JP2019057959A - Unmanned movable body - Google Patents

Unmanned movable body Download PDF

Info

Publication number
JP2019057959A
JP2019057959A JP2017179321A JP2017179321A JP2019057959A JP 2019057959 A JP2019057959 A JP 2019057959A JP 2017179321 A JP2017179321 A JP 2017179321A JP 2017179321 A JP2017179321 A JP 2017179321A JP 2019057959 A JP2019057959 A JP 2019057959A
Authority
JP
Japan
Prior art keywords
power
magnetic flux
housing
top plate
power receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017179321A
Other languages
Japanese (ja)
Inventor
祐太 高原
Yuta Takahara
祐太 高原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2017179321A priority Critical patent/JP2019057959A/en
Priority to CN201811086746.3A priority patent/CN110014913A/en
Publication of JP2019057959A publication Critical patent/JP2019057959A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D63/00Motor vehicles or trailers not otherwise provided for
    • B62D63/02Motor vehicles
    • B62D63/04Component parts or accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide an unmanned movable body which inhibits eddy current from occurring in a top plate.SOLUTION: An unmanned movable body 20 includes: a power storage part to which electric power is supplied by non-contact power supply and which supplies electric power to a motor; a power reception device 60 having a power reception coil 61 electrically connected to the power storage part; an unmanned movable body control unit which controls the unmanned movable body; a housing 20a which houses the power storage part and the unmanned movable body control unit; a metallic top plate 22 disposed at the vertical upper side of the housing; and a magnetic flux shield member 23 which is attached to the housing and shields magnetic flux. At least the power storage part and the unmanned movable body control unit are electrically connected to form a circuit part. The power reception device is disposed at one side of the housing in a first direction perpendicular to a vertical direction. The magnetic flux shield member is disposed between the power reception coil and the circuit part when viewed in the first direction, extends from a position below the top plate to a position above the top plate at an area closer to one side as seen in a lateral direction than the top plate, and inhibits magnetic flux discharged from a power transmission device to the power reception device from reaching the top plate.SELECTED DRAWING: Figure 5

Description

本発明は、無人移動体に関する。   The present invention relates to an unmanned moving body.

非接触で充電用電力が供給される無人搬送車が知られる。例えば、特許文献1には、交流電力を電磁誘導結合にて非接触で受ける無人搬送車が記載される。   2. Description of the Related Art There is known an automated guided vehicle that is supplied with charging power without contact. For example, Patent Document 1 describes an automatic guided vehicle that receives AC power in a non-contact manner by electromagnetic induction coupling.

特開2008−137451号公報JP 2008-137451 A

上記のような無人搬送車において、非接触の給電方法として磁界を利用する方法を採用する場合、送電装置からの磁束が受電装置から漏れて、無人搬送車における金属製の部分を通る場合がある。特に、無人搬送車を低床化する場合、無人搬送車における金属製の天板の位置が低くなるため、天板を磁束が通りやすい。そのため、受電装置から漏れた磁束によって天板に渦電流が生じ、天板が発熱する場合があった。また、天板に生じた渦電流によって無人搬送車の回路部が誤動作をする場合があった。   In the automatic guided vehicle as described above, when a method using a magnetic field is adopted as a non-contact power feeding method, the magnetic flux from the power transmission device may leak from the power receiving device and pass through a metal portion of the automatic guided vehicle. . In particular, when the floor of the automatic guided vehicle is lowered, the position of the metal top plate in the automatic guided vehicle is lowered, so that the magnetic flux easily passes through the top plate. For this reason, an eddy current is generated in the top plate due to the magnetic flux leaking from the power receiving apparatus, and the top plate sometimes generates heat. Moreover, the circuit part of the automatic guided vehicle sometimes malfunctions due to the eddy current generated in the top plate.

本発明は、上記事情に鑑みて、天板に渦電流が生じることを抑制できる無人移動体を提供することを目的の一つとする。   In view of the above circumstances, an object of the present invention is to provide an unmanned mobile body that can suppress the generation of eddy currents on the top plate.

本発明の無人移動体の一つの態様は、非接触給電によって電力が供給される無人移動体であって、モータと、前記モータに電力を供給する充電式の蓄電部と、前記蓄電部と電気的に接続される非接触給電用の受電コイルを有する受電装置と、前記無人移動体を制御する無人移動体制御ユニットと、前記蓄電部および前記無人移動体制御ユニットを収容する筐体と、前記筐体の鉛直方向上側に配置される金属製の天板と、前記筐体に取り付けられ、磁束を遮蔽する磁束遮蔽部材と、を備え、少なくとも前記蓄電部と前記無人移動体制御ユニットとが電気的に接続されて回路部が構成され、前記受電装置は、鉛直方向と直交する第1方向において前記筐体の一方側に配置され、前記磁束遮蔽部材は、前記受電コイルと前記回路部との前記第1方向の間に配置され、前記天板よりも前記第1方向一方側において、前記天板よりも鉛直方向下側から、前記天板の鉛直方向上側の面と鉛直方向において同じ位置、または前記天板よりも鉛直方向上側まで延びる。   One aspect of the unmanned mobile body of the present invention is an unmanned mobile body to which power is supplied by non-contact power feeding, and includes a motor, a rechargeable power storage unit that supplies power to the motor, the power storage unit, A power receiving device having a power receiving coil for non-contact power feeding, an unmanned moving body control unit that controls the unmanned moving body, a housing that houses the power storage unit and the unmanned moving body control unit, A metal top plate arranged on the upper side in the vertical direction of the housing, and a magnetic flux shielding member that is attached to the housing and shields the magnetic flux, and at least the power storage unit and the unmanned moving body control unit are electrically The power receiving device is arranged on one side of the housing in a first direction orthogonal to the vertical direction, and the magnetic flux shielding member is formed between the power receiving coil and the circuit unit. The first direction Between the top plate and the top side of the top plate in the vertical direction from the top side of the top plate in the vertical direction. Also extends upward in the vertical direction.

本発明の一つの態様によれば、天板に渦電流が生じることを抑制できる無人移動体が提供される。   According to one aspect of the present invention, an unmanned mobile body that can suppress the generation of eddy currents on the top plate is provided.

図1は、本実施形態の無人移動体システムを示す斜視図である。FIG. 1 is a perspective view showing an unmanned mobile system according to the present embodiment. 図2は、本実施形態の無人移動体システムの機能構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a functional configuration of the unmanned mobile system according to the present embodiment. 図3は、本実施形態の無人移動体を示す模式図である。FIG. 3 is a schematic diagram showing the unmanned mobile body of the present embodiment. 図4は、本実施形態の無人移動体の一部を上側から視た図である。FIG. 4 is a view of a part of the unmanned moving body according to the present embodiment as viewed from above. 図5は、本実施形態の無人移動体の一部を左右方向一方側から視た図である。FIG. 5 is a view of a part of the unmanned moving body of the present embodiment as viewed from one side in the left-right direction. 図6は、本実施形態の無人移動体の一部を前後方向一方側から視た部分断面図である。FIG. 6 is a partial cross-sectional view of a part of the unmanned moving body according to the present embodiment as viewed from one side in the front-rear direction.

各図に適宜示すXYZ座標系は、各実施形態の無人移動体を基準とする3次元直交座標系である。Z軸方向は、鉛直方向と平行な方向である。Z軸方向を単に「鉛直方向Z」と呼ぶ。X軸方向およびY軸方向は、Z軸方向と直交し、かつ、互いに直交する方向である。X軸方向を「前後方向X」と呼び、Y軸方向を「左右方向Y」と呼ぶ。   An XYZ coordinate system shown as appropriate in each drawing is a three-dimensional orthogonal coordinate system based on the unmanned moving object of each embodiment. The Z-axis direction is a direction parallel to the vertical direction. The Z-axis direction is simply referred to as “vertical direction Z”. The X-axis direction and the Y-axis direction are directions orthogonal to the Z-axis direction and orthogonal to each other. The X-axis direction is referred to as “front-rear direction X”, and the Y-axis direction is referred to as “left-right direction Y”.

また、Z軸方向の正の側、すなわち鉛直方向上側を単に「上側」と呼び、Z軸方向の負の側、すなわち鉛直方向下側を単に「下側」と呼ぶ。X軸方向の負の側を「前後方向一方側」と呼び、X軸方向の正の側を「前後方向他方側」と呼ぶ。Y軸方向の負の側を「左右方向一方側」と呼び、Y軸方向の正の側を「左右方向他方側」と呼ぶ。左右方向Yは、第1方向に相当する。左右方向一方側は、第1方向一方側に相当する。前後方向Xは、第2方向に相当する。   The positive side in the Z-axis direction, that is, the upper side in the vertical direction is simply referred to as “upper side”, and the negative side in the Z-axis direction, that is, the lower side in the vertical direction is simply referred to as “lower side”. The negative side in the X-axis direction is referred to as “one side in the front-rear direction”, and the positive side in the X-axis direction is referred to as “the other side in the front-rear direction”. The negative side in the Y-axis direction is called “one side in the left-right direction”, and the positive side in the Y-axis direction is called “the other side in the left-right direction”. The left-right direction Y corresponds to the first direction. One side in the left-right direction corresponds to one side in the first direction. The front-rear direction X corresponds to the second direction.

なお、鉛直方向、前後方向および左右方向とは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。   Note that the vertical direction, the front-rear direction, and the left-right direction are simply names for explaining the relative positional relationship between the respective parts, and the actual arrangement relationship is an arrangement relationship other than the arrangement relationship indicated by these names. There may be.

図1および図2に示すように、本実施形態の無人移動体システム10は、送電装置30と、非接触給電によって電力が供給される無人移動体20と、を備える。本実施形態において送電装置30は、例えば、床面に設置される。図2に示すように、送電装置30は、送電コイル31と、送電ユニット32と、を有する。送電コイル31は、後述する受電コイル61に対して送電可能な非接触給電用のコイルである。送電コイル31は、例えば、鉛直方向Zと直交する中心軸を中心とする円環状である。図1に示す配置関係においては、送電コイル31は、例えば、左右方向Yと平行な中心軸を中心とする円環状である。   As shown in FIGS. 1 and 2, the unmanned moving body system 10 of the present embodiment includes a power transmission device 30 and an unmanned moving body 20 to which power is supplied by non-contact power feeding. In the present embodiment, the power transmission device 30 is installed on a floor surface, for example. As shown in FIG. 2, the power transmission device 30 includes a power transmission coil 31 and a power transmission unit 32. The power transmission coil 31 is a non-contact power supply coil capable of transmitting power to a power receiving coil 61 described later. The power transmission coil 31 is, for example, an annular shape centering on a central axis orthogonal to the vertical direction Z. In the arrangement relationship shown in FIG. 1, the power transmission coil 31 is, for example, an annular shape centering on a central axis parallel to the left-right direction Y.

