JP2019056536A - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
JP2019056536A
JP2019056536A JP2017182541A JP2017182541A JP2019056536A JP 2019056536 A JP2019056536 A JP 2019056536A JP 2017182541 A JP2017182541 A JP 2017182541A JP 2017182541 A JP2017182541 A JP 2017182541A JP 2019056536 A JP2019056536 A JP 2019056536A
Authority
JP
Japan
Prior art keywords
pressure side
side pipe
low
pressure
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017182541A
Other languages
Japanese (ja)
Inventor
由樹 山岡
Yoshiki Yamaoka
由樹 山岡
一貴 小石原
Kazutaka Koishihara
一貴 小石原
季セン 徐
Ji Sen Xu
季セン 徐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017182541A priority Critical patent/JP2019056536A/en
Publication of JP2019056536A publication Critical patent/JP2019056536A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a refrigeration cycle device having excellent energy saving performance by suppressing compressor power in a defrosting operation mode while improving energy consumption efficiency during heating operation.SOLUTION: A refrigeration cycle device includes an inner heat exchanger 23 for exchanging heat between a high-pressure side refrigerant supplied from a radiator 10 to decompression means 11 and a low-pressure side refrigerant that has absorbed heat in an evaporator 12. A first high-pressure side pipe 1 and a second high-pressure side pipe 2 in which the high-pressure side refrigerant flows and a low-pressure side pipe 3 in which the low-pressure side refrigerant flows come close contact with each other. Due to this configuration, while energy consumption efficiency during heating operation is improved by improving heat exchange amount in the inner heat exchanger 23, pressure loss can be reduced by using the plurality of pipes that are the first high-pressure side pipe 1 and the second high-pressure side pipe 2, and pressure of the refrigerant discharged from a compressor 9 in a defrosting operation mode can be suppressed. Thus, energy saving performance of the refrigeration cycle device can be improved.SELECTED DRAWING: Figure 2

Description

本発明は、冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus.

従来、この種の冷凍サイクル装置は、ヒートポンプにより生成される温熱を利用するヒートポンプ給湯装置などに利用されている。また、エネルギー消費効率を向上させるために、内部熱交換器は用いされている。(例えば、特許文献1参照)。   Conventionally, this type of refrigeration cycle apparatus is used in a heat pump hot water supply apparatus that uses the heat generated by a heat pump. Moreover, in order to improve energy consumption efficiency, the internal heat exchanger is used. (For example, refer to Patent Document 1).

図7は、特許文献1に記載された従来の内部熱交換器を示す図である。図8に示すように、蒸発器12を流出した低圧側冷媒が流れる低圧側配管101と、放熱器10を流出した高圧側冷媒が流れる高圧側配管102とが各々の管外周の接触部で熱交換できるように一体化して構成されている。   FIG. 7 is a diagram showing a conventional internal heat exchanger described in Patent Document 1. As shown in FIG. As shown in FIG. 8, the low pressure side pipe 101 through which the low pressure side refrigerant flowing out of the evaporator 12 flows and the high pressure side pipe 102 through which the high pressure side refrigerant flowing out of the radiator 10 flows are heated at the contact portions of the outer circumferences of the respective pipes. It is configured to be integrated so that it can be exchanged.

特開2014−181870号公報JP 2014-181870 A

しかしながら、前記従来の構成では、高圧側配管102の内径を低圧側配管101の内径よりも小さくするともに、高圧側配管102の内面に溝を設けて内部熱交換器23における熱交換量と、加熱運転時の冷凍サイクル装置のエネルギー消費効率を向上させているものの、蒸発器12に霜が付着するような環境条件下での除霜運転モードにおいては、圧縮機の動力が増大し、省エネルギー性を損なってしまっていた。   However, in the conventional configuration, the inner diameter of the high-pressure side pipe 102 is made smaller than the inner diameter of the low-pressure side pipe 101, and a groove is provided on the inner surface of the high-pressure side pipe 102 so that the heat exchange amount in the internal heat exchanger 23 is increased. Although the energy consumption efficiency of the refrigeration cycle apparatus during operation is improved, in the defrosting operation mode under environmental conditions in which frost adheres to the evaporator 12, the power of the compressor increases and energy saving performance is improved. It was damaged.

除霜運転モードにおいては、膨張弁における減圧量を減らし、蒸発器12を流れる冷媒の蒸発温度を高くして霜を融かして除去するが、高圧側配管102の内径が小さいことに加えて、内面に溝を有しているため圧力損失が大きく、吐出圧力の抑制が不十分となり除霜運転中における圧縮機動力が大きくなり、冷凍サイクル装置の省エネ性が低下するという課題を有していた。   In the defrosting operation mode, the amount of pressure reduction in the expansion valve is reduced and the evaporation temperature of the refrigerant flowing through the evaporator 12 is increased to melt and remove the frost, but in addition to the small inner diameter of the high-pressure side pipe 102 Since the inner surface has grooves, the pressure loss is large, the discharge pressure is not sufficiently suppressed, the compressor power during defrosting operation is increased, and the energy saving performance of the refrigeration cycle apparatus is reduced. It was.

