JP2019059660A - Dielectric ceramic composition and electronic component - Google Patents

Dielectric ceramic composition and electronic component Download PDF

Info

Publication number
JP2019059660A
JP2019059660A JP2018148556A JP2018148556A JP2019059660A JP 2019059660 A JP2019059660 A JP 2019059660A JP 2018148556 A JP2018148556 A JP 2018148556A JP 2018148556 A JP2018148556 A JP 2018148556A JP 2019059660 A JP2019059660 A JP 2019059660A
Authority
JP
Japan
Prior art keywords
mass
parts
containing compound
sio
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018148556A
Other languages
Japanese (ja)
Other versions
JP6766848B2 (en
Inventor
福井 隆史
Takashi Fukui
隆史 福井
小更 恒
Hisashi Kosara
恒 小更
篤史 石本
Atsushi Ishimoto
篤史 石本
将典 阿部
Masanori Abe
将典 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to US16/136,767 priority Critical patent/US10669207B2/en
Priority to DE102018123606.9A priority patent/DE102018123606A1/en
Priority to CN201811124942.5A priority patent/CN109553406B/en
Publication of JP2019059660A publication Critical patent/JP2019059660A/en
Application granted granted Critical
Publication of JP6766848B2 publication Critical patent/JP6766848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

To provide a dielectric ceramic composition that can be sintered at low temperature, can be burned together with Ag at the same time, and has an excellent Q value and humidity resistance after sintering.SOLUTION: A dielectric ceramic composition comprises MgSiOas a main constituent, and an R-containing compound, a Cu-containing compound, a B-containing compound, and a Li-containing glass, as an accessory constituent, in which R is an alkali earth metal. The dielectric ceramic composition includes the R-containing compound of 0.2 pts.mass or more and 4.0 pts.mass or less in terms of oxide, the Cu-containing compound of 0.5 pts.mass or more and 3.0 pts.mass or less in terms of oxide, and the B-containing compound of 0.2 pts.mass or more and 3.0 pts.mass or less in terms of oxide, based on the main constituent of 100 pts.mass, respectively. The dielectric ceramic composition also includes the Li-containing glass of 2 pts.mass or more and 10 pts.mass or less, based on the total amount of 100 pts.mass comprising the main constituent and the accessory constituent excluding the Li-containing glass.SELECTED DRAWING: None

Description

本発明は、誘電体磁器組成物および電子部品に関する。   The present invention relates to a dielectric ceramic composition and an electronic component.

近年、需要が増加しているスマートフォン等の移動体通信機器では、数百MHzから数GHz程度のいわゆる準マイクロ波と呼ばれる高周波帯域が使用されている。そのため、移動体通信機器に用いられる電子部品においても高周波帯域での使用に適した諸特性が要求されている。そして、高周波帯域での使用に適する優れたLTCC(低温同時焼成セラミックス)材料が求められてきた。特にAg内部電極と同時焼成可能であり、各種特性が優れたLTCC材料を得るために様々な方法が提案されてきた。   In recent years, in mobile communication devices such as smartphones, the demand for which is increasing, so-called quasi-microwave high frequency bands of about several hundred MHz to several GHz are used. Therefore, various characteristics suitable for use in a high frequency band are also required for electronic components used in mobile communication devices. Then, there has been a demand for an excellent LTCC (low temperature co-fired ceramic) material suitable for use in a high frequency band. In particular, various methods have been proposed to obtain an LTCC material which can be co-fired with an Ag internal electrode and has excellent various properties.

特許文献1では、フォルステライトを主成分とし、ZnO等を副成分として含むガラスセラミックス組成物が提案されている。特許文献3に記載されたガラスセラミックス組成物は、ZnOを副成分として含むことにより、1000℃以下の低温で焼成する場合に、十分に緻密化することが容易となっている。   Patent Document 1 proposes a glass ceramic composition containing forsterite as a main component and ZnO or the like as an accessory component. The glass-ceramic composition described in patent document 3 is easy to fully densify, when it bakes at low temperature of 1000 degrees C or less by containing ZnO as a subsidiary component.

しかし、近年の電子部品の小型化に伴うセラミック層の薄層化や、これまでより高い周波数帯への対応のためには、特にAg内部電極と同時に焼成する場合において、さらにこれまでよりLTCC材料のQ値および耐湿性を向上させることが要求されている。   However, in order to reduce the thickness of the ceramic layer with the recent miniaturization of electronic parts and to cope with higher frequency bands so far, especially when firing simultaneously with the Ag internal electrode, it is possible to further increase the LTCC material. It is required to improve the Q value and moisture resistance of the

特開2008−37739号公報JP 2008-37739

本発明は、低温焼結可能であり、Ag電極と同時焼成可能であり、焼結後のQ値および耐湿性に優れる誘電体磁器組成物を提供することを目的とする。   An object of the present invention is to provide a dielectric ceramic composition which can be sintered at low temperature, can be co-fired with an Ag electrode, and is excellent in Q value and moisture resistance after sintering.

上記の目的を達成するために、本発明の誘電体磁器組成物は、
主成分としてMgSiOを含み、副成分としてR含有化合物、Cu含有化合物、B含有化合物およびLi含有ガラスを含み、
Rはアルカリ土類金属であり、
前記主成分100質量部に対して、前記R含有化合物を酸化物(RO)換算で0.2質量部以上4.0質量部以下、前記Cu含有化合物を酸化物(CuO)換算で0.5質量部以上3.0質量部以下、前記B含有化合物を酸化物(B)換算で0.2質量部以上3.0質量部以下、それぞれ含有し、
前記主成分と、前記Li含有ガラスを除く前記副成分と、の合計100質量部に対して、前記Li含有ガラスを2質量部以上10質量部以下、含有することを特徴とする。
In order to achieve the above object, the dielectric ceramic composition of the present invention is
Containing Mg 2 SiO 4 as the main component, R-containing compound, Cu-containing compound, B-containing compound and Li-containing glass as auxiliary components,
R is an alkaline earth metal,
0.2 to 4.0 parts by mass of the R-containing compound in terms of oxide (RO) with respect to 100 parts by mass of the main component, 0.5 of the Cu-containing compound in terms of oxide (CuO) 0.2 parts by mass or more and 3.0 parts by mass or less of the B-containing compound in terms of oxide (B 2 O 3 ), respectively,
The Li-containing glass is contained in an amount of 2 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass in total of the main component and the subcomponent other than the Li-containing glass.

前記誘電体磁器組成物は、Q値および耐湿性に優れ、1000℃以下で低温焼結可能であり、Agと同時焼成可能である。   The dielectric ceramic composition is excellent in Q value and moisture resistance, can be sintered at a low temperature of 1000 ° C. or less, and can be co-fired with Ag.

本発明の誘電体磁器組成物は、前記副成分としてさらにMn含有化合物を含んでもよく、
前記主成分100質量部に対して、前記Mn含有化合物を酸化物(MnO)換算で0.05質量部以上1.5質量部以下、含有してもよい。
The dielectric ceramic composition of the present invention may further contain an Mn-containing compound as the auxiliary component,
The Mn-containing compound may be contained in an amount of 0.05 parts by mass or more and 1.5 parts by mass or less in terms of oxide (MnO) with respect to 100 parts by mass of the main component.

本発明の誘電体磁器組成物は、前記副成分としてさらにTi含有化合物を含んでもよく、
前記主成分100質量部に対して、前記Ti含有化合物を酸化物(TiO)換算で0.3質量部以上3.0質量部以下、含有してもよい。
The dielectric ceramic composition of the present invention may further contain a Ti-containing compound as the auxiliary component,
The Ti-containing compound may be contained in an amount of 0.3 parts by mass or more and 3.0 parts by mass or less in terms of oxide (TiO 2 ) with respect to 100 parts by mass of the main component.

本発明の誘電体磁器組成物は、前記副成分としてさらにAl含有化合物を含んでもよく、
前記主成分100質量部に対して、前記Al含有化合物を酸化物(Al)換算で0.3質量部以上3.0質量部以下、含有してもよい。
The dielectric ceramic composition of the present invention may further contain an Al-containing compound as the auxiliary component,
The Al-containing compound may be contained in an amount of 0.3 parts by mass or more and 3.0 parts by mass or less in terms of oxide (Al 2 O 3 ) with respect to 100 parts by mass of the main component.

本発明の誘電体磁器組成物は、前記副成分としてさらにZr含有化合物を含んでもよく、
前記主成分100質量部に対して、前記Zr含有化合物を酸化物(ZrO)換算で0.2質量部以上3.0質量部以下、含有してもよい。
The dielectric ceramic composition of the present invention may further contain a Zr-containing compound as the auxiliary component,
The Zr-containing compound may be contained in an amount of 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (ZrO 2 ) with respect to 100 parts by mass of the main component.

本発明の誘電体磁器組成物は、前記副成分としてさらにAgを含んでもよく、
前記主成分と、前記Li含有ガラスを除く前記副成分と、の合計100質量部に対して、前記Agを0.05質量部以上1.0質量部以下、含有してもよい。
The dielectric ceramic composition of the present invention may further contain Ag as the auxiliary component,
The Ag may be contained in an amount of 0.05 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass in total of the main component and the subcomponents excluding the Li-containing glass.

本発明の電子部品は、上記のいずれかの誘電体磁器組成物からなる誘電体層を有する。   The electronic component of the present invention has a dielectric layer made of any of the dielectric ceramic compositions described above.

以下、本発明を好適に実施するための実施形態につき説明する。   Hereinafter, an embodiment for carrying out the present invention suitably will be described.

本実施形態に係る誘電体磁器組成物は、MgSiOを含む主成分と、R含有化合物(Rはアルカリ土類金属)、Cu含有化合物、B含有化合物およびLi含有ガラスを含む副成分と、を含む。 The dielectric ceramic composition according to the present embodiment comprises: a main component containing Mg 2 SiO 4 , an accessory component containing an R-containing compound (R is an alkaline earth metal), a Cu-containing compound, a B-containing compound and a Li-containing glass ,including.

なお、本実施形態において、焼成とは、焼結を目的とした加熱処理を意味し、焼成温度とは、加熱処理の際に誘電体磁器組成物が曝される雰囲気の温度である。   In the present embodiment, firing means heat treatment for the purpose of sintering, and firing temperature is the temperature of the atmosphere to which the dielectric ceramic composition is exposed during heat treatment.

本実施形態に係る誘電体磁器組成物についての誘電特性は、その焼結体のQf値、温度変化による共振周波数の変化(共振周波数の温度係数τf)、および比誘電率εrによって評価することができる。Qf値、比誘電率εrは、日本工業規格「マイクロ波用ファインセラミックスの誘電特性の試験方法」(JIS R1627 1996年度)に従って測定することができる。   The dielectric characteristics of the dielectric ceramic composition according to the present embodiment can be evaluated by the Qf value of the sintered body, the change in resonant frequency due to temperature change (temperature coefficient τf of resonant frequency), and the relative dielectric constant εr it can. The Qf value and the relative dielectric constant εr can be measured in accordance with Japanese Industrial Standard “Test method of dielectric properties of fine ceramics for microwaves” (JIS R1627 1996).

