JP2019056157A - Method for producing sponge titanium - Google Patents
Method for producing sponge titanium Download PDFInfo
- Publication number
- JP2019056157A JP2019056157A JP2017182116A JP2017182116A JP2019056157A JP 2019056157 A JP2019056157 A JP 2019056157A JP 2017182116 A JP2017182116 A JP 2017182116A JP 2017182116 A JP2017182116 A JP 2017182116A JP 2019056157 A JP2019056157 A JP 2019056157A
- Authority
- JP
- Japan
- Prior art keywords
- titanium tetrachloride
- filtered
- temperature
- purified
- distilled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 73
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 52
- 239000010936 titanium Substances 0.000 title claims abstract description 52
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 41
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims abstract description 162
- 238000001914 filtration Methods 0.000 claims abstract description 85
- 238000001816 cooling Methods 0.000 claims abstract description 76
- 238000004821 distillation Methods 0.000 claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 28
- 238000000926 separation method Methods 0.000 claims abstract description 25
- 230000009467 reduction Effects 0.000 claims abstract description 20
- 239000000919 ceramic Substances 0.000 claims abstract description 6
- 239000004033 plastic Substances 0.000 claims abstract description 6
- 229920003023 plastic Polymers 0.000 claims abstract description 6
- 238000005660 chlorination reaction Methods 0.000 claims abstract description 4
- 239000000706 filtrate Substances 0.000 claims description 37
- 239000007788 liquid Substances 0.000 claims description 33
- 230000007246 mechanism Effects 0.000 claims description 22
- 239000012535 impurity Substances 0.000 abstract description 33
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract description 32
- 229910052726 zirconium Inorganic materials 0.000 abstract description 32
- 239000000463 material Substances 0.000 abstract description 20
- 230000008569 process Effects 0.000 abstract description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 abstract 1
- 229910052731 fluorine Inorganic materials 0.000 abstract 1
- 239000011737 fluorine Substances 0.000 abstract 1
- 239000011347 resin Substances 0.000 abstract 1
- 229920005989 resin Polymers 0.000 abstract 1
- 238000006722 reduction reaction Methods 0.000 description 39
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 229910052749 magnesium Inorganic materials 0.000 description 8
- 239000011777 magnesium Substances 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 6
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 238000005868 electrolysis reaction Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910001629 magnesium chloride Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 3
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 150000003755 zirconium compounds Chemical class 0.000 description 2
- KPZGRMZPZLOPBS-UHFFFAOYSA-N 1,3-dichloro-2,2-bis(chloromethyl)propane Chemical compound ClCC(CCl)(CCl)CCl KPZGRMZPZLOPBS-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052863 mullite Inorganic materials 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- NMJKIRUDPFBRHW-UHFFFAOYSA-N titanium Chemical compound [Ti].[Ti] NMJKIRUDPFBRHW-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
本発明は、四塩化チタンを金属マグネシウムにより還元してスポンジチタンを製造するスポンジチタンの製造方法に関する。 The present invention relates to a method for producing sponge titanium, in which titanium tetrachloride is reduced with metallic magnesium to produce sponge titanium.
従来、金属チタンは、工業的にはクロール法によって製造されたスポンジチタンをもとに製造されている。そして、近年、半導体デバイス向けの高純度チタンの需要が増加しており、これに伴って高純度のスポンジチタンを安価に製造することが求められている。 Conventionally, titanium metal is industrially manufactured based on sponge titanium manufactured by a crawl method. In recent years, demand for high-purity titanium for semiconductor devices has increased, and accordingly, it has been demanded to produce high-purity sponge titanium at low cost.
このクロール法によるスポンジチタン製造工程は、塩化蒸留工程、還元分離工程、破砕工程及び電解工程の四工程に大別される。 The titanium sponge production process by the crawl method is roughly divided into four processes, ie, a chlorodistillation process, a reduction separation process, a crushing process, and an electrolysis process.
先ず、塩化蒸留工程で、流動塩化炉内で、酸化チタンを含有する鉱石とコークスと塩素ガスとを、流動状態で反応させて、粗四塩化チタンを製造し、次いで、蒸留を行い、還元分離工程の原料となる精製四塩化チタンを得る。次いで、還元分離工程で、精製四塩化チタンを金属マグネシウムで還元して、スポンジチタン塊を生成させ、次いで、真空分離により、副生する塩化マグネシウム及び未反応マグネシウムを除去して、スポンジチタン塊を得る。次いで、破砕工程で、スポンジチタン塊を切削及び粉砕して、粒状のスポンジチタンを得る。 First, in a chlorinated distillation step, ore containing titanium oxide, coke and chlorine gas are reacted in a fluidized state in a fluid chlorination furnace to produce crude titanium tetrachloride, followed by distillation and reduction separation. Purified titanium tetrachloride is obtained as a raw material for the process. Next, in the reduction and separation step, the purified titanium tetrachloride is reduced with magnesium metal to form a sponge titanium lump, and then by-product magnesium chloride and unreacted magnesium are removed by vacuum separation to form a sponge titanium lump. obtain. Next, in the crushing step, the titanium sponge lump is cut and pulverized to obtain granular sponge titanium.
そして、スポンジチタンに含まれる不純物の起源は、還元反応の原料となる四塩化チタン、還元反応に用いられる金属マグネシウム、還元反応容器の材質である。そのため、還元反応の原料となる四塩化チタン中の不純物量を低減すれば、スポンジチタン中の不純物を低減する一つの方策となる。 And the origin of the impurity contained in sponge titanium is the titanium tetrachloride used as the raw material of a reduction reaction, the metal magnesium used for a reduction reaction, and the material of a reduction reaction container. Therefore, reducing the amount of impurities in titanium tetrachloride, which is a raw material for the reduction reaction, is one measure for reducing impurities in sponge titanium.
そして、従来より、クロール法によるスポンジチタンの製造においては、スポンジチタン中の不純物を低減するために、四塩化チタンの蒸留精度を上げることにより、蒸留精製四塩化チタン中の不純物量を低減することが行われている(例えば、特許文献1)。 And conventionally, in the production of sponge titanium by the crawl method, in order to reduce the impurities in the sponge titanium, the amount of impurities in the distilled and purified titanium tetrachloride is reduced by increasing the distillation accuracy of titanium tetrachloride. (For example, Patent Document 1).
しかしながら、特許文献1のような、四塩化チタンの蒸留精製による不純物の低減には限界がある。四塩化チタンを起源とするスポンジチタン中の不純物のうち、ジルコニウムは、特に除去が困難な成分であり、数回の蒸留工程を経てもなお、微量のジルコニウムが四塩化チタン中に混在してしまう。 However, there is a limit to the reduction of impurities by distillation purification of titanium tetrachloride as in Patent Document 1. Of the impurities in titanium titanium that originate from titanium tetrachloride, zirconium is a particularly difficult component to remove, and even after several distillation steps, a small amount of zirconium is mixed in the titanium tetrachloride. .
そして、蒸留塔の能力強化には莫大なコストを要すため、蒸留による四塩化チタン中のジルコニウムの更なる低減には、コストがかかるという問題があった。 Further, enormous costs are required to enhance the capacity of the distillation column, and thus there is a problem that it is costly to further reduce zirconium in titanium tetrachloride by distillation.