本発明は、前記従来の課題を解決するもので、加熱運転時のエネルギー消費効率を向上させながらも、除霜運転モードの圧縮機動力も抑制することで、省エネルギー性に優れた冷凍サイクル装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and provides a refrigeration cycle apparatus that is excellent in energy saving by suppressing the compressor power in the defrosting operation mode while improving the energy consumption efficiency during the heating operation. The purpose is to do.

前記従来の課題を解決するために、本発明の冷凍サイクル装置は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え、前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、前記内部熱交換器は、高圧側冷媒が流れる複数の高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着している構成を特徴とするものである。   In order to solve the conventional problems, a refrigeration cycle apparatus according to the present invention includes a compressor, a radiator, a decompression unit, an evaporator, and a high-pressure refrigerant supplied from the radiator to the decompression unit. An internal heat exchanger that exchanges heat with the low-pressure side refrigerant that has absorbed heat in the evaporator, and flows the refrigerant in the order of the compressor, the radiator, the pressure reducing means, and the evaporator, A defrosting operation mode for melting frost is provided, and the internal heat exchanger is characterized in that a plurality of high-pressure side pipes through which a high-pressure side refrigerant flows and a low-pressure side pipe through which a low-pressure side refrigerant flows are in close contact with each other. Is.

これによって、内部熱交換器の有効伝熱面積を拡大させて熱交換量が増加し、加熱運転時のエネルギー消費効率を向上させながらも、除霜運転モードの圧縮機動力も抑制し、省エネルギー性の高い運転を行うことができる冷凍サイクル装置を提供することができる。   This increases the effective heat transfer area of the internal heat exchanger and increases the amount of heat exchange, improving the energy consumption efficiency during heating operation, while also suppressing the compressor power in the defrost operation mode, A refrigeration cycle apparatus capable of high operation can be provided.

本発明によれば、加熱運転時のエネルギー消費効率を向上させながらも、除霜運転モードの圧縮機動力も抑制することで、省エネルギー性に優れた冷凍サイクル装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the refrigeration cycle apparatus excellent in energy saving property can be provided by suppressing the compressor motive power of a defrost operation mode, improving the energy consumption efficiency at the time of heating operation.

本発明の実施の形態1における冷凍サイクル装置を用いた給湯装置の回路図Circuit diagram of hot water supply apparatus using refrigeration cycle apparatus in Embodiment 1 of the present invention 本発明の実施の形態1における冷凍サイクル装置の内部熱交換器の概要図Schematic diagram of internal heat exchanger of refrigeration cycle apparatus in Embodiment 1 of the present invention 図2の内部熱交換器のA−Aでの断面図Sectional drawing in AA of the internal heat exchanger of FIG. 本発明の実施の形態1における内部熱交換器の曲げ加工部の概要図Schematic diagram of the bending portion of the internal heat exchanger in Embodiment 1 of the present invention 同内部熱交換器の熱交換量と各高圧側配管の流量の関係を示す図A diagram showing the relationship between the heat exchange amount of the internal heat exchanger and the flow rate of each high-pressure side pipe 同内部熱交換器の低圧側配管の圧力損失と各高圧側配管の流量の関係を示す図The figure which shows the relationship between the pressure loss of the low-pressure side piping of the same internal heat exchanger and the flow rate of each high-pressure side piping 従来の内部熱交換器の断面図Cross section of conventional internal heat exchanger

第1の発明は、圧縮機と、放熱器と、減圧手段と、蒸発器と、前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え、前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、前記内部熱交換器は、高圧側冷媒が流れる複数の高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着している構成を特徴とする冷凍サイクル装置である。   The first invention includes a compressor, a radiator, a decompression unit, an evaporator, a high-pressure side refrigerant supplied from the radiator to the decompression unit, and a low-pressure side refrigerant that has absorbed heat in the evaporator. An internal heat exchanger for exchanging heat, and having a defrosting operation mode in which the refrigerant flows in the order of the compressor, the radiator, the pressure reducing unit, and the evaporator, and the frost of the evaporator is melted. The internal heat exchanger is a refrigeration cycle apparatus characterized in that a plurality of high-pressure side pipes through which a high-pressure side refrigerant flows and a low-pressure side pipe through which a low-pressure side refrigerant flows are in close contact with each other.

これにより、有効な伝熱面積が増大して内部熱交換器の熱交換量が増加し、圧縮機への吸入温度を高くすることができ、放熱器に供給される冷媒温度が高くなる。   Thereby, the effective heat transfer area increases, the heat exchange amount of the internal heat exchanger increases, the intake temperature to the compressor can be increased, and the refrigerant temperature supplied to the radiator increases.