本実施形態に係る誘電体磁器組成物には、MgSiO(フォルステライト)が主成分として含まれる。MgSiOは、単体でのQf値が200000GHz以上であり、誘電損失が小さいため、誘電体磁器組成物の誘電損失を低下させる機能を有する。また、MgSiOは、その比誘電率εrが6〜7程度と低いため、誘電体磁器組成物の比誘電率εrを低下させる機能も有する。ここで、誘電損失とは、高周波のエネルギの一部が熱となって放散する現象である。誘電損失の大きさは、現実の電流と電圧との位相差と、理想の電流と電圧との位相差(90度)との差である損失角度δの正接tanδの逆数Q(Q=1/tanδ)で表わされる。誘電体磁器組成物の誘電損失の評価は、このQ値と共振周波数fの積であるQf値を用いている。誘電損失が小さくなればQf値は大きくなり、誘電損失が大きくなればQf値は小さくなる。誘電損失は高周波デバイスの電力損失を意味するため、誘電体磁器組成物のQf値は大きいことが好ましい。ただし、本実施形態では、試験時の共振周波数fを概ね一定とみなして、誘電損失の評価には、Q値を用いる。 The dielectric ceramic composition according to the present embodiment contains Mg 2 SiO 4 (forsterite) as a main component. Since Mg 2 SiO 4 alone has a Qf value of 200,000 GHz or more and a small dielectric loss, it has a function of reducing the dielectric loss of the dielectric ceramic composition. Further, Mg 2 SiO 4 also has a function of reducing the relative dielectric constant εr of the dielectric ceramic composition because the relative dielectric constant εr is as low as about 6 to 7. Here, dielectric loss is a phenomenon in which part of high frequency energy is dissipated as heat. The magnitude of the dielectric loss is the reciprocal Q of the tangent tan δ of the loss angle δ, which is the difference between the phase difference between the actual current and the voltage and the phase difference (90 degrees) between the ideal current and the voltage (Q = 1 / It is represented by tan δ). The evaluation of the dielectric loss of the dielectric ceramic composition uses a Qf value which is the product of the Q value and the resonance frequency f. The smaller the dielectric loss, the larger the Qf value, and the larger the dielectric loss, the smaller the Qf value. Since the dielectric loss means the power loss of the high frequency device, the Qf value of the dielectric ceramic composition is preferably large. However, in the present embodiment, the resonance frequency f at the time of the test is regarded as substantially constant, and the Q value is used for the evaluation of the dielectric loss.

誘電体磁器組成物の誘電損失を低下させるという観点からは、主成分が実質的にMgSiOのみからなることが好ましい。しかし、比誘電率εrを調整するためにMgSiO以外の主成分をMgSiOと併用することができる。MgSiO以外の主成分としては、例えば比誘電率εrが17前後であるチタン酸マグネシウム(MgTiO)、および、比誘電率εrが200前後であるチタン酸カルシウム(CaTiO)等が挙げられる。なお、「主成分が実質的にMgSiOのみからなる」とは、主成分100質量部に対するMgSiOの含有量が95質量部以上であることを意味する。 From the viewpoint of reducing the dielectric loss of the dielectric ceramic composition, it is preferable that the main component consists essentially of Mg 2 SiO 4 . However, the main component other than Mg 2 SiO 4 in order to adjust the relative permittivity εr can be used in combination with Mg 2 SiO 4. As main components other than Mg 2 SiO 4 , for example, magnesium titanate (MgTiO 3 ) having a relative dielectric constant εr of around 17 and calcium titanate (CaTiO 3 ) having a relative dielectric constant εr of around 200 are listed. Be Note that "main component substantially composed of only Mg 2 SiO 4," and the content of Mg 2 SiO 4 with respect to the main component of 100 parts by weight means that 95 parts by mass or more.

MgSiOを構成するMgOとSiOとのモル比は、化学量論的にはMgO対SiOが2:1である。しかし、本実施形態ではMgO対SiOが2:1に限定されるものではなく、本実施形態に係る誘電体磁器組成物の効果を損なわない範囲内で化学量論比から外れてもよい。例えば、MgO:SiOは、1.9:1.1〜2.1:0.9の範囲内とすることができる。 The molar ratio of MgO to SiO 2 constituting Mg 2 SiO 4 is stoichiometrically 2: 1 of MgO to SiO 2 . However, in the present embodiment, the ratio of MgO to SiO 2 is not limited to 2: 1, and may be out of the stoichiometric ratio within the range not impairing the effect of the dielectric ceramic composition according to the present embodiment. For example, MgO: SiO 2 can be in the range of 1.9: 1.1 to 2.1: 0.9.

本実施形態の誘電体磁器組成物は、主成分であるMgSiOに対する副成分として、R含有化合物(Rはアルカリ土類金属)、Cu含有化合物、B含有化合物およびLi含有ガラスを含む。なお、本願明細書ではアルカリ土類金属にBeおよびMgは含まれない。 The dielectric ceramic composition of the present embodiment contains an R-containing compound (R is an alkaline earth metal), a Cu-containing compound, a B-containing compound, and a Li-containing glass as auxiliary components to Mg 2 SiO 4 as the main component. In the present specification, alkaline earth metals do not include Be and Mg.

本実施形態の誘電体磁器組成物は、副成分としてR含有化合物を含むことで、低温焼結しやすくなる。R含有化合物としては、例えば、Rの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。また、R含有化合物の含有量は、主成分100質量部に対して酸化物(RO)換算で0.2質量部以上4.0質量部以下であり、0.2質量部以上3.5質量部以下であることが好ましい。R含有化合物の含有量が少なすぎる場合には低温焼結しにくくなる。また、焼結体の抗折強度が低下する。ROの含有量が多すぎる場合には焼結体のQ値が低下する。   The dielectric ceramic composition of the present embodiment can be easily sintered at a low temperature by including the R-containing compound as an accessory component. Examples of the R-containing compound include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organic metal compounds and the like of R. The content of the R-containing compound is 0.2 parts by mass or more and 4.0 parts by mass or less in terms of oxide (RO) with respect to 100 parts by mass of the main component, and 0.2 parts by mass or more and 3.5 parts by mass It is preferable that it is less than part. When the content of the R-containing compound is too small, low temperature sintering becomes difficult. In addition, the flexural strength of the sintered body is reduced. When the content of RO is too large, the Q value of the sintered body decreases.

アルカリ土類金属であるRとしては、Ba、Sr、Caのいずれかが好ましく、これらのうち2種以上を混合して用いてもよい。RとしてCaを含有する場合におけるCa含有化合物の含有量は主成分100質量部に対して酸化物(CaO)換算で0.2質量部以上3.0質量部以下が好ましい。RとしてSrを含有する場合におけるSr含有化合物の含有量は主成分100質量部に対して酸化物(SrO)換算で0.2質量部以上3.0質量部以下が好ましい。RとしてBaを含有する場合におけるBa含有化合物の含有量は主成分100質量部に対して酸化物(BaO)換算で0.2質量部以上3.0質量部以下が好ましい。   As R which is an alkaline earth metal, any one of Ba, Sr and Ca is preferable, and two or more of these may be mixed and used. When Ca is contained as R, the content of the Ca-containing compound is preferably 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (CaO) with respect to 100 parts by mass of the main component. When Sr is contained as R, the content of the Sr-containing compound is preferably 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (SrO) with respect to 100 parts by mass of the main component. The content of the Ba-containing compound in the case of containing Ba as R is preferably 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (BaO) with respect to 100 parts by mass of the main component.

本実施形態の誘電体磁器組成物は、副成分としてCu含有化合物を含むことで、低温焼結しやすくなるとともに焼結体のQ値が向上する。Cu含有化合物としては、例えば、Cuの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。また、Cu含有化合物の含有量は、主成分100質量部に対して酸化物(CuO)換算で0.5質量部以上3.0質量部以下であり、0.5質量部以上2.5質量部以下であることが好ましい。Cu含有化合物の含有量が少なすぎる場合には低温焼結しにくくなる。Cu含有化合物の含有量が多すぎる場合には焼結体のQ値が低下する。さらに、Ag内部電極を用いる場合には焼成時にAgが誘電体磁器組成物へ拡散してしまう。その結果、誘電体と電極との間に空隙が発生し、密着性が低下し、耐湿性が低下する。   In the dielectric ceramic composition of the present embodiment, the inclusion of the Cu-containing compound as an accessory component facilitates low temperature sintering and improves the Q value of the sintered body. Examples of the Cu-containing compound include Cu oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organic metal compounds and the like. In addition, the content of the Cu-containing compound is 0.5 parts by mass to 3.0 parts by mass in terms of oxide (CuO) with respect to 100 parts by mass of the main component, and 0.5 parts by mass to 2.5 parts by mass It is preferable that it is less than part. When the content of the Cu-containing compound is too small, low temperature sintering becomes difficult. When the content of the Cu-containing compound is too large, the Q value of the sintered body decreases. Furthermore, when using an Ag internal electrode, Ag diffuses to the dielectric ceramic composition during firing. As a result, an air gap is generated between the dielectric and the electrode, the adhesion is lowered, and the moisture resistance is lowered.

本実施形態の誘電体磁器組成物は、副成分としてB含有化合物を含むことで、低温焼結しやすくなるとともに焼結体のQ値が向上する。B含有化合物としては、例えば、Bの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。また、B含有化合物の含有量は、主成分100質量部に対して酸化物(B)換算で0.2質量部以上3.0質量部以下であり、0.2質量部以上2.5質量部以下であることが好ましい。B含有化合物の含有量が少なすぎる場合には低温焼結しにくくなる。B含有化合物の含有量が多すぎる場合にはQ値が低下する。さらに、Ag内部電極を用いる場合には焼成時にAgが誘電体磁器組成物へ拡散してしまう。その結果、誘電体と電極との間に空隙が発生し、密着性が低下し、耐湿性が低下する。 In the dielectric ceramic composition of the present embodiment, the inclusion of the B-containing compound as an accessory component facilitates low-temperature sintering and improves the Q value of the sintered body. Examples of the B-containing compound include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organometallic compounds and the like of B. In addition, the content of the B-containing compound is 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (B 2 O 3 ) with respect to 100 parts by mass of the main component, and 0.2 parts by mass or more It is preferable that it is 0.5 mass part or less. When the content of the B-containing compound is too small, low temperature sintering becomes difficult. When the content of the B-containing compound is too large, the Q value decreases. Furthermore, when using an Ag internal electrode, Ag diffuses to the dielectric ceramic composition during firing. As a result, an air gap is generated between the dielectric and the electrode, the adhesion is lowered, and the moisture resistance is lowered.

