JP2010216754A - Plate type heat exchanger and refrigerating air-conditioning device - Google Patents

Plate type heat exchanger and refrigerating air-conditioning device Download PDF

Info

Publication number
JP2010216754A
JP2010216754A JP2009065826A JP2009065826A JP2010216754A JP 2010216754 A JP2010216754 A JP 2010216754A JP 2009065826 A JP2009065826 A JP 2009065826A JP 2009065826 A JP2009065826 A JP 2009065826A JP 2010216754 A JP2010216754 A JP 2010216754A
Authority
JP
Japan
Prior art keywords
hole
plate
inflow
outflow
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009065826A
Other languages
Japanese (ja)
Other versions
JP5106453B2 (en
Inventor
Daisuke Ito
大輔 伊東
Satoru Yanaike
悟 梁池
Takehiro Hayashi
毅浩 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009065826A priority Critical patent/JP5106453B2/en
Priority to US13/256,494 priority patent/US20120012291A1/en
Priority to CN200980158110.8A priority patent/CN102356295B/en
Priority to EP09841919.5A priority patent/EP2410278B1/en
Priority to PCT/JP2009/071230 priority patent/WO2010106717A1/en
Publication of JP2010216754A publication Critical patent/JP2010216754A/en
Application granted granted Critical
Publication of JP5106453B2 publication Critical patent/JP5106453B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve strength of a plate-type heat exchanger while keeping heat exchanging performance of the plate-type heat exchanger. <P>SOLUTION: This plate-type heat exchanger 20 is formed by stacking a plurality of plates 2, 3. Each of the plates 2, 3 has a first inflow hole 5 as an inlet of a first fluid, a first outflow hole 6 as an outlet of the first fluid, a second inflow hole 7 as an inlet of a second fluid, and a second outflow hole 8 as an outlet of the second fluid at four corners. A first flow channel in which the first fluid flows and a second flow channel in which the second fluid flows, are formed between the stacked plates 2, 3 adjacent to each other to exchange heat between the first fluid and the second fluid. A longitudinal length L1 of each of the plates 2, 3 is four times or more of its lateral length L2. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、例えば、複数のプレートを積層したプレート式熱交換器と、プレート式熱交換器を備える冷凍空調装置とに関する。   The present invention relates to, for example, a plate heat exchanger in which a plurality of plates are stacked, and a refrigeration air conditioner including the plate heat exchanger.

特許文献1には、流体の流入孔の形状と流出孔の形状とを楕円にしたプレート式熱交換器についての記載がある。また、特許文献1には、流体の流入孔の径と流出孔の径とを同一寸法にしたプレート式熱交換器とについての記載がある。
特許文献2には、流体の流入孔の径と流体の流出孔の径とを異寸法にしたプレート式熱交換器についての記載がある。また、特許文献2には、流体の流入孔と流体の流出孔とに補強部材を設け、強度を高くしたプレート式熱交換器についての記載がある。
Patent Document 1 describes a plate heat exchanger in which the shape of the fluid inflow hole and the shape of the outflow hole are elliptical. Patent Document 1 describes a plate heat exchanger in which the diameter of the fluid inflow hole and the diameter of the outflow hole are the same.
Patent Document 2 describes a plate heat exchanger in which the diameter of the fluid inflow hole and the diameter of the fluid outflow hole are different from each other. Patent Document 2 describes a plate heat exchanger in which a reinforcing member is provided at a fluid inflow hole and a fluid outflow hole to increase the strength.

特開平9−72685号公報JP-A-9-72685 特表平7−508581号公報Japanese translation of PCT publication No. 7-508581

従来のプレート式熱交換器は以下の(1)から(3)の課題を有する。
(1)プレート式熱交換器は、全般的にプレート板厚が薄いため、強度が低い。
(2)流入孔と流出孔とに補強部材を設けたプレート式熱交換器は、流入孔と流出孔とにゴミが詰まり易い。
(3)流体の流量が多い場合、プレート式熱交換器は流体の流入孔と流出孔とにおける流速に限界がくる。そこで、多量の流体を処理するには、流入孔と流出孔との開口面積を広げる必要がある。しかし、流入孔と流出孔との開口面積を広げるには、流入孔と流出孔との幅を広くしなければならない。流入孔と流出孔との幅が広くなれば、強度が弱くなるとともに、伝熱面積が減少する。つまり、流入孔と流出孔との開口面積が広いプレート式熱交換器は、強度が低く、熱交換性能が悪い。
The conventional plate heat exchanger has the following problems (1) to (3).
(1) Plate type heat exchangers generally have a low strength due to the thin plate thickness.
(2) In the plate heat exchanger in which the reinforcing member is provided in the inflow hole and the outflow hole, dust is easily clogged in the inflow hole and the outflow hole.
(3) When the flow rate of the fluid is large, the plate type heat exchanger has a limit in the flow velocity at the fluid inlet and outlet holes. Therefore, in order to process a large amount of fluid, it is necessary to widen the opening area between the inflow hole and the outflow hole. However, in order to increase the opening area between the inflow hole and the outflow hole, the width between the inflow hole and the outflow hole must be increased. If the width between the inflow hole and the outflow hole is increased, the strength is reduced and the heat transfer area is reduced. That is, the plate heat exchanger having a wide opening area between the inflow hole and the outflow hole has low strength and poor heat exchange performance.

この発明は、例えば、プレート式熱交換器の熱交換性能を維持したまま、プレート式熱交換器の強度を高くすることを目的とする。   For example, an object of the present invention is to increase the strength of a plate heat exchanger while maintaining the heat exchange performance of the plate heat exchanger.

この発明に係るプレート式熱交換器は、例えば、
複数のプレートが積層されて形成されたプレート式熱交換器であり、
前記複数のプレートの各プレートには、
長手方向のいずれかの端部側に、第1流体の入口となる第1流入孔と、
前記第1流入孔とは逆の長手方向の端部側に、前記第1流体の出口となる第1流出孔と、
長手方向のいずれかの端部側に、第2流体の入口となる第2流入孔と、
前記第2流入孔とは逆の長手方向の端部側に、前記第2流体の出口となる第2流出孔とが設けられ、
前記各プレートは、隣に積層されたプレートとの間に、前記第1流入孔から流入した前記第1流体を短手方向へ広げて前記第1流出孔へ流す第1流路と、前記第2流入孔から流入した前記第2流体を前記短手方向へ広げて前記第2流出孔へ流す第2流路との一方の流路を形成して、前記第1流路を流れる前記第1流体と前記第2流路を流れる前記第2流体とを熱交換させ、
前記各プレートは、前記長手方向の長さが前記短手方向の長さの4倍以上の長さである
ことを特徴とする。
The plate heat exchanger according to the present invention is, for example,
It is a plate heat exchanger formed by laminating a plurality of plates,
Each plate of the plurality of plates includes
A first inflow hole serving as an inlet of the first fluid on either end side in the longitudinal direction;
A first outflow hole serving as an outlet of the first fluid on an end side in a longitudinal direction opposite to the first inflow hole;
A second inflow hole serving as an inlet for the second fluid on either end side in the longitudinal direction;
A second outflow hole serving as an outlet of the second fluid is provided on the end side in the longitudinal direction opposite to the second inflow hole;
Each of the plates has a first flow path that spreads the first fluid flowing in from the first inflow hole in a short direction and flows to the first outflow hole between the plates stacked next to each other, and the first The first fluid flowing in the first flow path is formed by forming one flow path with a second flow path that spreads the second fluid flowing in from the inflow hole in the short direction and flows to the second outflow hole. Heat exchange between the fluid and the second fluid flowing through the second flow path;
Each of the plates is characterized in that the length in the longitudinal direction is at least four times the length in the lateral direction.

この発明に係るプレート式熱交換器は、長手方向の長さが短手方向の長さの4倍以上の長さである。このため、プレートの端部にかかる応力を抑制できる。したがって、この発明に係るプレート式熱交換器は、強度が高い。   In the plate heat exchanger according to the present invention, the length in the longitudinal direction is at least four times the length in the short direction. For this reason, the stress concerning the edge part of a plate can be suppressed. Therefore, the plate heat exchanger according to the present invention has high strength.

プレート式熱交換器20の側面図。The side view of the plate type heat exchanger 20. FIG. 補強用サイドプレート1の正面図。The front view of the side plate 1 for reinforcement. 第2プレート2の正面図。The front view of the 2nd plate 2. FIG. 第1プレート3の正面図。The front view of the 1st plate 3. FIG. 補強用サイドプレート4の正面図。The front view of the side plate 4 for reinforcement. プレート式熱交換器20の分解斜視図。FIG. 3 is an exploded perspective view of the plate heat exchanger 20. プレート式熱交換器20のプレート2,3のサイズを示す図。The figure which shows the size of the plates 2 and 3 of the plate-type heat exchanger 20. FIG. プレート2,3の長手方向と短手方向との長さの比と応力との関係を示す図。The figure which shows the relationship between the ratio of the length of the longitudinal direction of a plate 2, 3, and a transversal direction, and stress. プレート2,3の長手方向と短手方向との長さの比とプレート式熱交換器20の重量との関係を示す図。The figure which shows the relationship between the ratio of the length of the longitudinal direction of the plates 2, 3 and a transversal direction, and the weight of the plate-type heat exchanger 20. FIG. 1次側流入出孔の径を、2次側流入出孔の径よりも小さい径としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the diameter of the primary inflow / outlet hole smaller than the diameter of the secondary inflow / outlet hole. 補強用サイドプレート1側のプレート2,3ほど第1流入孔5の径を小さくしたプレート式熱交換器20を示す図。The figure which shows the plate-type heat exchanger 20 which made the diameter of the 1st inflow hole 5 smaller about the plates 2 and 3 by the side plate 1 side for reinforcement. 流入出孔を四隅に寄せたプレート2,3のサイズを示す図。The figure which shows the size of the plates 2 and 3 which brought the inflow / outlet hole to four corners. 流入出孔を四隅に寄せた第1プレート3の第1流体の流れの説明図。Explanatory drawing of the flow of the 1st fluid of the 1st plate 3 which brought the inflow / outlet hole to the four corners. 流入出孔を四隅に寄せた第1プレート3の凹凸9の説明図。Explanatory drawing of the unevenness | corrugation 9 of the 1st plate 3 which brought the inflow / outlet hole to the four corners. 流入出孔を四隅に寄せた第2プレート2の凹凸9を示す図。The figure which shows the unevenness | corrugation 9 of the 2nd plate 2 which brought the inflow / outlet hole to the four corners. 流入出孔を四隅に寄せた第1プレート3の凹凸9を示す図。The figure which shows the unevenness | corrugation 9 of the 1st plate 3 which brought the inflow / outlet hole to the four corners. 1次側流入出孔と2次側流入出孔とを異なる形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outlet hole and the secondary side inflow / outlet hole different shapes. 1次側流入出孔と2次側流入出孔とを異なる形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outlet hole and the secondary side inflow / outlet hole different shapes. 1次側流入出孔と2次側流入出孔とを異なる形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outlet hole and the secondary side inflow / outlet hole different shapes. 1次側流入出孔と2次側流入出孔とを同一形状とした場合と、1次側流入出孔と2次側流入出孔とを異なる形状とした場合との対比図。The comparison figure with the case where a primary side inflow / outflow hole is made into the same shape, and the case where a primary side inflow / outlet hole is made into a different shape. 1次側流入出孔と2次側流入出孔とを同一形状であって、円以外の形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outlet hole and the secondary side inflow / outlet hole the same shape, and made shapes other than a circle | round | yen. 1次側流入出孔と2次側流入出孔とを同一形状であって、円以外の形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outflow hole and the secondary side inflow / outlet hole the same shape, and made shapes other than a circle | round | yen. 1次側流入出孔と2次側流入出孔とを同一形状であって、円以外の形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outflow hole and the secondary side inflow / outlet hole the same shape, and made shapes other than a circle | round | yen. 1次側流入出孔と2次側流入出孔とを同一形状であって、円以外の形状としたプレート2,3を示す図。The figure which shows the plates 2 and 3 which made the primary side inflow / outflow hole and the secondary side inflow / outlet hole the same shape, and made shapes other than a circle | round | yen. 暖房給湯システム29を示す図。The figure which shows the heating hot-water supply system 29. FIG.

