JP2019059981A - Method for producing precisely fine molded article of superhard material - Google Patents

Method for producing precisely fine molded article of superhard material Download PDF

Info

Publication number
JP2019059981A
JP2019059981A JP2017185067A JP2017185067A JP2019059981A JP 2019059981 A JP2019059981 A JP 2019059981A JP 2017185067 A JP2017185067 A JP 2017185067A JP 2017185067 A JP2017185067 A JP 2017185067A JP 2019059981 A JP2019059981 A JP 2019059981A
Authority
JP
Japan
Prior art keywords
manufacturing
raw material
molded article
pressure sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017185067A
Other languages
Japanese (ja)
Other versions
JP7078969B2 (en
Inventor
豊 篠田
Yutaka Shinoda
豊 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2017185067A priority Critical patent/JP7078969B2/en
Publication of JP2019059981A publication Critical patent/JP2019059981A/en
Application granted granted Critical
Publication of JP7078969B2 publication Critical patent/JP7078969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

To provide a novel production method for producing a precisely fine molded article of a superhard material into dimensions as designed while suppressing the generation of crazes, chips and cracks.SOLUTION: The method for producing a precisely fine molded article of a superhard material, comprises the steps in which: the cavity of a die is filled with the raw material powder of a superhard material; and the raw material powder is subjected to uniaxial pressure sintering. In the step of performing uniaxial pressure sintering, a die material in which a precise optional rugged shape is formed on the surface is placed on a punch pressurizing the raw material powder.SELECTED DRAWING: Figure 1

Description

本発明は、超硬質材料の精密微細成型品を製造する方法に関する。   The present invention relates to a method of producing precision micro-molded articles of ultra-hard materials.

従来、超硬合金やサーメット、セラミックスなどの超硬質材料は、切削工具や耐摩耗工具として使用されてきた。その硬さや耐熱性からプレス用刻印や焼印としての応用が、また優れた耐摩耗性故に傷や摩耗に強いことから装飾品としての応用が期待されている。また、MEMSやマイクロマシン用の部品として、今後、極限環境下での使用に耐える耐熱、耐食性に優れたセラミックス基の素材に対する期待が高まってくることが考えられる。   Heretofore, super hard materials such as cemented carbide, cermets and ceramics have been used as cutting tools and wear resistant tools. Because of its hardness and heat resistance, it is expected to be applied as a stamp or a stamp for use in presses, and because it is excellent in abrasion resistance and resistant to scratches and abrasion, application as a decorative item is expected. In addition, as components for MEMS and micromachines, it is considered that the expectation for a ceramic-based material excellent in heat resistance and corrosion resistance to end use in an extreme environment will be increased in the future.

従来、超硬合金、サーメット、或いはセラミックスといった超硬材料の成形品は、原料粉末の金型による任意形状への成形後に焼成して得られる。さらに、それらを複雑形状に精密加工するには、ダイヤモンド工具を使った切削・研削加工やレーザー加工、放電加工等の種々の手法が用いられる。   Conventionally, a molded article of a cemented carbide material such as cemented carbide, cermet, or ceramics is obtained by forming a raw material powder into a desired shape with a die and then firing it. Furthermore, in order to precisely process them into complicated shapes, various methods such as cutting / grinding using a diamond tool, laser processing, and electric discharge machining are used.

ところが、上記の超硬質材料は硬さと脆さを兼ね備えた脆性材料であり、その加工には多大なコストと時間を要する。そのため、焼成前の成形体に切削加工を施した後焼結する方法(特許文献1、2)や、成形体を仮焼成し、得られた仮焼体に加工を施した後に本焼成を行う方法(特許文献3)が提案されている。   However, the above-described superhard material is a brittle material having both hardness and brittleness, and its processing requires a great deal of cost and time. Therefore, there is a method (see Patent Documents 1 and 2) in which a molded body before firing is subjected to cutting processing and then sintered, or the molded body is calcined and the obtained calcined body is subjected to main baking A method (Patent Document 3) has been proposed.

