該供給管上に設けられ、前記試料水を予熱する予熱器と、
     前記予熱された前記試料水をさらに加熱することで、前記複数種類の前記イオンのうち、分離対象となるイオンに由来する物質を含む蒸気とドレン水とに分離する加熱槽と、 前記加熱槽から前記ドレン水を取り出す排出管と、
     前記排出管上に設けられ、前記ドレン水に残存した前記分離対象となる前記イオンを除去するイオン交換樹脂を有するイオン交換部と、
     前記排出管上における前記イオン交換部の下流側に設けられ、前記ドレン水に含まれる陰イオンの濃度を検出する濃度検出部と、
    を備え、
     前記加熱槽は、
     槽本体と、
     該槽本体の上部に設けられ、前記予熱された前記試料水を供給する供給部と、
     該槽本体の内部に配置された充填物と、
     前記槽本体の下方に設けられ、前記予熱された試料水が貯留される貯留部と、
     該貯留部に設けられ、前記試料水を加熱して蒸気を発生させる加熱部と、
     前記蒸気を前記槽本体の外部に排出する排出部と、
    を有し、
     前記予熱器は、前記試料水が液相状態で、かつ該試料水の蒸気圧が大気圧と等しくなる状態となるまで前記試料水を予熱する陰イオン検出装置。
    A supply pipe through which sample water containing multiple types of ions flows;
    a preheater provided on the supply pipe and preheating the sample water;
    a heating tank that further heats the preheated sample water to separate it into steam and drain water containing substances originating from ions to be separated among the plurality of types of ions; and from the heating tank. a discharge pipe for taking out the drain water;
    an ion exchange unit provided on the discharge pipe and having an ion exchange resin that removes the ions to be separated remaining in the drain water;
    a concentration detection section that is provided downstream of the ion exchange section on the discharge pipe and detects the concentration of anions contained in the drain water;
    Equipped with
    The heating tank is
    The tank body,
    a supply unit provided at the upper part of the tank body and supplying the preheated sample water;
    a filling disposed inside the tank body;
    a storage section provided below the tank body and storing the preheated sample water;
    a heating section that is provided in the storage section and heats the sample water to generate steam;
    a discharge section that discharges the steam to the outside of the tank body;
    has
    The preheater is an anion detection device that preheats the sample water until the sample water is in a liquid phase and the vapor pressure of the sample water is equal to atmospheric pressure.
  2.  前記槽本体の周囲を覆う補助加熱部をさらに有する請求項1に記載の陰イオン検出装置。 The anion detection device according to claim 1, further comprising an auxiliary heating section that covers the periphery of the tank main body.
  3.  前記槽本体の内部に設けられた内部加熱部をさらに有する請求項1又は2に記載の陰イオン検出装置。 The anion detection device according to claim 1 or 2, further comprising an internal heating section provided inside the tank main body.
  4.  前記加熱部は、前記試料水を加熱する温度を調節可能なヒータである請求項1に記載の陰イオン検出装置。 The anion detection device according to claim 1, wherein the heating section is a heater that can adjust the temperature at which the sample water is heated.
  5.  前記供給管上における前記予熱器の上流側に設けられ、前記供給管を流通する前記試料水と、前記排出管から導かれた前記ドレン水とを熱交換させることで、前記試料水を加熱する第一熱交換器をさらに備える請求項1に記載の陰イオン検出装置。 Provided on the supply pipe upstream of the preheater, heating the sample water by exchanging heat between the sample water flowing through the supply pipe and the drain water led from the discharge pipe. The anion detection device according to claim 1, further comprising a first heat exchanger.
  6.  前記供給管上における前記予熱器の上流側に設けられ、前記供給管を流通する前記試料水と、前記排出部から排出された前記蒸気とを熱交換させることで、前記試料水を加熱する第二熱交換器をさらに備える請求項1に記載の陰イオン検出装置。 A first step provided on the supply pipe upstream of the preheater and heating the sample water by exchanging heat between the sample water flowing through the supply pipe and the steam discharged from the discharge section. The anion detection device according to claim 1, further comprising a two-heat exchanger.
PCT/JP2023/005835 2022-05-31 2023-02-17 Negative-ion detecting device WO2023233729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022088221A JP2023176114A (en) 2022-05-31 2022-05-31 Negative ion detection device
JP2022-088221 2022-05-31