実施の形態1.
図1から図6は、実施の形態1に係るプレート式熱交換器20の説明図である。図1は、プレート式熱交換器20の側面図である。図2は、補強用サイドプレート1の正面図である。図3は、第2プレート2の正面図である。図4は、第1プレート3の正面図である。図5は、補強用サイドプレート4の正面図である。図6は、プレート式熱交換器20の分解斜視図である。
Embodiment 1 FIG.
1 to 6 are explanatory diagrams of the plate heat exchanger 20 according to the first embodiment. FIG. 1 is a side view of the plate heat exchanger 20. FIG. 2 is a front view of the reinforcing side plate 1. FIG. 3 is a front view of the second plate 2. FIG. 4 is a front view of the first plate 3. FIG. 5 is a front view of the reinforcing side plate 4. FIG. 6 is an exploded perspective view of the plate heat exchanger 20.

図1に示すように、プレート式熱交換器20は、複数のプレート2,3が積層される。また、プレート式熱交換器20は、最前面(図1のA側)と最背面(図1のB側)とに、それぞれ補強用サイドプレート1,4が積層される。
図3,4に示すように、各プレート2,3は、略長方形の板状に形成される。各プレート2,3は、略長方形の長辺方向(長手方向)の一方の端部側(上側)に第1流入孔5が設けられる。各プレート2,3は、第1流入孔5とは逆の長手方向の端部側(下側)に第1流出孔6が設けられる。各プレート2,3は、第1流出孔6と同一の長手方向の端部側(下側)に第2流入孔7が設けられる。各プレート2,3は、第1流入孔5と同一の長手方向の端部側(上側)に第2流出孔8が設けられる。ここでは、各プレート2,3は、略長方形の短辺方向(短手方向)の同一の端部側(左側)に第1流入孔5と第1流出孔6とが設けられる。また、各プレート2,3は、第1流入孔5と第1流出孔6とは逆の短手方向の端部側(右側)に第2流入孔7と第2流出孔8とが設けられる。
つまり、各プレート2,3は、四隅に第1流入孔5、第1流出孔6、第2流入孔7、第2流出孔8が設けられる。なお、第1流入孔5と第1流出孔6とを1次側流入出孔と呼ぶ。同様に、第2流入孔7と第2流出孔8とを2次側流入出孔と呼ぶ。
As shown in FIG. 1, the plate heat exchanger 20 is formed by laminating a plurality of plates 2 and 3. In the plate heat exchanger 20, reinforcing side plates 1 and 4 are laminated on the foremost surface (A side in FIG. 1) and the backmost surface (B side in FIG. 1), respectively.
As shown in FIGS. 3 and 4, each of the plates 2 and 3 is formed in a substantially rectangular plate shape. Each of the plates 2 and 3 is provided with a first inflow hole 5 on one end side (upper side) of the substantially rectangular long side direction (longitudinal direction). Each plate 2, 3 is provided with a first outflow hole 6 on the end side (lower side) in the longitudinal direction opposite to the first inflow hole 5. Each plate 2, 3 is provided with a second inflow hole 7 on the same end side (lower side) in the longitudinal direction as the first outflow hole 6. Each plate 2, 3 is provided with a second outflow hole 8 on the same end side (upper side) in the longitudinal direction as the first inflow hole 5. Here, each plate 2 and 3 is provided with a first inflow hole 5 and a first outflow hole 6 on the same end side (left side) in a substantially rectangular short side direction (short side direction). Each plate 2, 3 is provided with a second inflow hole 7 and a second outflow hole 8 on the end side (right side) in the short direction opposite to the first inflow hole 5 and the first outflow hole 6. .
That is, the plates 2 and 3 are provided with the first inflow hole 5, the first outflow hole 6, the second inflow hole 7, and the second outflow hole 8 at the four corners. In addition, the 1st inflow hole 5 and the 1st outflow hole 6 are called a primary side inflow / outlet hole. Similarly, the second inflow hole 7 and the second outflow hole 8 are called secondary inflow / outflow holes.

図2,5に示すように、補強用サイドプレート1,4も、プレート2,3と同様に、略長方形の板状に形成される。図2に示すように、最前面に積層される補強用サイドプレート1は、プレート2,3と同様の位置に第1流入孔5(第1流入管)、第1流出孔6(第1流出管)、第2流入孔7(第2流入管)、第2流出孔8(第2流出管)が設けられる。
一方、図5に示すように、最背面に積層される補強用サイドプレート4は、第1流入孔5、第1流出孔6、第2流入孔7、第2流出孔8が設けられない。なお、図5では、補強用サイドプレート4に、第1流入孔5、第1流出孔6、第2流入孔7、第2流出孔8の位置を破線で示すが、補強用サイドプレート4にこれらが設けられているわけではない。
As shown in FIGS. 2 and 5, the reinforcing side plates 1 and 4 are also formed in a substantially rectangular plate shape like the plates 2 and 3. As shown in FIG. 2, the reinforcing side plate 1 stacked on the foremost surface has a first inflow hole 5 (first inflow pipe) and a first outflow hole 6 (first outflow) at the same positions as the plates 2 and 3. Tube), a second inflow hole 7 (second inflow pipe), and a second outflow hole 8 (second outflow pipe).
On the other hand, as shown in FIG. 5, the reinforcing side plate 4 stacked on the backmost surface is not provided with the first inflow hole 5, the first outflow hole 6, the second inflow hole 7, and the second outflow hole 8. In FIG. 5, the positions of the first inflow hole 5, the first outflow hole 6, the second inflow hole 7, and the second outflow hole 8 are indicated by broken lines on the reinforcing side plate 4. These are not provided.

各プレート2,3と補強用サイドプレート1とは、第1流入孔5同士、第1流出孔6同士、第2流入孔7同士、第2流出孔8同士がそれぞれ重なるように積層される。また、第2プレート2と第1プレート3とは交互に積層される。
なお、各プレート2,3と補強用サイドプレート1,4は、略同一の略長方形である。
The plates 2 and 3 and the reinforcing side plate 1 are laminated so that the first inflow holes 5, the first outflow holes 6, the second inflow holes 7, and the second outflow holes 8 overlap each other. The second plate 2 and the first plate 3 are alternately stacked.
The plates 2 and 3 and the reinforcing side plates 1 and 4 have substantially the same substantially rectangular shape.

また、図3,4に示すように、プレート2,3には、V字型の凹部と凸部(凹凸9)が長手方向に複数配列される。凹凸9は、短手方向の両端側に両端部13を有し、両端部13から長手方向にずれた位置に折り返し点12を有するV字型に形成される。凹凸9のピッチ(幅)は、図4に示すWである。第2プレート2と第1プレート3とでは、凹凸9の向きが逆向きに配列される。つまり、第2プレート2では、両端部13よりも下側に折り返し点12を有するV字型に凹凸9が形成されるのに対し、第1プレート3では、両端部13よりも上側に折り返し点12を有するV字型(逆V字型)に凹凸9が形成される。
このように、逆向きのV字型に凹凸9が形成されたプレート2,3を交互に積層することにより、プレート2,3の間に伝熱効率のよい流路が形成される。つまり、図6に示すように、第1流入孔5から流入した第1流体が第1流出孔6へ流れる第1流路が第2プレート2の背面と第1プレート3の前面との間に形成される。同様に、第2流入孔7から流入した第2流体が第2流出孔8へ流れる第2流路が第1プレート3の背面と第2プレート2の前面との間に形成される。
第1流路を流れる第1流体と第2流路を流れる第2流体とは、プレート2,3を介して熱交換される。
As shown in FIGS. 3 and 4, a plurality of V-shaped concave portions and convex portions (uneven portions 9) are arranged in the longitudinal direction on the plates 2 and 3. The unevenness 9 is formed in a V shape having both end portions 13 at both ends in the short direction and having a turning point 12 at a position shifted from the both end portions 13 in the longitudinal direction. The pitch (width) of the unevenness 9 is W shown in FIG. In the second plate 2 and the first plate 3, the directions of the irregularities 9 are arranged in opposite directions. That is, in the second plate 2, the unevenness 9 is formed in a V shape having the folding point 12 below the both end portions 13, whereas in the first plate 3 the folding point is located above the both end portions 13. Irregularities 9 are formed in a V shape having 12 (inverted V shape).
As described above, by alternately laminating the plates 2 and 3 having the irregularities 9 formed in the reverse V-shape, a flow path with good heat transfer efficiency is formed between the plates 2 and 3. That is, as shown in FIG. 6, the first flow path through which the first fluid flowing in from the first inflow hole 5 flows to the first outflow hole 6 is between the back surface of the second plate 2 and the front surface of the first plate 3. It is formed. Similarly, a second flow path in which the second fluid flowing in from the second inflow hole 7 flows to the second outflow hole 8 is formed between the back surface of the first plate 3 and the front surface of the second plate 2.
The first fluid flowing through the first flow path and the second fluid flowing through the second flow path are heat-exchanged via the plates 2 and 3.

図7は、プレート式熱交換器20のプレート2,3のサイズを示す図である。図7において、長さL1は、プレート2,3の長手方向の長さを示す。長さL2は、プレート2,3の短手方向の長さを示す。長さL3は、第1流入孔5から第1流入孔5に近い方の短手方向のプレート端部までの長さを示す。長さL4は、第1流出孔6から第1流出孔6に近い方の短手方向のプレート端部までの長さを示す。長さL5は、第2流入孔7から第2流入孔7に近い方の短手方向のプレート端部までの長さを示す。長さL6は、第2流出孔8から第2流出孔8に近い方の短手方向のプレート端部までの長さを示す。   FIG. 7 is a view showing the sizes of the plates 2 and 3 of the plate heat exchanger 20. In FIG. 7, the length L1 indicates the length of the plates 2 and 3 in the longitudinal direction. The length L2 indicates the length of the plates 2 and 3 in the short direction. The length L3 indicates the length from the first inflow hole 5 to the plate end in the short direction closer to the first inflow hole 5. The length L4 indicates the length from the first outflow hole 6 to the plate end in the short direction closer to the first outflow hole 6. The length L5 indicates the length from the second inflow hole 7 to the plate end in the short direction closer to the second inflow hole 7. The length L6 indicates the length from the second outflow hole 8 to the plate end in the short direction closer to the second outflow hole 8.

図8は、プレート2,3の長手方向と短手方向との長さの比と応力との関係を示す図である。図8の横軸は、プレート2,3の長手方向の長さと短手方向との長さの比(長さ比)を示す。つまり、図8の横軸は、プレート2,3の長手方向の長さL1/プレート2,3の短手方向の長さL2を示す。図8の縦軸は、プレート2,3の端部(周縁部)に係る応力を示す。なお、図8では応力を応力比として表す。応力比の基準値は図8の右から2番目の点Pが示す値である。ここで、図8の各点は、長さ比に対する応力比の計算値を示す。図8の線は、各点から最小二乗法により計算された値を示す。
図8に示すように、プレート2,3の長手方向の長さL1に対して、プレート2,3の短手方向の長さL2が短いほど、プレート2,3の周縁部に係る応力が小さくなる。したがって、長さL1に対して長さL2をできる限り短くすることが望ましい。特に、長さL1が長さL2の4倍以上となるように、長さL2を短くすることが望ましい。しかし、プレート式熱交換器20の製造限界から、長さL2を著しく短くすることはできない。そこで、長さL1が長さL2の4倍から6.5倍程度となるように、長さL2を短くすることが望ましい。
また、長さL3,L4,L5,L6を短くすることにより、プレート2,3の端部に係る応力が小さくなる。特に、長さL3,L4,L5,L6をプレート2,3の短手方向の長さL2の6%以下に設定することが望ましい。また、プレート2,3の短手方向の長さL2とは関係なく、長さL3,L4,L5,L6を5.6mm以下に設定してもよい。しかし、プレート式熱交換器20の製造限界から、長さL3,L4,L5,L6を著しく短くすることはできない。そこで、長さL3,L4,L5,L6をプレート2,3の短手方向の長さL2の3%以上6%以下に設定することが望ましい。同様に、長さL3,L4,L5,L6を3mm以上5.6mm以下に設定することが望ましい。
FIG. 8 is a diagram showing the relationship between the ratio of the length between the longitudinal direction and the lateral direction of the plates 2 and 3 and the stress. The horizontal axis of FIG. 8 shows the ratio of the lengths of the plates 2 and 3 in the longitudinal direction to the length direction (length ratio). That is, the horizontal axis of FIG. 8 indicates the length L1 of the plates 2 and 3 in the longitudinal direction 1 / the length L2 of the plates 2 and 3 in the short direction. The vertical axis in FIG. 8 indicates the stress associated with the end portions (peripheral portions) of the plates 2 and 3. In FIG. 8, the stress is expressed as a stress ratio. The reference value of the stress ratio is a value indicated by the second point P from the right in FIG. Here, each point in FIG. 8 indicates a calculated value of the stress ratio with respect to the length ratio. The lines in FIG. 8 indicate values calculated from each point by the least square method.
As shown in FIG. 8, as the length L2 in the short direction of the plates 2 and 3 is shorter than the length L1 in the longitudinal direction of the plates 2 and 3, the stress on the peripheral edge of the plates 2 and 3 is smaller. Become. Therefore, it is desirable to make the length L2 as short as possible with respect to the length L1. In particular, it is desirable to shorten the length L2 so that the length L1 is four times as long as the length L2. However, due to the manufacturing limit of the plate heat exchanger 20, the length L2 cannot be significantly shortened. Therefore, it is desirable to shorten the length L2 so that the length L1 is about 4 to 6.5 times the length L2.
Moreover, the stress concerning the edge part of the plates 2 and 3 becomes small by shortening length L3, L4, L5, and L6. In particular, it is desirable to set the lengths L3, L4, L5, and L6 to 6% or less of the length L2 of the plates 2 and 3 in the short direction. Further, the lengths L3, L4, L5, and L6 may be set to 5.6 mm or less irrespective of the length L2 of the plates 2 and 3 in the short direction. However, the lengths L3, L4, L5, and L6 cannot be remarkably shortened due to the manufacturing limit of the plate heat exchanger 20. Therefore, it is desirable to set the lengths L3, L4, L5, and L6 to 3% or more and 6% or less of the length L2 of the plates 2 and 3 in the short direction. Similarly, it is desirable to set the lengths L3, L4, L5, and L6 to 3 mm or more and 5.6 mm or less.