その結果、放熱器における温水の加熱効率が向上し,加熱運転時のエネルギー消費効率を向上することができる。加えて、複数の高圧側配管を冷媒が分岐して流れるため、高圧側冷媒の流速が低下し、高圧側配管における圧力損失が小さくなるので、除霜運転モードに圧縮機からの冷媒の吐出圧力が小さくなり圧縮機の駆動に係る動力を抑制することができるので、冷凍サイクル装置の省エネルギー性を向上することができる。   As a result, the heating efficiency of the hot water in the radiator can be improved, and the energy consumption efficiency during the heating operation can be improved. In addition, since the refrigerant branches and flows through the plurality of high-pressure side pipes, the flow rate of the high-pressure side refrigerant is reduced and the pressure loss in the high-pressure side pipes is reduced, so that the refrigerant discharge pressure from the compressor in the defrosting operation mode Since the power required for driving the compressor can be reduced, the energy saving performance of the refrigeration cycle apparatus can be improved.

第2の発明は、特に、第1の発明において、前記複数の高圧側配管が、前記低圧側配管を中央に挟む構成にて配置されているとともに、各々の配管は、略同一の形状であることを特徴とするものである。   According to a second invention, in particular, in the first invention, the plurality of high-pressure side pipes are arranged so as to sandwich the low-pressure side pipe in the center, and the respective pipes have substantially the same shape. It is characterized by this.

これにより、複数の高圧側配管が低圧側配管を挟んで離れた配置となり、低圧側配管の管軸に垂直な断面の温度分布が比較的一様となるので,内部熱交換器における熱交換量を略最大とし、加熱運転時のエネルギー消費効率を向上させることができる。   As a result, a plurality of high-pressure side pipes are arranged with the low-pressure side pipes sandwiched therebetween, and the temperature distribution in the cross section perpendicular to the tube axis of the low-pressure side pipes is relatively uniform. The energy consumption efficiency during the heating operation can be improved.

また、複数本の高圧側配管の形状が同一となり各々の冷媒流量が均一となるので、内部熱交換器の高圧側冷媒の圧力損失を抑制でき、除霜運転モードに冷媒の吐出圧力を抑制して、冷凍サイクルの運転に係るエネルギー消費効率を向上させることができる。   In addition, since the shape of the plurality of high-pressure side pipes is the same and the flow rate of each refrigerant is uniform, the pressure loss of the high-pressure side refrigerant in the internal heat exchanger can be suppressed, and the discharge pressure of the refrigerant can be suppressed in the defrosting operation mode. Thus, the energy consumption efficiency related to the operation of the refrigeration cycle can be improved.

第3の発明は、特に、第1または第2の発明において、前記複数の高圧側配管を、前記低圧側配管に対して平行に接合し、前記低圧側配管の内径は、前記高圧側配管の内径よりも大きいことを特徴とするものである。   In a third aspect of the invention, in particular, in the first or second aspect of the invention, the plurality of high-pressure side pipes are joined in parallel to the low-pressure side pipe, and an inner diameter of the low-pressure side pipe is equal to that of the high-pressure side pipe. It is characterized by being larger than the inner diameter.

これにより、加熱運転時において、内部熱交換器の熱交換量の増加にともなって低圧側配管における冷媒の比容積が増大しても、低圧側配管の内径が大きいので圧力損失の増大を抑制することができる。   As a result, during heating operation, even if the specific volume of refrigerant in the low-pressure side pipe increases as the heat exchange amount of the internal heat exchanger increases, the increase in pressure loss is suppressed because the inner diameter of the low-pressure side pipe is large. be able to.

加えて、高圧側配管を流れる冷媒の流速が大きくなることによって、熱伝達率が向上し内部熱交換器における熱交換量が増加し、加熱運転時のエネルギー消費効率を向上させることができる。   In addition, by increasing the flow rate of the refrigerant flowing through the high-pressure side pipe, the heat transfer rate is improved, the amount of heat exchange in the internal heat exchanger is increased, and the energy consumption efficiency during the heating operation can be improved.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における冷凍サイクル装置を備えた給湯装置の回路構成を示すものである。
(Embodiment 1)
FIG. 1 shows a circuit configuration of a hot water supply apparatus including a refrigeration cycle apparatus according to Embodiment 1 of the present invention.

図1において、冷凍サイクル装置7は、圧縮機9、放熱器10、減圧手段11(膨張弁等)、蒸発器12を順に冷媒配管で環状に接続して構成されている。内部熱交換器23は第1高圧側配管1、第2高圧側配管2と低圧側配管3とから成り、第1高圧側配管1、第2高圧側配管2は放熱器10と減圧手段11との間に並列に接続され、低圧側配管3は蒸発器12と圧縮機9との間に接続されて、冷凍サイクル装置7の一部を成す。なお、冷凍サイクル装置7には、冷媒として二酸化炭素が封入されている。   In FIG. 1, the refrigeration cycle apparatus 7 is configured by connecting a compressor 9, a radiator 10, a decompression means 11 (expansion valve or the like), and an evaporator 12 in an annular manner through a refrigerant pipe in order. The internal heat exchanger 23 includes a first high-pressure side pipe 1, a second high-pressure side pipe 2, and a low-pressure side pipe 3, and the first high-pressure side pipe 1 and the second high-pressure side pipe 2 include a radiator 10 and a decompression unit 11. The low-pressure side pipe 3 is connected between the evaporator 12 and the compressor 9 to form a part of the refrigeration cycle apparatus 7. In the refrigeration cycle apparatus 7, carbon dioxide is enclosed as a refrigerant.