従って、本発明の目的は、安価且つ簡便に四塩化チタンを起源とするジルコニウム不純物を低減することができるスポンジチタンの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a method for producing titanium sponge, which can reduce zirconium impurities originating from titanium tetrachloride easily and inexpensively.
上記課題を解決は、以下に示す本発明により解決される。
すなわち、本発明(1)は、クロール法によりスポンジチタンを製造するスポンジチタンの製造方法において、塩化蒸留工程で蒸留を行い得られる蒸留精製四塩化チタンを、−10〜25℃の温度範囲に冷却する冷却操作を行い、次いで、冷却後の蒸留精製四塩化チタンを、−10〜25℃の温度範囲で、公称ろ過精度が0.01〜1.0μmの汎用プラスチック、フッ素樹脂又はセラミック製のろ過材を用いてろ過し、ろ過精製四塩化チタンを得るろ過操作を行い、得られた該ろ過精製四塩化チタンを還元分離工程に供給することを特徴とするスポンジチタンの製造方法を提供するものである。
The solution to the above problem is solved by the present invention described below.
That is, the present invention (1) is a method for producing titanium sponge by a crawl method, and in the method for producing titanium sponge, distilled purified titanium tetrachloride obtained by distillation in a chlorodistillation step is cooled to a temperature range of −10 to 25 ° C. Then, the purified and purified titanium tetrachloride after cooling is filtered in a temperature range of −10 to 25 ° C. and made of general-purpose plastic, fluororesin or ceramic having a nominal filtration accuracy of 0.01 to 1.0 μm. The present invention provides a method for producing sponge titanium, which is filtered using a material, filtered to obtain filtered and purified titanium tetrachloride, and the obtained filtered and purified titanium tetrachloride is supplied to the reduction and separation step. is there.
また、本発明(2)は、前記ろ過操作の温度が、−10〜15℃であることを特徴とする(1)のスポンジチタンの製造方法を提供するものである。 Moreover, this invention (2) provides the manufacturing method of the sponge titanium of (1) characterized by the temperature of the said filtration operation being -10-15 degreeC.
また、本発明(3)は、前記ろ過操作において、前記蒸留精製四塩化チタンが流入する被処理液受器と、該被ろ過液受器内に設置されている前記ろ過材と、該被ろ過液受器の周囲に設置されている熱交換部と、を有し、該被ろ過液受器内且つ前記ろ過材の被ろ過液側に前記蒸留精製四塩化チタンを流入させるための被ろ過液流入管と、前記ろ過材の処理液側から前記ろ過精製四塩化チタンを流出させるためのろ過液流出管と、が付設されている温度保持機構付きろ過器を用い、該熱交換部で熱交換することにより、該被ろ過液受器内且つ前記ろ過材の被ろ過液側の前記蒸留精製四塩化チタンの温度を、前記ろ過操作を行う温度で一定に保ちつつ、前記蒸留精製四塩化チタンのろ過を行うことを特徴とする(1)又は(2)いずれかのスポンジチタンの製造方法を提供するものである。 Further, in the present invention (3), in the filtration operation, a liquid receiver into which the distilled and purified titanium tetrachloride flows, the filter medium installed in the liquid receiver, and the filter And a heat exchange part installed around the liquid receiver, and the liquid to be filtered for allowing the distilled and purified titanium tetrachloride to flow into the liquid receiver of the filter and into the liquid to be filtered of the filter medium. Heat exchange is performed in the heat exchange section using an inflow pipe and a filter with a temperature holding mechanism, which is provided with an inflow pipe and a filtrate outflow pipe for allowing the filtered and purified titanium tetrachloride to flow out from the treatment liquid side of the filter medium. Thus, while maintaining the temperature of the distilled and purified titanium tetrachloride in the filtered liquid receiver and the filtered material side of the filter medium at a temperature at which the filtration operation is performed, (1) or (2) either sponge characterized by performing filtration There is provided a method of manufacturing a button.
また、本発明(4)は、前記被ろ過液流入管からの前記蒸留精製四塩化チタンの流入及び前記ろ過液流出管からの前記ろ過精製四塩化チタンの流出を行っていない間も、前記被ろ過液受器内且つ前記ろ過材の被ろ過液側に存在している前記蒸留精製四塩化チタンの温度を、前記ろ過操作を行う温度で一定に保つことを特徴とする(3)のスポンジチタンの製造方法を提供するものである。 In addition, the present invention (4) is the method in which the distillation-purified titanium tetrachloride from the filtrate inflow pipe and the filtration purified titanium tetrachloride from the filtrate outflow pipe are not flowing out. The sponge titanium according to (3), characterized in that the temperature of the distilled and purified titanium tetrachloride existing in the filtrate receiver and on the filtrate side of the filter medium is kept constant at the temperature at which the filtration operation is performed. The manufacturing method of this is provided.
本発明によれば、安価且つ簡便に四塩化チタンを起源とするジルコニウム不純物を低減することができるスポンジチタンの製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of sponge titanium which can reduce the zirconium impurity originating in titanium tetrachloride cheaply and simply can be provided.
本発明のスポンジチタンの製造方法は、クロール法によりスポンジチタンを製造するスポンジチタンの製造方法において、塩化蒸留工程で蒸留を行い得られる蒸留精製四塩化チタンを、−10〜25℃の温度範囲に冷却する冷却操作を行い、次いで、冷却後の蒸留精製四塩化チタンを、−10〜25℃の温度範囲で、公称ろ過精度が0.01〜1.0μmの汎用プラスチック、フッ素樹脂又はセラミック製のろ過材を用いてろ過し、ろ過精製四塩化チタンを得るろ過操作を行い、得られた該ろ過精製四塩化チタンを還元分離工程に供給することを特徴とするスポンジチタンの製造方法である。 The method for producing sponge titanium according to the present invention is a method for producing titanium sponge by a crawl method. In the method for producing titanium sponge, distilled purified titanium tetrachloride obtained by distillation in a chlorodistillation step is brought to a temperature range of -10 to 25 ° C. A cooling operation for cooling is performed, and then the distilled and purified titanium tetrachloride after cooling is made of a general-purpose plastic, fluororesin or ceramic having a nominal filtration accuracy of 0.01 to 1.0 μm in a temperature range of −10 to 25 ° C. It is a method for producing titanium sponge, which is filtered using a filter medium, filtered to obtain filtered and purified titanium tetrachloride, and the obtained filtered and purified titanium tetrachloride is supplied to the reduction and separation step.
本発明のスポンジチタンの製造方法は、クロール法によりスポンジチタンを製造するスポンジチタンの製造方法であり、還元反応の原料となる四塩化チタンを製造するための工程であり、流動塩化炉内で、酸化チタンを含有する鉱石とコークスと塩素ガスとを、流動状態で反応させて、粗四塩化チタンを製造し、次いで、蒸留を行い、還元分離工程の原料となる精製四塩化チタンを得る塩化蒸留工程と、塩化蒸留工程を行い得られる精製四塩化チタンと、金属マグネシウムとを、反応させ、四塩化チタンを還元して、スポンジチタン塊を生成させ、次いで、副生する塩化マグネシウムと、未反応マグネシウムを真空分離して、スポンジチタン塊を得る還元分離工程と、還元分離工程を行い得られるスポンジチタンを、切削及び粉砕して、粒状のスポンジチタンを得る破砕工程と、還元分離工程で副生する塩化マグネシウムを電気分解して、金属マグネシウム得る電解工程とを有する。 The method for producing sponge titanium according to the present invention is a method for producing sponge titanium by producing a sponge titanium by a crawl method, and is a step for producing titanium tetrachloride as a raw material for the reduction reaction. Chlorine distillation that produces ore containing titanium oxide, coke, and chlorine gas in a fluidized state to produce crude titanium tetrachloride, followed by distillation to obtain purified titanium tetrachloride as a raw material for the reduction separation process Process, purified titanium tetrachloride obtained by performing the chlorodistillation step, and metal magnesium are reacted to reduce titanium tetrachloride to form a sponge titanium lump, and then to by-product magnesium chloride and unreacted Magnesium is vacuum-separated to obtain a sponge titanium lump, and the titanium sponge obtained by performing the reduction-separation process is cut and pulverized to form granules And crushing to obtain a sponge titanium, magnesium chloride and electrolysis by-produced in reducing the separation step, and a electrolytic obtaining magnesium metal.