本実施形態の誘電体磁器組成物は、副成分としてLi含有ガラスを含むことで低温焼結しやすくなるとともに焼結体のQ値が向上する。さらに、焼結体の化学的安定性および絶縁信頼性も向上する。   In the dielectric ceramic composition of the present embodiment, low temperature sintering is facilitated and the Q value of the sintered body is improved by containing Li-containing glass as an accessory component. Furthermore, the chemical stability and insulation reliability of the sintered body are also improved.

Li含有ガラスとしては、例えば、SiO−RO−LiO(ROはアルカリ土類金属酸化物)系ガラスとB−RO−LiO系ガラスとのいずれか一方または両方を含んで構成されるものが好ましい。ガラス成分として、具体的には、SiO−RO−LiO系ガラスとしては、SiO−CaO−LiO系ガラス、SiO−SrO−LiO系ガラス、SiO−BaO−LiO系ガラス、SiO−CaO−SrO−LiO系ガラス、SiO−BaO−CaO−LiO系ガラス、SiO−SrO−BaO−LiO系ガラス、SiO−CaO−SrO−BaO−LiO系ガラスなどが挙げられる。B−RO−LiO系ガラスとしては、B−CaO−LiO系ガラス、B−SrO−LiO系ガラス、B−BaO−LiO系ガラス、B−CaO−SrO−LiO系ガラス、B−BaO−CaO−LiO系ガラス、B−SrO−BaO−LiO系ガラス、B−CaO−SrO−BaO−LiO系ガラスなどが挙げられる。これらの中でも、SiO−BaO−CaO−LiO系ガラスが好ましい。 The Li-containing glass includes, for example, either one or both of SiO 2 -RO-Li 2 O (RO is an alkaline earth metal oxide) glass and B 2 O 3 -RO-Li 2 O glass. What is composed of is preferable. As glass component, specifically, the SiO 2 -RO-Li 2 O-based glass, SiO 2 -CaO-Li 2 O-based glass, SiO 2 -SrO-Li 2 O-based glass, SiO 2 -BaO-Li 2 O-based glass, SiO 2 -CaO-SrO-Li 2 O-based glass, SiO 2 -BaO-CaO-Li 2 O-based glass, SiO 2 -SrO-BaO-Li 2 O-based glass, SiO 2 -CaO-SrO such -BaO-Li 2 O system glass. B 2 O 3 as the -RO-Li 2 O-based glass, B 2 O 3 -CaO-Li 2 O -based glass, B 2 O 3 -SrO-Li 2 O -based glass, B 2 O 3 -BaO-Li 2 O-based glass, B 2 O 3 -CaO-SrO-Li 2 O-based glass, B 2 O 3 -BaO-CaO-Li 2 O-based glass, B 2 O 3 -SrO-BaO-Li 2 O-based glass, B etc. 2 O 3 -CaO-SrO-BaO -Li 2 O system glass. Among these, SiO 2 -BaO-CaO-Li 2 O system glass is preferred.

Li含有ガラスとしてSiO−BaO−CaO−LiO系ガラスを用いる場合、当該SiO−BaO−CaO−LiO系ガラス全体を100質量部としてSiOの含有量が25質量部以上45質量部以下、BaOの含有量が20質量部以上40質量部以下、CaOの含有量が10質量部以上30質量部以下、LiOがLi含有ガラスの実質的な残部であってLiOの含有量が10質量部以上30質量部以下であることが好ましい。SiOの含有量を25質量部以上とすることで焼結体の化学的安定性を向上させやすくなる。SiOの含有量を45質量部以下とすることで低温焼結しやすくなる。BaOの含有量を20質量部以上とすることで焼結体の絶縁信頼性が向上する。BaOの含有量を40質量部以下とすることで焼結体の絶縁信頼性およびQ値が向上する。CaOの含有量を10質量部以上とすることで焼結体の絶縁信頼性が向上する。CaOの含有量を30質量部以下とすることで焼結体の絶縁信頼性およびQ値が向上する。なお、LiOがLi含有ガラスの実質的な残部であるとは、SiO−BaO−CaO−LiO系ガラス全体を100質量部としてSiO、BaO、CaOおよびLiOの合計含有量が95質量部以上であることを意味する。なお、特に記載が無ければLi含有ガラスに含まれる成分の含有量は、Li含有ガラス以外の副成分の含有量には含めない。 When using the SiO 2 -BaO-CaO-Li 2 O-based glass as the Li-containing glass, the content of SiO 2 is 25 parts by mass or more of the SiO 2 -BaO-CaO-Li 2 overall O-based glass as 100 parts by weight 45 parts by mass or less, the content of BaO is 20 parts by mass or more than 40 parts by weight, the content of CaO is 10 parts by mass or more than 30 parts by weight, Li 2 O is a substantial remainder of the Li-containing glass Li 2 O The content of is preferably 10 parts by mass or more and 30 parts by mass or less. By setting the content of SiO 2 to 25 parts by mass or more, the chemical stability of the sintered body can be easily improved. When the content of SiO 2 is 45 parts by mass or less, low temperature sintering is facilitated. By setting the content of BaO to 20 parts by mass or more, the insulation reliability of the sintered body is improved. By setting the content of BaO to 40 parts by mass or less, the insulation reliability and the Q value of the sintered body are improved. By setting the content of CaO to 10 parts by mass or more, the insulation reliability of the sintered body is improved. By setting the content of CaO to 30 parts by mass or less, the insulation reliability and the Q value of the sintered body are improved. The fact that Li 2 O is a substantial remainder of Li-containing glass means that the total content of SiO 2 -BaO-CaO-Li 2 O-based glass is 100 parts by mass and the total content of SiO 2 , BaO, CaO and Li 2 O It means that the amount is 95 parts by mass or more. In addition, if there is no description in particular, content of the component contained in Li containing glass is not included in content of subcomponents other than Li containing glass.

また、Li含有ガラスは、Alを含んでいてもよい。AlOを含むLi含有ガラスとしては、例えば、SiO−RO−Al−LiO(ROはアルカリ土類金属酸化物)系ガラスとB−RO−Al−LiO系ガラスとのいずれか一方または両方を含んで構成されるものが好ましい。ガラス成分として、具体的には、SiO−RO−Al−LiO系ガラスとしては、SiO−CaO−Al−LiO系ガラス、SiO−SrO−Al−LiO系ガラス、SiO−BaO−Al−LiO系ガラス、SiO−CaO−SrO−Al−LiO系ガラス、SiO−BaO−CaO−Al−LiO系ガラス、SiO−SrO−BaO−Al−LiO系ガラス、SiO−CaO−SrO−BaO−Al−LiO系ガラスなどが挙げられる。B−RO−Al−LiO系ガラスとしては、B−CaO−Al−LiO系ガラス、B−SrO−Al−LiO系ガラス、B−BaO−Al−LiO系ガラス、B−CaO−SrO−Al−LiO系ガラス、B−BaO−CaO−Al−LiO系ガラス、B−SrO−BaO−Al−LiO系ガラス、B−CaO−SrO−BaO−Al−LiO系ガラスなどが挙げられる。これらの中でも、SiO−BaO−CaO−Al−LiO系ガラスが好ましい。 Moreover, Li-containing glass may contain Al 2 O 3. As a Li-containing glass containing Al 2 O, for example, SiO 2 -RO-Al 2 O 3 -Li 2 O (RO is an alkaline earth metal oxide) glass and B 2 O 3 -RO-Al 2 O 3 It shall be configured to include one or both of the -Li 2 O-based glass is preferred. As glass component, specifically, the SiO 2 -RO-Al 2 O 3 -Li 2 O -based glass, SiO 2 -CaO-Al 2 O 3 -Li 2 O -based glass, SiO 2 -SrO-Al 2 O 3 -Li 2 O-based glass, SiO 2 -BaO-Al 2 O 3 -Li 2 O -based glass, SiO 2 -CaO-SrO-Al 2 O 3 -Li 2 O -based glass, SiO 2 -BaO-CaO- Al 2 O 3 -Li 2 O-based glass, SiO 2 -SrO-BaO-Al 2 O 3 -Li 2 O -based glass, such as SiO 2 -CaO-SrO-BaO- Al 2 O 3 -Li 2 O system glass It can be mentioned. B 2 O 3 as the -RO-Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -CaO-Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -SrO-Al 2 O 3 - li 2 O-based glass, B 2 O 3 -BaO-Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -CaO-SrO -Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -BaO -CaO-Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -SrO-BaO -Al 2 O 3 -Li 2 O -based glass, B 2 O 3 -CaO-SrO -BaO-Al 2 O 3 - Li 2 O-based glass and the like can be mentioned. Among these, SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 O system glass is preferred.

Li含有ガラスとしてSiO−BaO−CaO−Al−LiO系ガラスを用いる場合、当該SiO−BaO−CaO−Al−LiO系ガラス全体を100質量部としてSiOの含有量が25質量部以上45質量部以下、BaOの含有量が20質量部以上40質量部以下、CaOの含有量が10質量部以上30質量部以下、Alの含有量が1質量部以上10質量部以下、LiOがLi含有ガラスの実質的な残部であってLiOの含有量が10質量部以上30質量部以下であることが好ましい。SiOの含有量を25質量部以上とすることで焼結体の化学的安定性を向上させやすくなる。SiOの含有量を45質量部以下とすることで低温焼結しやすくなる。BaOの含有量を20質量部以上とすることで焼結体の絶縁信頼性が向上する。BaOの含有量を40質量部以下とすることで焼結体の絶縁信頼性およびQ値が向上する。CaOの含有量を10質量部以上とすることで焼結体の絶縁信頼性が向上する。CaOの含有量を30質量部以下とすることで焼結体の絶縁信頼性およびQ値が向上する。Alの含有量を1質量部以上とすることで焼結体の化学的安定性を向上させやすくなる。Alの含有量を10質量部以下とすることで低温焼結しやすくなる。なお、LiOがLi含有ガラスの実質的な残部であるとは、SiO−BaO−CaO−Al−LiO系ガラス全体を100質量部としてSiO2、BaO、CaO、AlおよびLiOの合計含有量が95質量部以上であることを意味する。 When using SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 O-based glass as the Li-containing glass, the total amount of SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 O-based glass is 100 parts by mass and SiO is used. The content of 2 is 25 parts by mass to 45 parts by mass, the content of BaO is 20 parts by mass to 40 parts by mass, the content of CaO is 10 parts by mass to 30 parts by mass, the content of Al 2 O 3 is It is preferable that 1 part by mass or more and 10 parts by mass or less, Li 2 O is a substantial remaining part of the Li-containing glass, and the content of Li 2 O is 10 parts by mass or more and 30 parts by mass or less. By setting the content of SiO 2 to 25 parts by mass or more, the chemical stability of the sintered body can be easily improved. When the content of SiO 2 is 45 parts by mass or less, low temperature sintering is facilitated. By setting the content of BaO to 20 parts by mass or more, the insulation reliability of the sintered body is improved. By setting the content of BaO to 40 parts by mass or less, the insulation reliability and the Q value of the sintered body are improved. By setting the content of CaO to 10 parts by mass or more, the insulation reliability of the sintered body is improved. By setting the content of CaO to 30 parts by mass or less, the insulation reliability and the Q value of the sintered body are improved. By setting the content of Al 2 O 3 to 1 part by mass or more, the chemical stability of the sintered body can be easily improved. By setting the content of Al 2 O 3 to 10 parts by mass or less, low temperature sintering is facilitated. Note that the Li 2 O is a substantial remainder of the Li-containing glass, SiO 2, BaO and SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 overall O-based glass as 100 parts by weight, CaO, Al It means that the total content of 2 O 3 and Li 2 O is 95 parts by mass or more.