図9は、プレート2,3の長手方向と短手方向との長さの比と、プレート式熱交換器20の重量との関係を示す図である。特に、図9では、プレート2,3の長手方向の長さを固定し、プレート2,3の短手方向の長さを短くした場合に、プレート式熱交換器20の重量をどの程度減らすことができるか示す。
図9の横軸は、図8と同様に、プレート2,3の長手方向の長さと短手方向の長さとの比(長さ比)を示す。図9の縦軸は、プレート式熱交換器20の重量の低減率を示す。なお、プレート式熱交換器20の重量の低減率は、図8で応力比の基準値として選択した長さ比(図8の右から2番目の点Pが示す値)で製造したプレート式熱交換器20の重量を基準として計算した値である。
長さL2を短くすることにより、プレート式熱交換器20が小型化されるため当然にプレート式熱交換器20を軽量化できる。しかし、長さL2を短くすると、小型化による軽量化だけでなく、プレート2,3の板厚や補強用サイドプレート1,4の板厚を薄くできることにより、さらに軽量化できる。つまり、長さL2を短くすると、プレート式熱交換器20の強度が高くなる。そのため、プレート2,3の板厚や補強用サイドプレート1,4の板厚を薄くでき、プレート式熱交換器20を軽量化できる。
その結果、図9に示すように、長さL1に対して長さL2を短くすることにより、小型化されたことによる軽量化以上に、プレート式熱交換器20が軽量化される。
FIG. 9 is a diagram illustrating the relationship between the ratio of the lengths of the plates 2 and 3 in the longitudinal direction and the short direction and the weight of the plate heat exchanger 20. In particular, in FIG. 9, how much the weight of the plate heat exchanger 20 is reduced when the length of the plates 2 and 3 is fixed and the length of the plates 2 and 3 is shortened. Show if you can.
The horizontal axis in FIG. 9 indicates the ratio (length ratio) between the length in the longitudinal direction and the length in the short direction of the plates 2 and 3, as in FIG. 8. The vertical axis in FIG. 9 indicates the weight reduction rate of the plate heat exchanger 20. The weight reduction rate of the plate heat exchanger 20 is the plate type heat produced by the length ratio (value indicated by the second point P from the right in FIG. 8) selected as the reference value of the stress ratio in FIG. This is a value calculated based on the weight of the exchanger 20.
By shortening the length L2, the plate heat exchanger 20 is reduced in size, so that the plate heat exchanger 20 can be reduced in weight. However, when the length L2 is shortened, not only the weight can be reduced by downsizing, but also the thickness of the plates 2 and 3 and the thickness of the reinforcing side plates 1 and 4 can be reduced, thereby further reducing the weight. That is, when the length L2 is shortened, the strength of the plate heat exchanger 20 is increased. Therefore, the plate thickness of the plates 2 and 3 and the thickness of the reinforcing side plates 1 and 4 can be reduced, and the plate heat exchanger 20 can be reduced in weight.
As a result, as shown in FIG. 9, by shortening the length L2 with respect to the length L1, the plate heat exchanger 20 is reduced in weight more than the weight reduction due to the miniaturization.

以上のように、実施の形態1に係るプレート式熱交換器20は、プレート2,3の長手方向の長さL1に対して、プレート2,3の短手方向の長さL2を短くしたため、プレート式熱交換器20の強度が高い。
また、実施の形態1に係るプレート式熱交換器20は、流入出孔5,6,7,8とプレート端部との間の長さ(長さL3,L4,L5,L6)を短くしたため、プレート式熱交換器20の強度が高い。
さらに、プレート式熱交換器20の強度が高くなったため、プレート式熱交換器20の重量を軽くすることができる。
As described above, the plate-type heat exchanger 20 according to Embodiment 1 has a shorter length L2 in the short direction of the plates 2 and 3 than a length L1 in the longitudinal direction of the plates 2 and 3, The strength of the plate heat exchanger 20 is high.
Further, in the plate heat exchanger 20 according to the first embodiment, the length (length L3, L4, L5, L6) between the inflow / outlet holes 5, 6, 7, 8 and the plate end is shortened. The strength of the plate heat exchanger 20 is high.
Furthermore, since the strength of the plate heat exchanger 20 is increased, the weight of the plate heat exchanger 20 can be reduced.

また、短手方向の長さL2を短くすることにより、第1流入孔5と第2流入孔7とから流入した流体が短手方向に広がり易い。そのため、第1流入孔5と第2流入孔7と周辺に流体の広がりを促進する分配促進部材を設ける必要がない。また、プレート式熱交換器20の強度が高くなっているため、流入孔(第1流入孔5、第2流入孔7)周辺に補強部材を設ける必要もない。したがって、分配促進部材や補強部材を設ける必要がないため、プレート2,3のプレス加工が簡単になる。そのため、プレート式熱交換器20の製造コストを抑えられる。また、凹凸9の高さのばらつきも抑えられる。つまり、安定した品質のプレート式熱交換器20を製造できる。   Further, by shortening the length L2 in the short direction, the fluid flowing in from the first inflow hole 5 and the second inflow hole 7 is likely to spread in the short direction. Therefore, there is no need to provide a distribution promoting member for promoting the spreading of the fluid around the first inflow hole 5 and the second inflow hole 7. Further, since the strength of the plate heat exchanger 20 is high, it is not necessary to provide a reinforcing member around the inflow holes (the first inflow hole 5 and the second inflow hole 7). Accordingly, since it is not necessary to provide a distribution promoting member or a reinforcing member, the pressing of the plates 2 and 3 is simplified. Therefore, the manufacturing cost of the plate heat exchanger 20 can be suppressed. Further, variation in the height of the unevenness 9 can be suppressed. That is, the plate type heat exchanger 20 with stable quality can be manufactured.

また、プレート式熱交換器の内部で流体に淀みが生じると、淀みが生じた部分にゴミやスケールが溜まり易くなる。ゴミやスケールが溜まった部分では、プレート2,3が腐食し易い。また、流体に淀みが生じる虞のある熱交換器を蒸発器で用いると、偏流が発生して、温度分布に斑が生じる。そのため、凍結する部分ができる虞がある。凍結する部分ができると、熱交換器の強度が低下する。しかし、実施の形態1に係るプレート式熱交換器20では、プレート2,3の短手方向の長さが短いため、流体に淀みが生じづらい。そのため、ゴミやスケールが溜まりづらく、強度が低下することもない。また、流体が水の場合だけでなく、密度が小さく、圧力損失が大きいことから偏流を生じやすい流体(例えば、炭化水素系の冷媒や低GWP冷媒)にも、実施の形態1に係るプレート式熱交換器20は有効である。フロン系冷媒では、熱交換器内の冷凍機油の滞留抑制にも効果がある。このため、実施の形態1に係るプレート式熱交換器20を用いた機器の消費電力を減らすことができる。   In addition, when stagnation occurs in the fluid inside the plate heat exchanger, dust and scale easily accumulate in the stagnation portion. The plates 2 and 3 are easily corroded in the portion where dust and scale are accumulated. In addition, when a heat exchanger that may cause stagnation in the fluid is used in the evaporator, drift occurs and spots are generated in the temperature distribution. Therefore, there is a possibility that a part that freezes is formed. If the part which freezes is made, the intensity | strength of a heat exchanger will fall. However, in the plate heat exchanger 20 according to the first embodiment, the length in the short direction of the plates 2 and 3 is short, and it is difficult for the fluid to stagnate. Therefore, it is difficult for dust and scale to accumulate, and the strength does not decrease. Further, not only in the case where the fluid is water, but also in a fluid (for example, a hydrocarbon-based refrigerant or a low GWP refrigerant) that tends to cause a drift because of its low density and large pressure loss, the plate type according to the first embodiment. The heat exchanger 20 is effective. The chlorofluorocarbon refrigerant is also effective in suppressing the stagnation of refrigeration oil in the heat exchanger. For this reason, the power consumption of the apparatus using the plate-type heat exchanger 20 which concerns on Embodiment 1 can be reduced.

実施の形態2.
実施の形態2では、1次側流入出孔の径を2次側流入出孔の径よりも小さい径にしたプレート式熱交換器20について説明する。つまり、実施の形態2では、1次側流入出孔の開口面積を2次側流入出孔の開口面積よりも小さくしたプレート式熱交換器20について説明する。
Embodiment 2. FIG.
In the second embodiment, a plate heat exchanger 20 in which the diameter of the primary inflow / outflow holes is smaller than the diameter of the secondary inflow / outflow holes will be described. That is, in the second embodiment, the plate heat exchanger 20 in which the opening area of the primary inflow / outflow holes is made smaller than the opening area of the secondary inflow / outflow holes will be described.

図10は、1次側流入出孔の径を、2次側流入出孔の径よりも小さい径としたプレート2,3を示す図である。
例えば、プレート式熱交換器20を水等の液体とフロン等の冷媒とを熱交換させるために用いる場合、液体の流入孔(ここでは、第2流入孔7とする)はエロージョンによりプレートが磨耗(減肉)する虞がある。そのため、液体の流入出孔(第2流入孔7、第2流出孔8)の径はある程度の大きさにする必要がある。しかし、冷媒の流入出孔(第1流入孔5、第1流出孔6)の径は、液体の流入出孔(第2流入孔7、第2流出孔8)の径に合わせて大きくする必要はない。つまり、第1流入孔5の径と第1流出孔6の径とを、第2流入孔7の径と第2流出孔8の径よりも小さい径とすることができる。このように、第1流入孔5の径と第1流出孔6の径とを小さくした場合、第1流入孔5の径と第1流出孔6の径とを小さくした分、プレート2,3の短手方向の長さを短くすることができる。したがって、実施の形態1で説明したように、プレート式熱交換器20の強度が高くなるとともに、プレート式熱交換器20を軽量化できる。
なお、冷媒は、フロンに限らず、炭化水素系冷媒、低GWP冷媒であってもよい。また、CO2冷媒は、作動圧が高圧のため、プレート式熱交換器20の強度が必要となる。このCO2冷媒を用いる場合に、冷媒の流出入孔を液体の流出入孔よりも小さくする構成は特に有効である。CO2冷媒は、フロン系冷媒に対し密度が大きく圧力損失が小さいため、第1流入孔5と第1流出孔6との径をより小さくできる。
FIG. 10 is a view showing the plates 2 and 3 in which the diameter of the primary inflow / outflow hole is smaller than the diameter of the secondary inflow / outflow hole.
For example, when the plate heat exchanger 20 is used for exchanging heat between a liquid such as water and a refrigerant such as chlorofluorocarbon, the liquid inflow hole (herein referred to as the second inflow hole 7) wears the plate due to erosion. There is a risk of (thinning). Therefore, the diameters of the liquid inflow / outflow holes (second inflow hole 7 and second outflow hole 8) need to be set to a certain size. However, the diameters of the refrigerant inflow and outflow holes (first inflow hole 5 and first outflow hole 6) need to be increased in accordance with the diameters of the liquid inflow and outflow holes (second inflow hole 7 and second outflow hole 8). There is no. That is, the diameter of the first inflow hole 5 and the diameter of the first outflow hole 6 can be smaller than the diameter of the second inflow hole 7 and the diameter of the second outflow hole 8. Thus, when the diameter of the first inflow hole 5 and the diameter of the first outflow hole 6 are reduced, the diameters of the first inflow hole 5 and the diameter of the first outflow hole 6 are reduced. The length in the short direction can be shortened. Therefore, as described in Embodiment 1, the strength of the plate heat exchanger 20 is increased and the plate heat exchanger 20 can be reduced in weight.
The refrigerant is not limited to chlorofluorocarbon, but may be a hydrocarbon refrigerant or a low GWP refrigerant. Moreover, since the CO2 refrigerant has a high operating pressure, the strength of the plate heat exchanger 20 is required. In the case of using this CO2 refrigerant, a configuration in which the refrigerant inflow / outflow hole is smaller than the liquid outflow / inflow hole is particularly effective. Since the CO2 refrigerant has a higher density and a smaller pressure loss than the chlorofluorocarbon refrigerant, the diameters of the first inlet hole 5 and the first outlet hole 6 can be made smaller.

