JP7078969B2 - How to manufacture precision micromolded products of ultra-hard materials - Google Patents

How to manufacture precision micromolded products of ultra-hard materials Download PDF

Info

Publication number
JP7078969B2
JP7078969B2 JP2017185067A JP2017185067A JP7078969B2 JP 7078969 B2 JP7078969 B2 JP 7078969B2 JP 2017185067 A JP2017185067 A JP 2017185067A JP 2017185067 A JP2017185067 A JP 2017185067A JP 7078969 B2 JP7078969 B2 JP 7078969B2
Authority
JP
Japan
Prior art keywords
carbide
manufacturing
ultra
oxide ceramics
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185067A
Other languages
Japanese (ja)
Other versions
JP2019059981A (en
Inventor
豊 篠田
Original Assignee
豊 篠田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 豊 篠田 filed Critical 豊 篠田
Priority to JP2017185067A priority Critical patent/JP7078969B2/en
Publication of JP2019059981A publication Critical patent/JP2019059981A/en
Application granted granted Critical
Publication of JP7078969B2 publication Critical patent/JP7078969B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

特許法第30条第2項適用 平成29年8月17日、第7回おおた研究・開発フェア、出展者プレゼンテーションのウェブページにて発表。 該当アドレス http://www.pio-ota.jp/ota-r-and-d-fair/7/presentation.htmlApplication of Article 30, Paragraph 2 of the Patent Act Announced on the web page of the exhibitor presentation at the 7th Ota Research and Development Fair on August 17, 2017. Corresponding address http: // www. pio-ota. jp / ota-r-and-d-fair / 7 / presentation. html

本発明は、超硬質材料の精密微細成型品を製造する方法に関する。 The present invention relates to a method for producing a precision micromolded product of an ultra-hard material.

従来、超硬合金やサーメット、セラミックスなどの超硬質材料は、切削工具や耐摩耗工具として使用されてきた。その硬さや耐熱性からプレス用刻印や焼印としての応用が、また優れた耐摩耗性故に傷や摩耗に強いことから装飾品としての応用が期待されている。また、MEMSやマイクロマシン用の部品として、今後、極限環境下での使用に耐える耐熱、耐食性に優れたセラミックス基の素材に対する期待が高まってくることが考えられる。 Conventionally, cemented carbide, cermet, ceramics and other cemented carbide materials have been used as cutting tools and wear-resistant tools. Due to its hardness and heat resistance, it is expected to be applied as a stamp for pressing and branding iron, and because of its excellent wear resistance, it is resistant to scratches and wear, so it is expected to be applied as a decorative item. In addition, as parts for MEMS and micromachines, expectations for ceramic-based materials with excellent heat resistance and corrosion resistance that can withstand use in extreme environments are expected to increase in the future.

従来、超硬合金、サーメット、或いはセラミックスといった超硬材料の成形品は、原料粉末の金型による任意形状への成形後に焼成して得られる。さらに、それらを複雑形状に精密加工するには、ダイヤモンド工具を使った切削・研削加工やレーザー加工、放電加工等の種々の手法が用いられる。 Conventionally, a molded product of a cemented carbide such as a cemented carbide, a cermet, or a ceramic is obtained by molding a raw material powder into an arbitrary shape by a mold and then firing. Further, in order to precision machine them into a complicated shape, various methods such as cutting / grinding using a diamond tool, laser machining, and electric discharge machining are used.

ところが、上記の超硬質材料は硬さと脆さを兼ね備えた脆性材料であり、その加工には多大なコストと時間を要する。そのため、焼成前の成形体に切削加工を施した後焼結する方法(特許文献1、2)や、成形体を仮焼成し、得られた仮焼体に加工を施した後に本焼成を行う方法(特許文献3)が提案されている。 However, the above-mentioned ultra-hard material is a brittle material having both hardness and brittleness, and its processing requires a great deal of cost and time. Therefore, a method of performing a cutting process on the molded body before firing and then sintering (Patent Documents 1 and 2), or a method of temporarily firing the molded body, processing the obtained temporary baked body, and then performing the main firing. A method (Patent Document 3) has been proposed.