Li含有ガラスの含有量は、主成分およびLi含有ガラスを除く副成分の合計を100質量部として2.0質量部以上10.0質量部以下であり、2.0質量部以上7.0質量部以下であることが好ましい。Li含有ガラスの含有量が少なすぎる場合には、低温焼結しにくくなる。Li含有ガラスの含有量が多すぎる場合には、Q値が低下し誘電損失が大きくなる。   The content of the Li-containing glass is 2.0 parts by mass or more and 10.0 parts by mass or less, where the total amount of the main component and the subcomponents excluding the Li-containing glass is 100 parts by mass, and 2.0 parts by mass or more It is preferable that it is less than part. If the content of the Li-containing glass is too low, low temperature sintering becomes difficult. When the content of the Li-containing glass is too large, the Q value decreases and the dielectric loss increases.

さらに、本実施形態の誘電体磁器組成物は、副成分としてMn含有化合物を含むことが好ましい。Mn含有化合物としては、例えば、Mnの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。Mn含有化合物の含有量は、主成分100質量部に対して酸化物(MnO)換算で0.05質量部以上1.5質量部以下とすることが好ましく、0.05質量部以上1.0質量部以下とすることがさらに好ましい。Mn含有化合物を酸化物換算で0.05質量部以上含有させることで、低温焼結しやすくなり、焼結体のQ値が向上する。また、Mn含有化合物の含有量を酸化物換算で1.5質量部以下とすることで、Ag内部電極を用いる場合に、焼結時においてAgの誘電体への拡散を抑制しやすくなる。   Furthermore, the dielectric ceramic composition of the present embodiment preferably contains a Mn-containing compound as an accessory component. Examples of the Mn-containing compound include, for example, oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, and organometallic compounds of Mn. The content of the Mn-containing compound is preferably 0.05 parts by mass or more and 1.5 parts by mass or less in terms of oxide (MnO) with respect to 100 parts by mass of the main component, and 0.05 parts by mass or more and 1.0 or less More preferably, it is at most parts by mass. By containing the Mn-containing compound in an amount of 0.05 parts by mass or more in terms of oxide, sintering at a low temperature is facilitated, and the Q value of the sintered body is improved. Further, by setting the content of the Mn-containing compound to 1.5 parts by mass or less in terms of oxide, diffusion of Ag into the dielectric can be easily suppressed at the time of sintering when using an Ag internal electrode.

さらに、本実施形態の誘電体磁器組成物は、副成分としてTi含有化合物を含有することが好ましい。Ti含有化合物としては、例えば、Tiの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。Ti含有化合物の含有量は、主成分100質量部に対して酸化物(TiO)換算で0.3質量部以上3.0質量部以下とすることが好ましく、0.3質量部以上2.0質量部以下とすることがさらに好ましい。Ti含有化合物を酸化物換算で0.3質量部以上含有させることで、焼結体の耐湿性が向上する。さらに、Ag内部電極を用いる場合に、焼結時においてAgの誘電体への拡散を抑制できる。Ti含有化合物を含有させることでLi含有ガラスの結晶性を向上させることができるため、上記の効果を奏すると予想される。また、Ti含有化合物の含有量を酸化物換算で3.0質量部以下とすることで低温焼結しやすくなる。 Furthermore, the dielectric ceramic composition of the present embodiment preferably contains a Ti-containing compound as an accessory component. Examples of Ti-containing compounds include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organometallic compounds and the like of Ti. The content of the Ti-containing compound is preferably 0.3 parts by mass or more and 3.0 parts by mass or less in terms of oxide (TiO 2 ) with respect to 100 parts by mass of the main component, and 0.3 parts by mass or more. More preferably, it is 0 parts by mass or less. By containing the Ti-containing compound in an amount of 0.3 parts by mass or more in terms of oxide, the moisture resistance of the sintered body is improved. Furthermore, when using an Ag internal electrode, it is possible to suppress the diffusion of Ag into the dielectric at the time of sintering. Since the crystallinity of the Li-containing glass can be improved by containing the Ti-containing compound, it is expected that the above-described effect is exerted. In addition, by setting the content of the Ti-containing compound to 3.0 parts by mass or less in terms of oxide, low temperature sintering becomes easy.

さらに、本実施形態の誘電体磁器組成物は、副成分としてAl含有化合物を含有することが好ましい。Al含有化合物としては、例えば、Alの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。Al含有化合物の含有量は、主成分100質量部に対して酸化物(Al)換算で0.3質量部以上3.0質量部以下とすることが好ましく、0.3質量部以上2.0質量部以下とすることがさらに好ましい。Al含有化合物を酸化物換算で0.3質量部以上含有させることで、焼結体の耐湿性が向上する。さらに、Ag内部電極を用いる場合に、焼結時においてAgの誘電体への拡散を抑制できる。Al含有化合物の含有量を酸化物換算で3.0質量部以下とすることで低温焼結しやすくなる。 Furthermore, the dielectric ceramic composition of the present embodiment preferably contains an Al-containing compound as an accessory component. Examples of the Al-containing compound include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organometallic compounds and the like of Al. The content of the Al-containing compound is preferably 0.3 parts by mass or more and 3.0 parts by mass or less in terms of oxide (Al 2 O 3 ) relative to 100 parts by mass of the main component, and 0.3 parts by mass or more More preferably, the amount is 2.0 parts by mass or less. By containing 0.3 parts by mass or more of the Al-containing compound in terms of oxide, the moisture resistance of the sintered body is improved. Furthermore, when using an Ag internal electrode, it is possible to suppress the diffusion of Ag into the dielectric at the time of sintering. Low-temperature sintering is facilitated by setting the content of the Al-containing compound to 3.0 parts by mass or less in terms of oxide.

さらに、本実施形態の誘電体磁器組成物は、副成分としてZr含有化合物を含有することが好ましい。Al含有化合物としては、例えば、Zrの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。Zr含有化合物の含有量は、主成分100質量部に対して酸化物(ZrO)換算で0.2質量部以上3.0質量部以下とすることが好ましく、0.2質量部以上2.0質量部以下とすることがさらに好ましい。Zr含有化合物を酸化物換算で0.2質量部以上含有させることで、焼結体のQ値が向上する。Zr含有化合物を含有させることでLi含有ガラスの結晶性を向上させることができるため、上記の効果を奏すると予想される。また、Zr含有化合物の含有量を酸化物換算で3.0質量部以下とすることで低温焼結しやすくなる。 Furthermore, the dielectric ceramic composition of the present embodiment preferably contains a Zr-containing compound as an accessory component. Examples of the Al-containing compound include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organic metal compounds and the like of Zr. The content of the Zr-containing compound is preferably 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (ZrO 2 ) with respect to 100 parts by mass of the main component, and 0.2 parts by mass or more. More preferably, it is 0 parts by mass or less. By containing the Zr-containing compound in an amount of 0.2 parts by mass or more in terms of oxide, the Q value of the sintered body is improved. Since the crystallinity of the Li-containing glass can be improved by containing the Zr-containing compound, it is expected that the above-described effect is exerted. In addition, by setting the content of the Zr-containing compound to 3.0 parts by mass or less in terms of oxide, low temperature sintering is facilitated.

さらに、本実施形態の誘電体磁器組成物は、Ag内部電極を用いる場合には副成分としてあらかじめAgを含有させていてもよい。Agを誘電体に含有させることで、焼結時においてAg内部電極中のAgの誘電体(Ag電極間誘電体)への拡散を抑制しやすくなる。Agを含有する場合、Agの含有量は、主成分およびLi含有ガラスを除く副成分の合計を100質量部として0.05質量部以上1.0質量部以下とすることが好ましい。Agを0.05質量部以上含有させることでAg内部電極を用いる場合に、焼結時においてAg内部電極中のAgの誘電体への拡散を抑制しやすくなる。Agの含有量を1.0質量部以下とすることで焼結体のQ値を良好に維持できる。ただし、Q値をさらに向上させる観点からはAgの含有量は0質量部以上0.05質量部以下とすることが好ましい。   Furthermore, when using the Ag internal electrode, the dielectric ceramic composition of the present embodiment may contain Ag as an accessory component in advance. By containing Ag in the dielectric, it becomes easy to suppress the diffusion of Ag in the Ag internal electrode into the dielectric (Ag inter-electrode dielectric) at the time of sintering. When Ag is contained, the content of Ag is preferably 0.05 parts by mass or more and 1.0 parts by mass or less based on 100 parts by mass of the total of the main components and subcomponents excluding the Li-containing glass. By containing 0.05 parts by mass or more of Ag, when using an Ag internal electrode, it becomes easy to suppress the diffusion of Ag in the Ag internal electrode to the dielectric at the time of sintering. By setting the content of Ag to 1.0 part by mass or less, the Q value of the sintered body can be favorably maintained. However, from the viewpoint of further improving the Q value, the content of Ag is preferably 0 parts by mass or more and 0.05 parts by mass or less.

なお、本実施形態の誘電体磁器組成物は、上記以外の副成分を含んでもよいが、Zn含有化合物については実質的に含有しないことが好ましい。Zn含有化合物としては、例えば、Znの酸化物、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。Zn含有化合物を実質的に含有しないとは、焼成後の焼結体をXRD測定した場合にZnOのピークが観察されず、かつ、フォルステライトおよびZnOからなる化合物のピーク、Li含有ガラスおよびZnOからなる化合物のピーク、および、各副成分およびZnOからなる化合物のピークも観察されないことを指す。また、この場合には、主成分の合計を100質量部としてZn含有化合物の含有量が酸化物(ZnO)換算で概ね0.05質量部未満である。Zn含有化合物を実質的に含有しないことで、焼結体のQ値および耐湿性が向上する。さらに、Ag内部電極を用いる場合に、焼結時においてAgの誘電体への拡散を抑制する。   In addition, although the dielectric ceramic composition of this embodiment may contain subcomponents other than the above, it is preferable not to contain substantially about Zn containing compound. Examples of the Zn-containing compound include oxides, carbonates, nitrates, oxalates, hydroxides, sulfides, organic metal compounds and the like of Zn. When substantially no Zn-containing compound is contained, no ZnO peak is observed when the sintered body after firing is measured by XRD, and the peak of a compound consisting of forsterite and ZnO, Li-containing glass and ZnO And the peaks of the compound consisting of each minor component and ZnO are also not observed. Moreover, in this case, the content of the Zn-containing compound is approximately less than 0.05 parts by mass in terms of oxide (ZnO), based on 100 parts by mass of the total of the main components. By substantially not containing the Zn-containing compound, the Q value and the moisture resistance of the sintered body are improved. Furthermore, when using an Ag internal electrode, the diffusion of Ag to the dielectric is suppressed during sintering.