本発明のスポンジチタンの製造方法で用いられるクロール法は、反応容器に予め溶融マグネシウムを入れておき、反応容器内に四塩化チタンを滴下して、溶融マグネシウムと反応させることにより、四塩化チタンをマグネシウムで還元する還元反応を行い、スポンジチタンを製造する方法である。本発明のスポンジチタンの製造方法に係る塩化蒸留工程、還元分離工程、破砕工程及び電解工程は、工業的なスポンジチタンの製造で行われている塩化蒸留工程、還元分離工程、破砕工程及び電解工程と同様である。 In the crawl method used in the method for producing titanium sponge according to the present invention, molten magnesium is put in a reaction vessel in advance, and titanium tetrachloride is dropped into the reaction vessel and reacted with molten magnesium, whereby titanium tetrachloride is reacted. This is a method for producing sponge titanium by carrying out a reduction reaction that reduces with magnesium. The chlorodistillation step, reductive separation step, crushing step and electrolysis step according to the method for producing titanium sponge of the present invention are the chlorodistillation step, reductive separation step, crushing step and electrolysis step carried out in industrial production of sponge titanium. It is the same.
クロール法によるスポンジチタンを原料とする材料の性能への影響が大きい不純物の一つとして、ジルコニウム不純物がある。スポンジチタン中のジルコニウム不純物の起源は、四塩化チタンと金属マグネシウムである。このうち、四塩化チタン原料由来のジルコニウム不純物は、飛沫同伴が発生し易いという点で、精密蒸留による除去が難しかった。そこで、本発明者らは、鋭意検討を重ねた結果、ジルコニウム不純物は、蒸留精製四塩化チタンを25℃以下、好ましくは15℃以下に冷却することにより、微細な析出物として析出し、その析出物を、公称ろ過精度が0.01〜1.0μm、好ましくは0.01〜0.1μmのろ過材でろ過することにより、還元反応の原料となる四塩化チタン中のジルコニウム不純物を除去できるので、スポンジチタン中のジルコニウム不純物を低減できることを見出した。 Zirconium impurities are one of the impurities that have a large effect on the performance of materials made from titanium sponge by the crawl method. The origin of zirconium impurities in sponge titanium is titanium tetrachloride and magnesium metal. Of these, zirconium impurities derived from the titanium tetrachloride raw material were difficult to remove by precision distillation in that entrainment was likely to occur. Therefore, as a result of intensive studies, the present inventors have determined that zirconium impurities are precipitated as fine precipitates by cooling distilled purified titanium tetrachloride to 25 ° C. or lower, preferably 15 ° C. or lower. By filtering the product with a filter medium having a nominal filtration accuracy of 0.01 to 1.0 μm, preferably 0.01 to 0.1 μm, it is possible to remove zirconium impurities in titanium tetrachloride as a raw material for the reduction reaction. The present inventors have found that zirconium impurities in sponge titanium can be reduced.
そして、本発明のスポンジチタンの製造方法では、塩化蒸留工程で、粗四塩化チタンを蒸留することにより得られる蒸留精製四塩化チタンを、還元分離工程で反応させる四塩化チタンとして、還元分離工程に供給する前に、蒸留精製四塩化チタンを−10〜25℃の温度範囲に冷却する冷却操作を行い、次いで、冷却後の蒸留精製四塩化チタンを−10〜25℃の温度範囲で、ろ過材を用いてろ過する。 In the method for producing sponge titanium according to the present invention, the purified titanium tetrachloride obtained by distilling crude titanium tetrachloride in the chlorodistillation step is converted into titanium tetrachloride to be reacted in the reductive separation step. Before supplying, the cooling operation of cooling distilled purified titanium tetrachloride to a temperature range of −10 to 25 ° C. is performed, and then the distilled purified titanium tetrachloride after cooling is filtered at a temperature range of −10 to 25 ° C. Filter using.
本発明のスポンジチタンの製造方法において、冷却操作は、ろ過操作を行う前に、蒸留精製四塩化チタンを、−10〜25℃の温度範囲、好ましくは−10〜15℃の温度範囲に冷却する操作である。本発明のスポンジチタンの製造方法では、冷却操作を行うことにより、塩化蒸留工程で得られた蒸留精製四塩化チタン中から、ジルコニウム化合物が微細な析出物として析出する。冷却操作の冷却温度範囲が、上記範囲にあることにより、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くなる。一方、冷却操作の冷却温度範囲が、上記範囲を超えると、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くならず、また、上記範囲未満だと、四塩化チタンの粘度が上昇することによりろ過操作が困難となる。なお、冷却操作の冷却温度とは、冷却操作を行った後の蒸留精製四塩化チタンの温度を指す。 In the method for producing sponge titanium according to the present invention, the cooling operation cools the distilled and purified titanium tetrachloride to a temperature range of −10 to 25 ° C., preferably −10 to 15 ° C., before performing the filtration operation. It is an operation. In the method for producing titanium sponge of the present invention, the zirconium compound is precipitated as fine precipitates from the distilled and purified titanium tetrachloride obtained in the chlorinated distillation step by performing a cooling operation. When the cooling temperature range of the cooling operation is in the above range, the content of zirconium impurities in the filtered and purified titanium tetrachloride is lowered. On the other hand, if the cooling temperature range of the cooling operation exceeds the above range, the content of zirconium impurities in the filtered and purified titanium tetrachloride does not decrease, and if it is below the above range, the viscosity of titanium tetrachloride increases. This makes the filtration operation difficult. In addition, the cooling temperature of cooling operation refers to the temperature of the distillation refined titanium tetrachloride after performing cooling operation.