しかし、上記の方法は比較的大型な製品に対しては有効であるが、製品寸法がより微小になり、より微細精密な仕上げを要求されるに従って、成形時の形状の崩れやヒビ、欠け割れの問題、最終形状の寸法精度の問題などが生じる。   However, although the above method is effective for relatively large products, as the product size becomes smaller and a finer and more precise finish is required, the shape collapses during molding, cracks or cracks. And the dimensional accuracy of the final shape.

既存技術として、精密加工された金型内に金属ガラスを挿入し、ガラス転移点以上、結晶化温度以下に保った状態にてパンチで加圧し精密部品を得る方法(特許文献3)や、金属ガラス粒子1つを用いマイクロ粘性流動加工で直接成形する金属ガラスマイクロ部品作製法(非特許文献1)が提案されている。酸化物ガラスや金属ガラスのようなアモルファス材料はガラス転移点以上において型の隅々まで容易に粘性流動することができる。   As an existing technology, metal glass is inserted in a precision-machined mold, and it is pressed by a punch in a state kept at not less than the glass transition point and not more than the crystallization temperature to obtain precision parts (Patent Document 3) A method for producing a metallic glass micropart (Non-patent Document 1) has been proposed, in which a single glass particle is used for direct molding by microviscous flow processing. Amorphous materials such as oxide glass and metallic glass can easily flow viscous to the edges of the mold above the glass transition temperature.

しかしながら、結晶性の粉体はそのような流動が容易ではなく、とりわけ、セラミックスにおいては融点近くの超高温下でも同様の手法で形状を付与するのは困難である。また、製品の寸法が微小になり、加工がより微細精密になると流動性の問題は深刻になる。   However, crystalline powders are not easy to flow like that, and it is particularly difficult to impart shapes in the same manner in ceramics even at ultra-high temperatures near the melting point. In addition, as the dimensions of the product become smaller and the processing becomes finer and more precise, the flowability problem becomes serious.

特開昭60−131861号公報Japanese Patent Application Laid-Open No. 60-131861 特開昭61−97164号公報Japanese Patent Application Laid-Open No. 61-97164 特開昭62−212257号公報JP-A-62-212257 特開2009−97084号公報JP, 2009-97084, A

鉄と鋼 Vol.100 (2014) No. 8 p1006-1013Iron and steel Vol. 100 (2014) No. 8 p1006-1013

本発明は、上記に鑑みてなされたものであり、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法を提供することを目的とする。   The present invention has been made in view of the above, and provides a novel manufacturing method for manufacturing a precision micro-molded article of superhard material to a designed size while suppressing the occurrence of cracks and chipping. The purpose is to

本発明者は、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法につき鋭意検討した結果、以下の構成に想到し、本発明に至ったのである。   The inventor of the present invention considered the following constitution as a result of earnestly examining a novel manufacturing method for manufacturing a precision micro-molded product of an ultrahard material to a dimension as designed while suppressing the occurrence of cracks and chipping. The present invention has been achieved.

すなわち、本発明によれば、超硬質材料の精密微細成型品を製造する方法であって、ダイのキャビティに超硬質材料の原料粉末を充填する工程と、前記原料粉末を一軸加圧焼結する工程とを含み、前記一軸加圧焼結する工程において、表面に精密な任意の凹凸形状が形成された型材が前記原料粉末を加圧するパンチの上に配置されていることを特徴とする製造方法が提供される。   That is, according to the present invention, there is provided a method of producing a precision micro-molded article of a superhard material, comprising the steps of: filling a raw material powder of the superhard material in a cavity of a die; And manufacturing, wherein in the uniaxially pressure-sintering step, a mold material having a surface on which any desired uneven shape is formed is disposed on a punch for pressing the raw material powder. Is provided.

上述したように、本発明によれば、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法が提供される。   As described above, according to the present invention, there is provided a novel manufacturing method for manufacturing precision micro-molded articles of ultra-hard materials into designed dimensions while suppressing the occurrence of cracks and chipping.