しかし、上記の方法は比較的大型な製品に対しては有効であるが、製品寸法がより微小になり、より微細精密な仕上げを要求されるに従って、成形時の形状の崩れやヒビ、欠け割れの問題、最終形状の寸法精度の問題などが生じる。 However, although the above method is effective for relatively large products, as the product dimensions become smaller and more fine and precise finishing is required, the shape during molding is deformed, cracked, and cracked. Problems, problems with dimensional accuracy of the final shape, etc. occur.

既存技術として、精密加工された金型内に金属ガラスを挿入し、ガラス転移点以上、結晶化温度以下に保った状態にてパンチで加圧し精密部品を得る方法(特許文献3)や、金属ガラス粒子1つを用いマイクロ粘性流動加工で直接成形する金属ガラスマイクロ部品作製法(非特許文献1)が提案されている。酸化物ガラスや金属ガラスのようなアモルファス材料はガラス転移点以上において型の隅々まで容易に粘性流動することができる。 As existing techniques, a method of inserting metallic glass into a precision-machined mold and pressurizing it with a punch while keeping it above the glass transition point and below the crystallization temperature to obtain precision parts (Patent Document 3) and metal. A method for producing a metallic glass micropart (Non-Patent Document 1) has been proposed in which a single glass particle is used and directly molded by microviscosity flow processing. Amorphous materials such as oxide glass and metallic glass can easily viscously flow to every corner of the mold above the glass transition point.

しかしながら、結晶性の粉体はそのような流動が容易ではなく、とりわけ、セラミックスにおいては融点近くの超高温下でも同様の手法で形状を付与するのは困難である。また、製品の寸法が微小になり、加工がより微細精密になると流動性の問題は深刻になる。 However, such a flow of crystalline powder is not easy, and it is particularly difficult to give a shape to ceramics by the same method even at an ultra-high temperature near the melting point. In addition, as the dimensions of the product become smaller and the processing becomes finer and more precise, the problem of fluidity becomes more serious.

特開昭60-131861号公報Japanese Unexamined Patent Publication No. 60-131861 特開昭61-97164号公報Japanese Unexamined Patent Publication No. 61-97164 特開昭62-212257号公報Japanese Unexamined Patent Publication No. 62-21257 特開2009-97084号公報Japanese Unexamined Patent Publication No. 2009-97084

鉄と鋼 Vol.100 (2014) No. 8 p1006-1013Iron and Steel Vol.100 (2014) No. 8 p1006-1013

本発明は、上記に鑑みてなされたものであり、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法を提供することを目的とする。 The present invention has been made in view of the above, and provides a novel manufacturing method for manufacturing a precision micromolded product of an ultra-hard material into dimensions as designed while suppressing the occurrence of cracks and cracks. The purpose is to do.

本発明者は、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法につき鋭意検討した結果、以下の構成に想到し、本発明に至ったのである。 The present inventor has devised the following configuration as a result of diligently studying a new manufacturing method for manufacturing a precision micromolded product of an ultra-hard material to the dimensions as designed while suppressing the occurrence of cracks and cracks. However, it came to the present invention.

すなわち、本発明によれば、超硬合金、サーメットおよびファインセラミックスから選択される超硬質材料の精密微細成型品を製造する方法であって、ダイのキャビティに超硬質材料の原料粉末を充填する工程と、前記原料粉末を一軸加圧焼結する工程と
を含み、前記一軸加圧焼結する工程において、表面に精密な任意の凹凸形状が形成され、グラファイトまたはグラッシーカーボンかなり、パンチとは別に形成された型材が前記ダイのダイ孔内で前記原料粉末を加圧する前記パンチの上に配置されて、前記一軸加圧焼結の後に前記型材をサンドペーパ、ワイヤブラシで除去されるか、または焼き飛ばされることを特徴とする製造方法が提供される。
That is, according to the present invention, it is a method for producing a precision finely molded product of a cemented carbide selected from cemented carbide, cermet and fine ceramics, and is a step of filling the cavity of the die with the raw material powder of the cemented carbide. In the step of uniaxial pressure sintering of the raw material powder, a precise arbitrary uneven shape is formed on the surface, and the surface is made of graphite or glassy carbon , and is formed of a punch. A separately formed mold is placed in the die hole of the die on the punch that pressurizes the raw material powder, and after the uniaxial pressure sintering, the mold is removed with a sandpaper, a wire brush, or Alternatively, a manufacturing method characterized by being burned off is provided.