送電ユニット32には、外部の電源36から電力が供給される。電源36は、DC電源であってもよいし、商用電源等の交流電源であってもよい。送電ユニット32は、送電電源部33と、送電通信部35と、送電制御部34と、を有する。   Electric power is supplied to the power transmission unit 32 from an external power source 36. The power source 36 may be a DC power source or an AC power source such as a commercial power source. The power transmission unit 32 includes a power transmission power supply unit 33, a power transmission communication unit 35, and a power transmission control unit 34.

送電電源部33は、送電制御部34の制御に基づいて、電源36から供給された電力を送電コイル31に出力する。送電通信部35は、例えば、赤外線センサ等を有し、無人移動体20に設けられた後述する受電通信部65から射出される通信用の赤外光を受光する。また、送電通信部35は、無人移動体20の受電通信部65に通信用の赤外光を射出してもよい。送電制御部34は、送電通信部35が受光する赤外光に基づいて、送電コイル31による電力供給を制御する。   The power transmission power supply unit 33 outputs the power supplied from the power supply 36 to the power transmission coil 31 based on the control of the power transmission control unit 34. The power transmission communication unit 35 includes, for example, an infrared sensor and receives infrared light for communication emitted from a power receiving communication unit 65 (described later) provided in the unmanned mobile body 20. Further, the power transmission communication unit 35 may emit infrared light for communication to the power reception communication unit 65 of the unmanned mobile body 20. The power transmission control unit 34 controls power supply by the power transmission coil 31 based on the infrared light received by the power transmission communication unit 35.

図1から図4に示すように、無人移動体20は、筐体20aと、天板22と、推進ユニット40と、従動車輪44と、受電装置60と、蓄電部50と、給電制御ユニット51と、無人移動体制御ユニット80と、第1絶縁部材24と、第2絶縁部材25と、磁束遮蔽部材23と、を備える。   As shown in FIGS. 1 to 4, the unmanned moving body 20 includes a housing 20 a, a top plate 22, a propulsion unit 40, a driven wheel 44, a power receiving device 60, a power storage unit 50, and a power supply control unit 51. And an unmanned moving body control unit 80, a first insulating member 24, a second insulating member 25, and a magnetic flux shielding member 23.

図1および図3に示すように、筐体20aは、全体として上側に開口する箱状である。図3に示すように、筐体20aは、蓄電部50、給電制御ユニット51および無人移動体制御ユニット80を収容する。筐体20aは、蓄電部50、給電制御ユニット51および無人移動体制御ユニット80を囲む枠部21を有する。枠部21は、鉛直方向Zに沿って視て、矩形枠状である。枠部21は、金属製である。   As shown in FIGS. 1 and 3, the casing 20 a has a box shape that opens upward as a whole. As illustrated in FIG. 3, the housing 20 a accommodates the power storage unit 50, the power supply control unit 51, and the unmanned mobile body control unit 80. The housing 20 a has a frame portion 21 that surrounds the power storage unit 50, the power supply control unit 51, and the unmanned moving body control unit 80. The frame portion 21 has a rectangular frame shape when viewed along the vertical direction Z. The frame part 21 is made of metal.

枠部21は、複数の梁部21a,21b,21c,21dを有する。図1に示すように、梁部21aおよび梁部21bは、前後方向Xに延びる四角筒状である。梁部21aと梁部21bとは、前後方向Xに延び、互いに左右方向Yに間隔を空けて配置される。梁部21cおよび梁部21dは、左右方向Yに延び、互いに前後方向Xに間隔を空けて配置される。梁部21cは、梁部21aの前後方向一方側の端部と梁部21bの前後方向一方側の端部とを繋ぐ。梁部21dは、梁部21aの前後方向他方側の端部と梁部21bの前後方向他方側の端部とを繋ぐ。   The frame portion 21 has a plurality of beam portions 21a, 21b, 21c, and 21d. As shown in FIG. 1, the beam portion 21 a and the beam portion 21 b have a rectangular tube shape extending in the front-rear direction X. The beam portion 21a and the beam portion 21b extend in the front-rear direction X, and are arranged with an interval in the left-right direction Y. The beam portion 21c and the beam portion 21d extend in the left-right direction Y, and are arranged with an interval in the front-rear direction X. The beam portion 21c connects the end portion on one side in the front-rear direction of the beam portion 21a and the end portion on one side in the front-rear direction of the beam portion 21b. The beam portion 21d connects the end portion on the other side in the front-rear direction of the beam portion 21a and the end portion on the other side in the front-rear direction of the beam portion 21b.

図5および図6に示すように、筐体20aは、外装カバー26と、バンパー27と、をさらに有する。外装カバー26は、無人移動体20の外殻である。外装カバー26は、枠部21の左右方向両側および前後方向両側を囲み、枠部21の上側を覆う。図5に示すように、外装カバー26は、左右方向一方側の側面に貫通孔26aを有する。貫通孔26aは、外装カバー26の側面におけるバンパー27よりも上側の部分に設けられる。   As shown in FIGS. 5 and 6, the housing 20 a further includes an exterior cover 26 and a bumper 27. The exterior cover 26 is an outer shell of the unmanned moving body 20. The exterior cover 26 surrounds both sides in the left-right direction and both sides in the front-rear direction of the frame portion 21 and covers the upper side of the frame portion 21. As shown in FIG. 5, the exterior cover 26 has a through hole 26a on the side surface on one side in the left-right direction. The through hole 26 a is provided in a portion above the bumper 27 on the side surface of the exterior cover 26.

貫通孔26aは、第1貫通部26bと、第1貫通部26bの上側に繋がる第2貫通部26cと、を有する。第1貫通部26bの前後方向一方側の端部と第2貫通部26cの前後方向一方側の端部とは、前後方向Xにおいて同じ位置にある。第2貫通部26cの前後方向他方側の端部は、第1貫通部26bの前後方向他方側の端部よりも前後方向他方側に位置する。第2貫通部26cは、左右方向Yに沿って視て、梁部21bの一部と重なる。   The through hole 26a includes a first through part 26b and a second through part 26c connected to the upper side of the first through part 26b. An end portion on one side in the front-rear direction of the first through portion 26b and an end portion on one side in the front-rear direction of the second through portion 26c are at the same position in the front-rear direction X. The end portion on the other side in the front-rear direction of the second penetrating portion 26c is located on the other side in the front-rear direction than the end portion on the other side in the front-rear direction of the first penetrating portion 26b. The second through portion 26c overlaps with a part of the beam portion 21b when viewed along the left-right direction Y.

バンパー27は、外装カバー26の下端部に取り付けられる。バンパー27は、外装カバー26の下端部を囲む環状である。バンパー27は、鉛直方向Zに沿って視て、略矩形環状である。バンパー27は、例えば、ゴム製である。   The bumper 27 is attached to the lower end portion of the exterior cover 26. The bumper 27 has an annular shape surrounding the lower end portion of the exterior cover 26. The bumper 27 has a substantially rectangular ring shape when viewed along the vertical direction Z. The bumper 27 is made of rubber, for example.

図1に示すように、天板22は、板面が鉛直方向Zと直交する板状である。天板22の上側から視た形状は、例えば、前後方向Xに長い長方形状である。天板22は、筐体20aの上側に配置される。天板22は、筐体20aの上側の開口を塞ぐ。天板22は、金属製である。天板22の上側の面である積載面22aには、例えば、無人移動体20が搬送する対象物が載せられる。積載面22aは、鉛直方向Zと直交する長方形状の面である。なお、天板22を上側から視た形状は、特に限定されず、長方形状以外の形状であってもよい。天板22を上側から視た形状は、例えば、円形状であってもよいし、長方形以外の多角形状であってもよい。   As shown in FIG. 1, the top plate 22 has a plate shape whose plate surface is orthogonal to the vertical direction Z. The shape seen from the upper side of the top plate 22 is, for example, a rectangular shape that is long in the front-rear direction X. The top plate 22 is disposed on the upper side of the housing 20a. The top plate 22 closes the upper opening of the housing 20a. The top plate 22 is made of metal. For example, an object to be transported by the unmanned moving body 20 is placed on the stacking surface 22a that is the upper surface of the top plate 22. The loading surface 22a is a rectangular surface orthogonal to the vertical direction Z. In addition, the shape which looked at the top plate 22 from the upper side is not specifically limited, Shapes other than rectangular shape may be sufficient. The shape of the top plate 22 viewed from above may be, for example, a circular shape or a polygonal shape other than a rectangle.

図3に示すように、本実施形態において推進ユニット40は、左右方向Yに沿って2つ設けられる。2つの推進ユニット40は、左右方向Yに対して対称に配置される。図2および図3に示すように、推進ユニット40は、モータ41と、駆動車輪42と、モータ制御部43と、を有する。すなわち、無人移動体20は、モータ41と、駆動車輪42と、モータ制御部43と、を備える。   As shown in FIG. 3, in the present embodiment, two propulsion units 40 are provided along the left-right direction Y. The two propulsion units 40 are arranged symmetrically with respect to the left-right direction Y. As shown in FIGS. 2 and 3, the propulsion unit 40 includes a motor 41, a drive wheel 42, and a motor control unit 43. That is, the unmanned moving body 20 includes a motor 41, a drive wheel 42, and a motor control unit 43.

図3に示すように、モータ41は、筐体20aに収容される。モータ41は、鉛直方向Zに沿って視て、枠部21の内側に配置される。モータ41のシャフトは、左右方向Yに延び、枠部21の外側に突出する。駆動車輪42は、モータ41のシャフトに固定される。モータ41は、シャフトを回転させることで、駆動車輪42を回転させる。駆動車輪42が回転することによって、無人移動体20は、推進ユニット40から推進力を得る。   As shown in FIG. 3, the motor 41 is accommodated in the housing 20a. The motor 41 is disposed inside the frame portion 21 when viewed along the vertical direction Z. The shaft of the motor 41 extends in the left-right direction Y and protrudes outside the frame portion 21. The drive wheel 42 is fixed to the shaft of the motor 41. The motor 41 rotates the drive wheel 42 by rotating the shaft. The unmanned moving body 20 obtains a propulsive force from the propulsion unit 40 as the driving wheel 42 rotates.