本実施形態の製造方法の工程図。Process drawing of the manufacturing method of this embodiment. 本実施形態の製造方法の工程を模式的に示す図。The figure which shows typically the process of the manufacturing method of this embodiment. 本実施形態の製造方法の工程を模式的に示す図。The figure which shows typically the process of the manufacturing method of this embodiment. 本実施例1の炭化タングステン基超硬合金製の印鑑の写真。A photograph of a seal made of tungsten carbide based cemented carbide according to the first embodiment. 本実施例2の炭化チタン基サーメット製のメダルの写真。A photograph of a titanium carbide-based cermet medal of Example 2. 本実施例3のジルコニアセラミックス製の微小歯車の写真。A photograph of a micro gear made of zirconia ceramics of Example 3.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。   Hereinafter, the present invention will be described with the embodiment shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.

ここでは、本発明の超硬質材料の精密微細成型品の製造方法の一実施形態として、超硬質材料製の印鑑の製造方法を説明する。なお、以下では、図1に示す工程図ならびに図2および図3に示す模式図を適宜参照しながら説明を行うものとする。   Here, as an embodiment of the method for producing a precision micro-molded article of super hard material according to the present invention, a method for producing a seal made of super hard material will be described. The following description will be made with reference to the process diagram shown in FIG. 1 and the schematic diagrams shown in FIGS. 2 and 3 as appropriate.

図2(a)は工程1を模式的に示す。工程1では、その表面に印文の凹凸形状が形成された型材12を作製する。具体的には、短円柱状の基材10を用意した上で、基材10の表面を彫刻して印文(正確には、左右反転した印文)を表す精密な凹凸形状を形成する。   FIG. 2 (a) schematically shows step 1. In step 1, a mold 12 is produced on the surface of which the concavo-convex shape of the stamp is formed. Specifically, after preparing the base material 10 having a short cylindrical shape, the surface of the base material 10 is engraved to form a precise concavo-convex shape representing a seal (precisely, a seal that is reversed horizontally).

なお、基材10の素材は、型材として機能しうる十分な硬度を有し、且つ、快削性の耐熱材料(すなわち、加工性がよく耐熱性に優れる材料)であることが好ましい。快削性の耐熱材料としては、バインダーの添加によって強度や加工性を調整することができる、グラファイト、グラッシーカーボン等の炭素基材料や窒化ホウ素基材料を例示することができる。なお、型材12は、手彫りの彫刻、機械による彫刻、レーザー彫刻等によって作製する他、材料が導電性材料である場合は、放電加工によって作製することもできる。本実施形態では、快削性の基材10の表面に対して、凹部または凸部の最小幅が数百マイクロメートル以下のサイズを有する凹凸形状を形成したものを型材12として用いることができる。   In addition, it is preferable that the raw material of the base material 10 has sufficient hardness which can function as a type | mold material, and is a heat-resistant material (that is, material which is easy to cut and excellent in heat resistance). Examples of the heat-resistant material of free-cutting property include carbon-based materials such as graphite and glassy carbon and boron nitride-based materials whose strength and processability can be adjusted by the addition of a binder. The mold material 12 may be produced by hand engraving, mechanical engraving, laser engraving or the like, or may be produced by electric discharge machining when the material is a conductive material. In the present embodiment, it is possible to use, as the mold material 12, the surface of the free-cutting substrate 10 in which the concavo-convex shape in which the minimum width of the concave portion or the convex portion is several hundred micrometers or less is formed.

図2(b)は工程2を模式的に示す。工程2では、焼結装置の下パンチ32の上に作製した型材12を配置した状態で、下パンチ32をダイ20に形成された円柱状の貫通孔22(以下、ダイ孔22という)の下方から嵌入する。なお、焼結装置は、ホットプレス焼結装置であってもよいし、放電プラズマ焼結装置であってもよい。   FIG. 2 (b) schematically shows step 2. In step 2, with the mold material 12 fabricated on the lower punch 32 of the sintering apparatus, the lower punch 32 is positioned below the cylindrical through hole 22 (hereinafter referred to as the die hole 22) formed in the die 20. Insert from the The sintering apparatus may be a hot press sintering apparatus or a discharge plasma sintering apparatus.