上述したように、本発明によれば、超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造するための新規な製造方法が提供される。 As described above, according to the present invention, there is provided a novel manufacturing method for manufacturing a precision micromolded product of an ultra-hard material into dimensions as designed while suppressing the occurrence of cracks and cracks.

本実施形態の製造方法の工程図。The process chart of the manufacturing method of this embodiment. 本実施形態の製造方法の工程を模式的に示す図。The figure which shows typically the process of the manufacturing method of this embodiment. 本実施形態の製造方法の工程を模式的に示す図。The figure which shows typically the process of the manufacturing method of this embodiment. 本実施例1の炭化タングステン基超硬合金製の印鑑の写真。A photograph of a seal made of a tungsten carbide-based cemented carbide of Example 1. 本実施例2の炭化チタン基サーメット製のメダルの写真。Photograph of a medal made of titanium carbide-based cermet of the second embodiment. 本実施例3のジルコニアセラミックス製の微小歯車の写真。Photograph of a micro gear made of zirconia ceramics of the third embodiment.

以下、本発明を図面に示した実施の形態をもって説明するが、本発明は、図面に示した実施の形態に限定されるものではない。 Hereinafter, the present invention will be described with reference to the embodiments shown in the drawings, but the present invention is not limited to the embodiments shown in the drawings.

ここでは、本発明の超硬質材料の精密微細成型品の製造方法の一実施形態として、超硬質材料製の印鑑の製造方法を説明する。なお、以下では、図1に示す工程図ならびに図2および図3に示す模式図を適宜参照しながら説明を行うものとする。 Here, as an embodiment of the method for manufacturing a precision micromolded product of an ultra-hard material of the present invention, a method for producing a stamp made of an ultra-hard material will be described. In the following, the description will be given with reference to the process diagram shown in FIG. 1 and the schematic views shown in FIGS. 2 and 3 as appropriate.

図2(a)は工程1を模式的に示す。工程1では、その表面に印文の凹凸形状が形成された型材12を作製する。具体的には、短円柱状の基材10を用意した上で、基材10の表面を彫刻して印文(正確には、左右反転した印文)を表す精密な凹凸形状を形成する。 FIG. 2A schematically shows step 1. In step 1, a mold material 12 having an uneven shape of an inscription formed on the surface thereof is produced. Specifically, after preparing the short columnar base material 10, the surface of the base material 10 is engraved to form a precise uneven shape representing a stamp (more accurately, a left-right inverted stamp).

なお、基材10の素材は、型材として機能しうる十分な硬度を有し、且つ、快削性の耐熱材料(すなわち、加工性がよく耐熱性に優れる材料)であることが好ましい。快削性の耐熱材料としては、バインダーの添加によって強度や加工性を調整することができる、グラファイト、グラッシーカーボン等の炭素基材料や窒化ホウ素基材料を例示することができる。なお、型材12は、手彫りの彫刻、機械による彫刻、レーザー彫刻等によって作製する他、材料が導電性材料である場合は、放電加工によって作製することもできる。本実施形態では、快削性の基材10の表面に対して、凹部または凸部の最小幅が数百マイクロメートル以下のサイズを有する凹凸形状を形成したものを型材12として用いることができる。 The material of the base material 10 is preferably a heat-resistant material having sufficient hardness to function as a mold material and having free-cutting properties (that is, a material having good processability and excellent heat resistance). Examples of the free-cutting heat-resistant material include carbon-based materials such as graphite and glassy carbon and boron nitride-based materials whose strength and processability can be adjusted by adding a binder. The mold material 12 can be manufactured by hand-carving, mechanical engraving, laser engraving, or the like, or if the material is a conductive material, it can also be manufactured by electric discharge machining. In the present embodiment, a material 12 having a concave-convex shape having a minimum width of a concave portion or a convex portion of several hundred micrometers or less can be used as the mold material 12 with respect to the surface of the free-cutting base material 10.