モータ制御部43は、無人移動体制御ユニット80からの情報に基づいて、蓄電部50から供給される電力をモータ41に出力する。図1に示すように、従動車輪44は、枠部21の四隅にそれぞれ取り付けられる。従動車輪44は、駆動車輪42による無人移動体20の移動に伴って回転する。   The motor control unit 43 outputs the electric power supplied from the power storage unit 50 to the motor 41 based on the information from the unmanned moving body control unit 80. As shown in FIG. 1, the driven wheels 44 are respectively attached to the four corners of the frame portion 21. The driven wheel 44 rotates as the unmanned moving body 20 is moved by the drive wheel 42.

図4に示すように、受電装置60は、筐体20aの左右方向一方側の部分における前後方向一方側の端部に取り付けられる。すなわち、受電装置60は、鉛直方向Zと直交する左右方向Yにおいて筐体20aの一方側に配置される。本実施形態において受電装置60は、第2絶縁部材25および磁束遮蔽部材23を介して梁部21bに固定される。より詳細には、受電装置60は、磁束遮蔽部材23の左右方向一方側の面に固定される。受電装置60は、給電制御ユニット51および蓄電部50の左右方向一方側に配置される。   As shown in FIG. 4, the power receiving device 60 is attached to an end portion on one side in the front-rear direction in a portion on one side in the left-right direction of the housing 20 a. That is, the power receiving device 60 is disposed on one side of the housing 20a in the left-right direction Y orthogonal to the vertical direction Z. In the present embodiment, the power receiving device 60 is fixed to the beam portion 21 b via the second insulating member 25 and the magnetic flux shielding member 23. More specifically, the power receiving device 60 is fixed to the surface on one side in the left-right direction of the magnetic flux shielding member 23. The power receiving device 60 is disposed on one side in the left-right direction of the power supply control unit 51 and the power storage unit 50.

図5に示すように、受電装置60の上側の端部は、天板22よりも上側に配置される。図6に示すように、受電装置60は、外装カバー26の外部において、バンパー27の上側に配置される。これにより、受電装置60を送電装置30に近づけやすい。受電装置60の下端部は、バンパー27に下側から支持される。受電装置60の左右方向一方側の面は、パンパー27の左右方向一方側の面と左右方向Yにおいてほぼ同じ位置に配置される。図2に示すように、受電装置60は、受電コイル61と、受電ユニット62と、を有する。すなわち、無人移動体20は、受電コイル61と、受電ユニット62と、を備える。   As illustrated in FIG. 5, the upper end portion of the power receiving device 60 is disposed above the top plate 22. As shown in FIG. 6, the power receiving device 60 is disposed on the upper side of the bumper 27 outside the exterior cover 26. Thereby, the power receiving device 60 can be easily brought close to the power transmitting device 30. The lower end portion of the power receiving device 60 is supported by the bumper 27 from below. The surface on one side in the left-right direction of the power receiving device 60 is disposed at substantially the same position in the left-right direction Y as the surface on one side in the left-right direction of the bumper 27. As illustrated in FIG. 2, the power receiving device 60 includes a power receiving coil 61 and a power receiving unit 62. That is, the unmanned moving body 20 includes a power receiving coil 61 and a power receiving unit 62.

受電コイル61は、非接触給電用のコイルである。受電コイル61は、受電ユニット62および給電制御ユニット51を介し、蓄電部50と電気的に接続される。図5に示すように、受電コイル61は、例えば、左右方向Yと平行な中心軸を中心とする円環状である。送電コイル31に電流が流れることで生じる磁界が受電コイル61に作用すると、受電コイル61に電流が流れる。これにより、受電コイル61から受電ユニット62および給電制御ユニット51を介し、蓄電部50に給電することができ、蓄電部50を充電できる。したがって、無人移動体20を送電装置30に近づけることで、蓄電部50を外部電源に接続することなく、受電コイル61と送電コイル31とによって非接触給電を行うことができる。また、受電コイル61と送電コイル31とによって非接触給電を行えるため、無人移動体20の構造および送電装置30の構造を簡単化できる。以上により、簡単な構造および制御で蓄電部50の充電を自動化できる。   The power receiving coil 61 is a coil for non-contact power feeding. The power reception coil 61 is electrically connected to the power storage unit 50 via the power reception unit 62 and the power supply control unit 51. As shown in FIG. 5, the power receiving coil 61 has, for example, an annular shape centering on a central axis parallel to the left-right direction Y. When a magnetic field generated by a current flowing through the power transmission coil 31 acts on the power receiving coil 61, a current flows through the power receiving coil 61. Thus, power can be supplied from the power receiving coil 61 to the power storage unit 50 via the power receiving unit 62 and the power supply control unit 51, and the power storage unit 50 can be charged. Therefore, by bringing the unmanned mobile body 20 close to the power transmission device 30, non-contact power feeding can be performed by the power reception coil 61 and the power transmission coil 31 without connecting the power storage unit 50 to an external power source. Moreover, since non-contact electric power feeding can be performed by the power receiving coil 61 and the power transmission coil 31, the structure of the unmanned mobile body 20 and the structure of the power transmission device 30 can be simplified. As described above, charging of the power storage unit 50 can be automated with a simple structure and control.

ここで、上述したように本実施形態では、受電装置60の上側の端部が天板22よりも上側に配置される。そのため、受電装置60を大きくしやすく、受電コイル61を大きくしやすい。したがって、送電コイル31から受電コイル61への伝送効率を向上させることができる。   Here, as described above, in the present embodiment, the upper end portion of the power receiving device 60 is disposed above the top plate 22. Therefore, it is easy to enlarge the power receiving device 60, and it is easy to enlarge the power receiving coil 61. Therefore, the transmission efficiency from the power transmission coil 31 to the power reception coil 61 can be improved.

本実施形態において受電コイル61および送電コイル31は、磁界共鳴方式による非接触給電用のコイルである。磁界共鳴方式による非接触給電を用いる場合、受電コイル61を送電コイル31に近づければ、受電コイル61と送電コイル31との相対姿勢によらず、受電コイル61に電流を生じさせることができる。そのため、送電装置30に対する無人移動体20の姿勢、および無人移動体20に対する受電コイル61の姿勢によらず、蓄電部50を充電しやすい。これにより、無人移動体20の位置制御の精度が比較的低い場合であっても、無人移動体20を単に送電装置30に近づけることによって、蓄電部50の充電を行いやすい。したがって、より簡単な無人移動体20の制御によって、蓄電部50の自動充電を実現できる。   In the present embodiment, the power receiving coil 61 and the power transmitting coil 31 are coils for non-contact power feeding by a magnetic field resonance method. When non-contact power feeding by the magnetic field resonance method is used, if the power receiving coil 61 is brought close to the power transmitting coil 31, a current can be generated in the power receiving coil 61 regardless of the relative posture between the power receiving coil 61 and the power transmitting coil 31. Therefore, it is easy to charge the power storage unit 50 regardless of the posture of the unmanned moving body 20 with respect to the power transmission device 30 and the posture of the power receiving coil 61 with respect to the unmanned moving body 20. Thereby, even when the position control accuracy of the unmanned mobile body 20 is relatively low, the power storage unit 50 can be easily charged by simply bringing the unmanned mobile body 20 close to the power transmission device 30. Therefore, automatic charging of the power storage unit 50 can be realized by simpler control of the unmanned mobile body 20.

受電ユニット62は、受電電源部63と、受電通信部65と、受電制御部64と、を有する。受電電源部63は、受電制御部64の制御に基づいて、受電コイル61から供給された電力を給電制御ユニット51に出力する。受電通信部65は、例えば、通信用の赤外光等を射出する光源を有し、受電制御部64の制御に基づいて、赤外光を射出する。また、受電通信部65は、送電通信部35が射出する赤外光を受光する。   The power reception unit 62 includes a power reception power supply unit 63, a power reception communication unit 65, and a power reception control unit 64. The power reception power supply unit 63 outputs the power supplied from the power reception coil 61 to the power supply control unit 51 based on the control of the power reception control unit 64. The power reception communication unit 65 includes, for example, a light source that emits infrared light for communication and the like, and emits infrared light based on the control of the power reception control unit 64. The power receiving communication unit 65 receives infrared light emitted from the power transmission communication unit 35.

受電制御部64は、受電通信部65を制御する。具体的には、受電制御部64は、給電開始要求の信号および給電停止要求の信号を、受電通信部65に出力する。受電通信部65は、受電制御部64から出力された給電開始要求の信号および給電停止要求の信号を送電装置30に送信する。   The power reception control unit 64 controls the power reception communication unit 65. Specifically, the power reception control unit 64 outputs a power supply start request signal and a power supply stop request signal to the power reception communication unit 65. The power reception communication unit 65 transmits the power supply start request signal and the power supply stop request signal output from the power reception control unit 64 to the power transmission device 30.

蓄電部50は、例えば、充電式のバッテリである。図2に示すように、蓄電部50は、無人移動体制御ユニット80を介して推進ユニット40と電気的に接続され、推進ユニット40に電力を供給する。これにより、蓄電部50は、モータ41に電力を供給する。本実施形態において蓄電部50は、例えば、1つ設けられる。1つの蓄電部50は、2つの推進ユニット40と電気的に接続され、2つの推進ユニット40に電力を供給する。蓄電部50の種類は、充電式の蓄電部であれば特に限定されない。図4に示すように、蓄電部50は、例えば、枠部21の内側における前後方向一方側の端部に配置される。   The power storage unit 50 is, for example, a rechargeable battery. As shown in FIG. 2, the power storage unit 50 is electrically connected to the propulsion unit 40 via the unmanned mobile body control unit 80 and supplies electric power to the propulsion unit 40. Thereby, the power storage unit 50 supplies power to the motor 41. In the present embodiment, for example, one power storage unit 50 is provided. One power storage unit 50 is electrically connected to the two propulsion units 40 and supplies electric power to the two propulsion units 40. The type of power storage unit 50 is not particularly limited as long as it is a rechargeable power storage unit. As illustrated in FIG. 4, the power storage unit 50 is disposed, for example, at an end portion on one side in the front-rear direction inside the frame portion 21.