図2に、内部熱交換器23の構成図を示す。内部熱交換器23は、2本の第1高圧側配管1、第2高圧側配管2と低圧側配管3とが略並行に配設され、図3に示すように、第1高圧側配管1、第2高圧側配管2と低圧側配管3とは、各々ロウ接部4にてロウ材またははんだにより接合される。このとき、第1高圧側配管1、低圧側配管3、第2高圧側配管2の各々の管軸中心が略直線上に並ぶように配設される。   In FIG. 2, the block diagram of the internal heat exchanger 23 is shown. In the internal heat exchanger 23, two first high-pressure side pipes 1, a second high-pressure side pipe 2, and a low-pressure side pipe 3 are arranged substantially in parallel. As shown in FIG. The second high-pressure side pipe 2 and the low-pressure side pipe 3 are joined to each other at a brazing portion 4 by brazing material or solder. At this time, it arrange | positions so that each pipe-axis center of the 1st high voltage | pressure side piping 1, the low voltage | pressure side piping 3, and the 2nd high voltage | pressure side piping 2 may be located in a line on a substantially straight line.

なお、高圧側配管は2本に限らず、それより多い複数本を設けても良い。この場合、複数本の高圧側配管は低圧側配管3の外周に沿って等間隔で配置されている。   Note that the number of high-pressure side pipes is not limited to two, and a plurality of higher-pressure pipes may be provided. In this case, the plurality of high-pressure side pipes are arranged at equal intervals along the outer periphery of the low-pressure side pipe 3.

図3に示すように、第1高圧側配管1と第2高圧側配管2は、内表面積を拡大するための溝を内面に設けた溝付き管であり、低圧側配管3は、内面に溝を設けない平滑管であり、その内径は、第1高圧側配管1、第2高圧側配管2の内径よりも大きい。   As shown in FIG. 3, the first high-pressure side pipe 1 and the second high-pressure side pipe 2 are grooved pipes provided with grooves for expanding the inner surface area on the inner surface, and the low-pressure side pipe 3 is provided with a groove on the inner surface. The inner diameter of the smooth pipe is larger than the inner diameter of the first high-pressure side pipe 1 and the second high-pressure side pipe 2.

図4に、内部熱交換器23の曲げ部の構成図を示す。第1高圧側配管1、第2高圧側配管2および低圧側配管3の軸中心を結ぶ直線を軸とする曲げる場合、2本の高圧側配管と低圧側配管は略同一形状であり、つまり、曲げた部分の曲率が同一となるように構成される。   In FIG. 4, the block diagram of the bending part of the internal heat exchanger 23 is shown. When bending with the straight line connecting the axis centers of the first high-pressure side pipe 1, the second high-pressure side pipe 2 and the low-pressure side pipe 3 as the axes, the two high-pressure side pipes and the low-pressure side pipe have substantially the same shape, It is comprised so that the curvature of the bent part may become the same.

また、図1において、貯湯装置8は、冷凍サイクル装置7によって沸き上げた湯を貯湯する貯湯タンク13と、シャワーなどの給湯端末(図示せず)に湯を温度調節して供給する給湯混合弁16とを備える構成となっている。   In FIG. 1, a hot water storage device 8 includes a hot water storage tank 13 for storing hot water boiled by the refrigeration cycle device 7, and a hot water supply mixing valve for adjusting the temperature of hot water to a hot water supply terminal (not shown) such as a shower. 16.

以上のように構成された冷凍サイクル装置について、以下、その動作、作用を説明する。   About the refrigerating-cycle apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、放熱器10において温水を加熱する加熱運転時の動作について説明する。   First, the operation | movement at the time of the heating operation which heats warm water in the heat radiator 10 is demonstrated.

加熱運転時において、圧縮機9より吐出された高温・高圧の冷媒は、放熱器10において温水と熱交換器して放熱し、低温・高圧となる。加熱された温水は、貯湯タンク13へ供給され、シャワーなどに利用される。放熱器10を出た低温・高圧の冷媒は、内部熱交換器23の2本の第1高圧側配管1、第2高圧側配管2へと分岐して供給され、低圧側配管3を流れる低圧側冷媒へと放熱して、さらに低温となる。   During the heating operation, the high-temperature and high-pressure refrigerant discharged from the compressor 9 dissipates heat by exchanging heat with hot water in the radiator 10 and becomes low-temperature and high-pressure. The heated hot water is supplied to the hot water storage tank 13 and used for a shower or the like. The low-temperature and high-pressure refrigerant exiting the radiator 10 is branched and supplied to the two first high-pressure side pipes 1 and the second high-pressure side pipe 2 of the internal heat exchanger 23 and flows through the low-pressure side pipe 3. The heat is dissipated to the side refrigerant, and the temperature further decreases.