図11は、補強用サイドプレート1側のプレート2,3ほど第1流入孔5の径を小さくしたプレート式熱交換器20を示す図である。
図11に示すプレート式熱交換器20は、1次側流入出孔の径が2次側流入出孔の径よりも小さい径であるだけでなく、補強用サイドプレート1側に積層されたプレート2,3ほど第1流入孔5の径が小さい。つまり、第1流入孔5の径は、補強用サイドプレート1側に積層されたプレート2,3ほど、補強用サイドプレート4側に積層されたプレート2,3よりも小さくなる。言い換えると、第1流入孔5の径は、第1流体の流入する側に積層されるプレート2,3ほど小さい。特に、補強用サイドプレート1側に積層されたプレート2,3の第1流入孔5は、微細ノズルのように非常に小さい。
補強用サイドプレート1側に積層されたプレート2,3の第1流入孔5を非常に小さくしたため、プレート2,3の積層枚数が多い場合であっても、第1流体の流速を速くできる。そのため、補強用サイドプレート4側のプレート2,3へも第1流体が配分され易い。
また、第1流入孔5の径は、補強用サイドプレート4側に積層されたプレート2,3ほど大きいため、各プレート2,3により形成された第1流路に均等に第1流体が分配され易い。
FIG. 11 is a view showing a plate heat exchanger 20 in which the diameters of the first inflow holes 5 are made smaller in the plates 2 and 3 on the reinforcing side plate 1 side.
The plate heat exchanger 20 shown in FIG. 11 is not only the diameter of the primary inflow / outflow hole is smaller than the diameter of the secondary inflow / outflow hole, but also a plate laminated on the reinforcing side plate 1 side. The diameter of the first inflow hole 5 is smaller by 2 or 3. That is, the diameter of the first inflow hole 5 is smaller in the plates 2 and 3 stacked on the reinforcing side plate 1 side than in the plates 2 and 3 stacked on the reinforcing side plate 4 side. In other words, the diameter of the first inflow hole 5 is as small as the plates 2 and 3 stacked on the side where the first fluid flows. In particular, the first inflow holes 5 of the plates 2 and 3 stacked on the reinforcing side plate 1 side are very small like a fine nozzle.
Since the first inflow holes 5 of the plates 2 and 3 stacked on the reinforcing side plate 1 side are extremely small, the flow rate of the first fluid can be increased even when the number of stacked plates 2 and 3 is large. Therefore, the first fluid is easily distributed to the plates 2 and 3 on the reinforcing side plate 4 side.
Moreover, since the diameter of the 1st inflow hole 5 is so large that the plates 2 and 3 laminated | stacked on the side plate 4 side for reinforcement, a 1st fluid distributes equally to the 1st flow path formed by each plate 2 and 3. It is easy to be done.

実施の形態3.
実施の形態3では、流入出孔を短手方向のプレート端部へ寄せるだけでなく、長手方向のプレート端部へも寄せて配置したプレート式熱交換器20について説明する。つまり、実施の形態3では、流入出孔をプレート2,3の四隅(角)に寄せたプレート式熱交換器20について説明する。
Embodiment 3 FIG.
In the third embodiment, a plate heat exchanger 20 is described in which the inflow / outlet holes are not only brought close to the plate end in the short direction but also placed near the plate end in the longitudinal direction. That is, in Embodiment 3, the plate heat exchanger 20 in which the inflow / outlet holes are brought close to the four corners (corners) of the plates 2 and 3 will be described.

図12は、流入出孔を四隅に寄せたプレート2,3のサイズを示す図である。図12において、長さL7は、第1流入孔5から第1流入孔5に近い方の長手方向のプレート端部までの長さを示す。長さL8は、第1流出孔6から第1流出孔6に近い方の長手方向のプレート端部までの長さを示す。長さL9は、第2流入孔7から第2流入孔7に近い方の長手方向のプレート端部までの長さを示す。長さL10は、第2流出孔8から第2流出孔8に近い方の長手方向のプレート端部までの長さを示す。
長さL7,L8,L9,L10をそれぞれ、図7に示す長さL3,L4,L5,L6と同等程度の長さとする。このように、長さL7,L8,L9,L10を短くすることにより、さらにプレートの周縁部に係る応力を小さくすることができる。
FIG. 12 is a diagram showing the sizes of the plates 2 and 3 with the inflow and outflow holes brought to the four corners. In FIG. 12, the length L <b> 7 indicates the length from the first inflow hole 5 to the plate end in the longitudinal direction closer to the first inflow hole 5. The length L8 indicates the length from the first outflow hole 6 to the plate end in the longitudinal direction closer to the first outflow hole 6. The length L9 indicates the length from the second inflow hole 7 to the plate end in the longitudinal direction closer to the second inflow hole 7. The length L10 indicates the length from the second outflow hole 8 to the plate end in the longitudinal direction closer to the second outflow hole 8.
The lengths L7, L8, L9, and L10 are set to the same length as the lengths L3, L4, L5, and L6 shown in FIG. Thus, by reducing the lengths L7, L8, L9, and L10, it is possible to further reduce the stress related to the peripheral portion of the plate.

特に、図12に示すプレート2,3では、1次側流入出孔の径が2次側流入出孔の径よりも小さい径である。そのため、1次側流入出孔の中心が2次側流入出孔の中心よりもプレート2,3の四隅に寄せて配置される。
このように、小さい径とした1次側流入出孔(第1流入孔5、第1流出孔6)をプレート2,3の四隅に寄せることにより、第1流入孔5から第1流出孔6までの距離が長くなる。つまり、第1流路が長くなる。そのため、伝熱面積が長くなり、プレート式熱交換器20の熱交換性能が向上する。
In particular, in the plates 2 and 3 shown in FIG. 12, the diameter of the primary inflow / outflow holes is smaller than the diameter of the secondary inflow / outflow holes. Therefore, the center of the primary inflow / outflow hole is arranged closer to the four corners of the plates 2 and 3 than the center of the secondary inflow / outflow hole.
Thus, by bringing the primary inflow / outflow holes (first inflow holes 5 and first outflow holes 6) having a small diameter toward the four corners of the plates 2 and 3, the first outflow holes 5 to the first outflow holes 6 are arranged. The distance to becomes longer. That is, the first flow path becomes longer. Therefore, the heat transfer area is increased, and the heat exchange performance of the plate heat exchanger 20 is improved.

図13は、流入出孔を四隅に寄せた第1プレート3の第1流体の流れの説明図である。なお、プレート2,3でなく、第1プレート3に限定している。これは、図13ではシール部11を示しているためである。つまり、シール部11は、第2プレート2と第1プレート3とで設けられる位置が異なるためである。
小さい径とした第1流入孔5をプレート2,3の角に寄せることにより、第1流路には第1流入孔5の付近に助走領域10を設けることができる。助走領域10は、プレート端部とシール部11とに挟まれた幅の狭い領域である。つまり、助走領域10の幅(プレート端部からシール部11までの長さL11)は、第1プレート3の短手方向の幅(長さL2)よりも狭い。第1流入孔5から流入した第1流体は、幅の狭い助走領域10を通過した後、プレート式熱交換器20の短手方向へ広がり、第1流出孔6へ流れる。
シール部11は、第1流入孔5から流入した第1流体が第2流出孔8へ流れることを防止する壁である。シール部11は、プレート2,3の積層方向に凸状に突出して形成される。通常、シール部11は、第2流出孔8の周囲に円状に設けられる。しかし、ここでは、シール部11は、第1流入孔5と第2流出孔8とが設けられた長手方向の端部側(上側)から第1流出孔6と第2流入孔7とが設けられたの長手方向の端部側(下側)へ向かって徐々に短手方向の第2流出孔8側の端部(右側)に近づくように設けられる。特に、図13では、シール部11を上側から下側へ向かって、徐々に右側に曲げた曲線状に設けている。
シール部11により、助走領域10を流れた第1流体が短手方向の第2流出孔8側の端部(右側)へ無理なく広がる。つまり、助走領域10とシール部11とには、第1流体を短手方向の第2流出孔8側の端部(右側)へ導く整流効果がある。この整流効果により、シール部11の周囲やプレート2,3の外周近辺で、第1流体が淀むことを防止でき、熱交換性能が向上する。また、この整流効果により、第1流体の圧力損失を低減できる。つまり、高性能なプレート式熱交換器20とすることができる。
また、通常のように、第2流出孔8の周囲に円状にシール部11を設けた場合には、第1流入孔5の周囲に分配促進部材を設け、第1流体の偏流を防止する必要がある。例えば、分配促進部材は放射状等の複雑な形状に形成される。したがって、分配促進部材を備えるプレート式熱交換器20は、製造が困難である。しかし、実施の形態3に係るプレート式熱交換器20は、シール部11を曲線化しただけであり、製造が容易である。したがって、実施の形態3に係るプレート式熱交換器20は、量産性が高い。
FIG. 13 is an explanatory diagram of the flow of the first fluid in the first plate 3 with the inflow / outlet holes brought to the four corners. The plate is not limited to the plates 2 and 3 but the first plate 3. This is because the seal portion 11 is shown in FIG. That is, the seal portion 11 is provided at a different position between the second plate 2 and the first plate 3.
By bringing the first inflow hole 5 having a small diameter toward the corners of the plates 2 and 3, the running region 10 can be provided in the vicinity of the first inflow hole 5 in the first flow path. The running region 10 is a narrow region sandwiched between the plate end and the seal portion 11. That is, the width (length L11 from the plate end portion to the seal portion 11) of the running region 10 is narrower than the width (length L2) in the short direction of the first plate 3. The first fluid flowing in from the first inflow hole 5 passes through the narrow run-up region 10, spreads in the short direction of the plate heat exchanger 20, and flows into the first outflow hole 6.
The seal portion 11 is a wall that prevents the first fluid flowing in from the first inflow hole 5 from flowing into the second outflow hole 8. The seal portion 11 is formed so as to protrude in a convex shape in the stacking direction of the plates 2 and 3. Usually, the seal portion 11 is provided in a circular shape around the second outflow hole 8. However, here, the seal part 11 is provided with the first outflow hole 6 and the second inflow hole 7 from the longitudinal end side (upper side) where the first inflow hole 5 and the second outflow hole 8 are provided. It is provided so as to gradually approach the end portion (right side) on the second outflow hole 8 side in the lateral direction toward the end portion side (lower side) in the longitudinal direction. In particular, in FIG. 13, the seal portion 11 is provided in a curved shape that is gradually bent to the right side from the upper side to the lower side.
The seal portion 11 allows the first fluid that has flowed through the run-up region 10 to spread without difficulty to the end portion (right side) on the second outflow hole 8 side in the short direction. That is, the run-up region 10 and the seal portion 11 have a rectifying effect that guides the first fluid to the end (right side) on the second outflow hole 8 side in the short direction. By this rectifying effect, the first fluid can be prevented from stagnation around the seal portion 11 and in the vicinity of the outer periphery of the plates 2 and 3, and the heat exchange performance is improved. Moreover, the pressure loss of the first fluid can be reduced by this rectifying effect. That is, a high-performance plate heat exchanger 20 can be obtained.
Further, when the seal portion 11 is provided in a circle around the second outflow hole 8 as usual, a distribution promoting member is provided around the first inflow hole 5 to prevent the first fluid from drifting. There is a need. For example, the distribution promoting member is formed in a complicated shape such as a radial shape. Therefore, it is difficult to manufacture the plate heat exchanger 20 including the distribution promoting member. However, the plate-type heat exchanger 20 according to the third embodiment is only manufactured by curving the seal portion 11 and is easy to manufacture. Therefore, the plate heat exchanger 20 according to Embodiment 3 has high mass productivity.