図2(c)は工程3を模式的に示す。工程3では、ダイ孔22と下パンチ32によって形成された円柱状のキャビティに超硬質材料の原料粉末40を充填した後、ダイ孔22の上方から上パンチ34を嵌入する。   FIG. 2C schematically shows step 3. In step 3, the cylindrical powder formed by the die hole 22 and the lower punch 32 is filled with the raw powder 40 of the superhard material, and then the upper punch 34 is inserted from above the die hole 22.

ここで、超硬質材料としては、炭化タングステンを基材とする超硬合金(炭化タングステン基超硬合金)、炭化チタンを基材とするサーメット(炭化チタン基サーメット)、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素、炭化ホウ素などを基材とするファインセラミックス(アルミナ基酸化物セラミックス、ジルコニア基酸化物セラミックス、炭化ケイ素基非酸化物セラミックス、窒化ケイ素基非酸化物セラミックス、炭化ホウ素基非酸化物セラミックス)、または、それらの複合材料等を例示することができる。原料粉末40は、上述した基材と結合材(助剤)の混合粉末であり、本実施形態では、この混合粉末を準備するにあたり、焼成条件と併せて焼成体が超塑性的挙動を発現するように粉末調整する。   Here, as a superhard material, a cemented carbide (tungsten carbide based cemented carbide) based on tungsten carbide, a cermet based on titanium carbide (titanium carbide based cermet), alumina, zirconia, silicon carbide, Fine ceramics based on silicon nitride and boron carbide (alumina based oxide ceramics, zirconia based oxide ceramics, silicon carbide based non oxide ceramics, silicon nitride based non oxide ceramics, boron carbide based non oxide ceramics) Or, those composite materials etc. can be illustrated. The raw material powder 40 is a mixed powder of the above-described base material and a binder (auxiliary agent), and in the present embodiment, in preparing the mixed powder, the sintered body exhibits superplastic behavior in combination with the sintering conditions Prepare the powder as you like.

図3(a)は工程4を模式的に示す。工程4では、一軸加圧焼結を行う。具体的には、一方の表面に印文の凹凸形状が形成されている型材12を、その他方の表面を下にして下パンチ32の上に配置した状態で、上パンチ34と下パンチ32で原料粉末40を一軸方向に加圧しながらこれを焼結する。その結果、その底面に印文を象った凹凸形状を有する焼結体が得られる。   FIG. 3A schematically shows step 4. In step 4, uniaxial pressure sintering is performed. Specifically, the upper punch 34 and the lower punch 32 are disposed on the lower punch 32 with the mold material 12 having the concavo-convex shape of the stamp formed on one surface and the other surface down. The raw material powder 40 is sintered while uniaxially pressing it. As a result, it is possible to obtain a sintered body having a concavo-convex shape in which a seal is imprinted on the bottom surface.

ここで、一軸加圧焼結を行うにあたっては、原料粉末40の粉体条件と併せて焼成中に焼成品内の結晶粒が超塑性的流動を生じるような焼結条件を設定する必要がある。超塑性は微細結晶粒を有する結晶性材料が高温化で示す巨大な延性であり、その発現には、粒子径、助剤や結合材の添加量、温度、圧力、といった多くのパラメータが関与する。一般的には、粒子径が小さいほど、助剤や結合材の添加量が多いほど、温度、圧力が高いほど、超塑性的な流動は得られるが、一方で、助剤や結合材の添加量が多いほど、温度が高いほど、焼成中に結晶粒の成長が生じやすくなることから、結晶粒の成長を抑制しつつ、超塑性を発現し得る最適なパラメータの組み合わせを選ぶ必要がある。   Here, in order to perform uniaxial pressure sintering, it is necessary to set sintering conditions that cause superplastic flow of crystal grains in the sintered product during sintering together with the powder conditions of the raw material powder 40 . Superplasticity is a huge ductility that a crystalline material having fine crystal grains exhibits at high temperature, and its expression involves many parameters such as particle diameter, addition amount of auxiliary agent and binder, temperature, pressure, etc. . Generally, the smaller the particle size, the higher the added amount of auxiliary agent and binder, the higher the temperature and pressure, the superplastic flow is obtained, while the addition of auxiliary agent and binder As the amount is larger and the temperature is higher, crystal grain growth is more likely to occur during firing. Therefore, it is necessary to select an optimum combination of parameters that can develop superplasticity while suppressing crystal grain growth.