図2に示すように、給電制御ユニット51は、充電電源部53と、充電制御部52と、を有する。充電電源部53は、充電制御部52の制御に基づいて、受電装置60から供給された電力を蓄電部50に出力する。充電制御部52は、蓄電部50への充電の開始および停止を制御する。これにより、給電制御ユニット51は、受電装置60の受電コイル61から蓄電部50への給電を制御する。図4に示すように、給電制御ユニット51は、例えば、枠部21の内側における前後方向一方側の端部に配置される。給電制御ユニット51は、蓄電部50の左右方向一方側に並んで配置される。本実施形態において受電装置60と給電制御ユニット51と蓄電部50とは、左右方向Yに沿って視て、互いに重なる。   As shown in FIG. 2, the power supply control unit 51 includes a charging power supply unit 53 and a charging control unit 52. The charging power supply unit 53 outputs the power supplied from the power receiving device 60 to the power storage unit 50 based on the control of the charging control unit 52. Charging control unit 52 controls the start and stop of charging of power storage unit 50. Thereby, the power feeding control unit 51 controls power feeding from the power receiving coil 61 of the power receiving device 60 to the power storage unit 50. As illustrated in FIG. 4, the power supply control unit 51 is disposed, for example, at an end portion on one side in the front-rear direction inside the frame portion 21. The power supply control unit 51 is arranged side by side on one side of the power storage unit 50 in the left-right direction. In the present embodiment, the power receiving device 60, the power supply control unit 51, and the power storage unit 50 overlap each other when viewed along the left-right direction Y.

無人移動体制御ユニット80は、無人移動体20を制御する。図2に示すように、無人移動体制御ユニット80は、無人移動体電源部82と、無人移動体制御部81と、を有する。無人移動体電源部82は、無人移動体制御部81の制御に基づいて、蓄電部50から供給された電力を推進ユニット40に出力する。これにより、無人移動体制御ユニット80は、推進ユニット40を制御し、無人移動体20の移動を制御する。また、無人移動体制御部81は、給電制御ユニット51を制御する。   The unmanned moving body control unit 80 controls the unmanned moving body 20. As shown in FIG. 2, the unmanned moving body control unit 80 includes an unmanned moving body power supply unit 82 and an unmanned moving body control unit 81. The unmanned mobile body power supply unit 82 outputs the electric power supplied from the power storage unit 50 to the propulsion unit 40 based on the control of the unmanned mobile body control unit 81. Thereby, the unmanned mobile body control unit 80 controls the propulsion unit 40 and controls the movement of the unmanned mobile body 20. In addition, the unmanned mobile body control unit 81 controls the power supply control unit 51.

図3に示すように、無人移動体制御部81は、回路基板83a,83b,83cを有する。回路基板83aと回路基板83bと回路基板83cとは、互いに電気的に接続される。回路基板83aは、給電制御ユニット51、蓄電部50および2つの推進ユニット40と電気的に接続される。これにより、無人移動体制御ユニット80は、給電制御ユニット51、蓄電部50および2つの推進ユニット40と電気的に接続される。回路基板83bは、例えば、2つの推進ユニット40のうちの一方を制御する回路基板である。回路基板83cは、例えば、2つの推進ユニット40のうちの他方を制御する回路基板である。   As shown in FIG. 3, the unmanned mobile control unit 81 includes circuit boards 83a, 83b, and 83c. The circuit board 83a, the circuit board 83b, and the circuit board 83c are electrically connected to each other. The circuit board 83a is electrically connected to the power supply control unit 51, the power storage unit 50, and the two propulsion units 40. Thereby, the unmanned mobile body control unit 80 is electrically connected to the power feeding control unit 51, the power storage unit 50, and the two propulsion units 40. The circuit board 83b is a circuit board that controls one of the two propulsion units 40, for example. The circuit board 83c is a circuit board that controls the other of the two propulsion units 40, for example.

上述したようにして、少なくとも蓄電部50と無人移動体制御ユニット80とが電気的に接続されて回路部90が構成される。本実施形態では、蓄電部50と給電制御ユニット51と無人移動体制御ユニット80とが電気的に接続されて回路部90が構成される。回路部90は、接地のために筐体20aと電気的に接続される。回路部90が接地のために電気的に接続される筐体20aの箇所は、1箇所のみである。そのため、筐体20aと回路部90とを通る閉回路が構成されない。これにより、仮に筐体20aに渦電流が生じて、筐体20aに電位差が生じた場合であっても、筐体20aを通って回路部90に電流が流れることが抑制される。したがって、回路部90に不要な電流が流れることを抑制でき、回路部90が誤動作することを抑制できる。また、筐体20aを利用して接地できるため、回路部90の基準電位を安定させることができる。   As described above, at least the power storage unit 50 and the unmanned mobile control unit 80 are electrically connected to form the circuit unit 90. In the present embodiment, the power storage unit 50, the power supply control unit 51, and the unmanned mobile control unit 80 are electrically connected to form the circuit unit 90. The circuit unit 90 is electrically connected to the housing 20a for grounding. There is only one place of the casing 20a to which the circuit unit 90 is electrically connected for grounding. Therefore, a closed circuit passing through the housing 20a and the circuit unit 90 is not configured. Thereby, even if an eddy current is generated in the housing 20a and a potential difference is generated in the housing 20a, the current is suppressed from flowing through the housing 20a to the circuit unit 90. Therefore, an unnecessary current can be prevented from flowing through the circuit unit 90, and malfunction of the circuit unit 90 can be suppressed. In addition, since the grounding can be performed using the housing 20a, the reference potential of the circuit unit 90 can be stabilized.

なお、本明細書において「回路部が接地のために電気的に接続される筐体の箇所は、1箇所のみである」とは、筐体の1箇所のみに回路部が電気的に接続されればよく、回路部において筐体と電気的に接続される部分が複数設けられてもよい。この場合、回路部における筐体と電気的に接続される複数の部分は、すべて筐体の1箇所に接続される。また、筐体の「1箇所」とは、電気的に1箇所とみなさせる筐体の部分を含む。具体的には、インピーダンスが比較的小さく電位差が生じにくい範囲内であれば、電気的に1箇所とみなすことができる。本実施形態では、例えば、梁部21a〜21dのそれぞれは、筐体20aにおける1箇所にそれぞれ相当する。   In this specification, “the circuit portion is electrically connected to the ground for grounding only at one location” means that the circuit portion is electrically connected to only one location of the housing. A plurality of portions that are electrically connected to the housing in the circuit portion may be provided. In this case, all of the plurality of portions electrically connected to the casing in the circuit unit are connected to one place of the casing. Further, “one place” of the housing includes a portion of the housing that is regarded as one electrical location. Specifically, if the impedance is within a range that is relatively small and does not easily cause a potential difference, it can be regarded as one electrical location. In the present embodiment, for example, each of the beam portions 21a to 21d corresponds to one place in the housing 20a.

回路部90は、第1接地部91と、第2接地部92と、第3接地部93a,93b,93cと、を有する。第1接地部91は、蓄電部50を接地する部分である。第1接地部91は、例えば、蓄電部50における接地用の端子である。第2接地部92は、給電制御ユニット51を接地する部分である。第2接地部92は、例えば、給電制御ユニット51における接地用の端子である。   The circuit unit 90 includes a first ground unit 91, a second ground unit 92, and third ground units 93a, 93b, and 93c. The first ground unit 91 is a part that grounds the power storage unit 50. The first ground unit 91 is, for example, a grounding terminal in the power storage unit 50. The second grounding unit 92 is a part that grounds the power supply control unit 51. The second grounding unit 92 is, for example, a grounding terminal in the power supply control unit 51.

第3接地部93a〜93cは、無人移動体制御ユニット80を接地する部分である。第3接地部93aは、例えば、回路基板83aにおける接地用のプリント配線部分である。第3接地部93bは、例えば、回路基板83bにおける接地用のプリント配線部分である。第3接地部93cは、例えば、回路基板83cにおける接地用のプリント配線部分である。   The third grounding portions 93 a to 93 c are portions for grounding the unmanned mobile body control unit 80. The third ground portion 93a is, for example, a printed wiring portion for grounding in the circuit board 83a. The third ground portion 93b is, for example, a printed wiring portion for grounding in the circuit board 83b. The third ground portion 93c is, for example, a grounded printed wiring portion in the circuit board 83c.

第1接地部91と第2接地部92と第3接地部93a〜93cとは、互いに電気的に接続される。各接地部同士が電気的に接続されて構成される回路は、開回路である。これにより、各接地部同士が電気的に接続されて構成される回路に不要な電流が流れることを抑制でき、回路部90が誤動作することをより抑制できる。   The first ground portion 91, the second ground portion 92, and the third ground portions 93a to 93c are electrically connected to each other. A circuit configured by electrically connecting the grounding portions is an open circuit. Thereby, it can suppress that an unnecessary electric current flows into the circuit comprised by electrically connecting each grounding part, and can suppress that the circuit part 90 malfunctions more.

本実施形態では、第1接地部91と第2接地部92と第3接地部93a〜93cとのうちのいずれか1つの接地部のみが、筐体20aの1箇所と電気的に接続される。第1接地部91と第2接地部92と第3接地部93a〜93cとのうちの他の接地部は、筐体20aの1箇所と電気的に接続される1つの接地部を介して筐体20aの1箇所と電気的に接続される。そのため、回路部90を接地させるために、1つの接地部のみを筐体20aに接続すればよい。したがって、複数の接地部を筐体20aの1箇所に接続する場合に比べて、回路部90を接地させることが容易である。   In the present embodiment, only one of the first grounding portion 91, the second grounding portion 92, and the third grounding portions 93a to 93c is electrically connected to one place of the housing 20a. . The other grounding portions of the first grounding portion 91, the second grounding portion 92, and the third grounding portions 93a to 93c are connected to the housing through one grounding portion that is electrically connected to one place of the housing 20a. It is electrically connected to one place of the body 20a. Therefore, in order to ground the circuit unit 90, only one ground unit needs to be connected to the housing 20a. Therefore, it is easier to ground the circuit unit 90 than in the case where a plurality of grounding units are connected to one place of the housing 20a.

本実施形態では、第3接地部93cのみが筐体20aの1箇所と電気的に接続される。すなわち、筐体20aの1箇所と電気的に接続される1つの接地部は、第3接地部93cである。より詳細には、第3接地部93cは、例えば、両端部に圧着端子部を有する接続ケーブルを介して、梁部21aに接続される。   In the present embodiment, only the third grounding portion 93c is electrically connected to one place of the housing 20a. That is, one grounding part electrically connected to one place of the housing 20a is the third grounding part 93c. More specifically, the third grounding portion 93c is connected to the beam portion 21a via, for example, a connection cable having crimp terminal portions at both ends.