本発明のスポンジチタンの製造方法に係る冷却操作において、被ろ過液である蒸留精製四塩化チタンを、−10〜25℃の温度範囲、好ましくは−10〜15℃の温度範囲の冷却温度に冷却する方法としては、特に制限されない。例えば、以下に示す方法が挙げられる。
(1)外気温がろ過操作のろ過温度の設定値より高い場合に、塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンク内の蒸留精製四塩化チタンの温度は、外気温と同程度となっているので、四塩化チタンタンクから還元分離工程が行われる還元反応容器まで、蒸留精製四塩化チタンを移送するための移送管に、冷却手段(例えば、冷媒ジャケット、熱交換器等)を設置し、移送管内で、ろ過操作のろ過温度の設定値まで、蒸留精製四塩化チタンを冷却する方法。
(2)外気温がろ過操作のろ過温度の設定値より高い場合に、蒸留精製四塩化チタンが流入する被処理液受器と、被ろ過液受器内に設置されているろ過材と、被ろ過液受器の周囲に設置されている熱交換部と、を有し、被ろ過液受器内且つろ過材の被ろ過液側に蒸留精製四塩化チタンを流入させるための被ろ過液流入管と、ろ過材の処理液側からろ過精製四塩化チタンを流出させるためのろ過液流出管と、が付設されている温度保持機構付きろ過器(以下、本発明に係る温度保持機構付きろ過器とも記載する。)を、塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンクから還元分離工程が行われる還元反応容器まで、蒸留精製四塩化チタンを移送するための移送管に設置し、本発明に係る温度保持機構付きろ過器の熱交換部で熱交換することにより、被ろ過液受器内且つろ過材の被ろ過液側の蒸留精製四塩化チタンを、ろ過操作のろ過温度の設定値まで冷却する方法。
(3)外気温が冷却操作の冷却温度範囲内にある場合には、塩化蒸留工程の蒸留後の温度が高い蒸留精製四塩化チタンを、四塩化チタンタンクに送液し、タンク内で一定時間貯蔵することで、四塩化チタンタンク内の蒸留精製四塩化チタンの温度は、外気温と同程度まで下がるので、塩化蒸留工程の蒸留後の蒸留精製四塩化チタンを、四塩化チタンタンクに送液して、タンク内で一定時間貯蔵することにより、四塩化チタンタンク内で、蒸留精製四塩化チタンを、冷却操作の冷却温度範囲まで冷却する方法。つまり、(3)の方法では、塩化蒸留工程の蒸留後の蒸留精製四塩化チタンを、四塩化チタンタンク内で貯蔵して、外気温により冷却することにより、冷却操作を行う。
In the cooling operation according to the method for producing titanium sponge of the present invention, the distilled and purified titanium tetrachloride as the liquid to be filtered is cooled to a cooling temperature in the temperature range of −10 to 25 ° C., preferably in the temperature range of −10 to 15 ° C. There are no particular restrictions on the method used. For example, the method shown below is mentioned.
(1) When the outside air temperature is higher than the set value of the filtration temperature of the filtration operation, the temperature of the distilled and purified titanium tetrachloride in the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chlorinated distillation process is temporarily stored is Since the temperature is similar to the outside air temperature, a cooling means (for example, a refrigerant jacket, a refrigerant jacket, a transfer pipe for transferring distilled purified titanium tetrachloride from a titanium tetrachloride tank to a reduction reaction vessel in which a reduction separation process is performed. A method of cooling the distilled and purified titanium tetrachloride to the set value of the filtration temperature of the filtration operation in a transfer pipe by installing a heat exchanger or the like.
(2) When the outside air temperature is higher than the set value of the filtration temperature of the filtration operation, a liquid receiver into which distilled and purified titanium tetrachloride flows, a filter medium installed in the liquid receiver, A heat exchange section installed around the filtrate receiver, and a filtrate inlet pipe for allowing distilled purified titanium tetrachloride to flow into the filtrate receiver and to the filtrate side of the filter medium And a filtrate with a temperature holding mechanism (hereinafter referred to as a filter with a temperature holding mechanism according to the present invention), and a filtrate outflow pipe for allowing filtered purified titanium tetrachloride to flow out from the treatment liquid side of the filter medium. Transfer to transfer the distilled and purified titanium tetrachloride from the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chlorinated distillation step is once stored to the reduction reaction vessel in which the reduction and separation step is performed. Installed on a pipe and equipped with a temperature holding mechanism according to the present invention By heat exchange with the heat exchange portion of the vessel, a method of cooling the distillation of titanium tetrachloride of the filtrate side of the filtrate receiver within and filtration material, to the setting of the filtration temperature filtration operation.
(3) When the outside air temperature is within the cooling temperature range of the cooling operation, distilled and purified titanium tetrachloride having a high temperature after distillation in the chlorodistillation step is sent to the titanium tetrachloride tank and is kept in the tank for a certain period of time. By storing, the temperature of the distilled and purified titanium tetrachloride in the titanium tetrachloride tank drops to the same level as the outside temperature, so the distilled and purified titanium tetrachloride after distillation in the chlorinated distillation process is sent to the titanium tetrachloride tank. Then, a method of cooling the distilled and purified titanium tetrachloride to the cooling temperature range of the cooling operation in the titanium tetrachloride tank by storing in the tank for a certain period of time. That is, in the method (3), the cooling operation is performed by storing the distilled and purified titanium tetrachloride after distillation in the chlorodistillation step in a titanium tetrachloride tank and cooling it by the outside air temperature.
本発明のスポンジチタンの製造方法において、ろ過操作は、冷却操作を行うことにより冷却された蒸留精製四塩化チタンを、−10〜25℃の温度範囲で、ろ過材を用いてろ過する操作である。 In the method for producing sponge titanium according to the present invention, the filtration operation is an operation of filtering the distilled and purified titanium tetrachloride cooled by performing the cooling operation using a filter medium in a temperature range of −10 to 25 ° C. .
本発明のスポンジチタンの製造方法に係るろ過材は、四塩化チタンにより腐食を受けないことが必要である。そのため、本発明のスポンジチタンの製造方法に係るろ過材の材質としては、汎用プラスチック、フッ素樹脂又はセラミックが選択される。ろ過材の材質として用いられる汎用プラスチックとしては、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)が挙げられる。ろ過材の材質として用いられるフッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)が挙げられる。ろ過材の材質として用いられるセラミックスとしては、例えば、アルミナ(Al2O3)、シリカ(SiO2)、アルミナとシリカの複合酸化物(ムライト等)が挙げられる。 The filter medium according to the method for producing titanium sponge of the present invention is required not to be corroded by titanium tetrachloride. Therefore, general-purpose plastic, fluororesin or ceramic is selected as the material for the filter medium according to the method for producing sponge titanium of the present invention. Examples of the general-purpose plastic used as the material for the filter medium include polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate (PET). Examples of the fluororesin used as the filter material include polytetrafluoroethylene (PTFE), perfluoroalkoxy fluororesin (PFA), and tetrafluoroethylene / hexafluoropropylene copolymer (FEP). Examples of the ceramic used as the material of the filter medium include alumina (Al 2 O 3 ), silica (SiO 2 ), and a composite oxide of alumina and silica (such as mullite).
本発明のスポンジチタンの製造方法に係るろ過材の公称ろ過精度(目開き)は、0.01〜1.0μm、好ましくは0.01〜0.1μmである。ろ過材の公称ろ過精度が、上記範囲にあることにより、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くなる。ろ過材の公称ろ過精度が、上記範囲を超えると、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くならず、また、上記範囲未満だと、ろ過材がジルコニウム化合物によって目詰まりし、圧力損失が上昇することによりろ過操作が困難となる。 The nominal filtration accuracy (mesh) of the filter medium according to the method for producing sponge titanium of the present invention is 0.01 to 1.0 μm, preferably 0.01 to 0.1 μm. When the nominal filtration accuracy of the filter medium is within the above range, the content of zirconium impurities in the filtered and purified titanium tetrachloride is lowered. If the nominal filtration accuracy of the filter media exceeds the above range, the content of zirconium impurities in the filtered and refined titanium tetrachloride will not be low, and if it is less than the above range, the filter media will be clogged with zirconium compounds, pressure Filtration is difficult due to the increased loss.