例えば、標準的な焼結装置を用いて炭化タングステン基超硬合金の焼結体を作製する場合、各種パラメータを下記(1)〜(4)に示す範囲で組み合わせることにより任意に焼成条件を振ることができる。
(1)炭化タングステン粒子径:0.1−10μm
(2)コバルト添加量:1−30wt%
(3)焼成温度900−1600℃
(4)圧力10−100MPa
For example, in the case of producing a sintered body of tungsten carbide based cemented carbide using a standard sintering apparatus, the firing conditions are optionally shaken by combining various parameters in the range shown in the following (1) to (4) be able to.
(1) Tungsten carbide particle diameter: 0.1-10 μm
(2) Cobalt addition amount: 1-30 wt%
(3) Baking temperature 900-1600 ° C
(4) Pressure 10-100MPa

図3(b)は工程5を模式的に示す。工程5では、ダイ20から焼結体50を取り出した後、焼結体50の底面に固着した型材12を除去する。ここで、型材12がグラファイトの場合は、サンドペーパーやワイヤブラシで塊片を除去した後に、サンドブラストで仕上げを行うことができる。なお、焼結体50がセラミックスの場合は、大気中700℃以上で加熱にすることで型材12を焼き飛ばすこともできる。   FIG. 3 (b) schematically shows step 5. In step 5, after taking out the sintered body 50 from the die 20, the mold material 12 fixed to the bottom surface of the sintered body 50 is removed. Here, in the case where the mold 12 is graphite, it is possible to finish by sand blasting after removing pieces by sand paper or wire brush. When the sintered body 50 is a ceramic, the mold material 12 can be burned off by heating at 700 ° C. or higher in the air.

図3(c)は工程6を模式的に示す。工程6では、必要に応じて仕上げ処理を行う。具体的には、焼結体50の外周面を研削した後、研磨による鏡面仕上げを行う。   FIG. 3C schematically shows step 6. In step 6, a finishing process is performed as needed. Specifically, after grinding the outer peripheral surface of the sintered body 50, mirror finish by polishing is performed.

以上、本発明の一実施形態として、超硬質材料製の印鑑の製造方法について説明したが、本発明によれば、印鑑に限らず、精密微細成型品全般を製造できることはいうまでもない。   As mentioned above, although the manufacturing method of the seal stamp made of super hard material was explained as one embodiment of the present invention, according to the present invention, it is needless to say that it is possible to manufacture not only a seal stamp but a precision fine molded article in general.

本発明によって製造可能な超硬質材料の精密微細成型品としては、MEMS部品、工業部品、プレス用刻印、装飾品などを例示することができる。これらの精密微細成型品を製造する場合は、上述した印文に代えて、精密な任意の凹凸形状が表面に形成された型材を用意すればよい。   Examples of precision micro-molded articles of superhard materials that can be manufactured by the present invention include MEMS parts, industrial parts, stamping marks, decorative articles, and the like. In the case of manufacturing these precision micro-molded articles, in place of the above-described seal, it is sufficient to prepare a mold material having a surface on which any precise uneven shape is formed.

以上、説明したように、本発明によれば、任意の形状を有する超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造することが可能になる。加えて、本発明によれば、加工性の良い基材を精密加工して型材を作製するだけでよく、加工性が著しく悪い超硬質材料を高いコストをかけて加工する必要が無いため、超硬質材料の精密微細成型品を安価に製造することが可能になる。   As described above, according to the present invention, it is possible to manufacture a precision micro-molded article of an ultrahard material having an arbitrary shape to a designed size while suppressing the occurrence of cracks and chipping. Become. In addition, according to the present invention, it is only necessary to precisely process the base material with good processability to produce the mold material, and it is not necessary to process the extremely hard material with extremely poor processability at high cost. It becomes possible to inexpensively manufacture precision micro-molded articles of hard materials.