図14は、流入出孔を四隅に寄せた第1プレート3の凹凸9の説明図である。図15は、流入出孔を四隅に寄せた第2プレート2の凹凸9を示す図である。図16は、流入出孔を四隅に寄せた第1プレート3の凹凸9を示す図である。
実施の形態1で説明したように、プレート2,3には、短手方向の両端側に両端部13を有し、両端部13より長手方向にずれた位置に折り返し点12を有することによりV字型に形成された凹凸9が長手方向に複数配列される。なお、図3,4に示すプレート2,3の凹凸9の折り返し点12は、短手方向の中心に設けられていた。つまり、凹凸9は左右対称に形成されていた。
ここで、図14に示すプレート2,3は、1次側流入出孔の径が2次側流入出孔の径よりも小さい径である。つまり、図14では、第1流入孔5、第1流出孔6の径は、第2流入孔7、第2流出孔8の径よりも小さい径である。そのため、図3,4に示すプレート2,3のように、凹凸9の折り返し点12を短手方向の中心に設けた場合、第1流入孔5、第1流出孔6付近に凹凸9の形成されない領域ができてしまう。そこで、径の小さい第1流入孔5、第1流出孔6付近では、凹凸9の折り返し点12を第1流入孔5、第1流出孔6寄りにずらして凹凸9を形成する。つまり、図14に示すように、凹凸9の折り返し点12を結んだ線15が、短手方向の中心線14から、徐々に第1流入孔5、第1流出孔6側に曲線状にずれて形成される。
これにより、第1流入孔5、第1流出孔6付近にも凹凸9を形成することができ、伝熱面積が長くなる。したがって、プレート式熱交換器20の熱交換性能が向上する。また、プレート2,3は、凹凸9が形成された部分で、隣のプレート2,3と接合される。一般に、流入出孔付近は、プレート2,3が剥離し易い。しかし、流入出孔付近まで凹凸9を形成することにより、プレート2,3の接合点が増え、プレート2,3の剥離を防止することができる。また、凹凸9の折り返し点12が第1流入孔5から短手方向の中心へ徐々に移動するとともに、短手方向の中心から第1流出孔6へ徐々に移動する。そのため、第1流入孔5から流入した第1流体を滑らかに短手方向の中心側へ移動させるとともに、短手方向の中心側から第1流出孔6へ滑らかに移動させることができる。そのため、第1流体の圧力損失を低減することができる。
なお、図16に示すように、第2プレート2についても、第1プレート3と同様に、径の小さい第1流入孔5、第1流出孔6付近では、凹凸9の折り返し点12を第1流入孔5、第1流出孔6寄りにずらして凹凸9を形成する。
FIG. 14 is an explanatory view of the unevenness 9 of the first plate 3 with the inflow / outlet holes brought to the four corners. FIG. 15 is a view showing the unevenness 9 of the second plate 2 with the inflow / outlet holes brought to the four corners. FIG. 16 is a view showing the unevenness 9 of the first plate 3 with the inflow / outlet holes brought to the four corners.
As described in the first embodiment, the plates 2 and 3 have both end portions 13 at both ends in the short direction, and the folding points 12 at positions shifted from the both end portions 13 in the longitudinal direction. A plurality of irregularities 9 formed in a letter shape are arranged in the longitudinal direction. In addition, the folding | turning point 12 of the unevenness | corrugation 9 of the plates 2 and 3 shown in FIG.3, 4 was provided in the center of the transversal direction. That is, the unevenness 9 was formed symmetrically.
Here, in the plates 2 and 3 shown in FIG. 14, the diameter of the primary inflow / outflow holes is smaller than the diameter of the secondary inflow / outflow holes. That is, in FIG. 14, the diameters of the first inflow hole 5 and the first outflow hole 6 are smaller than the diameters of the second inflow hole 7 and the second outflow hole 8. Therefore, as in the plates 2 and 3 shown in FIGS. 3 and 4, when the turning point 12 of the unevenness 9 is provided at the center in the short direction, the unevenness 9 is formed in the vicinity of the first inflow hole 5 and the first outflow hole 6. An area that will not be created. Therefore, in the vicinity of the first inflow hole 5 and the first outflow hole 6 having a small diameter, the turnover point 12 of the unevenness 9 is shifted toward the first inflow hole 5 and the first outflow hole 6 to form the unevenness 9. That is, as shown in FIG. 14, the line 15 connecting the turning points 12 of the unevenness 9 gradually shifts from the center line 14 in the short direction toward the first inflow hole 5 and the first outflow hole 6 in a curved shape. Formed.
Thereby, the unevenness | corrugation 9 can be formed also in the 1st inflow hole 5 and the 1st outflow hole 6 vicinity, and a heat-transfer area becomes long. Therefore, the heat exchange performance of the plate heat exchanger 20 is improved. The plates 2 and 3 are joined to the adjacent plates 2 and 3 at the portion where the unevenness 9 is formed. In general, the plates 2 and 3 are easily peeled in the vicinity of the inflow and outflow holes. However, by forming the unevenness 9 to the vicinity of the inflow and outflow holes, the junction points of the plates 2 and 3 are increased, and peeling of the plates 2 and 3 can be prevented. Further, the turning point 12 of the unevenness 9 gradually moves from the first inflow hole 5 to the center in the short direction and gradually moves from the center in the short direction to the first outflow hole 6. Therefore, the first fluid flowing in from the first inflow hole 5 can be smoothly moved to the center side in the short direction, and can be smoothly moved from the center side in the short direction to the first outflow hole 6. Therefore, the pressure loss of the first fluid can be reduced.
As shown in FIG. 16, also in the second plate 2, similar to the first plate 3, the folding points 12 of the unevenness 9 are set in the vicinity of the first inflow hole 5 and the first outflow hole 6 having a small diameter. The unevenness 9 is formed by shifting toward the inflow hole 5 and the first outflow hole 6.

実施の形態4.
実施の形態4では、1次側流入出孔と2次側流入出孔との形状を変形させたプレート式熱交換器20について説明する。
Embodiment 4 FIG.
In the fourth embodiment, a plate heat exchanger 20 in which the shapes of the primary inflow hole and the secondary inflow hole are deformed will be described.

図17から図19は、必要な開口面積を維持したまま1次側流入出孔と2次側流入出孔とを異なる形状としたプレート2,3を示す図である。
図17では、1次側流入出孔と2次側流入出孔と異なる略楕円とした。図18では、1つの円を2つに分割して、一方を1次側流入出孔とし、他方を2次側流入出孔とした。図19では、略長方形を2つに分割して、一方を1次側流入出孔とし、他方を2次側流入出孔とした。
なお、図17から図19に示す1次側流入出孔の径は、2次側流入出孔の径よりも小さい径である。
FIGS. 17 to 19 are views showing the plates 2 and 3 in which the primary inflow / outflow holes and the secondary inflow / outflow holes have different shapes while maintaining a necessary opening area.
In FIG. 17, it was made into the substantially ellipse different from a primary side inflow / outflow hole and a secondary side inflow / outflow hole. In FIG. 18, one circle is divided into two, and one is a primary inflow / outflow hole and the other is a secondary inflow / outflow hole. In FIG. 19, the substantially rectangular shape is divided into two, and one is a primary inflow / outflow hole and the other is a secondary inflow / outflow hole.
In addition, the diameter of the primary inflow / outflow hole shown in FIGS. 17 to 19 is smaller than the diameter of the secondary inflow / outflow hole.

図20は、1次側流入出孔と2次側流入出孔とを同一形状とした場合と、1次側流入出孔と2次側流入出孔とを異なる形状とした場合との対比図である。図20では、プレート2,3の長手方向の第1流出孔6と第2流入孔7と側を示している。図20(a)は、第1流出孔6と第2流入孔7とをいずれも円形としたプレート2,3を示す。一方、図20(b)は、図18と同様に、1つの円を2つに分割して、一方を1次側流入出孔とし、他方を2次側流入出孔としたプレート2,3を示す。また、図20(a)と図20(b)とに示す1次側流入出孔の径は、2次側流入出孔の径よりも小さい径である。
図20(a)に示す第1流出孔6は直径「12mm」の円であり、第2流入孔7は直径「28mm」の円である。また、第1流出孔6と第2流入孔7とは、「3mm」離れている。したがって、第1流出孔6の開口面積は「36πm」であり、第2流入孔7の開口面積は、「196πm」である。また、第1流出孔6の端部から第2流入孔7の端部までの長さは「43mm」である。
一方、図20(b)に示す第1流出孔6は直径「24mm」の円の1/4部分であり、第2流入孔7は「31mm」の円の3/4部分である。また、第1流出孔6と第2流入孔7とは、「3mm」離れている。したがって、第1流出孔6の開口面積は「36πm」であり、第2流入孔7の開口面積は、「192πm」である。また、第1流出孔6の端部から第2流入孔7の端部までの長さは「31mm」である。
つまり、図20(a)に示す第1流出孔6と図20(b)に示す第1流出孔6とは、いずれも開口面積が「36πm」で同一である。また、図20(a)に示す第2流入孔7と図20(b)に示す第2流入孔7とは、開口面積が「196πm」と「192πm」とで概ね同一である。しかし、第1流出孔6の端部から第2流入孔7の端部までの長さは、図20(a)に示すプレート2,3では「43mm」であるのに対して、図20(b)に示すプレート2,3では「31mm」である。つまり、第1流出孔6の端部から第2流入孔7の端部までの長さは、図20(b)に示すプレート2,3の方が、図20(a)に示すプレート2,3よりも大幅に短い。つまり、第1流出孔6と第2流入孔7とを図20(b)に示す形状することにより、第1流出孔6と第2流入孔7との開口面積を維持したまま、プレート2,3の短手方向の長さを大幅に短くすることができる。
FIG. 20 shows a comparison between the case where the primary inflow / outlet holes and the secondary side inflow / outlet holes have the same shape and the case where the primary side inflow / outlet holes and the secondary side inflow / outlet holes have different shapes. It is. FIG. 20 shows the first outflow hole 6 and the second inflow hole 7 side in the longitudinal direction of the plates 2 and 3. FIG. 20A shows the plates 2 and 3 in which the first outflow hole 6 and the second inflow hole 7 are both circular. On the other hand, FIG. 20 (b) is similar to FIG. 18 except that one circle is divided into two, and one is a primary side inflow / outlet hole and the other is a secondary side inflow / outlet hole. Indicates. Moreover, the diameter of the primary inflow / outflow hole shown in FIGS. 20A and 20B is smaller than the diameter of the secondary inflow / outflow hole.
The first outflow hole 6 shown in FIG. 20A is a circle having a diameter “12 mm”, and the second inflow hole 7 is a circle having a diameter “28 mm”. The first outflow hole 6 and the second inflow hole 7 are separated by “3 mm”. Therefore, the opening area of the first outflow hole 6 is “36πm 2 ”, and the opening area of the second inflow hole 7 is “196πm 2 ”. The length from the end of the first outflow hole 6 to the end of the second inflow hole 7 is “43 mm”.
On the other hand, the first outflow hole 6 shown in FIG. 20B is a ¼ portion of a circle having a diameter of “24 mm”, and the second inflow hole 7 is a ¾ portion of a circle of “31 mm”. The first outflow hole 6 and the second inflow hole 7 are separated by “3 mm”. Therefore, the opening area of the first outflow hole 6 is “36πm 2 ”, and the opening area of the second inflow hole 7 is “192πm 2 ”. The length from the end of the first outflow hole 6 to the end of the second inflow hole 7 is “31 mm”.
That is, the first outflow hole 6 shown in FIG. 20A and the first outflow hole 6 shown in FIG. 20B have the same opening area of “36πm 2 ”. Further, the second inflow hole 7 shown in FIG. 20A and the second inflow hole 7 shown in FIG. 20B have substantially the same opening area of “196πm 2 ” and “192πm 2 ”. However, the length from the end of the first outflow hole 6 to the end of the second inflow hole 7 is “43 mm” in the plates 2 and 3 shown in FIG. In the plates 2 and 3 shown in b), it is “31 mm”. That is, the length from the end of the first outflow hole 6 to the end of the second inflow hole 7 is longer for the plates 2 and 3 shown in FIG. 20B than for the plates 2 and 2 shown in FIG. Much shorter than 3. That is, by forming the first outflow hole 6 and the second inflow hole 7 as shown in FIG. 20 (b), the plate 2, The length in the lateral direction of 3 can be greatly shortened.