Publications (1)

Publication Number Publication Date
WO2023233729A1 true WO2023233729A1 (en) 2023-12-07

Family

ID=89026017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005835 WO2023233729A1 (en) 2022-05-31 2023-02-17 Negative-ion detecting device

Country Status (2)

Country Link
JP (1) JP2023176114A (en)
WO (1) WO2023233729A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178175A1 (en) * 2011-01-12 2012-07-12 Jay Clifford Crosman CWB conductivity monitor
JP2018054359A (en) * 2016-09-27 2018-04-05 東亜ディーケーケー株式会社 Anion detecting system
JP2019219199A (en) * 2018-06-18 2019-12-26 オルガノ株式会社 Measuring system and measuring method for conductivity of cation removed water
WO2020031667A1 (en) * 2018-08-06 2020-02-13 三菱日立パワーシステムズ株式会社 Acid electrical conductivity measurement device and method, and steam turbine plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120178175A1 (en) * 2011-01-12 2012-07-12 Jay Clifford Crosman CWB conductivity monitor
JP2018054359A (en) * 2016-09-27 2018-04-05 東亜ディーケーケー株式会社 Anion detecting system
JP2019219199A (en) * 2018-06-18 2019-12-26 オルガノ株式会社 Measuring system and measuring method for conductivity of cation removed water
WO2020031667A1 (en) * 2018-08-06 2020-02-13 三菱日立パワーシステムズ株式会社 Acid electrical conductivity measurement device and method, and steam turbine plant

Also Published As

Publication number Publication date
JP2023176114A (en) 2023-12-13

Similar Documents

Publication Publication Date Title
CN113215592B (en) Comprehensive heat management system of large alkaline electrolyzed water hydrogen production device
BRPI1006700B1 (en) corrosion minimization method and system in a papermaking process and computer readable storage medium
US11170902B2 (en) Nuclear power plant and method for operating a nuclear power plant
WO2023233729A1 (en) Negative-ion detecting device
JP6213215B2 (en) Boiler system
JP5983310B2 (en) Boiler water quality management method and apparatus
BR112012029136B1 (en) process to improve the heat transfer coefficient in steam generating installations
WO2006104181A1 (en) Boiler apparatus
KR101669131B1 (en) A radioactive liquid waste treatment system
JP5277933B2 (en) Condensate quality monitoring device
JP2015117914A (en) Boiler system
KR200176691Y1 (en) Loop tester for Electr ochem ical Corrosion Potential Monitoring
US20200284742A1 (en) Method and system for measuring conductivity of decationized water
JP2009268999A (en) Method and apparatus for treating water
JP2008235518A (en) Liquid resistor cooling device
JP6021739B2 (en) Boiler water supply system
Tyapkov Analysis of the Water Chemical Regime at an NPP with a VVER-1000 before and after Reconstruction of the Turbine Condenser’s Tube System
CN108862433A (en) A kind of evaporation and concentration processing system of heavy metal-containing waste water
JP2004045195A (en) Method and device for treating condensate
Mori et al. Characterization of amines under high temperature conditions and their use for boiler water treatment
JP2004012162A (en) Method for suppressing corrosion of steam generator for nuclear reactor
JP6916702B2 (en) Measurement method and measurement system for conductivity of decationized water
JP2012215314A (en) Waste heat recovery boiler and operation method therefor
JP2008215753A (en) Impurity monitoring device and method for boiler water system
KR20180067576A (en) Systems and methods for on-line measurement of dissolved carbon dioxide in liquid samples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815493

Country of ref document: EP

Kind code of ref document: A1