本発明のスポンジチタンの製造方法において、ろ過材の設置方法及び設置位置としては、特に制限されない。例えば、以下に示す方法が挙げられる。
(1)塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンクから還元分離工程が行われる還元反容器まで、蒸留精製四塩化チタンを移送するための移送管内に、ろ過材を設置する方法。
(2)塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンクから還元分離工程が行われる還元反応炉まで、蒸留精製四塩化チタンを移送するための移送管に、本発明に係る温度保持機構付きろ過器を設置する方法。
In the method for producing sponge titanium according to the present invention, the method for installing the filter medium and the installation position are not particularly limited. For example, the method shown below is mentioned.
(1) In a transfer pipe for transferring distilled and purified titanium tetrachloride from a titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chloride distillation step is once stored to a reduction reaction vessel in which a reduction and separation step is performed, How to install filter media.
(2) From the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chlorodistillation step is once stored to the reduction reactor in which the reduction and separation step is performed, a transfer pipe for transferring the distilled and purified titanium tetrachloride, The method to install the filter with a temperature holding mechanism which concerns on this invention.
ろ過操作におけるろ過温度は、−10〜25℃の温度範囲、好ましくは−10〜15℃の温度範囲である。ろ過操作のろ過温度が、上記範囲にあることにより、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くなる。一方、ろ過温度が、上記範囲を超えると、ろ過精製四塩化チタン中のジルコニウム不純物の含有量が低くならず、また、上記範囲未満だと、四塩化チタンの粘度が上昇することによりろ過操作が困難となる。なお、ろ過操作のろ過温度とは、ろ過材を通過させるときの蒸留精製四塩化チタンの温度を指す。 The filtration temperature in the filtration operation is a temperature range of −10 to 25 ° C., preferably a temperature range of −10 to 15 ° C. When the filtration temperature of the filtration operation is in the above range, the content of zirconium impurities in the filtered and purified titanium tetrachloride is lowered. On the other hand, if the filtration temperature exceeds the above range, the content of zirconium impurities in the filtered and refined titanium tetrachloride is not lowered, and if the filtration temperature is less than the above range, the viscosity of the titanium tetrachloride increases, thereby causing a filtration operation. It becomes difficult. In addition, the filtration temperature of filtration operation refers to the temperature of distillation refinement | purification titanium tetrachloride when passing a filter medium.
冷却操作の冷却温度と、ろ過操作のろ過温度の関係であるが、上記の冷却操作の冷却温度範囲内及びろ過操作のろ過温度範囲内であれば、冷却操作の冷却温度と、ろ過操作のろ過温度とが、同じ温度であっても、異なる温度であってもよい。例えば、ろ過操作のろ過温度が、冷却操作の冷却温度より高くても、ろ過操作のろ過温度が、上記ろ過操作のろ過温度範囲にあればよい。また、例えば、四塩化チタンタンクから還元反応容器までの四塩化チタンの移送管に、冷却手段を直接設置し、その後流の移送管内にろ過材を設置する場合で、冷却手段とろ過材とが離れている場合、冷却手段直後の蒸留精製四塩化チタンの温度は、ろ過材に到達するまでに変化することもあるが、冷却手段直後の蒸留精製四塩化チタンの温度が、上記冷却操作の冷却温度範囲内にあり、且つ、ろ過材を通過するときの蒸留精製四塩化チタンの温度が、上記ろ過操作のろ過温度範囲内にあればよい。また、例えば、四塩化チタンタンクから還元反応容器までの四塩化チタンの移送管の途中に、本発明に係る温度保持機構付きろ過器を設置する場合、熱交換部により冷却操作が行われる位置と、ろ過材によりろ過操作が行われる位置が、非常に近いので、冷却操作の冷却温度とろ過操作のろ過温度は同じ又はほぼ同じになる。また、例えば、外気温が上記冷却操作の冷却温度範囲内及び上記ろ過操作のろ過温度範囲にある場合で、且つ、冷却操作を四塩化チタンタンク内でのみ行い、四塩化チタンタンクからろ過材までの移送する間には、冷却操作を行わないで、移送管に設置したろ過材でろ過する場合、冷却操作の冷却温度とろ過操作のろ過温度は同じ又はほぼ同じになる。 It is the relationship between the cooling temperature of the cooling operation and the filtration temperature of the filtration operation. If it is within the cooling temperature range of the above cooling operation and the filtration temperature range of the filtration operation, the cooling temperature of the cooling operation and the filtration of the filtration operation The temperature may be the same temperature or a different temperature. For example, even if the filtration temperature of the filtration operation is higher than the cooling temperature of the cooling operation, the filtration temperature of the filtration operation may be in the filtration temperature range of the filtration operation. In addition, for example, when a cooling means is directly installed in a transfer pipe of titanium tetrachloride from a titanium tetrachloride tank to a reduction reaction vessel, and a filter medium is installed in a downstream transfer pipe, the cooling means and the filter medium are If they are separated, the temperature of the distilled and purified titanium tetrachloride immediately after the cooling means may change until it reaches the filter medium, but the temperature of the distilled and purified titanium tetrachloride immediately after the cooling means is the cooling of the above cooling operation. It suffices if the temperature of the distilled and purified titanium tetrachloride when passing through the filter medium is within the temperature range of the filtration operation. Also, for example, when installing a filter with a temperature holding mechanism according to the present invention in the middle of a titanium tetrachloride transfer pipe from a titanium tetrachloride tank to a reduction reaction vessel, a position where a cooling operation is performed by the heat exchange unit Since the position where the filtering operation is performed by the filter medium is very close, the cooling temperature of the cooling operation and the filtering temperature of the filtering operation are the same or substantially the same. Further, for example, when the outside air temperature is within the cooling temperature range of the cooling operation and within the filtration temperature range of the filtration operation, and the cooling operation is performed only in the titanium tetrachloride tank, from the titanium tetrachloride tank to the filter medium. In the case of filtering with a filter medium installed in the transfer pipe without performing a cooling operation during the transfer, the cooling temperature of the cooling operation and the filtration temperature of the filtering operation are the same or substantially the same.
ろ過操作を行う前に、冷却操作を複数回行ってもよい。例えば、外気温が上記冷却操作の冷却温度範囲内にある場合で、且つ、四塩化チタンタンクからろ過材までの移送する間に、冷却手段を設けて冷却操作を行い、移送管に設置したろ過材でろ過する場合、具体的には、外気温が上記冷却操作の冷却温度範囲内にある場合で、且つ、四塩化チタンタンクから還元反応容器までの四塩化チタンの移送管の途中に、本発明に係る温度保持機構付きろ過器を設置し、熱交換部で上記冷却操作の冷却温度範囲の温度且つ外気温よりも低い温度に冷却して、ろ過を行う場合、第一の冷却操作を四塩化チタンタンク内で行い、第二の冷却操作を、本発明に係る温度保持機構付きろ過器の熱交換部により行う。 The cooling operation may be performed a plurality of times before performing the filtration operation. For example, when the outside air temperature is within the cooling temperature range of the above cooling operation and during the transfer from the titanium tetrachloride tank to the filter medium, a cooling means is provided to perform the cooling operation, and the filtration installed in the transfer pipe Specifically, when the outside air temperature is within the cooling temperature range of the above cooling operation, and in the middle of the titanium tetrachloride transfer pipe from the titanium tetrachloride tank to the reduction reaction vessel, In the case where a filter with a temperature holding mechanism according to the invention is installed, and the cooling is performed at the heat exchanging unit at a temperature lower than the cooling temperature range of the above cooling operation and lower than the outside air temperature, the first cooling operation is performed in four. It is performed in a titanium chloride tank, and the second cooling operation is performed by the heat exchange part of the filter with a temperature holding mechanism according to the present invention.