図21から図24は、必要な開口面積を維持したまま1次側流入出孔と2次側流入出孔とを同一形状であって、円以外の形状としたプレート2,3を示す図である。
図21では、1次側流入出孔と2次側流入出孔とを同一の略楕円とした。図22,23では、1次側流入出孔と2次側流入出孔とを同一の扇型とした。図24では、1次側流入出孔と2次側流入出孔とを同一の星型とした。
FIG. 21 to FIG. 24 are diagrams showing the plates 2 and 3 in which the primary inflow and outflow holes and the secondary inflow and outflow holes have the same shape and a shape other than a circle while maintaining a necessary opening area. is there.
In FIG. 21, the primary inflow / outlet holes and the secondary inflow / outlet holes have the same substantially oval shape. 22 and 23, the primary side inflow and outflow holes and the secondary side inflow and outflow holes have the same fan shape. In FIG. 24, the primary inflow hole and the secondary inflow hole have the same star shape.

このように、1次側流入出孔と2次側流入出孔との形状を様々な形状の組合せとすることにより、プレート2,3の短手方向の長さを短くすることができる。そのため、実施の形態1で述べた効果を得ることができる。なお、次側流入出孔と2次側流入出孔とを同一形状とした場合には、1種類のプレート2,3でプレート式熱交換器20を構成できる。   Thus, the length of the plates 2 and 3 in the short direction can be shortened by combining the shapes of the primary inflow and outflow holes and the secondary inflow and outflow holes in various shapes. Therefore, the effect described in the first embodiment can be obtained. In addition, when the secondary inflow / outlet hole and the secondary inflow / outlet hole have the same shape, the plate heat exchanger 20 can be configured by one type of plates 2 and 3.

実施の形態5.
実施の形態5では、以上の実施の形態で説明したプレート式熱交換器20の利用例である暖房給湯システム29について説明する。
Embodiment 5 FIG.
Embodiment 5 demonstrates the heating hot-water supply system 29 which is the usage example of the plate-type heat exchanger 20 demonstrated in the above embodiment.

図25は、暖房給湯システム29を示す図である。
暖房給湯システム29は、圧縮機21、プレート式熱交換器20、膨張弁22、熱交換器23、給湯器24、暖房機25、冷媒路26、水路27を備える。ここで、プレート式熱交換器20は、以上の実施の形態で説明したプレート式熱交換器20である。また、圧縮機21、プレート式熱交換器20、膨張弁22、熱交換器23、冷媒路26が熱交換システム28である。
冷媒は、冷媒路26を圧縮機21、プレート式熱交換器20、膨張弁22、熱交換器23の順に繰り返し流れる。圧縮機21は、上述したように、冷媒を圧縮する。プレート式熱交換器20は、圧縮機21が圧縮した冷媒と、水路27を流れる液体(ここでは、水)とを熱交換する。ここでは、プレート式熱交換器20において熱交換されることにより、冷媒が冷され、水が温められる。膨張弁22は、プレート式熱交換器20で熱交換された冷媒の膨張を制御する。熱交換器23は、膨張弁22の制御に従い膨張した冷媒と空気との熱交換を行う。ここでは、熱交換器23において熱交換されることにより、冷媒が温められ、空気が冷やされる。そして、温められた冷媒は、圧縮機21へ入る。
一方、水は、水路27をプレート式熱交換器20と、給湯器24及び暖房機25との間で流れる。上述したように、プレート式熱交換器20で熱交換されることにより、水は温められる。そして、温められた水は給湯器24や暖房機25へ流れる。なお、給湯用の水は、プレート式熱交換器20で熱交換される水でなくてもよい。つまり、給湯器24などでさらに水路27を流れる水と給湯用の水とが熱交換されるようにしてもよい。
FIG. 25 is a diagram showing a heating and hot water supply system 29.
The heating and hot water supply system 29 includes a compressor 21, a plate heat exchanger 20, an expansion valve 22, a heat exchanger 23, a hot water heater 24, a heater 25, a refrigerant path 26, and a water path 27. Here, the plate-type heat exchanger 20 is the plate-type heat exchanger 20 described in the above embodiment. The compressor 21, the plate heat exchanger 20, the expansion valve 22, the heat exchanger 23, and the refrigerant path 26 are a heat exchange system 28.
The refrigerant repeatedly flows through the refrigerant path 26 in the order of the compressor 21, the plate heat exchanger 20, the expansion valve 22, and the heat exchanger 23. As described above, the compressor 21 compresses the refrigerant. The plate heat exchanger 20 exchanges heat between the refrigerant compressed by the compressor 21 and the liquid (here, water) flowing through the water channel 27. Here, the refrigerant is cooled and the water is warmed by heat exchange in the plate heat exchanger 20. The expansion valve 22 controls expansion of the refrigerant heat-exchanged by the plate heat exchanger 20. The heat exchanger 23 performs heat exchange between the expanded refrigerant and air in accordance with the control of the expansion valve 22. Here, the heat is exchanged in the heat exchanger 23 to warm the refrigerant and cool the air. Then, the warmed refrigerant enters the compressor 21.
On the other hand, water flows through the water channel 27 between the plate heat exchanger 20, the hot water heater 24 and the heater 25. As described above, the water is warmed by heat exchange in the plate heat exchanger 20. Then, the warmed water flows to the water heater 24 and the heater 25. The hot water supply water does not have to be heat exchanged by the plate heat exchanger 20. That is, the water flowing through the water channel 27 and the water for hot water supply may be further heat-exchanged by the water heater 24 or the like.

以上の実施の形態で説明したプレート式熱交換器20は強度が高く、小型軽量で効率がよい。したがって、以上の実施の形態で説明したプレート式熱交換器20を用いた熱交換システム28も効率がよい。また、熱交換システム28を用いた暖房給湯システム29も効率がよい。
なお、ここでは、以上の実施の形態で説明したプレート式熱交換器20によって圧縮された冷媒で水を加熱する熱交換システム(ATW(Air To Water)システム)について説明した。しかし、これに限らず、以上の実施の形態で説明したプレート式熱交換器20を用いて熱交換を行い空気等の流体を加熱又は冷却する冷凍サイクル(冷凍空調装置)を形成することもできる。
The plate heat exchanger 20 described in the above embodiment has high strength, is small and light, and is efficient. Therefore, the heat exchange system 28 using the plate heat exchanger 20 described in the above embodiment is also efficient. Moreover, the heating hot water supply system 29 using the heat exchange system 28 is also efficient.
Here, the heat exchange system (ATW (Air To Water) system) that heats water with the refrigerant compressed by the plate heat exchanger 20 described in the above embodiment has been described. However, the present invention is not limited to this, and it is also possible to form a refrigeration cycle (refrigeration air conditioner) that heats or cools a fluid such as air by performing heat exchange using the plate heat exchanger 20 described in the above embodiment. .

つまり、以上の実施の形態をまとめると次のようになる。
プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、プレートの幅(W)に対する高さ(H)の比が4〜6.5であることを特徴とする。
That is, the above embodiment can be summarized as follows.
The plate heat exchanger 20 has passage holes serving as fluid inlets and outlets at four corners, and is a plate heat exchanger formed by laminating a plurality of plates provided with fluid inflow and outflow tubes. The ratio of the height (H) to W) is 4 to 6.5.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、1次側、2次側流体の出入口とプレート外周縁部との幅方向の長さがプレートの幅(W)に対して3〜6%であることを特徴とする。   The plate heat exchanger 20 is a plate heat exchanger having a passage hole serving as a fluid inlet / outlet at four corners, and a plurality of plates provided with fluid inflow pipes and outflow pipes. The length in the width direction of the inlet / outlet of the side and secondary fluid and the outer peripheral edge of the plate is 3 to 6% with respect to the width (W) of the plate.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、1次側、2次側流体の出入口とプレート外周縁部との幅方向の長さが3〜5.6mmであることを特徴とする。   The plate heat exchanger 20 is a plate heat exchanger having a passage hole serving as a fluid inlet / outlet at four corners, and a plurality of plates provided with fluid inflow pipes and outflow pipes. The length in the width direction between the inlet / outlet of the side and secondary fluid and the outer peripheral edge of the plate is 3 to 5.6 mm.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、1次側流体と2次側流体の出入口径を異寸法としたことを特徴とする。   The plate heat exchanger 20 is a plate heat exchanger having a passage hole serving as a fluid inlet / outlet at four corners, and a plurality of plates provided with fluid inflow pipes and outflow pipes. The inlet and outlet diameters of the side fluid and the secondary fluid are different dimensions.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、1次側流体の出入口径の中心と2次側流体の出入口径の中心をずらし、プレート外周縁部へ流体の出入口を近づけたことを特徴とする。   The plate heat exchanger 20 is a plate heat exchanger having a passage hole serving as a fluid inlet / outlet at four corners, and a plurality of plates provided with fluid inflow pipes and outflow pipes. The center of the inlet / outlet diameter of the side fluid is shifted from the center of the inlet / outlet diameter of the secondary fluid, and the inlet / outlet of the fluid is brought closer to the outer peripheral edge of the plate.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、波の折り返しにより形成される山部をプレートの中心から徐々にずらしながら配置し、波の端点を流入出口に近づけたことを特徴とする。   The plate-type heat exchanger 20 has passage holes serving as fluid inlets and outlets at four corners, and is a plate-type heat exchanger formed by laminating a plurality of plates provided with a fluid inflow pipe and an outflow pipe. The crests formed by folding are gradually shifted from the center of the plate, and the end points of the waves are brought close to the inflow / outlet.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、1次側流体の出入口径の中心と2次側流体の出入口径の中心をずらし、2次側流体の処理流量による必要開口面積を維持したまま円や多角形等の異形の組合せにしたことを特徴とする。   The plate heat exchanger 20 is a plate heat exchanger having a passage hole serving as a fluid inlet / outlet at four corners, and a plurality of plates provided with fluid inflow pipes and outflow pipes. The center of the inlet / outlet diameter of the side fluid is shifted from the center of the inlet / outlet diameter of the secondary fluid, and the combination of irregular shapes such as circles and polygons is maintained while maintaining the required opening area according to the processing flow rate of the secondary fluid. To do.

また、プレート式熱交換器20は、四隅に流体の出入口となる通路孔があり、流体の流入管、流出管を設けた複数枚のプレートを積層してなるプレート式熱交換器において、2次側流体の処理流量による必要開口面積を維持したまま円や多角形等の同形の組合せにしたことを特徴とする。   Further, the plate heat exchanger 20 is a plate heat exchanger in which a plurality of plates having a passage hole serving as a fluid inlet / outlet at four corners and provided with an inflow pipe and an outflow pipe for fluid are stacked. It is characterized by the combination of the same shape such as a circle or a polygon while maintaining the necessary opening area depending on the processing flow rate of the side fluid.

1,4 補強用サイドプレート、2 第2プレート、3 第1プレート、5 第1流入孔、6 第1流出孔、7 第2流入孔、8 第2流出孔、9 凹凸、10 助走領域、11 シール部、12 折り返し点、13 両端部、14 短手方向の中心線、15 折り返し点12を結んだ線、20 プレート式熱交換器、21 圧縮機、22 膨張弁、23 熱交換器、24 給湯器、25 暖房機、26 冷媒路、27 水路、28 熱交換システム。   1, 4 Reinforcing side plate, 2nd plate, 3rd plate, 5th first inflow hole, 6th first outflow hole, 7th second inflowhole, 8th outflow hole, 9 unevenness, 10 run-up area, 11 Sealing part, 12 Folding point, 13 Both ends, 14 Center line in short direction, 15 Line connecting folding point 12, 20 Plate heat exchanger, 21 Compressor, 22 Expansion valve, 23 Heat exchanger, 24 Hot water supply 25, heater, 26 refrigerant path, 27 water path, 28 heat exchange system.