上述したように、梁部21aは、筐体20aの左右方向他方側の部分である。すなわち、本実施形態において回路部90が電気的に接続される筐体20aの1箇所は、筐体20aの左右方向他方側の部分に位置する。一方、受電装置60が筐体20aの左右方向一方側の部分である梁部21bに取り付けられるため、受電コイル61は、筐体20aの左右方向一方側の部分に取り付けられる。したがって、受電コイル61と回路部90が電気的に接続される筐体20aの1箇所とを、互いに左右方向Yの逆側に配置できる。これにより、回路部90が電気的に接続される筐体20aの1箇所を受電コイル61から離すことができる。したがって、送電装置30から放出される磁束が、回路部90が電気的に接続される筐体20aの1箇所を通りにくく、筐体20aの1箇所に渦電流が生じにくい。そのため、筐体20aの1箇所に電位差が生じにくく、回路部90の基準電位をより安定させることができる。   As described above, the beam portion 21a is a portion on the other side in the left-right direction of the housing 20a. That is, in this embodiment, one place of the housing 20a to which the circuit unit 90 is electrically connected is located at the other side of the housing 20a in the left-right direction. On the other hand, since the power receiving device 60 is attached to the beam portion 21b which is a portion on one side in the left-right direction of the housing 20a, the power receiving coil 61 is attached to a portion on one side in the left-right direction of the housing 20a. Therefore, the power receiving coil 61 and one part of the housing 20a to which the circuit unit 90 is electrically connected can be arranged on the opposite sides in the left-right direction Y. Thereby, one place of the housing 20 a to which the circuit unit 90 is electrically connected can be separated from the power receiving coil 61. Therefore, the magnetic flux emitted from the power transmission device 30 is unlikely to pass through one location of the housing 20a to which the circuit unit 90 is electrically connected, and eddy currents are unlikely to occur in one location of the housing 20a. Therefore, a potential difference is unlikely to occur at one location of the housing 20a, and the reference potential of the circuit unit 90 can be further stabilized.

ここで、受電装置60に接続される給電制御ユニット51、および受電装置60から電力が供給されて充電される蓄電部50は、受電装置60に比較的近い位置に配置することが好ましい。これは、受電装置60と各部とを接続する配線を短くでき、回路部90の構成を簡単化しやすいためである。給電制御ユニット51および蓄電部50を受電装置60の比較的近くに配置すると、無人移動体制御ユニット80は、給電制御ユニット51および蓄電部50に比べて、受電装置60から遠い位置に配置されやすい。そのため、筐体20aの1箇所と電気的に接続される1つの接地部を、無人移動体制御ユニット80を接地する第3接地部93cとすることで、回路部90の構成を簡単化しつつ、受電コイル61から離れた筐体20aの1箇所に回路部90を接続しやすい。   Here, the power supply control unit 51 connected to the power receiving device 60 and the power storage unit 50 supplied with power from the power receiving device 60 and charged are preferably disposed at positions relatively close to the power receiving device 60. This is because the wiring connecting the power receiving device 60 and each unit can be shortened, and the configuration of the circuit unit 90 can be easily simplified. When the power supply control unit 51 and the power storage unit 50 are disposed relatively close to the power receiving device 60, the unmanned mobile control unit 80 is easily disposed at a position farther from the power receiving device 60 than the power supply control unit 51 and the power storage unit 50. . Therefore, by simplifying the configuration of the circuit unit 90 by using the third grounding unit 93c that grounds the unmanned mobile control unit 80 as one grounding unit that is electrically connected to one location of the housing 20a, It is easy to connect the circuit unit 90 to one location of the housing 20 a that is away from the power receiving coil 61.

また、本実施形態では、回路部90が電気的に接続される筐体20aの1箇所は、1つの梁部21aである。言い換えれば、回路部90が接地のために電気的に接続される筐体20aの箇所は、1つの梁部21aのみである。そのため、回路部90を筐体20aの1箇所に接続しやすく、無人移動体20の組み立てを容易にできる。   Moreover, in this embodiment, one place of the housing | casing 20a to which the circuit part 90 is electrically connected is the one beam part 21a. In other words, the location of the housing 20a to which the circuit unit 90 is electrically connected for grounding is only one beam portion 21a. Therefore, it is easy to connect the circuit unit 90 to one place of the housing 20a, and the unmanned moving body 20 can be easily assembled.

第1絶縁部材24は、絶縁性を有する。図4に示すように、第1絶縁部材24は、給電制御ユニット51の周囲を覆う。給電制御ユニット51は、第1絶縁部材24を介して筐体20aに固定される。給電制御ユニット51の第2接地部92は、第1絶縁部材24を介して筐体20aに固定される。これにより、給電制御ユニット51の第2接地部92が筐体20aと電気的に接触することを抑制できる。したがって、筐体20aの1箇所以外の部分に第2接地部92が電気的に接触することを抑制できる。第1絶縁部材24の材質は、絶縁性を有するならば、特に限定されない。第1絶縁部材24は、例えば、樹脂製のシートである。   The first insulating member 24 has an insulating property. As shown in FIG. 4, the first insulating member 24 covers the periphery of the power supply control unit 51. The power supply control unit 51 is fixed to the housing 20 a via the first insulating member 24. The second grounding portion 92 of the power supply control unit 51 is fixed to the housing 20 a via the first insulating member 24. Thereby, it can suppress that the 2nd earthing | grounding part 92 of the electric power feeding control unit 51 contacts the housing | casing 20a electrically. Therefore, it can suppress that the 2nd earthing | grounding part 92 contacts the part other than one place of the housing | casing 20a electrically. The material of the first insulating member 24 is not particularly limited as long as it has insulating properties. The first insulating member 24 is, for example, a resin sheet.

図示は省略するが、本実施形態においては、蓄電部50と無人移動体制御ユニット80とにも、給電制御ユニット51と同様に第1絶縁部材が設けられる。蓄電部50に設けられる第1絶縁部材は、例えば、蓄電部50の筐体である。蓄電部50の第1接地部91は、蓄電部50に設けられた第1絶縁部材を介して筐体20aに固定される。これにより、筐体20aの1箇所以外の部分に第1接地部91が電気的に接触することを抑制できる。   Although illustration is omitted, in the present embodiment, the power storage unit 50 and the unmanned mobile control unit 80 are also provided with the first insulating member in the same manner as the power supply control unit 51. The 1st insulating member provided in the electrical storage part 50 is the housing | casing of the electrical storage part 50, for example. The first ground portion 91 of the power storage unit 50 is fixed to the housing 20 a via a first insulating member provided in the power storage unit 50. Thereby, it can suppress that the 1st earthing | grounding part 91 contacts the part other than one place of the housing | casing 20a electrically.

無人移動体制御ユニット80の第3接地部93a〜93cは、無人移動体制御ユニット80に設けられる第1絶縁部材を介して筐体20aに固定される。これにより、筐体20aの1箇所以外の部分に第3接地部93a〜93cが電気的に接触することを抑制できる。無人移動体制御ユニット80に設けられる第1絶縁部材は、第3接地部93cが枠部21と電気的に接続されることを妨げない。   The third grounding portions 93 a to 93 c of the unmanned moving body control unit 80 are fixed to the housing 20 a via a first insulating member provided in the unmanned moving body control unit 80. Thereby, it can suppress that the 3rd earthing | grounding part 93a-93c contacts the part other than one place of the housing | casing 20a electrically. The first insulating member provided in the unmanned moving body control unit 80 does not prevent the third grounding portion 93 c from being electrically connected to the frame portion 21.

第2絶縁部材25は、絶縁性を有する。第2絶縁部材25は、例えば、直方体状である。第2絶縁部材25は、筐体20aに固定される絶縁部材である。より詳細には、第2絶縁部材25は、枠部21の左右方向一方側の面に固定される。本実施形態において枠部21の左右方向一方側の面とは、梁部21bの左右方向一方側の面を含む。図6に示すように、第2絶縁部材25は、外装カバー26の内部に配置される。第2絶縁部材25は、左右方向Yに沿って視て、貫通孔26aと重なる位置に配置される。第2絶縁部材25の材質は、絶縁性を有するならば、特に限定されない。第2絶縁部材25は、例えば、樹脂製である。   The second insulating member 25 has an insulating property. The second insulating member 25 has, for example, a rectangular parallelepiped shape. The second insulating member 25 is an insulating member fixed to the housing 20a. More specifically, the second insulating member 25 is fixed to the surface on one side in the left-right direction of the frame portion 21. In the present embodiment, the surface on one side in the left-right direction of the frame portion 21 includes the surface on one side in the left-right direction of the beam portion 21b. As shown in FIG. 6, the second insulating member 25 is disposed inside the exterior cover 26. The second insulating member 25 is disposed at a position overlapping the through hole 26a when viewed in the left-right direction Y. The material of the second insulating member 25 is not particularly limited as long as it has insulating properties. The second insulating member 25 is made of resin, for example.

磁束遮蔽部材23は、磁束を遮蔽する。磁束遮蔽部材23は、板面が左右方向Yと直交する板状である。図4に示すように、磁束遮蔽部材23は、受電コイル61と給電制御ユニット51および蓄電部50との左右方向Yの間に配置される。すなわち、磁束遮蔽部材23は、受電装置60と回路部90との左右方向Yの間に配置される。これにより、送電装置30から受電装置60に放出される磁束を磁束遮蔽部材23で遮蔽することができ、磁束が回路部90に干渉することを抑制できる。   The magnetic flux shielding member 23 shields the magnetic flux. The magnetic flux shielding member 23 has a plate shape whose plate surface is orthogonal to the left-right direction Y. As shown in FIG. 4, the magnetic flux shielding member 23 is disposed between the power receiving coil 61, the power supply control unit 51, and the power storage unit 50 in the left-right direction Y. That is, the magnetic flux shielding member 23 is disposed between the power receiving device 60 and the circuit unit 90 in the left-right direction Y. Thereby, the magnetic flux emitted from the power transmission device 30 to the power receiving device 60 can be shielded by the magnetic flux shielding member 23, and the magnetic flux can be prevented from interfering with the circuit unit 90.

図6に示すように、磁束遮蔽部材23は、貫通孔26aに配置される。磁束遮蔽部材23の左右方向一方側の面は、左右方向Yにおいて、外装カバー26の左右方向一方側の側面とほぼ同じ位置にある。磁束遮蔽部材23は、天板22よりも左右方向一方側において、天板22よりも下側から、天板22よりも上側まで延びる。そのため、磁束遮蔽部材23によって、送電装置30から受電装置60に放出された磁束が天板22に到達することを抑制できる。したがって、天板22に渦電流が生じることを抑制できる。これにより、天板22が発熱することを抑制できる。また、天板22に生じた渦電流によって回路部90が誤動作することを抑制できる。   As shown in FIG. 6, the magnetic flux shielding member 23 is disposed in the through hole 26a. The surface on one side in the left-right direction of the magnetic flux shielding member 23 is in the same position as the side surface on one side in the left-right direction of the exterior cover 26 in the left-right direction Y. The magnetic flux shielding member 23 extends from the lower side of the top plate 22 to the upper side of the top plate 22 on one side in the left-right direction of the top plate 22. Therefore, the magnetic flux shielding member 23 can suppress the magnetic flux emitted from the power transmission device 30 to the power reception device 60 from reaching the top plate 22. Therefore, it is possible to suppress the generation of eddy current in the top plate 22. Thereby, it can suppress that the top plate 22 heat-generates. Further, malfunction of the circuit unit 90 due to eddy current generated in the top plate 22 can be suppressed.