図2(b)は工程2を模式的に示す。工程2では、焼結装置の下パンチ32の上に作製した型材12を配置した状態で、下パンチ32をダイ20に形成された円柱状の貫通孔22(以下、ダイ孔22という)の下方から嵌入する。なお、焼結装置は、ホットプレス焼結装置であってもよいし、放電プラズマ焼結装置であってもよい。 FIG. 2B schematically shows step 2. In step 2, with the prepared mold material 12 placed on the lower punch 32 of the sintering device, the lower punch 32 is below the columnar through hole 22 (hereinafter referred to as the die hole 22) formed in the die 20. Insert from. The sintering device may be a hot press sintering device or a discharge plasma sintering device.

図2(c)は工程3を模式的に示す。工程3では、ダイ孔22と下パンチ32によって形成された円柱状のキャビティに超硬質材料の原料粉末40を充填した後、ダイ孔22の上方から上パンチ34を嵌入する。 FIG. 2C schematically shows step 3. In step 3, the columnar cavity formed by the die hole 22 and the lower punch 32 is filled with the raw material powder 40 of the ultra-hard material, and then the upper punch 34 is fitted from above the die hole 22.

ここで、超硬質材料としては、炭化タングステンを基材とする超硬合金(炭化タングステン基超硬合金)、炭化チタンを基材とするサーメット(炭化チタン基サーメット)、アルミナ、ジルコニア、炭化ケイ素、窒化ケイ素、炭化ホウ素などを基材とするファインセラミックス(アルミナ基酸化物セラミックス、ジルコニア基酸化物セラミックス、炭化ケイ素基非酸化物セラミックス、窒化ケイ素基非酸化物セラミックス、炭化ホウ素基非酸化物セラミックス)、または、それらの複合材料等を例示することができる。原料粉末40は、上述した基材と結合材(助剤)の混合粉末であり、本実施形態では、この混合粉末を準備するにあたり、焼成条件と併せて焼成体が超塑性的挙動を発現するように粉末調整する。 Here, as the ultra-hard material, a super hard alloy based on tungsten carbide (tungsten carbide-based super hard alloy), a cermet based on titanium carbide (titanium carbide-based cermet), alumina, zirconia, silicon carbide, and the like. Fine ceramics based on silicon nitride, boron carbide, etc. (alumina-based oxide ceramics, zirconia-based oxide ceramics, silicon carbide-based non-oxide ceramics, silicon nitride-based non-oxide ceramics, boron carbide-based non-oxide ceramics) , Or their composite materials and the like can be exemplified. The raw material powder 40 is a mixed powder of the above-mentioned base material and a binder (auxiliary agent), and in the present embodiment, when preparing this mixed powder, the fired body exhibits superplastic behavior in combination with the firing conditions. Adjust the powder so that.

図3(a)は工程4を模式的に示す。工程4では、一軸加圧焼結を行う。具体的には、一方の表面に印文の凹凸形状が形成されている型材12を、その他方の表面を下にして下パンチ32の上に配置した状態で、上パンチ34と下パンチ32で原料粉末40を一軸方向に加圧しながらこれを焼結する。その結果、その底面に印文を象った凹凸形状を有する焼結体が得られる。 FIG. 3A schematically shows step 4. In step 4, uniaxial pressure sintering is performed. Specifically, the upper punch 34 and the lower punch 32 are used in a state where the mold material 12 having the uneven shape of the stamp on one surface is arranged on the lower punch 32 with the other surface facing down. The raw material powder 40 is sintered while being pressurized in the uniaxial direction. As a result, a sintered body having an uneven shape on the bottom surface in the shape of a stamp is obtained.