Claims (13)

複数のプレートが積層されて形成されたプレート式熱交換器であり、
前記複数のプレートの各プレートには、
長手方向のいずれかの端部側に、第1流体の入口となる第1流入孔と、
前記第1流入孔とは逆の長手方向の端部側に、前記第1流体の出口となる第1流出孔と、
長手方向のいずれかの端部側に、第2流体の入口となる第2流入孔と、
前記第2流入孔とは逆の長手方向の端部側に、前記第2流体の出口となる第2流出孔とが設けられ、
前記各プレートは、隣に積層されたプレートとの間に、前記第1流入孔から流入した前記第1流体を短手方向へ広げて前記第1流出孔へ流す第1流路と、前記第2流入孔から流入した前記第2流体を前記短手方向へ広げて前記第2流出孔へ流す第2流路との一方の流路を形成して、前記第1流路を流れる前記第1流体と前記第2流路を流れる前記第2流体とを熱交換させ、
前記各プレートは、前記長手方向の長さが前記短手方向の長さの4倍以上の長さである
ことを特徴とするプレート式熱交換器。
It is a plate heat exchanger formed by laminating a plurality of plates,
Each plate of the plurality of plates includes
A first inflow hole serving as an inlet of the first fluid on either end side in the longitudinal direction;
A first outflow hole serving as an outlet of the first fluid on an end side in a longitudinal direction opposite to the first inflow hole;
A second inflow hole serving as an inlet for the second fluid on either end side in the longitudinal direction;
A second outflow hole serving as an outlet of the second fluid is provided on the end side in the longitudinal direction opposite to the second inflow hole;
Each of the plates has a first flow path that spreads the first fluid flowing in from the first inflow hole in a short direction and flows to the first outflow hole between the plates stacked next to each other, and the first The first fluid flowing in the first flow path is formed by forming one flow path with a second flow path that spreads the second fluid flowing in from the inflow hole in the short direction and flows to the second outflow hole. Heat exchange between the fluid and the second fluid flowing through the second flow path;
Each plate has a length in the longitudinal direction that is at least four times the length in the lateral direction.
前記第1流入孔から前記第1流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第1流出孔から前記第1流出孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流入孔から前記第2流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流出孔から前記第2流出孔に近い方の前記短手方向のプレート端部までの長さとは、いずれも前記短手方向の長さの6%以下の長さである
ことを特徴とする請求項1に記載のプレート式熱交換器。
The length from the first inflow hole to the plate end in the short direction closer to the first inflow hole, and the plate end in the short direction closer to the first outflow hole from the first outflow hole A length from the second inflow hole to the plate end in the short direction closer to the second inflow hole, and a length from the second outflow hole to the second outflow hole. The plate-type heat exchanger according to claim 1, wherein the length to the plate end in the short direction is 6% or less of the length in the short direction.
前記第1流入孔から前記第1流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第1流出孔から前記第1流出孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流入孔から前記第2流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流出孔から前記第2流出孔に近い方の前記短手方向のプレート端部までの長さとは、いずれも5.6mm以下の長さである
ことを特徴とする請求項1又は2に記載のプレート式熱交換器。
The length from the first inflow hole to the plate end in the short direction closer to the first inflow hole, and the plate end in the short direction closer to the first outflow hole from the first outflow hole A length from the second inflow hole to the plate end in the short direction closer to the second inflow hole, and a length from the second outflow hole to the second outflow hole. The plate-type heat exchanger according to claim 1 or 2, wherein the length to the plate end portion in the short direction is 5.6 mm or less.
前記第1流入孔の開口面積と前記第1流出孔の開口面積とは、いずれも前記第2流入孔の開口面積と前記第2流出孔の開口面積とのどちらよりも小さい
ことを特徴とする請求項1から3までのいずれかに記載のプレート式熱交換器。
The opening area of the first inflow hole and the opening area of the first outflow hole are both smaller than both the opening area of the second inflow hole and the opening area of the second outflow hole. The plate heat exchanger according to any one of claims 1 to 3.
前記第1流入孔の中心と前記第1流出孔の中心とが、前記第2流入孔の中心と前記第2流出孔の中心とよりもプレート端部寄りに設けられた
ことを特徴とする請求項4に記載のプレート式熱交換器。
The center of the first inflow hole and the center of the first outflow hole are provided closer to the end of the plate than the center of the second inflow hole and the center of the second outflow hole. Item 5. The plate heat exchanger according to Item 4.
前記プレート式熱交換器は、第1プレートと第2プレートとが交互に積層され、
前記第1流入孔と前記第2流出孔とは、前記長手方向の同一の端部側に設けられ、
前記第1プレートは、前記第1流入孔から流入した流体が前記第2流出孔へ流れるのを防ぐシール部であって、前記複数のプレートが積層された積層方向に突出した凸状のシール部が、前記第1流入孔と前記第2流出孔とが設けられた前記長手方向の端部側から逆側の前記長手方向の端部側へ向かって徐々に前記短手方向の前記第2流出孔側の端部に近づくように設けられた
ことを特徴とする請求項4又は5に記載のプレート式熱交換器。
In the plate heat exchanger, the first plate and the second plate are alternately laminated,
The first inflow hole and the second outflow hole are provided on the same end side in the longitudinal direction,
The first plate is a seal portion that prevents fluid flowing in from the first inflow hole from flowing into the second outflow hole, and is a convex seal portion protruding in the stacking direction in which the plurality of plates are stacked. The second outflow gradually in the short direction from the end in the longitudinal direction where the first inflow hole and the second outflow hole are provided toward the end in the longitudinal direction on the opposite side. The plate heat exchanger according to claim 4 or 5, wherein the plate heat exchanger is provided so as to approach an end portion on a hole side.
前記各プレートには、
前記短手方向の両端側に両端部を有し、両端部から前記長手方向にずれた位置に折り返し点を有することによりV字型に形成された凹部と凸部とが前記長手方向に複数配列され、
前記第1流入孔と前記第1流出孔との少なくともいずれかの孔の付近では、前記孔に近づくほど前記折り返し点が前記短手方向の中心から前記孔寄りに前記V字型の凹部と凸部とが形成された
ことを特徴とする請求項4から6までのいずれかに記載のプレート式熱交換器。
Each plate includes
A plurality of concave and convex portions formed in a V shape by having both end portions at both ends in the short direction and having a turning point at a position shifted from the both end portions in the longitudinal direction are arranged in the longitudinal direction. And
In the vicinity of at least one of the first inflow hole and the first outflow hole, the return point becomes closer to the hole from the center in the short direction as the hole is closer to the hole. The plate-type heat exchanger according to any one of claims 4 to 6, wherein a portion is formed.
前記複数のプレートは、前記第1流入孔が重なるように積層され、積層方向の一方側に積層されたプレートの前記第1流入孔から他方側に積層されたプレートの前記第1流入孔へ順に前記第1流体が流入し、
前記第1流入孔は、前記第1流体が流入する前記一方側に積層されたプレートほど径が小さい
ことを特徴とする請求項4から7までのいずれかに記載のプレート式熱交換器。
The plurality of plates are stacked such that the first inflow holes overlap with each other, and sequentially from the first inflow holes of the plates stacked on one side in the stacking direction to the first inflow holes of the plates stacked on the other side. The first fluid flows in;
The plate type heat exchanger according to any one of claims 4 to 7, wherein the first inflow hole has a smaller diameter as the plate stacked on the one side into which the first fluid flows.
前記第1流入孔と前記第2流出孔とは、前記長手方向の同一の端部側に設けられるとともに、前記第2流入孔と前記第1流出孔とは、前記長手方向の同一の端部側に設けられ、
前記第1流入孔の形状と前記第2流出孔の形状とは異なる形状であり、前記第2流入孔の形状と前記第1流出孔の形状とは異なる形状である
ことを特徴とする請求項1から8までのいずれかに記載のプレート式熱交換器。
The first inflow hole and the second outflow hole are provided on the same end side in the longitudinal direction, and the second inflow hole and the first outflow hole are the same end in the longitudinal direction. Provided on the side,
The shape of the first inflow hole is different from the shape of the second outflow hole, and the shape of the second inflow hole is different from the shape of the first outflow hole. The plate type heat exchanger in any one of 1-8.
前記第1流入孔と前記第2流出孔とは、1つの円又は1つの長円又は1つの多角形の孔を2つに分割して形成され、
前記第2流入孔と前記第1流出孔とは、1つの円又は1つの長円又は1つの多角形の孔を2つに分割して形成された
ことを特徴とする請求項9に記載のプレート式熱交換器。
The first inflow hole and the second outflow hole are formed by dividing one circle or one oval or one polygonal hole into two,
10. The second inflow hole and the first outflow hole are formed by dividing one circle, one ellipse, or one polygonal hole into two. Plate heat exchanger.
請求項1から10までのいずれかに記載のプレート式熱交換器
を備えることを特徴とする冷凍空調装置。
A refrigeration air conditioner comprising the plate heat exchanger according to any one of claims 1 to 10.
複数のプレートが積層されて形成されたプレート式熱交換器であり、
前記複数のプレートの各プレートには、
長手方向の端部側に、第1流体の入口となる第1流入孔と、
前記第1流入孔とは逆の前記長手方向の端部側に、前記第1流体の出口となる第1流出孔と、
長手方向の端部側に、第2流体の入口となる第2流入孔と、
前記第2流入孔とは逆の前記長手方向の端部側に、前記第2流体の出口となる第2流出孔とが設けられ、
前記各プレートは、隣に積層されたプレートとの間に、前記第1流入孔から流入した前記第1流体を短手方向へ広げて前記第1流出孔へ流す第1流路と、前記第2流入孔流入した前記第2流体を前記短手方向へ広げて前記第2流出孔へ流す第2流路との一方の流路を形成して、前記第1流路を流れる前記第1流体と前記第2流路を流れる前記第2流体とを熱交換させ、
前記第1流入孔から前記第1流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第1流出孔から前記第1流出孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流入孔から前記第2流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流出孔から前記第2流出孔に近い方の前記短手方向のプレート端部までの長さとは、いずれも前記短手方向の長さの6%以下の長さである
ことを特徴とするプレート式熱交換器。
It is a plate heat exchanger formed by laminating a plurality of plates,
Each plate of the plurality of plates includes
A first inflow hole serving as an inlet of the first fluid on an end side in the longitudinal direction;
A first outflow hole serving as an outlet of the first fluid on an end side in the longitudinal direction opposite to the first inflow hole;
A second inflow hole serving as an inlet for the second fluid on the end in the longitudinal direction;
A second outflow hole serving as an outlet of the second fluid is provided on the end side in the longitudinal direction opposite to the second inflow hole,
Each of the plates has a first flow path that spreads the first fluid flowing in from the first inflow hole in a short direction and flows to the first outflow hole between the plates stacked next to each other, and the first 2 The first fluid that flows through the first flow path by forming one flow path of the second flow path that flows into the second outflow hole by spreading the second fluid that has flowed into the inflow hole in the short direction. Heat exchange with the second fluid flowing through the second flow path,
The length from the first inflow hole to the plate end in the short direction closer to the first inflow hole, and the plate end in the short direction closer to the first outflow hole from the first outflow hole A length from the second inflow hole to the plate end in the short direction closer to the second inflow hole, and a length from the second outflow hole to the second outflow hole. The plate-type heat exchanger is characterized in that the length to the plate end in the short direction is 6% or less of the length in the short direction.
複数のプレートが積層されて形成されたプレート式熱交換器であり、
前記複数のプレートの各プレートには、
長手方向の端部側に、第1流体の入口となる第1流入孔と、
前記第1流入孔とは逆の前記長手方向の端部側に、前記第1流体の出口となる第1流出孔と、
長手方向の端部側に、第2流体の入口となる第2流入孔と、
前記第2流入孔とは逆の前記長手方向の端部側に、前記第2流体の出口となる第2流出孔とが設けられ、
前記各プレートは、隣に積層されたプレートとの間に、前記第1流入孔から流入した前記第1流体を短手方向へ広げて前記第1流出孔へ流す第1流路と、前記第2流入孔流入した前記第2流体を前記短手方向へ広げて前記第2流出孔へ流す第2流路との一方の流路を形成して、前記第1流路を流れる前記第1流体と前記第2流路を流れる前記第2流体とを熱交換させ、
前記第1流入孔から前記第1流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第1流出孔から前記第1流出孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流入孔から前記第2流入孔に近い方の前記短手方向のプレート端部までの長さと、前記第2流出孔から前記第2流出孔に近い方の前記短手方向のプレート端部までの長さとは、いずれも5.6mm以下の長さである
ことを特徴とするプレート式熱交換器。
It is a plate heat exchanger formed by laminating a plurality of plates,
Each plate of the plurality of plates includes
A first inflow hole serving as an inlet of the first fluid on an end side in the longitudinal direction;
A first outflow hole serving as an outlet of the first fluid on an end side in the longitudinal direction opposite to the first inflow hole;
A second inflow hole serving as an inlet for the second fluid on the end in the longitudinal direction;
A second outflow hole serving as an outlet of the second fluid is provided on the end side in the longitudinal direction opposite to the second inflow hole,
Each of the plates has a first flow path that spreads the first fluid flowing in from the first inflow hole in a short direction and flows to the first outflow hole between the plates stacked next to each other, and the first 2 The first fluid that flows through the first flow path by forming one flow path of the second flow path that flows into the second outflow hole by spreading the second fluid that has flowed into the inflow hole in the short direction. Heat exchange with the second fluid flowing through the second flow path,
The length from the first inflow hole to the plate end in the short direction closer to the first inflow hole, and the plate end in the short direction closer to the first outflow hole from the first outflow hole A length from the second inflow hole to the plate end in the short direction closer to the second inflow hole, and a length from the second outflow hole to the second outflow hole. A plate type heat exchanger characterized in that the length to the plate end in the short direction is 5.6 mm or less.
JP2009065826A 2009-03-18 2009-03-18 Plate heat exchanger and refrigeration air conditioner Active JP5106453B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009065826A JP5106453B2 (en) 2009-03-18 2009-03-18 Plate heat exchanger and refrigeration air conditioner
US13/256,494 US20120012291A1 (en) 2009-03-18 2009-12-21 Plate heat exchanger and refrigeration air conditioner
CN200980158110.8A CN102356295B (en) 2009-03-18 2009-12-21 Heat-exchangers of the plate type and refrigerating air-conditioning
EP09841919.5A EP2410278B1 (en) 2009-03-18 2009-12-21 Plate-type heat exchanger and refrigerating air-conditioning device
PCT/JP2009/071230 WO2010106717A1 (en) 2009-03-18 2009-12-21 Plate-type heat exchanger and refrigerating air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009065826A JP5106453B2 (en) 2009-03-18 2009-03-18 Plate heat exchanger and refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2010216754A true JP2010216754A (en) 2010-09-30
JP5106453B2 JP5106453B2 (en) 2012-12-26