本発明のスポンジチタンの製造方法では、塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンクから還元分離工程が行われる還元反応容器まで、蒸留精製四塩化チタンを移送するための移送管に、本発明に係る温度保持機構付きろ過器を設置し、被ろ過液流入管からの蒸留精製四塩化チタンの流入及びろ過液流出管からのろ過精製四塩化チタンの流出を行っていない間も、被ろ過液受器内且つろ過材の被ろ過液側に存在している蒸留精製四塩化チタンの温度を、ろ過操作を行う温度で一定に保つことが、外気温の変化に関わらず、一定の純度のスポンジチタンが得られ、安定操業が行える点で、好ましい。 In the titanium sponge production method of the present invention, the distilled and purified titanium tetrachloride is transferred from the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chlorinated distillation step is temporarily stored to the reduction reaction vessel in which the reduction and separation step is performed. The transfer pipe with the temperature maintaining mechanism according to the present invention is installed in the transfer pipe for carrying out the inflow of distilled purified titanium tetrachloride from the filtrate inflow pipe and the outflow of filtered purified titanium tetrachloride from the filtrate outflow pipe. Even when not performed, the temperature of the distilled and purified titanium tetrachloride present in the filtered liquid receiver and on the filtered liquid side of the filter medium can be kept constant at the temperature at which the filtration operation is performed. Regardless, it is preferable in that a sponge titanium having a certain purity can be obtained and stable operation can be performed.
本発明に係る温度保持機構付きろ過器としては、例えば、図1に示す温度保持機構付きろ過器10が挙げられる。図1は、温度保持機構付きろ過器の形態例を示す模式的な端面図である。図1中、温度保持機構付きろ過器10は、蒸留精製四塩化チタンが流入する被処理液受器1と、被ろ過液受器1内に設置されている円筒状のろ過材2と、被ろ過液受器1の周囲に設置されている熱交換部3と、を有し、被ろ過液受器1内且つろ過材2の被ろ過液側の部分8に、蒸留精製四塩化チタン6を流入させるための被ろ過液流入管4と、ろ過材2の処理液側の部分9からろ過精製四塩化チタン7を流出させるためのろ過液流出管5と、が付設されている。なお、ろ過材2の上端と下端は、ろ過材2の処理液側の部分9と、被ろ過液受器1内且つろ過材2の被ろ過液側の部分8とが混合しないように、上端封止部材12及び下端封止部材13で封止されており、上端封止部材12に、ろ過液流出管5が挿通されている。 As a filter with a temperature holding mechanism which concerns on this invention, the filter 10 with a temperature holding mechanism shown in FIG. 1 is mentioned, for example. FIG. 1 is a schematic end view showing a form example of a filter with a temperature holding mechanism. In FIG. 1, a filter 10 with a temperature holding mechanism includes a liquid receiver 1 into which distilled and purified titanium tetrachloride flows, a cylindrical filter medium 2 installed in the liquid receiver 1, A heat exchanger 3 installed around the filtrate receiver 1, and distilled and purified titanium tetrachloride 6 in the filtrate receiver 2 and the portion 8 on the filtrate side of the filter medium 2. A filtrate inflow pipe 4 for inflow and a filtrate outflow pipe 5 for allowing the filtered and purified titanium tetrachloride 7 to flow out from the portion 9 on the treatment liquid side of the filter medium 2 are attached. In addition, the upper end and lower end of the filter medium 2 are the upper ends so that the portion 9 on the treated liquid side of the filter medium 2 and the portion 8 on the filtered liquid side of the filtered medium receiver 1 are not mixed. It is sealed with a sealing member 12 and a lower end sealing member 13, and the filtrate outflow pipe 5 is inserted into the upper end sealing member 12.
温度保持機構付きろ過器10は、塩化蒸留工程で得られた蒸留精製四塩化チタンが一旦貯蔵される四塩化チタンタンクから還元分離工程が行われる還元反応容器まで、蒸留精製四塩化チタンを移送するための移送管の途中に、四塩化チタンタンク側に被ろ過液流入管4が、還元反応容器側にろ過液流出管5が繋げられることにより、設置される。 The filter 10 with a temperature holding mechanism transfers the distilled and purified titanium tetrachloride from the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride obtained in the chlorinated distillation step is temporarily stored to the reduction reaction vessel in which the reduction and separation step is performed. In the middle of the transfer pipe, the filtrate inflow pipe 4 is connected to the titanium tetrachloride tank side, and the filtrate outflow pipe 5 is connected to the reduction reaction container side.
次いで、温度保持機構付きろ過器10を用いる蒸留精製四塩化チタン6のろ過について述べる。冷却操作の冷却温度(ろ過操作のろ過温度でもある。)に温度調節されている冷媒11を、熱交換部3内に流しながら、被ろ過液流入管4より蒸留精製四塩化チタン6を、被処理液受器1内に流入させる。このことにより、被ろ過液受器1内且つろ過材2の被ろ過液側の部分8の蒸留精製四塩化チタン6と、熱交換部3内の冷媒11との間で熱交換が行われ、蒸留精製四塩化チタン6が所定の冷却温度まで冷却される。そして、被ろ過液受器1内且つろ過材2の被ろ過液側の部分8で、蒸留精製四塩化チタン6が冷却されることにより、蒸留精製四塩化チタン6中のジルコニウム不純物が析出する。 Next, filtration of the distilled and purified titanium tetrachloride 6 using the filter 10 with a temperature holding mechanism will be described. While flowing the refrigerant 11 whose temperature is adjusted to the cooling temperature of the cooling operation (which is also the filtration temperature of the filtration operation) into the heat exchanging section 3, the distilled purified titanium tetrachloride 6 is supplied from the filtered liquid inflow pipe 4. It flows into the processing liquid receiver 1. Thereby, heat exchange is performed between the distilled purified titanium tetrachloride 6 in the filtrate receiver 2 and the portion 8 of the filter medium 2 on the filtrate side, and the refrigerant 11 in the heat exchange section 3. The distilled and purified titanium tetrachloride 6 is cooled to a predetermined cooling temperature. And the zirconium impurity in the distillation refined titanium tetrachloride 6 precipitates by cooling the distillation refined titanium tetrachloride 6 in the part 8 on the to-be-filtrated side of the to-be-filtered liquid receiver 1 and the filter medium 2.