ここで、一軸加圧焼結を行うにあたっては、原料粉末40の粉体条件と併せて焼成中に焼成品内の結晶粒が超塑性的流動を生じるような焼結条件を設定する必要がある。超塑性は微細結晶粒を有する結晶性材料が高温化で示す巨大な延性であり、その発現には、粒子径、助剤や結合材の添加量、温度、圧力、といった多くのパラメータが関与する。一般的には、粒子径が小さいほど、助剤や結合材の添加量が多いほど、温度、圧力が高いほど、超塑性的な流動は得られるが、一方で、助剤や結合材の添加量が多いほど、温度が高いほど、焼成中に結晶粒の成長が生じやすくなることから、結晶粒の成長を抑制しつつ、超塑性を発現し得る最適なパラメータの組み合わせを選ぶ必要がある。 Here, in performing uniaxial pressure sintering, it is necessary to set the sintering conditions so that the crystal grains in the fired product generate superplastic flow during firing together with the powder conditions of the raw material powder 40. .. Superplasticity is the enormous ductility of crystalline materials with fine crystal grains at high temperatures, and its development involves many parameters such as particle size, amount of auxiliaries and binders added, temperature, and pressure. .. In general, the smaller the grain size, the larger the amount of auxiliary agent or binder added, and the higher the temperature and pressure, the more superplastic flow can be obtained, but on the other hand, the addition of auxiliary agent and binder The larger the amount and the higher the temperature, the easier it is for the growth of crystal grains to occur during firing. Therefore, it is necessary to select the optimum combination of parameters that can exhibit superplasticity while suppressing the growth of crystal grains.

例えば、標準的な焼結装置を用いて炭化タングステン基超硬合金の焼結体を作製する場合、各種パラメータを下記(1)~(4)に示す範囲で組み合わせることにより任意に焼成条件を振ることができる。
(1)炭化タングステン粒子径:0.1-10μm
(2)コバルト添加量:1-30wt%
(3)焼成温度900-1600℃
(4)圧力10-100MPa
For example, when a sintered body of a tungsten carbide-based cemented carbide is produced using a standard sintering device, the firing conditions are arbitrarily set by combining various parameters within the range shown in (1) to (4) below. be able to.
(1) Tungsten carbide particle diameter: 0.1-10 μm
(2) Cobalt addition amount: 1-30 wt%
(3) Firing temperature 900-1600 ° C.
(4) Pressure 10-100MPa

図3(b)は工程5を模式的に示す。工程5では、ダイ20から焼結体50を取り出した後、焼結体50の底面に固着した型材12を除去する。ここで、型材12がグラファイトの場合は、サンドペーパーやワイヤブラシで塊片を除去した後に、サンドブラストで仕上げを行うことができる。なお、焼結体50がセラミックスの場合は、大気中700℃以上で加熱にすることで型材12を焼き飛ばすこともできる。 FIG. 3B schematically shows step 5. In step 5, after the sintered body 50 is taken out from the die 20, the mold material 12 fixed to the bottom surface of the sintered body 50 is removed. Here, when the mold material 12 is graphite, it can be finished by sandblasting after removing the lumps with sandpaper or a wire brush. When the sintered body 50 is ceramic, the mold material 12 can be burned off by heating at 700 ° C. or higher in the atmosphere.

図3(c)は工程6を模式的に示す。工程6では、必要に応じて仕上げ処理を行う。具体的には、焼結体50の外周面を研削した後、研磨による鏡面仕上げを行う。 FIG. 3C schematically shows step 6. In step 6, a finishing process is performed as necessary. Specifically, after grinding the outer peripheral surface of the sintered body 50, a mirror finish is performed by polishing.

以上、本発明の一実施形態として、超硬質材料製の印鑑の製造方法について説明したが、本発明によれば、印鑑に限らず、精密微細成型品全般を製造できることはいうまでもない。 As described above, as one embodiment of the present invention, a method for manufacturing a stamp made of an ultra-hard material has been described, but it goes without saying that according to the present invention, not only a stamp but also a whole precision finely molded product can be manufactured.