内部熱交換器23の第1高圧側配管1、第2高圧側配管2を出た冷媒は、再び互いに合流して減圧手段11において減圧され、低温・低圧の気液二相状態となる。   The refrigerant that has exited the first high-pressure side pipe 1 and the second high-pressure side pipe 2 of the internal heat exchanger 23 joins each other again and is depressurized by the decompression means 11 to be in a low-temperature / low-pressure gas-liquid two-phase state.

減圧手段11において減圧された冷媒は、蒸発器12において大気より吸熱して気体単相状態へと蒸発し、さらに、内部熱交換器23の低圧側配管3において、第1高圧側配管1、第2高圧側配管2を流れる高圧側冷媒より吸熱して過熱状態となって、圧縮機9へと吸入される。この動作を繰り返すことによって、冷凍サイクル装置7は温水の加熱運転を行う。   The refrigerant depressurized in the decompression means 11 absorbs heat from the atmosphere in the evaporator 12 and evaporates into a gas single-phase state. Further, in the low pressure side pipe 3 of the internal heat exchanger 23, the first high pressure side pipe 1, 2 It absorbs heat from the high-pressure side refrigerant flowing in the high-pressure side pipe 2 and becomes superheated, and is sucked into the compressor 9. By repeating this operation, the refrigeration cycle apparatus 7 performs a heating operation of hot water.

次に、上記加熱運転により蒸発器12に霜が付着した場合に、これを融かして除去するための除霜運転モードの動作について説明する。   Next, the operation in the defrosting operation mode for melting and removing the frost when it is attached to the evaporator 12 by the heating operation will be described.

除霜運転モードにおける冷媒の流れる順序は、加熱運転時と同じであるので省略する。除霜運転モードにおいては、減圧手段11における減圧量を小さくし、圧縮機9より吐出される冷媒の圧力を抑制する。さらに、放熱器10においては、冷媒からの放熱量を極力抑制し、減圧手段11を経て蒸発器12へと中温・中圧の冷媒を供給する。   Since the order in which the refrigerant flows in the defrosting operation mode is the same as that in the heating operation, the description thereof is omitted. In the defrosting operation mode, the amount of decompression in the decompression means 11 is reduced, and the pressure of the refrigerant discharged from the compressor 9 is suppressed. Further, in the radiator 10, the amount of heat released from the refrigerant is suppressed as much as possible, and the medium-temperature / medium-pressure refrigerant is supplied to the evaporator 12 through the decompression means 11.

こうして蒸発器12を流れる冷媒の温度を高くすることによって、蒸発器に付着した霜を融かす。霜を融かすために蒸発器12において放熱した冷媒は、圧縮機9へと吸入される。この動作を繰り返すことによって、蒸発器12に付着した霜が融けるまで除霜運転モードを行う。   Thus, the frost adhering to the evaporator is melted by increasing the temperature of the refrigerant flowing through the evaporator 12. The refrigerant that has dissipated heat in the evaporator 12 to melt the frost is sucked into the compressor 9. By repeating this operation, the defrosting operation mode is performed until the frost attached to the evaporator 12 melts.

このとき、内部熱交換器23を構成する高圧側配管が2本であるので、1本である場合に対して熱交換量が増加する。   At this time, since there are two high-pressure pipes constituting the internal heat exchanger 23, the amount of heat exchange increases as compared with the case of one.

さらに、加熱運転時においては、圧縮機9への吸入温度を高くすることができるので、放熱器10に供給される冷媒温度が高くなり、放熱器10において効率よく湯水を加熱するように作用する。   Further, during the heating operation, since the intake temperature to the compressor 9 can be increased, the temperature of the refrigerant supplied to the radiator 10 is increased, and the radiator 10 acts to efficiently heat hot water. .

また、内部熱交換器23を構成する高圧側配管が2本あるので、1本である場合に対して高圧側流路の圧力損失が小さくなる。これにより、除霜運転中においては、吐出圧力をより低くすることがでるので、圧縮機9の駆動に係る動力を抑制するように作用する。   Moreover, since there are two high-pressure side pipes constituting the internal heat exchanger 23, the pressure loss of the high-pressure side flow path is smaller than when there is one. Thereby, during the defrosting operation, the discharge pressure can be further lowered, so that the power related to the driving of the compressor 9 is suppressed.