次いで、所定の冷却温度まで冷却された蒸留精製四塩化チタン6を、ろ過材2を通過させる。このときに、蒸留精製四塩化チタン6中に析出したジルコニウム不純物が、ろ過材2で除去されるので、ろ過材2の処理液側の部分9には、ジルコニウム不純物が低減されたろ過精製四塩化チタン7が通過してくる。なお、この場合、ろ過操作のろ過温度は、冷却操作の冷却温度、すなわち、冷媒11の温度と同じ又はほぼ同じである。 Next, the distilled and purified titanium tetrachloride 6 cooled to a predetermined cooling temperature is passed through the filter medium 2. At this time, the zirconium impurities precipitated in the distilled and purified titanium tetrachloride 6 are removed by the filter medium 2, so that the portion 9 on the treatment liquid side of the filter medium 2 is filtered and purified tetrachloride with reduced zirconium impurities. Titanium 7 passes. In this case, the filtration temperature of the filtration operation is the same as or substantially the same as the cooling temperature of the cooling operation, that is, the temperature of the refrigerant 11.
そして、ジルコニウム不純物が低減されたろ過精製四塩化チタン7を、ろ過液流出管5から、温度保持機構付きろ過器10の外に流出させる。 Then, the filtered and purified titanium tetrachloride 7 with reduced zirconium impurities is caused to flow out of the filter 10 with a temperature holding mechanism from the filtrate outflow pipe 5.
このように、本発明のスポンジチタンの製造方法では、塩化蒸留工程で、粗四塩化チタンを蒸留することにより得られる蒸留精製四塩化チタンを、還元分離工程で反応させる四塩化チタンとして、還元分離工程に供給する前に、蒸留精製四塩化チタンを、−10〜25℃の温度範囲、好ましくは−10〜15℃の温度範囲の冷却温度に冷却にする。このことにより、蒸留精製四塩化チタンに溶解していたジルコニウム不純物が析出する。そして、蒸留精製四塩化チタンから析出してくるジルコニウム不純物は、非常に微細なので、次いで、本発明のスポンジチタンの製造方法では、蒸留精製四塩化チタン中から析出してきたジルコニウム不純物を、公称ろ過精度が、0.01〜1.0μm、好ましくは0.01〜0.1μmのろ過材でろ過して、蒸留精製四塩化チタン中のジルコニウム不純物を除去する。このことにより、本発明のスポンジチタンの製造方法では、ろ過によりジルコニウム不純物を低減させたろ過精製四塩化チタンを、還元反応の原料として、還元分離工程に供給するので、スポンジチタン中のジルコニウム不純物を低減することができる。 As described above, in the method for producing sponge titanium according to the present invention, the reductive separation is performed by converting the distilled and purified titanium tetrachloride obtained by distilling the crude titanium tetrachloride in the chlorination distillation step into titanium tetrachloride that is reacted in the reduction separation step. Before being supplied to the process, the distilled and purified titanium tetrachloride is cooled to a cooling temperature in the temperature range of -10 to 25 ° C, preferably in the temperature range of -10 to 15 ° C. As a result, zirconium impurities dissolved in the distilled and purified titanium tetrachloride are deposited. The zirconium impurities precipitated from the distilled and purified titanium tetrachloride are very fine. Next, in the method for producing sponge titanium according to the present invention, the zirconium impurities precipitated from the distilled and purified titanium tetrachloride are subjected to a nominal filtration accuracy. However, it filters with a filter medium of 0.01-1.0 micrometer, Preferably 0.01-0.1 micrometer, The zirconium impurity in distilled refined titanium tetrachloride is removed. Accordingly, in the method for producing sponge titanium according to the present invention, the filtered and purified titanium tetrachloride reduced in zirconium impurities by filtration is supplied to the reduction separation process as a raw material for the reduction reaction. Therefore, the zirconium impurities in the sponge titanium are removed. Can be reduced.
以下、実施例を挙げて本発明をさらに具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
(実施例1〜12及び比較例1〜6)
表1に示すジルコニウム含有量の四塩化チタンを用意し、表1に示す温度に10分間保持した。次いで、図1に示す温度保持機構付きろ過器10に、ろ過材2として、表1に示す公称ろ過精度(目開き)のろ過材2を設置し、該温度保持機構付きろ過器10を用いて、熱交換部3に、表1に示す温度のエチレングリコールを冷媒として流しながら、四塩化チタンを、被ろ過液流入管4より流入させて、ろ過を行い、ろ過液流出管5から流出した四塩化チタンを採取した。次いで、採取した四塩化チタン中のジルコニウム含有量の測定をICP−MSを用いて行った。その結果を表1に示す。
・ろ過材:3M社製、商品名(ナノシールド ポリプロピレン中空糸膜フィルター)、ろ過材の材質:ポリプロピレン(FP)、ろ過材の公称ろ過精度(目開き):0.01μm、0.1μm
・ろ過材:日本ポール社製、商品名(PE-クリーン)ろ過材の材質:ポリエチレン(PE)、ろ過材の公称ろ過精度(目開き):1μm
・ろ過材:日本ポール社製、商品名(ウルチクリーンG2・STG)、ろ過材の材質:ポリテトラフルオロエチレン(PTFE)、ろ過材の公称ろ過精度(目開き):10μm
(Examples 1-12 and Comparative Examples 1-6)
Titanium tetrachloride having a zirconium content shown in Table 1 was prepared and held at the temperature shown in Table 1 for 10 minutes. Next, the filter medium 2 having the nominal filtration accuracy (opening) shown in Table 1 is installed as the filter medium 2 in the filter 10 with the temperature holding mechanism shown in FIG. 1, and the filter 10 with the temperature holding mechanism is used. Then, while flowing ethylene glycol having the temperature shown in Table 1 as a refrigerant to the heat exchanging section 3, the titanium tetrachloride is flowed from the filtrate inflow pipe 4 to perform filtration, and the four which have flowed out from the filtrate outflow pipe 5 are filtered. Titanium chloride was collected. Next, the zirconium content in the collected titanium tetrachloride was measured using ICP-MS. The results are shown in Table 1.
Filter material: manufactured by 3M, trade name (nanoshield polypropylene hollow fiber membrane filter), filter material: polypropylene (FP), nominal filtration accuracy of filter medium (opening): 0.01 μm, 0.1 μm
-Filter material: Made by Pall Japan, trade name (PE-clean) Filter material: Polyethylene (PE), Nominal filtration accuracy of filter material (opening): 1 μm
-Filter material: Nippon Pall Co., Ltd., trade name (Ulticlean G2 / STG), Filter material: Polytetrafluoroethylene (PTFE), Nominal filtration accuracy of filter material (opening): 10 μm
(実施例13)
塩化蒸留工程で製造した蒸留精製四塩化チタンが貯蔵される四塩化チタンタンクから還元分離工程の還元反応炉への四塩化チタンの移送管の途中に、図1中、ろ過材2として、PTFE製、公称ろ過精度0.1μmのろ過材を用いた、温度保持機構付きろ過器10を設置した。
熱交換部3に、溶媒として−15℃のエチレングリコールを流しながら、四塩化チタンタンクから、還元反応容器に四塩化チタンを供給して、還元反応を行いスポンジチタンの製造を行った。
分離工程を経て得られたスポンジチタン塊の上部範囲と中心部範囲から、任意にそれぞれ5個以上のスポンジチタンを採取し、各スポンジチタン中のジルコニウム含有量の測定をICP−MSを用いて行った。その結果を表2に示す。
(Example 13)
In the middle of the transfer pipe of titanium tetrachloride from the titanium tetrachloride tank in which the distilled and purified titanium tetrachloride produced in the chlorodistillation process is stored to the reduction reactor in the reduction separation process, as a filter medium 2 in FIG. The filter 10 with a temperature holding mechanism using a filter medium having a nominal filtration accuracy of 0.1 μm was installed.