本発明によって製造可能な超硬質材料の精密微細成型品としては、MEMS部品、工業部品、プレス用刻印、装飾品などを例示することができる。これらの精密微細成型品を製造する場合は、上述した印文に代えて、精密な任意の凹凸形状が表面に形成された型材を用意すればよい。 Examples of the precision micromolded product of the ultra-hard material that can be manufactured by the present invention include MEMS parts, industrial parts, stamps for pressing, decorative parts, and the like. When manufacturing these precision micromolded products, instead of the above-mentioned stamp, a mold material having an arbitrary precise uneven shape formed on the surface may be prepared.

以上、説明したように、本発明によれば、任意の形状を有する超硬質材料の精密微細成型品を、ヒビ、欠け割れの発生を抑制しつつ、設計通りの寸法に製造することが可能になる。加えて、本発明によれば、加工性の良い基材を精密加工して型材を作製するだけでよく、加工性が著しく悪い超硬質材料を高いコストをかけて加工する必要が無いため、超硬質材料の精密微細成型品を安価に製造することが可能になる。 As described above, according to the present invention, it is possible to manufacture a precision micromolded product of an ultra-hard material having an arbitrary shape with dimensions as designed while suppressing the occurrence of cracks and cracks. Become. In addition, according to the present invention, it is only necessary to precision-process a base material having good workability to produce a mold material, and it is not necessary to process an ultra-hard material having extremely poor processability at a high cost. It is possible to inexpensively manufacture precision micromolded products made of hard materials.

(実施例1)
本発明の製造方法を使用して炭化タングステン基超硬合金製の印鑑を作製した。なお、本実験では、原料粉末として0.1μmの粒子径を有するWC粉末と1μmの粒子径を有するCo粉末を9:1の重量比で混合した混合粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、昇温:50℃/min、1000℃ 50MPa、3分保持)を行った。
(Example 1)
A seal made of a tungsten carbide-based cemented carbide was produced using the production method of the present invention. In this experiment, a mixed powder in which WC powder having a particle size of 0.1 μm and Co powder having a particle size of 1 μm were mixed at a weight ratio of 9: 1 was used as the raw material powder, and graphite was used as the mold material. Then, uniaxial pressure sintering (vacuum, temperature rise: 50 ° C./min, 1000 ° C. 50 MPa, held for 3 minutes) was performed with a discharge plasma sintering apparatus.

図4は、本実験で作製した印鑑の写真を示す。図4に示すように、作製された印鑑の外周面は、美しい金属光沢を放ち、印面においては、印文のつぶれ・欠けが一切なかった。 FIG. 4 shows a photograph of a stamp produced in this experiment. As shown in FIG. 4, the outer peripheral surface of the produced stamp had a beautiful metallic luster, and there was no crushing or chipping of the stamp on the stamp surface.

(実施例2)
本発明の製造方法を使用して炭化チタン基超硬合金製のメダルを作製した。なお、本実験では、原料粉末として0.7μmの粒子径を有するTiC粉末と1μmの粒子径を有するNi粉末を8:2の重量比で混合した混合粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、1250℃ 30MPa、1分保持)を行った。
(Example 2)
A medal made of titanium carbide-based cemented carbide was produced using the production method of the present invention. In this experiment, a mixed powder in which TiC powder having a particle size of 0.7 μm and Ni powder having a particle size of 1 μm were mixed at a weight ratio of 8: 2 was used as the raw material powder, and graphite was used as the mold material. Then, uniaxial pressure sintering (vacuum, 1250 ° C., 30 MPa, 1 minute holding) was performed with a discharge plasma sintering apparatus.

図5は、本実施例2の炭化チタン基超硬合金製のメダル(直径20mm)の写真を示す。 FIG. 5 shows a photograph of a medal (diameter 20 mm) made of titanium carbide-based cemented carbide according to Example 2.

(実施例3)
本発明の製造方法を使用してジルコニアセラミックス製の微小歯車を作製した。なお、本実験では、原料粉末として3mol%のイットリアを含有した0.03μmの粒子径を有するZrO2粉末を使用し、型材としてグラファイトを使用して、放電プラズマ焼結装置で一軸加圧焼結(真空、1200℃ 30MPa、10分保持)を行った。
(Example 3)
A micro gear made of zirconia ceramics was produced using the production method of the present invention. In this experiment, ZrO2 powder having a particle size of 0.03 μm containing 3 mol% of itria was used as the raw material powder, and graphite was used as the mold material, and uniaxial pressure sintering was performed with a discharge plasma sintering device. Vacuum, 1200 ° C., 30 MPa, 10 minutes holding) was performed.