以上のように、加熱運転時、除霜運転モードの双方において、冷凍サイクル装置の運転に係るエネルギー消費効率を向上させることができる。   As described above, the energy consumption efficiency related to the operation of the refrigeration cycle apparatus can be improved in both the heating operation and the defrosting operation mode.

さらに、低圧側配管3の内径を第1高圧側配管1、第2高圧側配管2各々の内径よりも大きくすることで、熱交換量の増加にともなって低圧側配管3における比容積が増大しても、低圧側配管3の圧力損失を抑制する。これにより、加熱運転時において、圧縮機9に吸入される冷媒の吸入圧力を向上させることができるので、圧縮機9の駆動に係る動力を抑制するように作用する。   Further, by making the inner diameter of the low pressure side pipe 3 larger than the inner diameter of each of the first high pressure side pipe 1 and the second high pressure side pipe 2, the specific volume in the low pressure side pipe 3 increases as the heat exchange amount increases. Even so, the pressure loss of the low-pressure side pipe 3 is suppressed. Thereby, during the heating operation, the suction pressure of the refrigerant sucked into the compressor 9 can be improved, so that the power related to the driving of the compressor 9 is suppressed.

また、第1高圧側配管1、第2高圧側配管2の内径を低圧側配管3の内径よりも小さくすることとなるので、第1高圧側配管1、第2高圧側配管2を流れる冷媒の流速が大きくなる。これにより、第1高圧側配管1、第2高圧側配管2を流れる冷媒の熱伝達率を向上させ、内部熱交換器23における熱交換量を増加させることができるので、圧縮機9の吸入温度および放熱器10入口温度が上昇し、放熱器10において効率よく温水を加熱するように作用する。   Further, since the inner diameters of the first high-pressure side pipe 1 and the second high-pressure side pipe 2 are made smaller than the inner diameter of the low-pressure side pipe 3, the refrigerant flowing through the first high-pressure side pipe 1 and the second high-pressure side pipe 2 is reduced. The flow rate increases. Thereby, the heat transfer rate of the refrigerant flowing through the first high-pressure side pipe 1 and the second high-pressure side pipe 2 can be improved, and the heat exchange amount in the internal heat exchanger 23 can be increased. And the temperature at the inlet of the radiator 10 rises, and the radiator 10 acts to efficiently heat the hot water.

以上のように、吸入圧力の上昇と、加熱運転中における放熱器10の加熱効率向上とを同時に実現し、冷凍サイクル装置の運転に係るエネルギー消費効率を向上させることができる。   As described above, the increase in the suction pressure and the improvement in the heating efficiency of the radiator 10 during the heating operation can be realized at the same time, and the energy consumption efficiency related to the operation of the refrigeration cycle apparatus can be improved.

さらに、図3に示すように、2本の第1高圧側配管1、第2高圧側配管2と低圧側配管3とを各々の管軸が直線上にあるように配設することで、2本の第1高圧側配管1、第2高圧側配管2の距離を最も離れた位置となり、低圧側配管3の管軸に垂直な断面の温度分布が比較的一様となるので,内部熱交換器23における熱交換量が略最大となる。   Further, as shown in FIG. 3, two first high-pressure side pipes 1, second high-pressure side pipes 2, and low-pressure side pipes 3 are arranged so that their tube axes are in a straight line, thereby providing 2 Since the distance between the first high-pressure side pipe 1 and the second high-pressure side pipe 2 is the farthest away and the temperature distribution of the cross section perpendicular to the tube axis of the low-pressure side pipe 3 is relatively uniform, internal heat exchange The amount of heat exchange in the vessel 23 is substantially maximized.

これにより、圧縮機9の吸入温度および放熱器10入口温度が上昇し、放熱器10において効率よく温水を加熱するように作用する。   As a result, the intake temperature of the compressor 9 and the inlet temperature of the radiator 10 rise, and the radiator 10 acts to efficiently heat the hot water.

さらに、有効伝熱面積6は、従来の実施より、倍に増大するとともに、伝熱効率化も図られる。   Further, the effective heat transfer area 6 is doubled as compared with the conventional implementation, and the heat transfer efficiency is improved.

以上のように、2本の第1高圧側配管1、第2高圧側配管2を有する内部熱交換器23における熱交換量を最大化し、冷凍サイクル装置の運転に係るエネルギー消費効率を向上させることができる。   As described above, the heat exchange amount in the internal heat exchanger 23 having the two first high-pressure side pipes 1 and the second high-pressure side pipe 2 is maximized, and the energy consumption efficiency related to the operation of the refrigeration cycle apparatus is improved. Can do.

加えて、曲げ部分において3本の曲げ半径Rを略同一とすることで、2本の第1高圧側配管1、第2高圧側配管2の流路長を略同一とし、2本の第1高圧側配管1、第2高圧側配管2に流れる冷媒の流量が略同一となる。   In addition, by making the three bending radii R substantially the same in the bent portion, the flow lengths of the two first high-pressure side pipes 1 and the second high-pressure side pipes 2 are made substantially the same, and the two first high-pressure side pipes 1 are made the same. The flow rate of the refrigerant flowing through the high-pressure side pipe 1 and the second high-pressure side pipe 2 is substantially the same.