(実施例1)
本発明の製造方法を使用して炭化タングステン基超硬合金製の印鑑を作製した。なお、本実験では、原料粉末として0.1μmの粒子径を有するWC粉末と1μmの粒子径を有するCo粉末を9:1の重量比で混合した混合粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、昇温:50℃/min、1000℃ 50MPa、3分保持)を行った。
Example 1
A seal made of tungsten carbide based cemented carbide was prepared using the manufacturing method of the present invention. In this experiment, mixed powder of WC powder having a particle diameter of 0.1 μm and Co powder having a particle diameter of 1 μm is mixed at a weight ratio of 9: 1 as raw material powder, and graphite is used as a mold material. Then, uniaxial pressure sintering (vacuum, temperature rising: 50 ° C./min, 1000 ° C. 50 MPa, holding for 3 minutes) was performed with a discharge plasma sintering apparatus.

図4は、本実験で作製した印鑑の写真を示す。図4に示すように、作製された印鑑の外周面は、美しい金属光沢を放ち、印面においては、印文のつぶれ・欠けが一切なかった。   FIG. 4 shows a photograph of the seal produced in this experiment. As shown in FIG. 4, the outer peripheral surface of the manufactured seal stamp emitted a beautiful metallic luster, and the seal surface was free from any collapse or chipping of the seal.

(実施例2)
本発明の製造方法を使用して炭化チタン基超硬合金製のメダルを作製した。なお、本実験では、原料粉末として0.7μmの粒子径を有するTiC粉末と1μmの粒子径を有するNi粉末を8:2の重量比で混合した混合粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、1250℃ 30MPa、1分保持)を行った。
(Example 2)
Using the manufacturing method of the present invention, a medal made of titanium carbide based cemented carbide was produced. In this experiment, a mixed powder of TiC powder having a particle diameter of 0.7 μm and Ni powder having a particle diameter of 1 μm was mixed at a weight ratio of 8: 2 as raw material powder, and graphite was used as a mold material. Then, uniaxial pressure sintering (vacuum, 1250 ° C., 30 MPa, holding for 1 minute) was performed in a discharge plasma sintering apparatus.

図5は、本実施例2の炭化チタン基超硬合金製のメダル(直径20mm)の写真を示す。   FIG. 5 shows a photograph of a medal (diameter 20 mm) made of titanium carbide based cemented carbide according to the second embodiment.

(実施例3)
本発明の製造方法を使用してジルコニアセラミックス製の微小歯車を作製した。なお、本実験では、原料粉末として3mol%のイットリアを含有した0.03μmの粒子径を有するZrO2粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、1200℃ 30MPa、10分保持)を行った。
(Example 3)
A micro gear made of zirconia ceramic was manufactured using the manufacturing method of the present invention. In this experiment, ZrO 2 powder having a particle diameter of 0.03 μm containing 3 mol% yttria was used as a raw material powder, and graphite was used as a mold material, and uniaxial pressure sintering was performed in a discharge plasma sintering apparatus ( A vacuum was carried out at 1200 ° C. and 30 MPa for 10 minutes.

図6は、本実施例3のジルコニアセラミックス製の微小歯車の写真を示す。   FIG. 6 shows a photograph of a micro gear made of zirconia ceramic of Example 3.

10…基材、12…型材、20…ダイ、22…ダイ孔、32…下パンチ、34…上パンチ、40…原料粉末、50…焼結体 DESCRIPTION OF SYMBOLS 10 ... Base material, 12 ... Shape material, 20 ... Die, 22 ... Die hole, 32 ... Lower punch, 34 ... Upper punch, 40 ... Raw material powder, 50 ... Sintered body

Claims (9)