Family

ID=42739383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009065826A Active JP5106453B2 (en) 2009-03-18 2009-03-18 Plate heat exchanger and refrigeration air conditioner

Country Status (5)

Country Link
US (1) US20120012291A1 (en)
EP (1) EP2410278B1 (en)
JP (1) JP5106453B2 (en)
CN (1) CN102356295B (en)
WO (1) WO2010106717A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132606A (en) * 2010-12-21 2012-07-12 Mahle Filter Systems Japan Corp Plate-stacked heat exchanger
JP2013019664A (en) * 2011-07-11 2013-01-31 Palo Alto Research Center Inc Plate-based adsorption chiller subassembly
EP2700894A1 (en) * 2011-04-18 2014-02-26 Mitsubishi Electric Corporation Plate-type heat exchanger, and heat pump device
JP2014040963A (en) * 2012-08-22 2014-03-06 Daikin Ind Ltd Water heat exchanger
JP2017032195A (en) * 2015-07-31 2017-02-09 株式会社日阪製作所 Plate type heat exchanger
KR102073625B1 (en) * 2018-09-18 2020-02-05 두산중공업 주식회사 Printed circuit heat exchanger and heat exchanging device comprising it
KR20200034316A (en) * 2018-09-21 2020-03-31 두산중공업 주식회사 Printed circuit heat exchanger and heat exchanging device comprising it
US11333448B2 (en) 2018-09-18 2022-05-17 Doosan Heavy Industries & Construction Co., Ltd. Printed circuit heat exchanger and heat exchange device including the same

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014067674A1 (en) * 2012-10-30 2014-05-08 Alfa Laval Corporate Ab Gasket and assembly
SI2728293T1 (en) * 2012-10-30 2017-02-28 Alfa Laval Corporate Ab Heat exchanger plate and plate heat exchanger comprising such a heat exchanger plate
DE102012224353A1 (en) * 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Heat exchanger
KR20140083335A (en) * 2012-12-26 2014-07-04 현대자동차주식회사 Heat exchanger with thermoelectric element
US9903663B2 (en) 2013-11-12 2018-02-27 Trane International Inc. Brazed heat exchanger with fluid flow to serially exchange heat with different refrigerant circuits
CN104748592B (en) * 2013-11-12 2020-10-30 特灵国际有限公司 Brazed heat exchanger with fluid flow to heat exchange in series with different refrigerant circuits
CN104165535B (en) * 2014-08-29 2016-02-10 深圳绿色云图科技有限公司 Heat-exchangers of the plate type
EP3193102A4 (en) * 2014-09-12 2017-11-15 Panasonic Intellectual Property Management Co., Ltd. Heat exchange device
DE102015010289A1 (en) * 2015-08-08 2017-02-09 Modine Manufacturing Company Plate heat exchanger
EP3598053B1 (en) * 2017-04-27 2022-05-11 Mitsubishi Electric Corporation Plate heat exchanger
CN107966057A (en) * 2017-12-26 2018-04-27 博耐尔汽车电气系统有限公司 A kind of plate heat exchanger and its application method
DK180057B1 (en) * 2018-05-30 2020-02-26 Danfoss A/S A plate heat exchanger for a desalination system
FR3099563B1 (en) * 2019-08-01 2021-07-30 Air Liquide Heat exchanger with passage configuration and improved heat exchange structures
US11209221B2 (en) 2020-04-21 2021-12-28 Raytheon Technologies Corporation Modified shaped heat exchanger inlets/outlets
EP4365532A1 (en) * 2022-11-01 2024-05-08 Alfa Laval Corporate AB A heat exchanger plate, and a plate heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571886A (en) * 1991-09-13 1993-03-23 Hisaka Works Ltd Plate type heat exchanger
JPH07508581A (en) * 1992-06-12 1995-09-21 アルファ−ラヴァル サーマル アーベー Plate heat exchanger for two liquids with different flow rates
JPH0989482A (en) * 1995-09-26 1997-04-04 Hisaka Works Ltd Plate-type heat exchanger
JPH11248392A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate type heat exchanger
JP2000241087A (en) * 1999-02-19 2000-09-08 Sanyo Electric Co Ltd Plate heat exchanger
JP2005326135A (en) * 2004-04-12 2005-11-24 Showa Denko Kk Heat exchanger
JP2008516181A (en) * 2004-10-07 2008-05-15 ブルックス オートメーション インコーポレイテッド High efficiency heat exchanger for refrigeration process
WO2009013801A1 (en) * 2007-07-23 2009-01-29 Tokyo Roki Co. Ltd. Plate laminate type heat exchanger

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE466171B (en) * 1990-05-08 1992-01-07 Alfa Laval Thermal Ab PLATTERS WORKS AATMONISONING A PLATHER WAS ASTMINSTERING A DIVISION WAS A DIVISIONALLY DIVISED BY A FAULTY OF A PORTABLE WORTH PREPARING ACHIEVENING,
US5525311A (en) * 1994-05-02 1996-06-11 Uop Process and apparatus for controlling reaction temperatures
CN1053040C (en) * 1993-10-06 2000-05-31 艾尔费-拉瓦尔热能公司 Plate heat exchanger for fluids of different flow
JP3670725B2 (en) 1995-09-06 2005-07-13 株式会社日阪製作所 Plate heat exchanger
DE10035939A1 (en) * 2000-07-21 2002-02-07 Bosch Gmbh Robert Heat transfer device
NO321668B1 (en) * 2003-04-11 2006-06-19 Norsk Hydro As Device for distributing two fluids in and out of the channels in a monolithic structure as well as methods and equipment for transferring mass and / or heat between two fluids
US7343965B2 (en) * 2004-01-20 2008-03-18 Modine Manufacturing Company Brazed plate high pressure heat exchanger
US20070169916A1 (en) * 2006-01-20 2007-07-26 Wand Steven M Double-wall, vented heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571886A (en) * 1991-09-13 1993-03-23 Hisaka Works Ltd Plate type heat exchanger
JPH07508581A (en) * 1992-06-12 1995-09-21 アルファ−ラヴァル サーマル アーベー Plate heat exchanger for two liquids with different flow rates
JPH0989482A (en) * 1995-09-26 1997-04-04 Hisaka Works Ltd Plate-type heat exchanger
JPH11248392A (en) * 1998-02-27 1999-09-14 Daikin Ind Ltd Plate type heat exchanger
JP2000241087A (en) * 1999-02-19 2000-09-08 Sanyo Electric Co Ltd Plate heat exchanger
JP2005326135A (en) * 2004-04-12 2005-11-24 Showa Denko Kk Heat exchanger
JP2008516181A (en) * 2004-10-07 2008-05-15 ブルックス オートメーション インコーポレイテッド High efficiency heat exchanger for refrigeration process
WO2009013801A1 (en) * 2007-07-23 2009-01-29 Tokyo Roki Co. Ltd. Plate laminate type heat exchanger

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012132606A (en) * 2010-12-21 2012-07-12 Mahle Filter Systems Japan Corp Plate-stacked heat exchanger
EP2700894A1 (en) * 2011-04-18 2014-02-26 Mitsubishi Electric Corporation Plate-type heat exchanger, and heat pump device
EP2700894A4 (en) * 2011-04-18 2014-12-31 Mitsubishi Electric Corp Plate-type heat exchanger, and heat pump device
KR101553759B1 (en) 2011-04-18 2015-09-16 미쓰비시덴키 가부시키가이샤 Plate-type heat exchanger, and heat pump device
US9448013B2 (en) 2011-04-18 2016-09-20 Mitsubishi Electric Corporation Plate heat exchanger and heat pump apparatus
JP2013019664A (en) * 2011-07-11 2013-01-31 Palo Alto Research Center Inc Plate-based adsorption chiller subassembly
JP2014040963A (en) * 2012-08-22 2014-03-06 Daikin Ind Ltd Water heat exchanger
JP2017032195A (en) * 2015-07-31 2017-02-09 株式会社日阪製作所 Plate type heat exchanger
KR102073625B1 (en) * 2018-09-18 2020-02-05 두산중공업 주식회사 Printed circuit heat exchanger and heat exchanging device comprising it
US11333448B2 (en) 2018-09-18 2022-05-17 Doosan Heavy Industries & Construction Co., Ltd. Printed circuit heat exchanger and heat exchange device including the same
KR20200034316A (en) * 2018-09-21 2020-03-31 두산중공업 주식회사 Printed circuit heat exchanger and heat exchanging device comprising it
KR102146101B1 (en) * 2018-09-21 2020-08-20 두산중공업 주식회사 Printed circuit heat exchanger and heat exchanging device comprising it

Also Published As

Publication number Publication date
CN102356295A (en) 2012-02-15
EP2410278A4 (en) 2013-01-09
JP5106453B2 (en) 2012-12-26
EP2410278B1 (en) 2014-12-10
US20120012291A1 (en) 2012-01-19
CN102356295B (en) 2015-10-14
WO2010106717A1 (en) 2010-09-23
EP2410278A1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5106453B2 (en) Plate heat exchanger and refrigeration air conditioner
EP3415854B1 (en) Plate-type heat exchanger and heat-pump-type heating and hot-water supply system equipped with same
US10571205B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
EP1714100B1 (en) Method of forming a brazed plate fin heat exchanger
WO2012176336A1 (en) Plate heater and refrigeration cycle device
WO2013076751A1 (en) Plate-type heat exchanger and refrigeration cycle device using same
EP3062037B1 (en) Heat exchanger and refrigeration cycle device using said heat exchanger
WO2011062118A1 (en) Plate-type heat exchanger and heat pump device
CN106642826A (en) Heat exchanger
JP5295330B2 (en) Plate heat exchanger and refrigeration air conditioner
JP2011127820A (en) Plate type heat exchanger and heat pump device
JP2009121708A (en) Heat exchanger
JP5538344B2 (en) Plate heat exchanger and heat pump device
JP5513738B2 (en) Heat exchanger and heat pump water heater
JP2009092288A (en) Heat exchanger
JP4879292B2 (en) Plate heat exchanger and refrigeration air conditioner
JP6631664B2 (en) Heat pump equipment
KR20190075679A (en) shell in a shell and plate heat exchanger, and shell and plate heat exchanger having the same
KR101543522B1 (en) Flate tube for heat exchanger and heat exchanger with the same
JP2013088045A (en) Heat exchanger and heat pump type water heater using the same
JP2009052874A (en) Plate fin type heat exchanger
KR20130060479A (en) Bellows type heat exchanger
KR20130000896U (en) Evaporator for equalizing flow pattern of refrigerant
JPWO2013076751A1 (en) Plate heat exchanger and refrigeration cycle apparatus using the same
JP2009068793A (en) Heat exchanger

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120711

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121002

R150 Certificate of patent or registration of utility model

Ref document number: 5106453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250