また、本実施形態の誘電体磁器組成物は、上記以外の副成分の含有量の合計に特に制限はなく、本願発明の効果を損なわない範囲で含有してもよい。例えば、誘電体磁器組成物全体を100質量部として酸化物換算で5質量部以下、含有してもよい。   Moreover, there is no restriction | limiting in particular in the sum total of content of the subcomponent of that excepting the above, and the dielectric ceramic composition of this embodiment may be contained in the range which does not impair the effect of this invention. For example, the entire dielectric ceramic composition may be contained in an amount of 5 parts by mass or less in terms of oxide, based on 100 parts by mass.

以下、本実施形態に係る誘電体磁器組成物および焼結体の製造方法の一例について説明する。本実施形態に係る誘電体磁器組成物および焼結体の製造方法は、以下の工程を含む。
(a) 酸化マグネシウムの原料粉末と二酸化珪素の原料粉末とを混合して熱処理することでMgSiO結晶粉末を作製するMgSiO結晶粉末の作製工程
(b) MgSiO結晶粉末に、副成分原料粉末を添加し、誘電体磁器組成物を得る誘電体磁器組成物の作製工程
(c) 誘電体磁器組成物を酸素雰囲気下において800℃以上1000℃以下の温度で焼成して、誘電体磁器組成物の焼結体を得る焼成工程
Hereinafter, an example of a method of manufacturing a dielectric ceramic composition and a sintered body according to the present embodiment will be described. The dielectric ceramic composition and the method for producing a sintered body according to the present embodiment include the following steps.
(A) Preparation step of Mg 2 SiO 4 crystal powder by preparing Mg 2 SiO 4 crystal powder by mixing and heat treating raw material powder of magnesium oxide and raw material powder of silicon dioxide (b) Mg 2 SiO 4 crystal powder Step of preparing the dielectric ceramic composition by adding the auxiliary component raw material powder to obtain the dielectric ceramic composition (c) firing the dielectric ceramic composition at a temperature of 800 ° C. to 1000 ° C. in an oxygen atmosphere , A firing process for obtaining a sintered body of a dielectric ceramic composition

<MgSiO結晶粉末の作製工程>
MgSiO結晶粉末の作製工程は、酸化マグネシウム(MgO)の原料粉末と酸化珪素(SiO)の原料粉末とを混合して仮焼きし、フォルステライト(MgSiO)結晶粉末を作製する工程である。MgSiO結晶粉末の原料となるMgOの原料粉末とSiOの原料粉末とをそれぞれ所定量秤量した後、混合する。これにより原料混合粉末を得る。また、MgOの原料粉末およびSiOの原料粉末との混合は、乾式混合又は湿式混合等の混合方式で行うことができ、例えば、ボールミルなどの混合分散機で純水、エタノール等の溶媒を用いて混合する。ボールミルの場合の混合時間は4時間から24時間程度とする。
<Process of preparing Mg 2 SiO 4 crystal powder>
In the preparation process of Mg 2 SiO 4 crystal powder, a raw material powder of magnesium oxide (MgO) and a raw material powder of silicon oxide (SiO 2 ) are mixed and calcined to prepare a forsterite (Mg 2 SiO 4 ) crystal powder Process. Predetermined amounts of a raw material powder of MgO and a raw material powder of SiO 2, which are raw materials of Mg 2 SiO 4 crystal powder, are respectively weighed and then mixed. A raw material mixed powder is thus obtained. The mixing of the raw material powder of MgO and the raw material powder of SiO 2 can be carried out by a mixing method such as dry mixing or wet mixing. For example, using a mixing and dispersing machine such as a ball mill, a solvent such as pure water or ethanol is used. Mix and mix. The mixing time in the case of a ball mill is about 4 hours to 24 hours.

原料混合粉末を、好ましくは100℃以上200℃以下、より好ましくは120℃以上140℃以下で12時間から36時間程度乾燥させた後、熱処理(仮焼き)する。この仮焼きによって、MgSiO結晶が得られる。仮焼温度は、1100℃以上1500℃以下であることが好ましく、1100℃以上1350℃以下であることが好ましい。また、仮焼時間は1時間から24時間程度行うことが好ましい。 The raw material mixed powder is dried at preferably 100 ° C. or more and 200 ° C. or less, more preferably 120 ° C. or more and 140 ° C. or less for about 12 hours to 36 hours, and then subjected to heat treatment (calcination). By this calcination, Mg 2 SiO 4 crystals are obtained. The calcination temperature is preferably 1100 ° C. or more and 1500 ° C. or less, and more preferably 1100 ° C. or more and 1350 ° C. or less. Further, it is preferable that the calcination time be about 1 hour to 24 hours.

合成されたMgSiO結晶を、粉砕して粉末とした後、乾燥する。これにより、MgSiO結晶粉末が得られる。このMgSiO結晶粉末が誘電体磁器組成物の主成分粉末として用いられる。粉砕は乾式粉砕又は湿式粉砕等の粉砕方式で行うことができ、例えば、ボールミルで純水、エタノール等の溶媒を用いて湿式粉砕する。粉砕時間は、特に限定されるものではなく、所望の平均粒子径の大きさのMgSiO結晶粉末が得られればよく、粉砕時間は例えば4時間から24時間程度とすればよい。MgSiO結晶粉末の乾燥は、好ましくは100℃以上200℃以下、より好ましくは120℃以上140℃以下の乾燥温度で、12時間以上36時間以下程度行う。 The synthesized Mg 2 SiO 4 crystals are pulverized to a powder and then dried. Thereby, Mg 2 SiO 4 crystal powder is obtained. This Mg 2 SiO 4 crystal powder is used as the main component powder of the dielectric ceramic composition. Pulverization can be performed by a pulverization method such as dry pulverization or wet pulverization, and for example, wet pulverization is performed using a solvent such as pure water or ethanol in a ball mill. The grinding time is not particularly limited, as long as Mg 2 SiO 4 crystal powder having a desired average particle size is obtained, and the grinding time may be, for example, about 4 hours to 24 hours. Drying of the Mg 2 SiO 4 crystal powder is carried out at a drying temperature of preferably 100 ° C. or more and 200 ° C. or less, more preferably 120 ° C. or more and 140 ° C. or less for about 12 hours to 36 hours or less.

なお、MgSiO結晶による効果を大きくするためには、MgSiO中に含まれる未反応のMgOやSiOの原料成分を少なくする必要があるため、MgOとSiOとを混合した原料混合粉末を調製する際、マグネシウムのモル数が珪素のモル数の2倍となるように、MgOとSiOとを混合することが好ましい。 In order to increase the effect of Mg 2 SiO 4 crystals, it is necessary to reduce the unreacted MgO and SiO 2 raw material components contained in Mg 2 SiO 4 , so MgO and SiO 2 were mixed. When preparing the raw material mixed powder, it is preferable to mix MgO and SiO 2 so that the number of moles of magnesium is twice the number of moles of silicon.

MgSiO結晶粉末は、MgOの原料粉末およびSiOの原料粉末からMgSiO結晶を合成する方法に限定されるものではなく、市販のMgSiOを用いてもよい。この場合、市販のMgSiOを、上述と同様の方法で粉砕し、乾燥してMgSiO結晶粉末を得るようにしてもよい。 The Mg 2 SiO 4 crystal powder is not limited to the method of synthesizing Mg 2 SiO 4 crystal from the raw material powder of MgO and the raw material powder of SiO 2 , and commercially available Mg 2 SiO 4 may be used. In this case, commercially available Mg 2 SiO 4 may be crushed and dried in the same manner as described above to obtain Mg 2 SiO 4 crystal powder.

MgSiO結晶粉末を得た後、誘電体磁器組成物の作製工程に移行する。 After the Mg 2 SiO 4 crystal powder is obtained, the process proceeds to the step of producing a dielectric ceramic composition.

<誘電体磁器組成物の作製工程>
誘電体磁器組成物の作製工程は、MgSiO結晶粉末に、副成分原料粉末を添加し、誘電体磁器組成物を得る工程である。
<Process of producing dielectric ceramic composition>
The step of preparing the dielectric ceramic composition is a step of adding the auxiliary component material powder to the Mg 2 SiO 4 crystal powder to obtain a dielectric ceramic composition.

得られたMgSiO結晶粉末と、誘電体磁器組成物の副成分の原料であるR含有化合物、B含有化合物およびCu含有化合物等を所定量秤量した後、これらを混合して熱処理する。なお、副成分に関しては、MgSiO結晶粉末の不純物として添加されてもよい。なお、副成分の各原料の秤量は、誘電体磁器組成物における各副成分の含有量(質量部)が所望の値となるように行う。前記熱処理後の粉末に対してLi含有ガラスを添加し、粉砕処理して誘電体磁器組成物とする。本実施形態では、Li含有ガラスは、MgSiO結晶粉末と副成分の原料とを混合した後、熱処理して得られる粉末に添加するようにしているが、Li含有ガラスの添加時期は、これに限定されるものではない。Li含有ガラスは、例えばMgSiO結晶粉末と副成分の原料とを混合する段階(熱処理前の段階)で添加してもよい。 After predetermined amounts of the obtained Mg 2 SiO 4 crystal powder, R-containing compound, B-containing compound, Cu-containing compound, etc., which are raw materials of auxiliary components of the dielectric ceramic composition, are weighed, they are mixed and heat-treated. In addition, regarding the auxiliary component, it may be added as an impurity of Mg 2 SiO 4 crystal powder. In addition, the measurement of each raw material of a subcomponent is performed so that content (mass part) of each subcomponent in a dielectric ceramic composition becomes a desired value. Li-containing glass is added to the powder after the heat treatment, and it is crushed to obtain a dielectric ceramic composition. In the present embodiment, the Li-containing glass is added to the powder obtained by heat treatment after mixing the Mg 2 SiO 4 crystal powder and the raw material of the accessory component, but the addition time of the Li-containing glass is It is not limited to this. The Li-containing glass may be added, for example, at the stage of mixing Mg 2 SiO 4 crystal powder and the raw material of the accessory component (stage before heat treatment).