超硬質材料の精密微細成型品を製造する方法であって、
ダイのキャビティに超硬質材料の原料粉末を充填する工程と、
前記原料粉末を一軸加圧焼結する工程と
を含み、
前記一軸加圧焼結する工程において、
表面に精密な任意の凹凸形状が形成された型材が前記原料粉末を加圧するパンチの上に配置されていることを特徴とする
製造方法。
A method of producing a precision micro-molded article of superhard material, comprising
Filling the raw material powder of the super hard material in the cavity of the die;
Uniaxial pressure sintering the raw material powder, and
In the uniaxial pressure sintering step,
A manufacturing method characterized in that a mold material in which a precise arbitrary uneven shape is formed on the surface is disposed on a punch for pressing the raw material powder.
前記型材の素材は、快削性の耐熱材料である、
請求項1に記載の製造方法。
The material of the mold material is a heat-resistant material of machinable property,
The method according to claim 1.
前記快削性の耐熱材料は、炭素基材料または窒化ホウ素基材料である、
請求項2に記載の製造方法。
The free-cutting heat-resistant material is a carbon-based material or a boron nitride-based material,
The manufacturing method according to claim 2.
前記炭素基材料は、グラファイトまたはグラッシーカーボンである、
請求項3に記載の製造方法。
The carbon-based material is graphite or glassy carbon,
The method according to claim 3.
前記超硬質材料は、超硬合金、サーメットおよびファインセラミックスから選択されるいずれか1種の材料である、
請求項1〜4のいずれか一項に記載の製造方法。
The super hard material is any one material selected from cemented carbide, cermet and fine ceramics,
The manufacturing method as described in any one of Claims 1-4.
前記超硬質材料は、炭化タングステン基超硬合金、炭化チタン基サーメット、アルミナ基酸化物セラミックス、ジルコニア基酸化物セラミックス、炭化ケイ素基非酸化物セラミックス、窒化ケイ素基非酸化物セラミックス、炭化ホウ素基非酸化物セラミックス、または、それらの複合材料である、
請求項1〜4のいずれか一項に記載の製造方法。
The super hard material includes tungsten carbide base cemented carbide, titanium carbide base cermet, alumina base oxide ceramics, zirconia base oxide ceramics, silicon carbide base non oxide ceramics, silicon nitride base non oxide ceramics, boron carbide base non oxide ceramics Oxide ceramics or their composite materials,
The manufacturing method as described in any one of Claims 1-4.
前記精密微細成型品は、MEMS部品、工業部品、印鑑、プレス用刻印および装飾品から選択されるいずれか1種の成型品である、
請求項1〜6のいずれか一項に記載の製造方法。
The precision micro-molded article is any one molded article selected from MEMS parts, industrial parts, seals, stamping marks for a press, and decorations.
The manufacturing method as described in any one of Claims 1-6.
前記一軸加圧焼結する工程は、結晶粒が超塑性的流動を発現し得る条件下で実施される、
請求項1〜7のいずれか一項に記載の製造方法。
The uniaxial pressure sintering step is carried out under conditions that allow crystal grains to develop a superplastic flow.
The manufacturing method as described in any one of Claims 1-7.
超硬質材料製の印鑑を製造する方法であって、
ダイの円柱状のキャビティに超硬質材料の原料粉末を充填する工程と、
前記原料粉末を一軸加圧焼結する工程と
を含み、
前記一軸加圧焼結する工程において、
表面に印文を表す精密な凹凸形状が形成された型材が前記原料粉末を加圧するパンチの上に配置されていることを特徴とする
製造方法。
A method for producing a seal made of super hard material,
Filling raw material powder of super hard material into cylindrical cavity of die;
Uniaxial pressure sintering the raw material powder, and
In the uniaxial pressure sintering step,
A manufacturing method characterized in that a mold material on the surface of which a precise concavo-convex shape representing a seal is formed is disposed on a punch for pressing the raw material powder.
JP2017185067A 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials Active JP7078969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185067A JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185067A JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Publications (2)

Publication Number Publication Date
JP2019059981A true JP2019059981A (en) 2019-04-18
JP7078969B2 JP7078969B2 (en) 2022-06-01

Family

ID=66176339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185067A Active JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Country Status (1)