図6は、本実施例3のジルコニアセラミックス製の微小歯車の写真を示す。 FIG. 6 shows a photograph of a micro gear made of zirconia ceramics according to the third embodiment.

10…基材、12…型材、20…ダイ、22…ダイ孔、32…下パンチ、34…上パンチ、40…原料粉末、50…焼結体 10 ... base material, 12 ... mold material, 20 ... die, 22 ... die hole, 32 ... lower punch, 34 ... upper punch, 40 ... raw material powder, 50 ... sintered body

Claims (4)

超硬合金、サーメットおよびファインセラミックスから選択される超硬質材料の精密微細成型品を製造する方法であって、
ダイのキャビティに超硬質材料の原料粉末を充填する工程と、
前記原料粉末を一軸加圧焼結する工程と
を含み、
前記一軸加圧焼結する工程において、
表面に精密な任意の凹凸形状が形成され、グラファイトまたはグラッシーカーボンかなり、パンチとは別に形成された型材が前記ダイのダイ孔内で前記原料粉末を加圧する前記パンチの上に配置されて、前記一軸加圧焼結の後に前記型材がサンドペーパ、ワイヤブラシで除去されるか、または焼き飛ばされることを特徴とする
製造方法。
A method for manufacturing precision finely molded products of cemented carbide selected from cemented carbide, cermet and fine ceramics.
The process of filling the die cavity with raw material powder of ultra-hard material,
Including the step of uniaxial pressure sintering of the raw material powder.
In the step of uniaxial pressure sintering,
A precise arbitrary uneven shape is formed on the surface, made of graphite or glassy carbon , and a mold formed separately from the punch is placed on the punch that pressurizes the raw material powder in the die hole of the die. A manufacturing method , wherein the mold material is removed or burned off with a sandpaper or a wire brush after the uniaxial pressure sintering .
前記超硬質材料は、炭化タングステン基超硬合金、炭化チタン基サーメット、アルミナ基酸化物セラミックス、ジルコニア基酸化物セラミックス、炭化ケイ素基非酸化物セラミックス、窒化ケイ素基非酸化物セラミックス、炭化ホウ素基非酸化物セラミックス、または、それらの複合材料である、
請求項1に記載の製造方法。
The ultra-hard materials include tungsten carbide-based carbide alloys, titanium carbide-based cermets, alumina-based oxide ceramics, zirconia-based oxide ceramics, silicon carbide-based non-oxide ceramics, silicon nitride-based non-oxide ceramics, and boron carbide-based non-ceramics. Oxide ceramics or composite materials thereof,
The manufacturing method according to claim 1.
前記精密微細成型品は、MEMS部品、工業部品、印鑑、プレス用刻印および装飾品から選択されるいずれか1種の成型品である、
請求項1または2に記載の製造方法。
The precision micromolded product is a molded product of any one selected from MEMS parts, industrial parts, stamps, stamps for pressing, and decorative products.
The manufacturing method according to claim 1 or 2.
前記一軸加圧焼結する工程は、結晶粒が超塑性的流動を発現し得る条件下で実施される、
請求項1~3のいずれか一項に記載の製造方法。
The uniaxial pressure sintering step is carried out under conditions under which the crystal grains can exhibit superplastic flow.
The manufacturing method according to any one of claims 1 to 3.
JP2017185067A 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials Active JP7078969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185067A JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185067A JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Publications (2)

Publication Number Publication Date
JP2019059981A JP2019059981A (en) 2019-04-18
JP7078969B2 true JP7078969B2 (en) 2022-06-01

Family

ID=66176339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185067A Active JP7078969B2 (en) 2017-09-26 2017-09-26 How to manufacture precision micromolded products of ultra-hard materials