上述したように、磁束遮蔽部材23の左右方向一方側の面には、受電装置60が固定される。そのため、磁束遮蔽部材23を受電装置60に密着させることができる。これにより、磁束遮蔽部材23によって受電コイル61を通る磁束および受電コイル61の周囲を通る磁束を遮蔽しやすい。したがって、磁束が天板22を通ることをより抑制でき、天板22に渦電流が生じることをより抑制できる。また、磁束が筐体20aを通ることを抑制でき、筐体20aに渦電流が生じることを抑制できる。そのため、筐体20aに電位差が生じることを抑制できる。また、筐体20aが発熱することを抑制できる。   As described above, the power receiving device 60 is fixed to the surface of the magnetic flux shielding member 23 on one side in the left-right direction. Therefore, the magnetic flux shielding member 23 can be brought into close contact with the power receiving device 60. Thereby, it is easy to shield the magnetic flux passing through the power receiving coil 61 and the magnetic flux passing around the power receiving coil 61 by the magnetic flux shielding member 23. Therefore, it is possible to further suppress the magnetic flux from passing through the top plate 22 and to further suppress the generation of eddy currents in the top plate 22. Moreover, it can suppress that magnetic flux passes the housing | casing 20a, and can suppress that an eddy current arises in the housing | casing 20a. Therefore, it is possible to suppress a potential difference from occurring in the housing 20a. Moreover, it can suppress that the housing | casing 20a heat | fever-generates.

図5に示すように、磁束遮蔽部材23の上側の端部は、受電コイル61よりも上側に配置される。そのため、受電コイル61を通る磁束をより磁束遮蔽部材23によって遮蔽しやすく、受電コイル61を通る磁束が天板22に到達することをより抑制できる。本実施形態において磁束遮蔽部材23の上側の端部は、鉛直方向Zにおいて、受電装置60の上側の端部とほぼ同じ位置にある。図6に示すように、磁束遮蔽部材23の下側の端部は、貫通孔26aの下側の内縁部よりも上側に対向して配置される。磁束遮蔽部材23の下側の端部は、受電装置60の下側の端部よりも上側に配置される。図5に示すように、磁束遮蔽部材23の下側の端部は、受電コイル61の下側の端部よりも下側に配置される。   As shown in FIG. 5, the upper end of the magnetic flux shielding member 23 is disposed above the power receiving coil 61. Therefore, the magnetic flux passing through the power receiving coil 61 can be more easily shielded by the magnetic flux shielding member 23, and the magnetic flux passing through the power receiving coil 61 can be further suppressed from reaching the top plate 22. In the present embodiment, the upper end portion of the magnetic flux shielding member 23 is substantially in the same position as the upper end portion of the power receiving device 60 in the vertical direction Z. As shown in FIG. 6, the lower end portion of the magnetic flux shielding member 23 is disposed to face the upper side of the lower inner edge portion of the through hole 26 a. The lower end portion of the magnetic flux shielding member 23 is disposed above the lower end portion of the power receiving device 60. As shown in FIG. 5, the lower end of the magnetic flux shielding member 23 is disposed below the lower end of the power receiving coil 61.

鉛直方向Zおよび左右方向Yの両方と直交する前後方向Xにおいて、磁束遮蔽部材23の寸法は、受電コイル61の寸法よりも大きい。そのため、受電コイル61を通る磁束をより磁束遮蔽部材23によって遮蔽しやすく、受電コイル61を通る磁束が天板22に到達することをより抑制できる。したがって、天板22に渦電流が生じることをより抑制できる。   In the front-rear direction X orthogonal to both the vertical direction Z and the left-right direction Y, the dimension of the magnetic flux shielding member 23 is larger than the dimension of the power receiving coil 61. Therefore, the magnetic flux passing through the power receiving coil 61 can be more easily shielded by the magnetic flux shielding member 23, and the magnetic flux passing through the power receiving coil 61 can be further suppressed from reaching the top plate 22. Therefore, it is possible to further suppress the generation of eddy current in the top plate 22.

磁束遮蔽部材23は、幅狭部23aと、幅広部23bと、を有する。幅狭部23aは、第1貫通部26bに配置される。幅狭部23aの形状は、左右方向Yに沿って視て、例えば、矩形状である。幅狭部23aの下側の端部は、磁束遮蔽部材23の下側の端部である。幅広部23bは、幅狭部23aの上側の端部に繋がる。幅広部23bの前後方向Xの寸法は、幅狭部23aの前後方向Xの寸法よりも大きい。幅広部23bは、幅狭部23aよりも前後方向両側に突出する。幅広部23bの形状は、左右方向Yに沿って視て、例えば、矩形状である。幅広部23bの下部の少なくとも一部は、第2貫通部26cに配置される。幅広部23bの上側の端部は、磁束遮蔽部材23の上側の端部である。   The magnetic flux shielding member 23 has a narrow portion 23a and a wide portion 23b. The narrow portion 23a is disposed in the first through portion 26b. The shape of the narrow portion 23a is, for example, rectangular when viewed along the left-right direction Y. The lower end of the narrow portion 23 a is the lower end of the magnetic flux shielding member 23. The wide portion 23b is connected to the upper end of the narrow portion 23a. The dimension of the wide part 23b in the front-rear direction X is larger than the dimension of the narrow part 23a in the front-rear direction X. The wide part 23b protrudes in the front-back direction both sides rather than the narrow part 23a. The shape of the wide portion 23b is, for example, rectangular when viewed along the left-right direction Y. At least a part of the lower portion of the wide portion 23b is disposed in the second through portion 26c. The upper end of the wide portion 23 b is the upper end of the magnetic flux shielding member 23.

幅広部23bは、天板22の左右方向一方側に配置される。そのため、送電コイル31と受電コイル61との前後方向Xの相対位置がずれて送電コイル31から送られる磁束が受電コイル61に対して前後方向Xに外れる場合であっても、送電コイル31からの磁束を、前後方向Xの寸法が比較的大きい幅広部23bによって遮蔽しやすい。したがって、磁束が天板22に到達することをより抑制でき、天板22に渦電流が生じることをより抑制できる。   The wide portion 23 b is disposed on one side of the top plate 22 in the left-right direction. Therefore, even if the relative position of the power transmission coil 31 and the power reception coil 61 in the front-rear direction X is shifted and the magnetic flux transmitted from the power transmission coil 31 deviates from the power reception coil 61 in the front-rear direction X, It is easy to shield the magnetic flux by the wide portion 23b having a relatively large dimension in the front-rear direction X. Therefore, it is possible to further suppress the magnetic flux from reaching the top plate 22 and to further suppress the generation of eddy currents on the top plate 22.

本実施形態において磁束遮蔽部材23は、受電コイル61と筐体20aとの間に配置される。そのため、磁束が筐体20aを通ることを抑制でき、筐体20aに渦電流が生じることを抑制できる。より詳細には、本実施形態において磁束遮蔽部材23は、受電コイル61と枠部21との左右方向Yの間に配置される。すなわち、磁束遮蔽部材23は、受電装置60と枠部21との左右方向Yの間に配置される。そのため、磁束が枠部21を通ることを抑制でき、枠部21に渦電流が生じることを抑制できる。磁束遮蔽部材23のうちの幅広部23bの下端部は、受電コイル61と枠部21のうちの梁部21bとの左右方向Yの間に配置される。本実施形態では、左右方向Yに沿って視て、受電コイル61の全体は、磁束遮蔽部材23と重なる。これにより、磁束遮蔽部材23によって受電コイル61の内側を通る磁束のすべてを遮蔽しやすく、磁束が回路部90に干渉することをより抑制できる。また、磁束が天板22および筐体20aを通ることをより抑制でき、天板22および筐体20aに渦電流が生じることをより抑制できる。   In the present embodiment, the magnetic flux shielding member 23 is disposed between the power receiving coil 61 and the housing 20a. Therefore, it can suppress that magnetic flux passes along the housing | casing 20a, and can suppress that an eddy current arises in the housing | casing 20a. More specifically, in this embodiment, the magnetic flux shielding member 23 is disposed between the power receiving coil 61 and the frame portion 21 in the left-right direction Y. That is, the magnetic flux shielding member 23 is disposed between the power receiving device 60 and the frame portion 21 in the left-right direction Y. Therefore, it is possible to suppress the magnetic flux from passing through the frame portion 21, and it is possible to suppress the generation of eddy current in the frame portion 21. The lower end portion of the wide portion 23 b of the magnetic flux shielding member 23 is disposed between the power receiving coil 61 and the beam portion 21 b of the frame portion 21 in the left-right direction Y. In the present embodiment, the entire power receiving coil 61 overlaps the magnetic flux shielding member 23 as viewed along the left-right direction Y. Thereby, it is easy to shield all the magnetic fluxes passing through the inside of the power receiving coil 61 by the magnetic flux shielding member 23, and it is possible to further suppress the magnetic flux from interfering with the circuit unit 90. Moreover, it can suppress more that magnetic flux passes the top plate 22 and the housing | casing 20a, and can suppress more that an eddy current arises in the top plate 22 and the housing | casing 20a.

磁束遮蔽部材23は、筐体20aに取り付けられる。図4および図6に示すように、本実施形態においては、磁束遮蔽部材23は、第2絶縁部材25を介して筐体20aに固定される。そのため、磁束遮蔽部材23が筐体20aと絶縁した状態で、磁束遮蔽部材23を筐体20aに取り付けることができる。これにより、磁束を遮蔽することで磁束遮蔽部材23内に生じた渦電流が、筐体20aに流れることを抑制できる。したがって、筐体20aに電位差が生じることを抑制できる。   The magnetic flux shielding member 23 is attached to the housing 20a. As shown in FIGS. 4 and 6, in the present embodiment, the magnetic flux shielding member 23 is fixed to the housing 20 a via the second insulating member 25. Therefore, the magnetic flux shielding member 23 can be attached to the housing 20a in a state where the magnetic flux shielding member 23 is insulated from the housing 20a. Thereby, it can suppress that the eddy current which arose in the magnetic flux shielding member 23 by shielding magnetic flux flows into the housing | casing 20a. Therefore, it is possible to suppress a potential difference from occurring in the housing 20a.