これにより、図5に示すように、2本の第1高圧側配管1、第2高圧側配管2に流れる冷媒の流量が同じ場合に、各第1高圧側配管1、第2高圧側配管2おける熱交換量Q1、Q2の和Q(=Q1+Q2)が最大となり、加熱運転時においては、圧縮機9への吸入温度を高くすることができるので、放熱器10に供給される冷媒温度が高くなり、放熱器10において効率よく湯水を加熱するように作用する。   Accordingly, as shown in FIG. 5, when the flow rates of the refrigerant flowing through the two first high-pressure side pipes 1 and the second high-pressure side pipe 2 are the same, each of the first high-pressure side pipes 1 and the second high-pressure side pipes 2. The sum Q (= Q1 + Q2) of the heat exchange amounts Q1 and Q2 can be maximized, and the intake temperature to the compressor 9 can be increased during the heating operation, so that the refrigerant temperature supplied to the radiator 10 is high. Thus, the radiator 10 acts to efficiently heat the hot water.

また、図6に示すように、第1高圧側配管1、第2高圧側配管2を流れる冷媒の流量が略同一で偏流がない場合に圧力損失ΔPが略最小となる。これにより、内部熱交換器23における高圧側流路の圧力損失を小さくでき、圧縮機9に吸入される冷媒の圧力を向上させることができるので、圧縮機9の駆動に係る動力を抑制するように作用する。   As shown in FIG. 6, the pressure loss ΔP is substantially minimized when the flow rates of the refrigerant flowing through the first high-pressure side pipe 1 and the second high-pressure side pipe 2 are substantially the same and there is no drift. Thereby, the pressure loss of the high-pressure side flow path in the internal heat exchanger 23 can be reduced, and the pressure of the refrigerant sucked into the compressor 9 can be improved, so that the power related to the driving of the compressor 9 is suppressed. Act on.

以上のようにして、加熱運転時にて内部熱交換器23における熱交換量を向上により加熱に係るエネルギー消費効率を向上させるとともに、除霜運転モードにおける高圧側流路の圧力損失抑制により吐出圧力の抑制を実現し、冷凍サイクル装置の省エネルギー性を向上させることができる。   As described above, the energy consumption efficiency related to heating is improved by improving the heat exchange amount in the internal heat exchanger 23 during the heating operation, and the discharge pressure is reduced by suppressing the pressure loss of the high-pressure channel in the defrosting operation mode. Suppression can be realized and the energy saving performance of the refrigeration cycle apparatus can be improved.

以上のように、本発明にかかる冷凍サイクル装置は、エネルギー消費効率を向上させることができるので、空気調和機やヒートポンプ式給湯機、ヒートポンプ式温水暖房機等の冷凍サイクル装置に適用できる。   As described above, since the refrigeration cycle apparatus according to the present invention can improve energy consumption efficiency, it can be applied to refrigeration cycle apparatuses such as an air conditioner, a heat pump hot water heater, and a heat pump hot water heater.

1 第1高圧側配管
2 第2高圧側配管
3 低圧側配管
4 ロウ接部
6 有効伝熱面積
7 冷凍サイクル装置
8 貯湯装置
9 圧縮機
10 放熱器
11 減圧手段
12 蒸発器
13 貯湯タンク
16 給湯混合弁
23 内部熱交換器
DESCRIPTION OF SYMBOLS 1 1st high pressure side piping 2 2nd high pressure side piping 3 Low pressure side piping 4 Brazing contact part 6 Effective heat-transfer area 7 Refrigeration cycle apparatus 8 Hot water storage apparatus 9 Compressor 10 Radiator 11 Decompression means 12 Evaporator 13 Hot water storage tank 16 Hot water supply mixing Valve 23 Internal heat exchanger

Claims (3)