Country Link
JP (1) JP7078969B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150608A (en) * 1974-05-28 1975-12-03
JPS5437114A (en) * 1977-08-30 1979-03-19 Mitsubishi Metal Corp Highhstrength ceramic
JPH0367680A (en) * 1989-08-04 1991-03-22 Hata Kensaku:Kk Manufacture of fine ceramic seal
JPH08109403A (en) * 1994-10-12 1996-04-30 Daido Steel Co Ltd Production of cermet
JP2000128648A (en) * 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP2001226703A (en) * 2000-02-14 2001-08-21 Honda Motor Co Ltd Die for electric sintering and processing
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
JP2005126270A (en) * 2003-10-22 2005-05-19 Sumitomo Electric Ind Ltd Micromachined component made of polycrystalline material and its manufacturing method
JP2013040396A (en) * 2011-08-19 2013-02-28 Seiko Epson Corp Cemented carbide and method of manufacturing the same
JP2014109044A (en) * 2012-11-30 2014-06-12 National Institute For Materials Science Conductive punch for high temperature and method of producing the same
JP2016108645A (en) * 2014-12-10 2016-06-20 株式会社ノトアロイ Production device for mold material and method for producing mold material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50150608A (en) * 1974-05-28 1975-12-03
JPS5437114A (en) * 1977-08-30 1979-03-19 Mitsubishi Metal Corp Highhstrength ceramic
JPH0367680A (en) * 1989-08-04 1991-03-22 Hata Kensaku:Kk Manufacture of fine ceramic seal
JPH08109403A (en) * 1994-10-12 1996-04-30 Daido Steel Co Ltd Production of cermet
JP2000128648A (en) * 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP2001226703A (en) * 2000-02-14 2001-08-21 Honda Motor Co Ltd Die for electric sintering and processing
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
JP2005126270A (en) * 2003-10-22 2005-05-19 Sumitomo Electric Ind Ltd Micromachined component made of polycrystalline material and its manufacturing method
JP2013040396A (en) * 2011-08-19 2013-02-28 Seiko Epson Corp Cemented carbide and method of manufacturing the same
JP2014109044A (en) * 2012-11-30 2014-06-12 National Institute For Materials Science Conductive punch for high temperature and method of producing the same
JP2016108645A (en) * 2014-12-10 2016-06-20 株式会社ノトアロイ Production device for mold material and method for producing mold material

Also Published As

Publication number Publication date
JP7078969B2 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
JP2679744B2 (en) High hardness and wear resistant material
JP2018532673A (en) Diamond composites produced by lithography
CN105149894A (en) Method for manufacturing microstructure carbide blade
JPH0134122B2 (en)
JPH04354839A (en) External ornamental parts for timepiece and manufacture of the same
JP4713119B2 (en) Cutting tool insert and manufacturing method thereof
Ng et al. Machining of novel alumina/cyanoacrylate green ceramic compacts
JP4842212B2 (en) Mold for glass hard disk substrate
JP7078969B2 (en) How to manufacture precision micromolded products of ultra-hard materials
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by Spark Plasma Sintering (SPS) method and its industrial applications
KR101099395B1 (en) Cemented carbide cutting tool using Spark Plasma Sintering and method thereof
JP2007261881A (en) Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
US20100176339A1 (en) Jewelry having titanium boride compounds and methods of making the same
KR101304758B1 (en) Process for Composite Materials of Nanostructured Metal Carbides-Intermetallic Compounds
JP2008150224A (en) Method of manufacturing ceramic
JP2005126270A (en) Micromachined component made of polycrystalline material and its manufacturing method
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
JPH05171334A (en) Hard sintered part and its manufacture
JP2002069560A (en) Superhard particle-containing composite material
RU82697U1 (en) COMPLETE FORM FORMING WITH HOT PRESSING
CN104003727B (en) Resol silicification connects the method for superhard material
KR100563770B1 (en) Manufacturing method of sintered diamond tool by metal powder injection molding process
JPS6137221B2 (en)
RU2296041C2 (en) Metallic bond for manufacture of the segments on the basis of the superhard materials for production of the cutting tools and the method of the cutting tools manufacture

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220513

R150 Certificate of patent or registration of utility model

Ref document number: 7078969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150