本実施形態において磁束遮蔽部材23は、第2絶縁部材25を介して枠部21に固定される。そのため、磁束遮蔽部材23内に生じた渦電流が枠部21に流れることを抑制できる。これにより、枠部21に電位差が生じることを抑制できる。磁束遮蔽部材23は、第2絶縁部材25の左右方向一方側の面に固定される。磁束遮蔽部材23の材質は、磁束を遮蔽できるならば、特に限定されない。磁束遮蔽部材23の材質は、例えば、アルミニウムである。   In the present embodiment, the magnetic flux shielding member 23 is fixed to the frame portion 21 via the second insulating member 25. Therefore, the eddy current generated in the magnetic flux shielding member 23 can be prevented from flowing into the frame portion 21. Thereby, it can suppress that a potential difference arises in the frame part 21. FIG. The magnetic flux shielding member 23 is fixed to the surface of the second insulating member 25 on one side in the left-right direction. The material of the magnetic flux shielding member 23 is not particularly limited as long as the magnetic flux can be shielded. The material of the magnetic flux shielding member 23 is, for example, aluminum.

本発明は上述の実施形態に限られず、以下の他の構成を採用することもできる。磁束遮蔽部材の形状は、特に限定されない。磁束遮蔽部材は、円板状であってもよいし、楕円板状であってもよい。磁束遮蔽部材の前後方向Xの寸法は、均一であってもよい。磁束遮蔽部材は、板状でなくてもよい。磁束遮蔽部材は、天板よりも左右方向一方側において、天板よりも下側から、天板の上側の面である積載面と鉛直方向Zにおいて同じ位置まで延びてもよい。この構成においても、天板に磁束が通ることを抑制でき、天板に渦電流が生じることを抑制できる。   The present invention is not limited to the above-described embodiment, and the following other configurations may be employed. The shape of the magnetic flux shielding member is not particularly limited. The magnetic flux shielding member may have a disk shape or an elliptical plate shape. The dimension of the magnetic flux shielding member in the front-rear direction X may be uniform. The magnetic flux shielding member may not be plate-shaped. The magnetic flux shielding member may extend from the lower side of the top plate to the same position in the vertical direction Z as the loading surface that is the upper surface of the top plate on one side in the left-right direction from the top plate. Also in this structure, it can suppress that a magnetic flux passes through a top plate, and can suppress that an eddy current arises in a top plate.

磁束遮蔽部材の上側の端部は、受電コイルの上側の端部と同じ位置に配置されてもよい。この構成においても、受電コイルを通る磁束をより磁束遮蔽部材によって遮蔽しやすく、受電コイルを通る磁束が天板に到達することをより抑制できる。磁束遮蔽部材の下側の端部は、受電装置の下側の端部よりも下側に配置されてもよいし、受電装置の下側の端部と鉛直方向Zにおいて同じ位置に配置されてもよい。磁束遮蔽部材の下側の端部は、受電コイルの下側の端部と鉛直方向Zにおいて同じ位置に配置されてもよいし、受電コイルの下側の端部よりも上側に配置されてもよい。受電装置の上側の端部は、天板の上側の面である積載面と鉛直方向Zにおいて同じ位置に配置されてもよいし、天板よりも下側に配置されてもよい。また、上記実施形態では、磁束遮蔽部材が外装カバーに設けられた貫通孔に配置される構成としたが、これに限られない。例えば、外装カバーの側面に貫通孔が設けられずに、磁束遮蔽部材が外装カバーの側面に取り付けられる構成であってもよい。   The upper end portion of the magnetic flux shielding member may be disposed at the same position as the upper end portion of the power receiving coil. Also in this configuration, the magnetic flux passing through the power receiving coil can be more easily shielded by the magnetic flux shielding member, and the magnetic flux passing through the power receiving coil can be further suppressed from reaching the top plate. The lower end of the magnetic flux shielding member may be disposed below the lower end of the power receiving device, or may be disposed at the same position in the vertical direction Z as the lower end of the power receiving device. Also good. The lower end of the magnetic flux shielding member may be disposed at the same position as the lower end of the power receiving coil in the vertical direction Z, or may be disposed above the lower end of the power receiving coil. Good. The upper end portion of the power receiving device may be disposed at the same position in the vertical direction Z as the stacking surface that is the upper surface of the top plate, or may be disposed below the top plate. Moreover, in the said embodiment, although it was set as the structure by which a magnetic flux shielding member is arrange | positioned in the through-hole provided in the exterior cover, it is not restricted to this. For example, the structure which a magnetic flux shielding member is attached to the side surface of an exterior cover may be sufficient, without providing a through-hole in the side surface of an exterior cover.

受電コイルの形状および送電コイルの形状は、円形状に限られない。例えば、受電コイルの形状および送電コイルの形状は、楕円形状であってもよいし、四角形等の多角形状であってもよい。受電コイルおよび送電コイルは、ソレノイド型のコイルであってもよい。受電コイルの形状と送電コイルの形状とは、互いに異なってもよい。無人移動体に搭載される受電コイルの数は、2つ以上であってもよい。   The shape of the power receiving coil and the shape of the power transmitting coil are not limited to a circular shape. For example, the shape of the power receiving coil and the shape of the power transmitting coil may be elliptical or may be a polygonal shape such as a quadrangle. The power receiving coil and the power transmitting coil may be solenoid type coils. The shape of the power receiving coil and the shape of the power transmitting coil may be different from each other. Two or more power receiving coils may be mounted on the unmanned mobile body.

受電コイルおよび送電コイルは、磁界共鳴方式以外の非接触給電用のコイルであってもよい。受電コイルおよび送電コイルは、例えば、電磁誘導方式の非接触給電用のコイルであってもよい。   The power receiving coil and power transmitting coil may be coils for non-contact power feeding other than the magnetic field resonance method. The power reception coil and the power transmission coil may be, for example, electromagnetic induction type non-contact power supply coils.

蓄電部は、複数設けられてもよい。この場合において受電コイルが複数設けられる場合には、複数の蓄電部のそれぞれに対して、1つずつ受電コイルが接続される構成であってもよいし、複数ずつ受電コイルが接続される構成であってもよい。蓄電部は、推進ユニットごとに設けられてもよい。また、蓄電部は、充電式で蓄電できるならば、特に限定されず、バッテリ以外であってもよい。蓄電部は、例えば、電気二重層コンデンサであってもよい。   A plurality of power storage units may be provided. In this case, when a plurality of power receiving coils are provided, a configuration in which one power receiving coil is connected to each of the plurality of power storage units, or a configuration in which a plurality of power receiving coils are connected to each other may be used. There may be. The power storage unit may be provided for each propulsion unit. In addition, the power storage unit is not particularly limited as long as it can be charged in a rechargeable manner, and may be other than a battery. The power storage unit may be, for example, an electric double layer capacitor.

上述した実施形態のように回路部が有する複数の接地部のいずれか1つのみが筐体の1箇所に電気的に接続される場合、第3接地部以外の接地部が筐体の1箇所に電気的に接続されてもよい。すなわち、第3接地部93cの代わりに、第1接地部91のみが筐体20aと電気的に接続されてもよいし、第2接地部92のみが筐体20aと電気的に接続されてもよいし、他の第3接地部93aまたは第3接地部93bのみが筐体20aと電気的に接続されてもよい。また、各接地部と筐体との接続方法は、特に限定されない。回路部は、接地のために筐体の2箇所以上と電気的に接続されてもよいし、筐体に対して絶縁されてもよい。   When only one of the plurality of grounding portions of the circuit unit is electrically connected to one place of the housing as in the above-described embodiment, the grounding portions other than the third grounding portion are located at one place of the housing. May be electrically connected. That is, instead of the third grounding portion 93c, only the first grounding portion 91 may be electrically connected to the housing 20a, or only the second grounding portion 92 may be electrically connected to the housing 20a. Alternatively, only the other third grounding part 93a or the third grounding part 93b may be electrically connected to the housing 20a. Moreover, the connection method of each grounding part and a housing | casing is not specifically limited. The circuit unit may be electrically connected to two or more locations of the casing for grounding, or may be insulated from the casing.

また、送電通信部と受電通信部とは、常時または所定の間隔毎に通信を行ってもよい。送電ユニットは、受電コイルによる受電状態を示す受電状態情報を受電通信部から受信してもよい。受電ユニットは、送電コイルによる送電状態を示す送電状態情報を送電通信部から受信してもよい。受電ユニットは、受電コイルによる受電状態を示す受電状態情報、送電ユニットからの受電指示情報および送電状態情報等を送電通信部から受信してもよい。なお、送電通信部および受電通信部は、赤外光を用いる方式に限定されず、他の無線通信等の方式を採用してもよい。無人移動体は、受電通信部が受信する受電状態情報に基づいて移動する。すなわち、モータ制御部が、受電コイルによる受電の状態を示す受電状態情報に基づいてモータを制御することによって、無人移動体は移動する。   In addition, the power transmission communication unit and the power reception communication unit may perform communication at all times or at predetermined intervals. The power transmission unit may receive power reception state information indicating a power reception state by the power reception coil from the power reception communication unit. The power receiving unit may receive power transmission state information indicating a power transmission state by the power transmission coil from the power transmission communication unit. The power reception unit may receive power reception state information indicating a power reception state by the power reception coil, power reception instruction information from the power transmission unit, power transmission state information, and the like from the power transmission communication unit. Note that the power transmission communication unit and the power reception communication unit are not limited to the method using infrared light, and other methods such as wireless communication may be adopted. The unmanned mobile body moves based on the power reception state information received by the power reception communication unit. That is, the motor control unit controls the motor based on the power reception state information indicating the state of power reception by the power reception coil, so that the unmanned moving body moves.

また、受電ユニットは、直接的に無人移動体制御ユニットに接続されてもよい。この構成では、受電ユニットから蓄電部を介さずに無人移動体制御ユニットに電力が供給される。この構成においては、無人移動体制御部は、例えば、蓄電部から無人移動体制御ユニットに電力供給を行うか、受電ユニットから蓄電部を介さずに無人移動体制御ユニットに電力供給を行うかを判断してもよい。   The power receiving unit may be directly connected to the unmanned mobile control unit. In this configuration, power is supplied from the power receiving unit to the unmanned mobile control unit without going through the power storage unit. In this configuration, the unmanned mobile control unit, for example, determines whether to supply power from the power storage unit to the unmanned mobile control unit or from the power receiving unit to the unmanned mobile control unit without going through the power storage unit. You may judge.