副成分の原料として、後述する仮焼等の熱処理で焼成することによって酸化物となる化合物を用いることもできる。焼成により上記酸化物となる化合物としては、例えば、炭酸塩、硝酸塩、シュウ酸塩、水酸化物、硫化物、有機金属化合物等が例示される。   It is also possible to use a compound that becomes an oxide by firing by heat treatment such as calcination to be described later as a raw material of the accessory component. As a compound which will become the said oxide by baking, carbonate, nitrate, an oxalate, a hydroxide, a sulfide, an organometallic compound etc. are illustrated, for example.

各原料の秤量は、完成後の誘電体磁器組成物における各副成分の含有量が、主成分に対して所望の上記質量比率(質量部)となるように行う。   The weighing of each raw material is performed such that the content of each subcomponent in the completed dielectric ceramic composition is the desired mass ratio (parts by mass) with respect to the main component.

混合は、乾式混合又は湿式混合等の混合方式で行うことができ、例えば、ボールミルなどの混合分散機で純水、エタノール等の溶媒を用いた混合方式により行うことができる。混合時間は、4時間以上24時間以下程度とすればよい。   The mixing can be performed by a mixing method such as dry mixing or wet mixing, for example, can be performed by a mixing and dispersing machine such as a ball mill and the like using a solvent such as pure water and ethanol. The mixing time may be approximately 4 hours to 24 hours.

原料混合粉末を、好ましくは100℃以上200℃以下、より好ましくは120℃以上140℃以下の乾燥温度で、12時間以上36時間以下程度乾燥する。   The raw material mixed powder is dried at a drying temperature of preferably 100 ° C. or more and 200 ° C. or less, more preferably 120 ° C. or more and 140 ° C. or less for 12 hours or more and 36 hours or less.

乾燥させた原料混合粉末は、例えば700℃以上850℃以下で、1時間以上10時間以下程度、熱処理(仮焼)する。このように仮焼を焼成温度以下の温度で行うことによって、原料混合粉末中のフォルステライトが融解することを抑制でき、誘電体磁器組成物中に、結晶の形でMgSiOを含有させることができる。 The dried raw material mixed powder is heat-treated (calcined) at, for example, 700 ° C. or more and 850 ° C. or less for about 1 hour to 10 hours or less. By thus performing calcination at a temperature not higher than the firing temperature, melting of forsterite in the raw material mixed powder can be suppressed, and Mg 2 SiO 4 is contained in the form of crystals in the dielectric ceramic composition. be able to.

仮焼後の原料混合粉末に対してLi含有ガラスを添加、混合粉砕した後、乾燥する。これにより、誘電体磁器組成物が得られる。粉砕は乾式粉砕又は湿式粉砕等の粉砕方式で行うことができる。粉砕時間は4時間以上24時間以下程度とすればよい。粉砕後の原料混合粉末の乾燥は、好ましくは80℃以上200℃以下、より好ましくは100℃以上140℃以下の処理温度で12時間以上36時間以下程度行えばよい。   Li-containing glass is added to the raw material mixed powder after calcination, mixed and pulverized, and then dried. Thereby, a dielectric ceramic composition is obtained. The grinding can be carried out by a grinding method such as dry grinding or wet grinding. The grinding time may be about 4 hours to 24 hours. Drying of the raw material mixed powder after grinding may be carried out at a treatment temperature of preferably 80 ° C. or more and 200 ° C. or less, more preferably 100 ° C. or more and 140 ° C. or less for about 12 hours to 36 hours or less.

上述した誘電体粉末である原料混合粉末の作成方法により、誘電体磁器組成物の主成分と副成分とが均一に混合されて、材質が均一な誘電体磁器組成物を得ることができる。   By the method of preparing the raw material mixed powder which is the above-described dielectric powder, the main component and the subcomponent of the dielectric ceramic composition can be uniformly mixed, and a dielectric ceramic composition having a uniform material can be obtained.

誘電体磁器組成物を得た後、誘電体磁器組成物を焼成する焼成工程に移行する。   After obtaining the dielectric ceramic composition, the process proceeds to a firing step of firing the dielectric ceramic composition.

<焼成工程>
焼成工程では、得られた誘電体磁器組成物を焼成して、焼結体を得る。焼成は、例えば、空気中のような酸素雰囲気にて行うことが好ましい。また、焼成温度は、導体材(内部電極)として用いるAg系金属の融点以下であることが好ましい。例えば、800℃以上1000℃以下であることが好ましく、800℃以上950℃以下であることがより好ましい。
<Firing process>
In the firing step, the obtained dielectric ceramic composition is fired to obtain a sintered body. The firing is preferably performed, for example, in an oxygen atmosphere such as in air. Moreover, it is preferable that a calcination temperature is below melting | fusing point of Ag type metal used as a conductor material (internal electrode). For example, the temperature is preferably 800 ° C. or more and 1000 ° C. or less, and more preferably 800 ° C. or more and 950 ° C. or less.

このように本実施形態に係る誘電体磁器組成物の製造方法を用いて得られる誘電体磁器組成物は、800℃以上1000℃以下の低温で焼成しても誘電体磁器の相対密度を十分に高くすることができる。したがって、本実施形態に係る誘電体磁器組成物は、焼成工程において低温で焼成することができ、誘電体磁器組成物の焼結性を確保し、抗折強度を維持すると共に、Q値の優れた誘電体磁器組成物となる。したがって、本実施形態に係る誘電体磁器組成物は、フィルター、共振器、コンデンサ、回路基板等の電子部品の一部を構成する誘電体層として好適に用いることができる。   Thus, the dielectric ceramic composition obtained by using the method for manufacturing a dielectric ceramic composition according to the present embodiment has sufficient relative density of the dielectric ceramic even when fired at a low temperature of 800 ° C. or more and 1000 ° C. or less. It can be raised. Therefore, the dielectric ceramic composition according to the present embodiment can be fired at a low temperature in the firing step, and the sinterability of the dielectric ceramic composition is ensured, the bending strength is maintained, and the Q value is excellent. It becomes a dielectric ceramic composition. Therefore, the dielectric ceramic composition according to the present embodiment can be suitably used as a dielectric layer that constitutes a part of an electronic component such as a filter, a resonator, a capacitor, or a circuit board.

以上、本発明に係る誘電体磁器組成物の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。例えば、本発明に係る誘電体磁器組成物は、低温で焼成可能としつつ、焼結性を確保し、焼結体の抗折強度を維持すると共に、焼結体の誘電損失を低下させる効果を阻害しない範囲内で、他の化合物を含むようにしてもよい。   The preferred embodiment of the dielectric ceramic composition according to the present invention has been described above, but the present invention is not necessarily limited to the above-described embodiment. For example, while the dielectric ceramic composition according to the present invention can be fired at a low temperature, the sinterability is ensured, the bending strength of the sintered body is maintained, and the dielectric loss of the sintered body is reduced. Other compounds may be included as long as they do not inhibit.

以下、本発明を実施例および比較例を挙げてさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described by way of examples and comparative examples, but the present invention is not limited to the following examples.

(実施例1〜18)
<誘電体磁器組成物の作製>
まず、主成分MgSiOの原料であるMgOおよびSiOを、Mgのモル数がSiのモル数の2倍となるように、それぞれ秤量した。秤量したMgOおよびSiOに対して純水を加えてスラリーを作成した。スラリー全体を100質量部とした場合のMgOとSiOとの合計含有量が25質量部となるようにした。当該スラリーに対してボールミルにて16時間湿式混合した後に、120℃で24時間乾燥してMgOおよびSiOの混合粉末を得た。当該混合粉末を、空気中で3時間、1200℃で仮焼して、MgSiO結晶を得た。当該MgSiO粉末に改めて純水を加えてスラリーを作成した。スラリー全体を100質量部とした場合のMgSiO粉末の含有量が25質量部となるようにした。当該スラリーをボールミルにて16時間かけて粉砕した後に、120℃で24時間乾燥して、MgSiO結晶粉末を作製した。
(Examples 1 to 18)
<Preparation of dielectric ceramic composition>
First, MgO and SiO 2 which are raw materials of the main component Mg 2 SiO 4 were respectively weighed so that the number of moles of Mg was twice the number of moles of Si. Pure water was added to the weighed MgO and SiO 2 to prepare a slurry. The total content of MgO and SiO 2 was 25 parts by mass when the total amount of the slurry was 100 parts by mass. The slurry was wet mixed in a ball mill for 16 hours and then dried at 120 ° C. for 24 hours to obtain a mixed powder of MgO and SiO 2 . The mixed powder was calcined at 1200 ° C. for 3 hours in air to obtain Mg 2 SiO 4 crystals. Pure water was again added to the Mg 2 SiO 4 powder to prepare a slurry. The content of the Mg 2 SiO 4 powder was 25 parts by mass when the total amount of the slurry was 100 parts by mass. The slurry was pulverized in a ball mill for 16 hours and then dried at 120 ° C. for 24 hours to prepare Mg 2 SiO 4 crystal powder.

次に、得られたMgSiO結晶粉末に対して、CuO、B、CaCO、MnCO、TiO、Al、AgおよびLi含有ガラスを添加した。AgおよびLi含有ガラス以外の各副成分は主成分100質量部に対して酸化物換算で表1に記載の含有量となるように添加した。なお、上記のCaCOおよびMnCOは後述する焼成時にCaOおよびMnOに変化する。AgおよびLi含有ガラスは、主成分と、Li含有ガラスを除く副成分と、の合計を酸化物換算で100質量部とした場合の含有量が表1に記載の含有量となるように添加した。また、Li含有ガラスとしては、SiO−BaO−CaO−LiO系ガラスを用いた。また、当該Li含有ガラスの組成は、Li含有ガラス全体を100質量部として、SiOを35質量部、BaOを29質量部、CaOを19質量部、LiOを17質量部とした。 Next, the Mg 2 SiO 4 crystal powder obtained was added CuO, the B 2 O 3, CaCO 3, MnCO 3, TiO 2, Al 2 O 3, Ag and Li-containing glass. Each subcomponent other than Ag and Li containing glass was added so that it might become content described in Table 1 in oxide conversion with respect to 100 mass parts of main components. Incidentally, CaCO 3 and MnCO 3 above is changed to CaO and MnO during firing described below. Ag and Li containing glass were added so that content when the sum total of a main component and subcomponents other than Li containing glass is 100 mass parts in conversion of an oxide turns into content described in Table 1 . As the Li-containing glass were used SiO 2 -BaO-CaO-Li 2 O -based glass. The composition of the Li-containing glass, 100 parts by weight of the overall Li-containing glass, 35 parts by mass of SiO 2, 29 parts by weight of BaO, 19 parts by weight of CaO, and the Li 2 O 17 parts by weight.