圧縮機と、放熱器と、減圧手段と、蒸発器と、
前記放熱器から前記減圧手段へと供給される高圧側冷媒と前記蒸発器にて吸熱した低圧側冷媒とが熱交換する内部熱交換器と、を備え、
前記圧縮機、前記放熱器、前記減圧手段、前記蒸発器の順に冷媒を流して、前記蒸発器の霜を融かす除霜運転モードを有し、
前記内部熱交換器は、高圧側冷媒が流れる複数の高圧側配管と低圧側冷媒が流れる低圧側配管とが互いに密着している構成としたことを特徴とする冷凍サイクル装置。
A compressor, a radiator, a decompression means, an evaporator,
An internal heat exchanger that exchanges heat between the high-pressure refrigerant supplied from the radiator to the decompression unit and the low-pressure refrigerant absorbed by the evaporator;
A defrosting operation mode in which the refrigerant flows in the order of the compressor, the radiator, the pressure reducing unit, and the evaporator to melt the frost of the evaporator;
The internal heat exchanger has a configuration in which a plurality of high-pressure side pipes through which a high-pressure side refrigerant flows and a low-pressure side pipe through which a low-pressure side refrigerant flows are in close contact with each other.
前記複数の高圧側配管が、前記低圧側配管を中央に挟む構成にて配置されているとともに、各々の配管は、略同一の形状であることを特徴とする請求項1に記載の冷凍サイクル装置。 2. The refrigeration cycle apparatus according to claim 1, wherein the plurality of high-pressure side pipes are arranged so as to sandwich the low-pressure side pipe in the center, and each pipe has substantially the same shape. . 前記複数の高圧側配管は、前記低圧側配管に対して平行に接合され、前記低圧側配管の内径は、前記高圧側配管の内径よりも大きいことを特徴とする請求項1または2に記載の冷凍サイクル装置。
The plurality of high-pressure side pipes are joined in parallel to the low-pressure side pipe, and an inner diameter of the low-pressure side pipe is larger than an inner diameter of the high-pressure side pipe. Refrigeration cycle equipment.
JP2017182541A 2017-09-22 2017-09-22 Refrigeration cycle device Pending JP2019056536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017182541A JP2019056536A (en) 2017-09-22 2017-09-22 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182541A JP2019056536A (en) 2017-09-22 2017-09-22 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
JP2019056536A true JP2019056536A (en) 2019-04-11

Family

ID=66107403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182541A Pending JP2019056536A (en) 2017-09-22 2017-09-22 Refrigeration cycle device

Country Status (1)

Country Link
JP (1) JP2019056536A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091103A (en) * 1999-09-20 2001-04-06 Behr Gmbh & Co Air conditioning apparatus provided with inner heat exchanger
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2007285693A (en) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh Internal refrigerating machine heat exchanger
JP2008155850A (en) * 2006-12-26 2008-07-10 Calsonic Kansei Corp Air conditioning device
JP2009052870A (en) * 2007-08-29 2009-03-12 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device
US20150159957A1 (en) * 2012-08-10 2015-06-11 Contitech Kuehner Gmbh & Cie Kg Internal heat exchanger
JP2015224861A (en) * 2014-05-30 2015-12-14 株式会社デンソー Ejector type refrigeration cycle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091103A (en) * 1999-09-20 2001-04-06 Behr Gmbh & Co Air conditioning apparatus provided with inner heat exchanger
JP2002243374A (en) * 2001-02-14 2002-08-28 Mitsubishi Heavy Ind Ltd Inter-cooler and air conditioner for co2 refrigerant vehicle
JP2007285693A (en) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh Internal refrigerating machine heat exchanger
JP2008155850A (en) * 2006-12-26 2008-07-10 Calsonic Kansei Corp Air conditioning device
JP2009052870A (en) * 2007-08-29 2009-03-12 Hitachi Cable Ltd Internal heat exchanger for carbon dioxide refrigerant
US20150159957A1 (en) * 2012-08-10 2015-06-11 Contitech Kuehner Gmbh & Cie Kg Internal heat exchanger
JP2014181870A (en) * 2013-03-21 2014-09-29 Panasonic Corp Refrigeration cycle device
JP2015224861A (en) * 2014-05-30 2015-12-14 株式会社デンソー Ejector type refrigeration cycle

Similar Documents

Publication Publication Date Title
CN106338112B (en) A kind of air-conditioning heat recovery system
US20150323263A1 (en) Double-pipe heat exchanger and refrigeration cycle system
JP6388670B2 (en) Refrigeration cycle equipment
JP2010216754A (en) Plate type heat exchanger and refrigerating air-conditioning device
US20160320105A1 (en) Heat pump apparatus
WO2007034744A1 (en) Air conditioner
JP2006234254A (en) Heat exchanger and heat pump type hot water supply device using the same
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
EP2770278A1 (en) Water heater
CN102654330A (en) Coupled evaporative condenser used for cascade heat pump hot water machine
JP2014126322A (en) Air conditioner and outdoor heat exchanger used in air conditioner
JP6104378B2 (en) Air conditioner
JP6643627B2 (en) Heat generation unit
JP2019056536A (en) Refrigeration cycle device
JP2018194294A (en) Refrigeration cycle device
JP5171280B2 (en) Heat exchanger and heat pump type water heater using the same
KR100526105B1 (en) Heat pump air-conditioner
JP2016095039A (en) Refrigeration cycle device
CN220187127U (en) Refrigerating device
JP2013204913A (en) Heat exchanger
CN210921846U (en) Vacuum processor cold water machine
JP6565538B2 (en) Heat pump heat source machine
WO2021199138A1 (en) Heat exchanger, outdoor unit, and air conditioner
KR200351613Y1 (en) Heat pump for liquid preheater
JP5163549B2 (en) Inter-refrigerant heat exchanger and refrigerant circuit using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201117