上述した実施形態の無人移動体および無人移動体システムの用途は、特に限定されない。上記の各構成は、相互に矛盾しない範囲内において、適宜組み合わせることができる。   Applications of the unmanned mobile body and the unmanned mobile body system of the above-described embodiment are not particularly limited. The above-described configurations can be appropriately combined within a range that does not contradict each other.

20…無人移動体、20a…筐体、21…枠部、22…天板、23…磁束遮蔽部材、25…第2絶縁部材(絶縁部材)、41…モータ、50…蓄電部、60…受電装置、61…受電コイル、80…無人移動体制御ユニット、90…回路部、X…前後方向(第2方向)、Y…左右方向(第1方向)、Z…鉛直方向   DESCRIPTION OF SYMBOLS 20 ... Unmanned mobile body, 20a ... Housing | casing, 21 ... Frame part, 22 ... Top plate, 23 ... Magnetic flux shielding member, 25 ... 2nd insulation member (insulation member), 41 ... Motor, 50 ... Power storage part, 60 ... Power reception Device: 61 ... Receiving coil, 80 ... Unmanned mobile control unit, 90 ... Circuit part, X ... Front-rear direction (second direction), Y ... Left-right direction (first direction), Z ... Vertical direction

Claims (8)

非接触給電によって電力が供給される無人移動体であって、
モータと、
前記モータに電力を供給する充電式の蓄電部と、
前記蓄電部と電気的に接続される非接触給電用の受電コイルを有する受電装置と、
前記無人移動体を制御する無人移動体制御ユニットと、
前記蓄電部および前記無人移動体制御ユニットを収容する筐体と、
前記筐体の鉛直方向上側に配置される金属製の天板と、
前記筐体に取り付けられ、磁束を遮蔽する磁束遮蔽部材と、
を備え、
少なくとも前記蓄電部と前記無人移動体制御ユニットとが電気的に接続されて回路部が構成され、
前記受電装置は、鉛直方向と直交する第1方向において前記筐体の一方側に配置され、
前記磁束遮蔽部材は、
前記受電装置と前記回路部との前記第1方向の間に配置され、
前記天板よりも前記第1方向一方側において、前記天板よりも鉛直方向下側から、前記天板の鉛直方向上側の面と鉛直方向において同じ位置、または前記天板よりも鉛直方向上側まで延びる、無人移動体。
An unmanned mobile body to which power is supplied by non-contact power feeding,
A motor,
A rechargeable power storage unit for supplying power to the motor;
A power receiving device having a power receiving coil for non-contact power feeding electrically connected to the power storage unit;
An unmanned moving body control unit for controlling the unmanned moving body;
A housing that houses the power storage unit and the unmanned mobile control unit;
A metal top plate disposed on the upper side in the vertical direction of the housing;
A magnetic flux shielding member that is attached to the housing and shields magnetic flux;
With
At least the power storage unit and the unmanned mobile control unit are electrically connected to form a circuit unit,
The power receiving device is disposed on one side of the housing in a first direction orthogonal to the vertical direction,
The magnetic flux shielding member is
Arranged between the power receiving device and the circuit portion in the first direction;
On the one side in the first direction with respect to the top plate, from the lower side in the vertical direction than the top plate to the same position in the vertical direction as the surface on the upper side in the vertical direction of the top plate, or on the upper side in the vertical direction from the top plate An unmanned mobile that extends.
前記磁束遮蔽部材の鉛直方向上側の端部は、前記受電コイルの鉛直方向上側の端部と鉛直方向において同じ位置、または前記受電コイルよりも鉛直方向上側に配置される、請求項1に記載の無人移動体。   The end portion on the upper side in the vertical direction of the magnetic flux shielding member is disposed at the same position in the vertical direction as the end portion on the upper side in the vertical direction of the power receiving coil, or on the upper side in the vertical direction with respect to the power receiving coil. Unmanned moving body. 前記受電装置の鉛直方向上側の端部は、前記天板よりも鉛直方向上側に配置される、請求項1または2に記載の無人移動体。   The unmanned moving body according to claim 1 or 2, wherein an end of the power receiving device on the upper side in the vertical direction is disposed on the upper side in the vertical direction with respect to the top plate. 鉛直方向および前記第1方向の両方と直交する第2方向において、前記磁束遮蔽部材の寸法は、前記受電コイルの寸法よりも大きい、請求項1から3のいずれか一項に記載の無人移動体。   The unmanned moving body according to any one of claims 1 to 3, wherein a dimension of the magnetic flux shielding member is larger than a dimension of the power receiving coil in a second direction orthogonal to both the vertical direction and the first direction. . 前記筐体は、前記蓄電部および前記無人移動体制御ユニットを囲む枠部を有し、
前記磁束遮蔽部材は、前記受電装置と前記枠部との前記第1方向の間に配置される、請求項1から4のいずれか一項に記載の無人移動体。
The housing includes a frame portion that surrounds the power storage unit and the unmanned mobile control unit,
The unmanned moving body according to any one of claims 1 to 4, wherein the magnetic flux shielding member is disposed between the power reception device and the frame portion in the first direction.
絶縁性を有し、前記筐体に固定される絶縁部材をさらに備え、
前記磁束遮蔽部材は、前記絶縁部材を介して前記枠部に固定される、請求項5に記載の無人移動体。
An insulating member having an insulating property and fixed to the housing;
The unmanned moving body according to claim 5, wherein the magnetic flux shielding member is fixed to the frame portion via the insulating member.
前記絶縁部材は、前記枠部の前記第1方向一方側の面に固定され、
前記磁束遮蔽部材は、前記絶縁部材の前記第1方向一方側の面に固定され、
前記受電装置は、前記磁束遮蔽部材の前記第1方向一方側の面に固定される、請求項6に記載の無人移動体。
The insulating member is fixed to a surface on one side in the first direction of the frame portion,
The magnetic flux shielding member is fixed to a surface on one side in the first direction of the insulating member,
The unmanned mobile body according to claim 6, wherein the power receiving device is fixed to a surface of the magnetic flux shielding member on one side in the first direction.
前記第1方向に沿って視て、前記受電コイルの全体は、前記磁束遮蔽部材と重なる、請求項1から7のいずれか一項に記載の無人移動体。   The unmanned moving body according to any one of claims 1 to 7, wherein the power receiving coil as a whole overlaps the magnetic flux shielding member when viewed along the first direction.
JP2017179321A 2017-09-19 2017-09-19 Unmanned movable body Pending JP2019057959A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017179321A JP2019057959A (en) 2017-09-19 2017-09-19 Unmanned movable body
CN201811086746.3A CN110014913A (en) 2017-09-19 2018-09-18 Unmanned moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179321A JP2019057959A (en) 2017-09-19 2017-09-19 Unmanned movable body

Publications (1)

Publication Number Publication Date
JP2019057959A true JP2019057959A (en) 2019-04-11

Family

ID=66107616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179321A Pending JP2019057959A (en) 2017-09-19 2017-09-19 Unmanned movable body

Country Status (2)

Country Link
JP (1) JP2019057959A (en)
CN (1) CN110014913A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116996A (en) * 2019-01-21 2020-08-06 日本電産シンポ株式会社 Unmanned movable body
CN114502416A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power receiving system, mobile object, and wheel

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147359A (en) * 1983-02-10 1984-08-23 Canon Inc Recording device
US4496896A (en) * 1983-04-14 1985-01-29 Towmotor Corporation Vehicle battery charging apparatus
JP2861292B2 (en) * 1990-06-25 1999-02-24 神鋼電機株式会社 Automatic battery charging system for unmanned vehicles
JPH0824227B2 (en) * 1990-10-20 1996-03-06 富士通株式会社 Case structure
US5498948A (en) * 1994-10-14 1996-03-12 Delco Electornics Self-aligning inductive charger
JP2011222892A (en) * 2010-04-14 2011-11-04 Toyota Motor Corp Vehicle body and electric vehicle
EP2763149B1 (en) * 2011-09-28 2018-03-21 Toyota Jidosha Kabushiki Kaisha Power receiving device, power transmitting device, and power transmission system
JP5826024B2 (en) * 2011-12-28 2015-12-02 株式会社豊田中央研究所 Noise reduction circuit
EP2814047B1 (en) * 2012-02-06 2021-08-04 IHI Corporation Non-contact power supply system
WO2015037046A1 (en) * 2013-09-10 2015-03-19 中国電力株式会社 Contactless power feeding system, and contactless power feeding method
JP2015197663A (en) * 2014-04-03 2015-11-09 キヤノン株式会社 Radiographic device and radiographic system
CN108473067A (en) * 2015-12-28 2018-08-31 日本电产株式会社 Movable body system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020116996A (en) * 2019-01-21 2020-08-06 日本電産シンポ株式会社 Unmanned movable body
JP7214948B2 (en) 2019-01-21 2023-01-31 日本電産シンポ株式会社 unmanned mobile
CN114502416A (en) * 2019-10-09 2022-05-13 国立大学法人东京大学 Wireless power receiving system, mobile object, and wheel

Also Published As

Publication number Publication date
CN110014913A (en) 2019-07-16

Similar Documents

Publication Publication Date Title
JP6743432B2 (en) Coil device
WO2014156145A1 (en) Electricity supply device and electricity reception device
JP2013021886A (en) Power supply apparatus, power supply system, vehicle, and electronic apparatus
WO2015045663A1 (en) Vehicle mounting structure of contactless power reception device
JPWO2013168239A1 (en) Vehicles that can receive power without contact
JP2001110659A (en) Receptacle for electrical charge for charging
JP2016103612A (en) Coil unit
US20210151238A1 (en) Coil device
US9884563B2 (en) Power receiving device and power transmitting device
JP2015008547A (en) Non-contact power charger
JP2019057959A (en) Unmanned movable body
WO2019234970A1 (en) Armrest
CN109074954B (en) Coil device
JP2015176898A (en) Coil unit and non-contact power supply device
JP2016103613A (en) Coil unit
WO2014156014A1 (en) Contactless charging device
US11912149B2 (en) Misalignment detection device and coil device
WO2012102008A1 (en) Coil unit used in noncontact electric-power-supplying system
KR20170105418A (en) Coil assembly for non-contact charging
JPWO2019059080A1 (en) Unmanned moving body
JPWO2019059084A1 (en) Unmanned moving body
KR20210040950A (en) Radar devices and mobile platforms
JP2015104151A (en) Power feeding apparatus
JP2019022333A (en) Power reception device
JP2016018802A (en) Coil unit