さらに、上記の混合物に有機バインダーとしてアクリル樹脂であるポリ(エチルメタクリレート)を10質量%添加した後に、ドクターブレード法によってシート成型してシート成型体を複数、作製した。複数のシート成型体を積層後にプレスして基板状に成型することでシート積層成型体を作製した。当該シート積層成型体を所望のサイズに切断してチップを得た。チップの面取りを行った後に焼成温度900℃で2時間焼成して誘電体磁器組成物の焼結体を作製した。有機バインダーの混合量は各実施例および比較例の組成により適宜変化させた。     Furthermore, after adding 10 mass% of poly (ethyl methacrylate) which is an acrylic resin as an organic binder to said mixture, it sheet-formed by the doctor blade method, and prepared two or more sheet | seat molded bodies. After laminating a plurality of sheet molded bodies, the sheet laminated molded body is manufactured by pressing and molding into a substrate shape. The sheet laminate molded body was cut into a desired size to obtain a chip. After chamfering the chip, the chip was fired at a firing temperature of 900 ° C. for 2 hours to produce a sintered body of the dielectric ceramic composition. The mixing amount of the organic binder was appropriately changed according to the composition of each example and comparative example.

得られた各実施例および比較例の焼結密度、Q値、耐湿性およびAg電極間誘電体へのAg拡散濃度を測定した。なお、全ての実施例および比較例においてZn含有化合物を実質的に含有しないことをXRD測定により確認した。     The sintered density, Q value, moisture resistance and Ag diffusion concentration to the Ag interelectrode dielectric of each of the obtained Examples and Comparative Examples were measured. In addition, in all the Examples and Comparative Examples, it was confirmed by XRD measurement that a Zn-containing compound was not substantially contained.

<焼結密度>
焼成後の試験片が概ね4.5mm×3.2mm×0.8mmとなるように切断加工し、各方向の寸法をマイクロメーターで精密に測定した。また、電子天秤で切断加工後の試験片の質量を測定した、切断加工後の試験片の質量を切断加工後の試験片の体積で割ることにより、焼結密度を測定した。本実施例では、焼結密度が3.1g/cm以上である場合を良好とした。なお、焼結密度が良好ではない試験片は焼結不足のため、以下に記載する評価項目が測定不能となった。
<Sintered density>
It cut-processed so that the test piece after baking might be about 4.5 mm x 3.2 mm x 0.8 mm, and measured the dimension of each direction with a micrometer precisely. Moreover, the sintered density was measured by dividing the mass of the test piece after cutting processing which measured the mass of the test piece after cutting processing with the electronic balance with the volume of the test piece after cutting processing. In this example, the case where the sintering density is 3.1 g / cm 3 or more is considered to be good. In addition, the evaluation item described below became unmeasurable because the test piece in which the sintering density is not good is insufficient for sintering.

<Q値>
焼結体のQ値は、日本工業規格「マイクロ波用ファインセラミックスの誘電特性の試験方法(JIS R1627 1996年度)」に従って測定した。具体的には、10mmφ×5mmの円柱を作製し、両端短絡形誘電体共振器法により誘電正接tanδを算出し、1/tanδ=Qとした。Q≧1500である場合にQ値が良好であるとした。Q≧1800である場合がさらに好ましい。
<Q value>
The Q value of the sintered body was measured in accordance with Japanese Industrial Standard "Test method of dielectric characteristics of fine ceramics for microwave (JIS R1627 1996)". Specifically, a cylinder of 10 mmφ × 5 mm was manufactured, and the dielectric loss tangent tan δ was calculated by the double-end shorted dielectric resonator method, and 1 / tan δ = Q. It is assumed that the Q value is good when Q ≧ 1500. More preferably, Q 場合 1800.

<耐湿性>
上記のシート成型体にAg電極ペーストを厚さ2μmで塗布した。その後、導電性ペースト膜が端部に交互に引き出されるようにAg電極ペーストを塗布したシート成型体を11枚重ね、上下にAg電極ペーストを塗布しないシート成型体を複数重ね、さらに加圧接着することで積層数が10層の積層体を作製した。積層体を所望の形状に切断し、グリーンチップを得、面取りを行った後に焼成温度900℃で2時間焼成して幅3.2mm、長さ4.5mm、厚み0.8mmのコンデンサ素子を得た。さらにバレル研磨を行って端面研磨を施し、外部電極用ペーストを塗布して焼成し、評価用の積層セラミックコンデンサを作製した。
Moisture resistance
An Ag electrode paste was applied to a thickness of 2 μm on the sheet molded body described above. Thereafter, 11 sheets of the sheet molded body coated with Ag electrode paste are stacked so that the conductive paste film is alternately drawn out to the end, a plurality of sheet molded bodies not coated with the Ag electrode paste are stacked on the upper and lower sides, and pressure bonding is further performed. Thus, a laminate having 10 layers was produced. The laminate is cut into a desired shape, green chips are obtained, and after chamfering, firing is performed at a firing temperature of 900 ° C. for 2 hours to obtain a capacitor element having a width of 3.2 mm, a length of 4.5 mm and a thickness of 0.8 mm. The Further, barrel polishing was performed to carry out end face polishing, and a paste for an external electrode was applied and fired to prepare a multilayer ceramic capacitor for evaluation.

耐湿性については、各実施例および比較例のシート成型体を用いて上述のように作製した積層セラミックコンデンサについて、プレッシャークッカー試験(PCT)後のIRを測定することにより評価した。PCTは121℃、2atm、95%rhにて96時間行った。その後、50Vの電圧を印可してIRを測定した。PCT後のIRが1.00E+9Ω・cm以上である場合を良好とした。     The moisture resistance was evaluated by measuring the IR after the pressure cooker test (PCT) for the multilayer ceramic capacitors produced as described above using the sheet molded bodies of the respective examples and comparative examples. The PCT was performed at 121 ° C., 2 atm, 95% rh for 96 hours. Thereafter, a voltage of 50 V was applied to measure IR. The case where IR after PCT was 1.00E + 9 Ω · cm or more was considered to be good.

<Ag電極間誘電体へのAg拡散濃度>
Ag電極間誘電体へのAg拡散濃度は、上記の積層セラミックコンデンサについて幅方向からチップ中央付近まで研磨を行い、Ag電極で挟まれた任意の誘電体部30点について、EPMA(電子プローブマイクロアナライザー:JEOL製JXA8500)にて測定することにより評価した。加速電圧10kV、照射電流0.2μA、ビーム径5μmφ、計測時間Agピーク10秒、バック5秒の条件で測定を行い、誘電体中に拡散したAgの平均濃度を定量した。このAg濃度が0.3wt%以下の場合にAgの拡散抑制が良好であるとした。
<Ag diffusion concentration to Ag interelectrode dielectric>
The Ag diffusion concentration to the Ag interelectrode dielectric is polished from the width direction to the vicinity of the center of the chip for the above multilayer ceramic capacitor, and an EPMA (electron probe microanalyzer is made for any 30 dielectric parts sandwiched by the Ag electrodes. : It evaluated by measuring by JEOL JXA8500). The measurement was performed under the conditions of an acceleration voltage of 10 kV, an irradiation current of 0.2 μA, a beam diameter of 5 μmφ, a measurement time of Ag peak of 10 seconds, and a back 5 seconds, and the average concentration of Ag diffused in the dielectric was quantified. When this Ag concentration is 0.3 wt% or less, it is considered that the diffusion suppression of Ag is good.

(実施例19〜22)
実施例19〜22は、Li含有ガラスとしてSiO−BaO−CaO−Al−LiO系ガラスを用いた点、および、得られたMgSiO結晶粉末に対して、必要に応じてZrOを添加した点以外は実施例16と同様の方法でチップを作製し、焼結密度、Q値、耐湿性およびAg電極間誘電体へのAg拡散濃度を測定した。
(Examples 19 to 22)
In Examples 19 to 22, the point that SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 O-based glass was used as the Li-containing glass, and the obtained Mg 2 SiO 4 crystal powder were required Accordingly, a chip was produced in the same manner as in Example 16 except that ZrO 2 was added, and the sintered density, Q value, moisture resistance, and Ag diffusion concentration to the Ag interelectrode dielectric were measured.

なお実施例19〜22で用いたSiO−BaO−CaO−Al−LiO系のLi含有ガラスとしては、Li含有ガラス全体を100質量部として、SiOを33質量部、BaOを28質量部、CaOを18質量部、Alを5質量部、LiOを16質量部とした。 Note The SiO 2 -BaO-CaO-Al 2 O 3 -Li 2 O system Li-containing glass used in Examples 19 to 22, 100 parts by weight of the overall Li-containing glass, a SiO 2 33 parts by weight, BaO 28 parts by mass, 18 parts by mass of CaO, 5 parts by mass of Al 2 O 3 , and 16 parts by mass of Li 2 O.

Figure 2019059660
Figure 2019059660

表1より全ての組成が本願発明の範囲内である実施例は、900℃という低温で焼成しても十分な焼結密度を得ることができた。そして、Q値および耐湿性が良好であり、Agの拡散も十分に抑制することができた。     According to Table 1, Examples in which all the compositions are within the scope of the present invention were able to obtain a sufficient sintered density even when fired at a low temperature of 900 ° C. And, the Q value and the moisture resistance were good, and the diffusion of Ag could be sufficiently suppressed.

これに対し、いずれかの副成分の組成が本願発明の範囲外である比較例は、焼結密度、Q値、耐湿性、Agの拡散抑制のいずれか一つ以上が良好ではなかった。     On the other hand, in the comparative example in which the composition of any of the subcomponents is out of the scope of the present invention, any one or more of the sintering density, Q value, moisture resistance, and Ag diffusion suppression was not good.

また、実施例19で得られた焼成温度900℃で2時間焼成して得られた誘電体磁器組成物の焼結体の組成を実測して確認した。具体的には、焼結体を粉砕して粉末化し、ICP発光分光分析した。実測値を表2に示す。また、各成分の添加量から計算される組成を同時に示す。   The composition of the sintered body of the dielectric ceramic composition obtained by firing for 2 hours at a firing temperature of 900 ° C. obtained in Example 19 was measured and confirmed. Specifically, the sintered body was pulverized into powder and subjected to ICP emission spectral analysis. The measured values are shown in Table 2. In addition, the composition calculated from the addition amount of each component is simultaneously shown.

表2に示すMgSiO(主成分)の含有量の実測値はICP発光分光分析により得られたMg濃度より換算して得た。また、表2に示すその他の成分の含有量はMgSiOの含有量を100質量部として酸化物で換算して得た。 The measured values of the content of Mg 2 SiO 4 (main component) shown in Table 2 were obtained by conversion from the Mg concentration obtained by ICP emission spectral analysis. The content of the other components shown in Table 2 were obtained in terms of oxide content of Mg 2 SiO 4 as 100 parts by weight.

AlおよびCaOについては、MgSiO結晶粉末に対して独立した副成分として添加する部分と、Li含有ガラスに含まれる部分と、がある。表2の計算値ではこれらの部分を合算した。 With respect to Al 2 O 3 and CaO, there are a portion to be added as an independent subcomponent to the Mg 2 SiO 4 crystal powder and a portion to be contained in the Li-containing glass. The calculated values in Table 2 added up these parts.

Figure 2019059660
Figure 2019059660

表2より、本実施例ではAlおよびZrO以外の各成分の含有量が計算値と実測値とでほぼ一致することが確認できた。さらに、各成分の含有量は本願発明の範囲内であることが確認できた。 From Table 2, it was confirmed that the content of each component other than Al 2 O 3 and ZrO 2 substantially coincides with the actually measured value and the calculated value in the present embodiment. Furthermore, it has been confirmed that the content of each component is within the scope of the present invention.

また、AlおよびZrOの含有量は計算値よりも実測値の方が多かった。これは、各混合過程においてYSZ(イットリア安定化ジルコニル)ボールやAlボールをメディアとして用いたためである。しかし、AlおよびZrOの含有量は計算値でも実測値でも本願発明の範囲内であることが確認できた。 In addition, the contents of Al 2 O 3 and ZrO 2 were larger in the measured values than in the calculated values. This is because YSZ (yttria stabilized zirconyl) balls and Al 2 O 3 balls were used as media in each mixing process. However, it has been confirmed that the contents of Al 2 O 3 and ZrO 2 are within the scope of the present invention, both calculated values and actual values.

なお、ZnOの含有量については、実測値で0.05質量部未満であり、実質的に含有されていないことが確認できた。
In addition, about content of ZnO, it was less than 0.05 mass part in actual value, and it has confirmed that it did not contain substantially.

Claims (7)

主成分としてMgSiOを含み、副成分としてR含有化合物、Cu含有化合物、B含有化合物およびLi含有ガラスを含み、
Rはアルカリ土類金属であり、
前記主成分100質量部に対して、前記R含有化合物を酸化物(RO)換算で0.2質量部以上4.0質量部以下、前記Cu含有化合物を酸化物(CuO)換算で0.5質量部以上3.0質量部以下、前記B含有化合物を酸化物(B)換算で0.2質量部以上3.0質量部以下、それぞれ含有し、
前記主成分と、前記Li含有ガラスを除く前記副成分と、の合計100質量部に対して、前記Li含有ガラスを2質量部以上10質量部以下、含有することを特徴とする誘電体磁器組成物。
Containing Mg 2 SiO 4 as the main component, R-containing compound, Cu-containing compound, B-containing compound and Li-containing glass as auxiliary components,
R is an alkaline earth metal,
0.2 to 4.0 parts by mass of the R-containing compound in terms of oxide (RO) with respect to 100 parts by mass of the main component, 0.5 of the Cu-containing compound in terms of oxide (CuO) 0.2 parts by mass or more and 3.0 parts by mass or less of the B-containing compound in terms of oxide (B 2 O 3 ), respectively,
A dielectric ceramic composition containing 2 parts by mass or more and 10 parts by mass or less of the Li-containing glass with respect to a total of 100 parts by mass of the main component and the subcomponent other than the Li-containing glass object.
前記副成分としてさらにMn含有化合物を含み、
前記主成分100質量部に対して、前記Mn含有化合物を酸化物(MnO)換算で0.05質量部以上1.5質量部以下、含有する請求項1に記載の誘電体磁器組成物。
And Mn further contains a compound containing Mn as the auxiliary component,
The dielectric ceramic composition according to claim 1, wherein the Mn-containing compound is contained in an amount of 0.05 parts by mass or more and 1.5 parts by mass or less in terms of oxide (MnO) with respect to 100 parts by mass of the main component.
前記副成分としてさらにTi含有化合物を含み、
前記主成分100質量部に対して、前記Ti含有化合物を酸化物(TiO)換算で0.3質量部以上3.0質量部以下、含有する請求項1または2に記載の誘電体磁器組成物。
It further contains a Ti-containing compound as the auxiliary component,
The dielectric ceramic composition according to claim 1, wherein the Ti-containing compound is contained in an amount of 0.3 parts by mass or more and 3.0 parts by mass or less in terms of oxide (TiO 2 ) with respect to 100 parts by mass of the main component. object.
前記副成分としてさらにAl含有化合物を含み、
前記主成分100質量部に対して、前記Al含有化合物を酸化物(Al)換算で0.3質量部以上3.0質量部以下、含有する請求項1〜3のいずれかに記載の誘電体磁器組成物。
It further contains an Al-containing compound as the auxiliary component,
With respect to the main component as 100 parts by mass, the Al-containing compound oxide (Al 2 O 3) below 3.0 parts by 0.3 parts by mass or more in terms of according to any one of claims 1 to 3 containing Dielectric porcelain composition.
前記副成分としてさらにZr含有化合物を含み、
前記主成分100質量部に対して、前記Zr含有化合物を酸化物(ZrO)換算で0.2質量部以上3.0質量部以下、含有する請求項1〜4のいずれかに記載の誘電体磁器組成物。
And further containing a Zr-containing compound as the auxiliary component,
The dielectric according to any one of claims 1 to 4, wherein the Zr-containing compound is contained in an amount of 0.2 parts by mass or more and 3.0 parts by mass or less in terms of oxide (ZrO 2 ) based on 100 parts by mass of the main component. Body porcelain composition.
前記副成分としてさらにAgを含み、
前記主成分と、前記Li含有ガラスを除く前記副成分と、の合計100質量部に対して、前記Agを0.05質量部以上1.0質量部以下、含有する請求項1〜5のいずれかに記載の誘電体磁器組成物。
Further containing Ag as the subcomponent,
The Ag is contained in an amount of 0.05 parts by mass or more and 1.0 parts by mass or less with respect to a total of 100 parts by mass of the main component and the subcomponent other than the Li-containing glass. The dielectric ceramic composition according to claim 1.
請求項1〜6のいずれかに記載の誘電体磁器組成物からなる誘電体層を有する電子部品。   The electronic component which has a dielectric material layer which consists of a dielectric material ceramic composition in any one of Claims 1-6.
JP2018148556A 2017-09-26 2018-08-07 Dielectric porcelain compositions and electronic components Active JP6766848B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/136,767 US10669207B2 (en) 2017-09-26 2018-09-20 Dielectric ceramic composition and electronic component
DE102018123606.9A DE102018123606A1 (en) 2017-09-26 2018-09-25 Dielectric ceramic composition and electronic component
CN201811124942.5A CN109553406B (en) 2017-09-26 2018-09-26 Dielectric ceramic composition and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184689 2017-09-26
JP2017184689 2017-09-26

Publications (2)

Publication Number Publication Date
JP2019059660A true JP2019059660A (en) 2019-04-18
JP6766848B2 JP6766848B2 (en) 2020-10-14

Family

ID=66178123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018148556A Active JP6766848B2 (en) 2017-09-26 2018-08-07 Dielectric porcelain compositions and electronic components

Country Status (1)

Country Link
JP (1) JP6766848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498406A (en) * 2020-02-05 2021-10-12 费罗公司 M7 LTCC-silver systems and related dielectric compositions for high frequency applications

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235327A (en) * 2009-03-30 2010-10-21 Tdk Corp Dielectric ceramic composition
JP2012012252A (en) * 2010-06-30 2012-01-19 Tdk Corp Dielectric ceramic, method for producing the same and electronic component
JP2012051750A (en) * 2010-08-31 2012-03-15 Tdk Corp Method for manufacturing dielectric ceramic composition and laminated ceramic electronic component
WO2012157300A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Composite laminate ceramic electronic component
WO2012157299A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Glass ceramic composition
JP2013166687A (en) * 2012-01-20 2013-08-29 Tdk Corp Dielectric ceramic and electronic component using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235327A (en) * 2009-03-30 2010-10-21 Tdk Corp Dielectric ceramic composition
JP2012012252A (en) * 2010-06-30 2012-01-19 Tdk Corp Dielectric ceramic, method for producing the same and electronic component
JP2012051750A (en) * 2010-08-31 2012-03-15 Tdk Corp Method for manufacturing dielectric ceramic composition and laminated ceramic electronic component
WO2012157300A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Composite laminate ceramic electronic component
WO2012157299A1 (en) * 2011-05-19 2012-11-22 株式会社村田製作所 Glass ceramic composition
JP2013166687A (en) * 2012-01-20 2013-08-29 Tdk Corp Dielectric ceramic and electronic component using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113498406A (en) * 2020-02-05 2021-10-12 费罗公司 M7 LTCC-silver systems and related dielectric compositions for high frequency applications

Also Published As

Publication number Publication date
JP6766848B2 (en) 2020-10-14

Similar Documents

Publication Publication Date Title
US9666372B2 (en) Dielectric ceramic composition and ceramic electronic device
JP5332807B2 (en) Dielectric porcelain composition
JP3934352B2 (en) Multilayer ceramic chip capacitor and manufacturing method thereof
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
JP4786604B2 (en) Dielectric porcelain and multilayer ceramic capacitor using the same
TWI422551B (en) Dielectric ceramic composition and temperature compensation laminated capacitor
US11066332B2 (en) Dielectric ceramic composition and ceramic electronic component
US10669207B2 (en) Dielectric ceramic composition and electronic component
JP2007331956A (en) Electronic component, dielectric ceramic composition and method for producing the same
JP2017178684A (en) Dielectric ceramic composition and multilayer ceramic capacitor
KR20070061794A (en) Dielectric porcelain composition and method for production thereof
JP2011116630A (en) Hexagonal type barium titanate powder, method for producing the same, dielectric ceramic composition and electronic component
JP4403705B2 (en) Dielectric porcelain composition and electronic component
JP2017178686A (en) Dielectric ceramic composition and multilayer ceramic capacitor
JP6635126B2 (en) Glass ceramic sintered body, glass ceramic composition, multilayer ceramic capacitor and method for manufacturing multilayer ceramic capacitor
JPWO2005085154A1 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP6766848B2 (en) Dielectric porcelain compositions and electronic components
JP2011037673A (en) Dielectric ceramic, method for manufacturing the same, and multilayer ceramic capacitor
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2009096671A (en) Dielectric ceramic and multi-layer ceramic capacitor
JP2009132579A (en) Dielectric porcelain composition
JP2005187218A (en) Dielectric porcelain, laminated electronic component, and production method for laminated electronic component
JP2012206885A (en) Method for producing dielectric ceramic composition and electronic part
JP2012051751A (en) Dielectric ceramic composition and laminated ceramic electronic component
JP5146492B2 (en) Dielectric ceramic composition and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R150 Certificate of patent or registration of utility model

Ref document number: 6766848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250