Country Status (1)

Country Link
JP (1) JP7078969B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226703A (en) 2000-02-14 2001-08-21 Honda Motor Co Ltd Die for electric sintering and processing
JP2005112658A (en) 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
JP2005126270A (en) 2003-10-22 2005-05-19 Sumitomo Electric Ind Ltd Micromachined component made of polycrystalline material and its manufacturing method
JP2016108645A (en) 2014-12-10 2016-06-20 株式会社ノトアロイ Production device for mold material and method for producing mold material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5519974B2 (en) * 1974-05-28 1980-05-30
JPS5437114A (en) * 1977-08-30 1979-03-19 Mitsubishi Metal Corp Highhstrength ceramic
JPH0367680A (en) * 1989-08-04 1991-03-22 Hata Kensaku:Kk Manufacture of fine ceramic seal
JPH08109403A (en) * 1994-10-12 1996-04-30 Daido Steel Co Ltd Production of cermet
JP2000128648A (en) * 1998-10-23 2000-05-09 Asahi Optical Co Ltd Production of sintered body
JP5863329B2 (en) * 2011-08-19 2016-02-16 セイコーエプソン株式会社 Cemented carbide and method for producing the same
JP2014109044A (en) * 2012-11-30 2014-06-12 National Institute For Materials Science Conductive punch for high temperature and method of producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001226703A (en) 2000-02-14 2001-08-21 Honda Motor Co Ltd Die for electric sintering and processing
JP2005112658A (en) 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
JP2005126270A (en) 2003-10-22 2005-05-19 Sumitomo Electric Ind Ltd Micromachined component made of polycrystalline material and its manufacturing method
JP2016108645A (en) 2014-12-10 2016-06-20 株式会社ノトアロイ Production device for mold material and method for producing mold material

Also Published As

Publication number Publication date
JP2019059981A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
KR20120069626A (en) Cutting tool
JP2018532673A (en) Diamond composites produced by lithography
Raihanuzzaman et al. Microstructure and mechanical properties and of pulse plasma compacted WC-Co
JP5076044B2 (en) Composite wear-resistant member and manufacturing method thereof
CN107207358B (en) Composite polycrystal and method for producing same
KR102587409B1 (en) Sintered body and cutting tool
CN105018818A (en) TiC-base metal ceramic using Ni3Al as binding agent and preparing method thereof
JP7078969B2 (en) How to manufacture precision micromolded products of ultra-hard materials
JP4842212B2 (en) Mold for glass hard disk substrate
JP2008018532A (en) Method for manufacturing grinding wheel
JP5176197B2 (en) Method for producing hard material using aluminum liquid and molded body thereof
Tokita Development of square-shaped large-size WC/Co/Ni system FGM fabricated by Spark Plasma Sintering (SPS) method and its industrial applications
JP2007261881A (en) Tib2 base ti-si-c-based composite ceramic and method of manufacturing sintered compact thereof
Zhang et al. Cubic boron nitride-containing ceramic matrix composites for cutting tools
JP4822534B2 (en) Manufacturing method of ceramics
KR20140000463A (en) Hard metal mold for manufacturing aspherical lens
KR101304758B1 (en) Process for Composite Materials of Nanostructured Metal Carbides-Intermetallic Compounds
CN110281683B (en) Method for manufacturing ceramic inlaid metal craft ornaments
RU115261U1 (en) MULTI-LOCAL PRESS FORM FOR PRESSING POWDERS
JP2012087045A (en) Method for producing binderless alloy
KR101017928B1 (en) Titanium diboride sintered body with metal as asintering aid and method for manufacture thereof
JP2005126270A (en) Micromachined component made of polycrystalline material and its manufacturing method
JP2020059079A (en) Sintered material split body, cutting tool element using sinter material split body, and method of manufacturing the same
RU82697U1 (en) COMPLETE FORM FORMING WITH HOT PRESSING
JPH05171334A (en) Hard sintered part and its manufacture

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20171012

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200923

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200923

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220209

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220513

R150 Certificate of patent or registration of utility model

Ref document number: 7078969

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150