While flowing ethylene glycol at −15 ° C. as a solvent through the heat exchange unit 3, titanium tetrachloride was supplied from a titanium tetrachloride tank to a reduction reaction vessel, and a reduction reaction was performed to produce titanium sponge.
From the upper range and the central range of the sponge titanium lump obtained through the separation step, five or more sponge titanium are arbitrarily collected, and the zirconium content in each sponge titanium is measured using ICP-MS. It was. The results are shown in Table 2.
<還元反応条件>
・四塩化チタンの使用量:30t/バッチ
・金属マグネシウム中のジルコニウム含有量:100ppb
・還元反応容器の材質:クラッド鋼(炭素鋼+SUS316)
<Reduction reaction conditions>
・ Use amount of titanium tetrachloride: 30 t / batch ・ Zirconium content in magnesium metal: 100 ppb
-Material of the reduction reaction vessel: Clad steel (carbon steel + SUS316)
<スポンジチタンの採取位置>
・上部範囲:(高さ方向)スポンジチタン全高Hに対し、下から0.8〜0.9Hの部分、且つ、(径方向)スポンジチタンの直径Dに対し、中心〜0.2Dの部分
・中心部範囲:(高さ方向)スポンジチタン全高Hに対し、下から0.45〜0.55Hの部分、且つ、(径方向)スポンジチタンの直径Dに対し、中心〜0.2Dの部分
<Position of sponge sponge>
-Upper range: (height direction) 0.8 to 0.9H from the bottom of the sponge titanium total height H, and (radial direction) the center to 0.2D of the sponge titanium diameter D. Center range: (in the height direction) 0.45 to 0.55 H from the bottom with respect to the total height H of the sponge titanium, and (diameter direction) from the center to 0.2 D with respect to the diameter D of the sponge titanium.
(比較例7)
PTFE製、公称ろ過精度0.1μmのろ過材に代えて、ろ過材は設置せず、熱交換部3に、−15℃の冷媒を流すことに代えて冷媒を通液しないこと以外は、実施例13と同様に行った。その結果を表2に示す。
(Comparative Example 7)
Implemented except that PTFE, instead of a filter medium with a nominal filtration accuracy of 0.1 μm, no filter medium is installed, and the refrigerant is not passed through the heat exchange unit 3 instead of flowing a −15 ° C. refrigerant. Performed as in Example 13. The results are shown in Table 2.
1 被ろ過液受器
2 ろ過材
3 熱交換部
4 被ろ過液流入管
5 ろ過液流出管
6 蒸留精製四塩化チタン
7 ろ過精製四塩化チタン
8 被ろ過液受器内且つろ過材の被ろ過液側の部分
9 ろ過材のろ過液側の部分
10 温度保持機構付きろ過器
11 冷媒
12 上端封止部材
13 下端封止部材
DESCRIPTION OF SYMBOLS 1 Filtrate receiver 2 Filter material 3 Heat exchange part 4 Filtrate inflow pipe 5 Filtrate outflow pipe 6 Distillation refined titanium tetrachloride 7 Filtration refined titanium tetrachloride 8 In the filtrate acceptor and to be filtered Side part 9 Filtrate side part 10 of filter medium Filter with temperature holding mechanism 11 Refrigerant 12 Upper end sealing member 13 Lower end sealing member
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017182116A JP6933942B2 (en) | 2017-09-22 | 2017-09-22 | Manufacturing method of titanium sponge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017182116A JP6933942B2 (en) | 2017-09-22 | 2017-09-22 | Manufacturing method of titanium sponge |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019056157A true JP2019056157A (en) | 2019-04-11 |
JP6933942B2 JP6933942B2 (en) | 2021-09-08 |
Family
ID=66107218
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017182116A Active JP6933942B2 (en) | 2017-09-22 | 2017-09-22 | Manufacturing method of titanium sponge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6933942B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09286618A (en) * | 1996-04-23 | 1997-11-04 | Ishihara Sangyo Kaisha Ltd | Method for purifying titanium tetrachloride |
JPH10194739A (en) * | 1996-12-27 | 1998-07-28 | Japan Pionics Co Ltd | Purification of titanium tetrachloride |
JP2001149723A (en) * | 1999-11-26 | 2001-06-05 | Toyobo Co Ltd | Filter unit and filter |
JP2004169139A (en) * | 2002-11-21 | 2004-06-17 | Toho Titanium Co Ltd | Production method for high-purity titanium |
-
2017
- 2017-09-22 JP JP2017182116A patent/JP6933942B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09286618A (en) * | 1996-04-23 | 1997-11-04 | Ishihara Sangyo Kaisha Ltd | Method for purifying titanium tetrachloride |
JPH10194739A (en) * | 1996-12-27 | 1998-07-28 | Japan Pionics Co Ltd | Purification of titanium tetrachloride |
JP2001149723A (en) * | 1999-11-26 | 2001-06-05 | Toyobo Co Ltd | Filter unit and filter |
JP2004169139A (en) * | 2002-11-21 | 2004-06-17 | Toho Titanium Co Ltd | Production method for high-purity titanium |
Also Published As
Publication number | Publication date |
---|---|
JP6933942B2 (en) | 2021-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4080431A (en) | Recovery of refractory hard metal powder product | |
US10836645B2 (en) | Process for making high-purity aluminum oxide | |
CN110167878B (en) | Method for manufacturing polycrystalline silicon | |
CN109231217B (en) | System and method for rapidly cooling chlorosilane raffinate to remove metal chloride | |
JP5633142B2 (en) | Polycrystalline silicon manufacturing method and manufacturing apparatus | |
JP5374783B2 (en) | Purification method of hydrochloric acid | |
JP2010501459A (en) | US Patent No. 60 / 838,479, filed Aug. 18, 2006, filed Aug. 18, 2006, which is hereby incorporated by reference in its entirety. Claim priority. | |
JP5112898B2 (en) | Crystallization method and system for (meth) acrylic acid | |
EP2540666A1 (en) | Method for manufacturing trichlorosilane | |
JP2007223877A (en) | Method for producing high-purity titanium tetrachloride and high-purity titanium tetrachloride obtainable thereby | |
JP2019056157A (en) | Method for producing sponge titanium | |
US20220411265A1 (en) | Production method for high-purity hydrogen chloride gas | |
JP2005029428A (en) | Recovery method of chlorosilanes | |
TWI488807B (en) | Addition of alkali magnesium halide to a solvent metal | |
JP4517656B2 (en) | Method for producing bisphenol A | |
JP7029325B2 (en) | Manufacturing method of TiCl4 or titanium sponge | |
JP3889409B2 (en) | High-purity silicon tetrachloride and its production method | |
JP2011042523A (en) | Refining method for silicon for solar cell | |
KR102143986B1 (en) | Method and apparatus for production of silane and hydrohalosilanes | |
JP7122324B2 (en) | Method for producing 1,2,3,4-tetrachlorobutane | |
JP5306820B2 (en) | Method for isolating alkoxide | |
JPH10194739A (en) | Purification of titanium tetrachloride | |
JP2023108363A (en) | Method of recovering chlorosilanes | |
JP2023050955A (en) | Manufacturing method of sponge titanium | |
CN109553527A (en) | A kind of preparation method of pyromellitic trimethylsilyl chloride |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200729 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210415 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210420 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210604 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210820 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6933942 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |