JP2019055489A - Method for producing precast concrete member - Google Patents

Method for producing precast concrete member Download PDF

Info

Publication number
JP2019055489A
JP2019055489A JP2017179753A JP2017179753A JP2019055489A JP 2019055489 A JP2019055489 A JP 2019055489A JP 2017179753 A JP2017179753 A JP 2017179753A JP 2017179753 A JP2017179753 A JP 2017179753A JP 2019055489 A JP2019055489 A JP 2019055489A
Authority
JP
Japan
Prior art keywords
curing
water
aggregate
concrete
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017179753A
Other languages
Japanese (ja)
Other versions
JP6955939B2 (en
Inventor
鈴木 雅博
Masahiro Suzuki
雅博 鈴木
中瀬 博一
Hiroichi Nakase
博一 中瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS Mitsubishi Construction Co Ltd
Original Assignee
PS Mitsubishi Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS Mitsubishi Construction Co Ltd filed Critical PS Mitsubishi Construction Co Ltd
Priority to JP2017179753A priority Critical patent/JP6955939B2/en
Publication of JP2019055489A publication Critical patent/JP2019055489A/en
Application granted granted Critical
Publication of JP6955939B2 publication Critical patent/JP6955939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

To produce a precast concrete member having quality equal to that of the one obtained by performing three days wet curing with water fed from the outside without requiring three days wet curing.SOLUTION: Provided is a method for producing a precast concrete member comprising: a step A where cement such as high early strength portland cement, blast furnace slag fine powder as an additive material, a fine aggregate containing a porous aggregate beforehand included with water as a self-curing agent, a coarse aggregate, water and an additive agent are kneaded, and the same is driven into a flask; a step B where, after the installation of blast furnas slag concrete, moist curing is performed; and a step where, after the moist curing and flask removal, air dried curing is performed without performing three days wet curing with water fed from the outside, thus the blast furnace slag concrete is subjected to wet curing from the inside with the water released from the porous aggregate.SELECTED DRAWING: Figure 1

Description

本発明は、高炉スラグ微粉末を含むプレキャスト・コンクリート部材の製造方法に関する。   The present invention relates to a method for producing a precast concrete member containing blast furnace slag fine powder.

PC構造物の長寿命化と環境負荷低減を目的として、混和材として高炉スラグ微粉末を加えたコンクリート(高炉スラグコンクリート)の実用化が図られている。高炉スラグ微粉末は、溶鉱炉で銑鉄と同時に生成する溶融状態の高炉スラグを水によって急冷し、乾燥、粉砕したものである。高炉スラグコンクリートは塩分浸透抵抗性が高く、かつ鋼材腐食発生限界塩化物イオン濃度が大きいため、融雪剤として塩化カルシウムを散布する地域のPC道路橋の長寿命化などに適している。   For the purpose of extending the life of PC structures and reducing the environmental burden, concrete (blast furnace slag concrete) to which blast furnace slag fine powder is added as an admixture is being put to practical use. The ground granulated blast furnace slag is obtained by rapidly cooling, melting and drying a molten blast furnace slag generated simultaneously with pig iron in a blast furnace. Blast furnace slag concrete has a high salt resistance and a high chloride ion concentration, which is suitable for extending the life of PC road bridges in areas where calcium chloride is sprayed as a snow melting agent.

高炉スラグコンクリートは、高炉スラグ微粉末が混入されていない一般的なコンクリートと比較して、その養生期間において必要な水和反応を行わせるために十分な保水量が必要であることが知られている。そのため、コンクリート打設後にコンクリート表面に継続的に散水することなどによって、必要な水分量を確保することが行われている(特許文献1参照)。   It is known that blast furnace slag concrete requires a sufficient amount of water to hold the hydration reaction necessary for its curing period, compared to general concrete that is not mixed with blast furnace slag fine powder. Yes. Therefore, a necessary amount of water is ensured by continuously sprinkling water on the concrete surface after placing the concrete (see Patent Document 1).

なお、本発明に関連したその他の先行技術として、補修用モルタルに人口軽量骨材砂を入れることによってコンクリートの内部養生効果を発現せしめ、硬化時の収縮を低減し、ひび割れの発生を抑制する技術(特許文献2参照)、粗骨材として廃瓦の細孔に水を含ませて、他の材料と混錬りし、高強度コンクリートを製造する技術がある(特許文献3参照)。   In addition, as another prior art related to the present invention, a technique for reducing the shrinkage at the time of hardening and suppressing the occurrence of cracks by expressing the internal curing effect of concrete by putting artificial lightweight aggregate sand in the mortar for repair There is a technique for producing high-strength concrete by mixing water with the pores of waste tile as coarse aggregate and kneading with other materials (see Patent Document 3).

特開2014−162676号公報JP 2014-162676 A 特開2008−184353号公報JP 2008-184353 A 特開2008−266130号公報JP 2008-266130 A

混和材として高炉スラグ微粉末を加えたコンクリートを使用したプレキャスト・コンクリート部材を製造する際には、十分な保水量を確保した状態での養生(湿潤養生)が必要とされている。高炉スラグ微粉末を使用したプレキャスト・コンクリート製品では、圧縮強度発現、耐久性、ひび割れ抵抗性の確保のため、蒸気養生後の3日間の湿潤養生が行われることが普通である。   When producing a precast concrete member using concrete to which blast furnace slag fine powder is added as an admixture, curing (wet curing) in a state in which a sufficient water retention amount is secured is required. In precast concrete products using blast furnace slag fine powder, wet curing for 3 days after steam curing is usually performed in order to ensure compressive strength, durability, and crack resistance.

混和材として高炉スラグ微粉末を加えたコンクリートを使用したプレキャスト・コンクリート部材の湿潤養生は工場内に水槽を設け、そのなかに浸漬することによって行われることが普通である。したがって、設備費用が嵩み、製品の価格増につながる。また、工場内に水槽設置スペースが必要であるため、そのための敷地条件を満足する工場には限りがある。   Wet curing of precast concrete members using concrete added with blast furnace slag fine powder as an admixture is usually performed by providing a water tank in the factory and immersing it in it. Therefore, the equipment cost increases, leading to an increase in product price. Moreover, since a water tank installation space is required in the factory, there is a limit to the factory that satisfies the site conditions for that purpose.

さらに、冬季の湿潤養生では、水槽の水温管理が必要となり、そのためのボイラーなどの設備が必須となるため、設備費用がさらに嵩むという問題がある。   Furthermore, in the wet curing in winter, it is necessary to manage the water temperature of the aquarium, and equipment such as a boiler is indispensable.

以上のような事情に鑑み、本発明の目的は、外部から供給された水による湿潤養生を行って得られたものと同等の品質を有するプレキャスト・コンクリート部材を、外部から供給された水による湿潤養生を要することなく製造することのできるプレキャスト・コンクリート部材の製造方法を提供することにある。   In view of the circumstances as described above, an object of the present invention is to wet a precast concrete member having a quality equivalent to that obtained by performing wet curing with water supplied from outside, with water supplied from outside. It is providing the manufacturing method of the precast-concrete member which can be manufactured without requiring curing.

上記目的を達成するため、本発明の一形態に係るプレキャスト・コンクリート部材の製造方法は、混和材として高炉スラグ微粉末を加え、予め吸水させた多孔質骨材を含む細骨材を含むコンクリートを打設した後、給温養生を行い、脱枠後、外部から供給された水による湿潤養生を行うことなく気乾養生を行う、というものである。   In order to achieve the above object, a method for producing a precast concrete member according to an embodiment of the present invention includes a concrete including a fine aggregate including a porous aggregate in which blast furnace slag fine powder is added as an admixture and water is absorbed in advance. After placement, heat curing is performed, and after de-framed, air-drying curing is performed without performing wet curing with water supplied from the outside.

本発明に係るプレキャスト・コンクリート部材の製造方法によれば、混和材として高炉スラグ微粉末を加え、予め吸水させた多孔質骨材を含む細骨材を含むコンクリートを打設し、給温養生を行い、脱枠後、外部から供給された水による湿潤養生を行うことなく気乾養生を行うことにより、気乾養生において多孔質骨材から放出される水によりコンクリートを内部から湿潤養生することによって、外部から供給された水による湿潤養生を行って得られたものと同等の品質を有するプレキャスト・コンクリート部材を製造することができる。   According to the method for producing a precast concrete member according to the present invention, blast furnace slag fine powder is added as an admixture, concrete containing fine aggregate including porous aggregate absorbed in advance is placed, and heat curing is performed. By performing air drying without performing wet curing with water supplied from the outside after de-framework, the moisture is cured from the inside with water released from the porous aggregate in the air drying curing. A precast concrete member having quality equivalent to that obtained by wet curing with water supplied from the outside can be produced.

細骨材において多孔質骨材の容積率は30%または略30%とすることが望ましい。このようにすることで、外部から供給された水による湿潤養生を行って得られるコンクリートと比較して、収縮ひずみの点で同等で、圧縮強度およびヤング係数の点で同等以上のコンクリートを得ることができる。   In the fine aggregate, the volume ratio of the porous aggregate is preferably 30% or approximately 30%. By doing this, compared to concrete obtained by wet curing with water supplied from the outside, obtain concrete that is equivalent in terms of shrinkage strain and equivalent or better in terms of compressive strength and Young's modulus. Can do.

本発明によれば、外部から供給された水による3日間湿潤養生を行って得られるものと同等の品質を有するプレキャスト・コンクリート部材を、その3日間湿潤養生を要することなく製造することができる。   According to the present invention, a precast concrete member having a quality equivalent to that obtained by performing wet curing for 3 days with water supplied from outside can be produced without requiring wet curing for 3 days.

本実施形態のプレキャスト・コンクリート部材の製造方法におけるコンクリート打設から養生までの流れを示す図である。It is a figure which shows the flow from concrete placement to curing in the manufacturing method of the precast concrete member of this embodiment. 典型的な製造方法の流れを示す図である。It is a figure which shows the flow of a typical manufacturing method. 本実施形態のプレキャスト・コンクリート部材の製造方法によるコンクリートの自己養生の原理を説明するため図である。It is a figure for demonstrating the principle of the self-curing of the concrete by the manufacturing method of the precast concrete member of this embodiment. 各試験対象のコンクリート打設後7日間の収縮ひずみの試験結果を示すグラフである。It is a graph which shows the test result of the shrinkage | contraction distortion for seven days after concrete placement of each test object. 各試験対象のコンクリート打設後28日目の圧縮強度の試験結果を示すグラフである。It is a graph which shows the test result of the compressive strength of the 28th day after concrete placement of each test object. 自己養生材を用いた試験対象1の圧縮強度とヤング係数との関係を示すグラフである。It is a graph which shows the relationship between the compressive strength of the test object 1 using a self-curing material, and Young's modulus. 自己養生材を用いた試験対象2の圧縮強度とヤング係数との関係を示すグラフである。It is a graph which shows the relationship between the compressive strength of the test object 2 using a self-curing material, and Young's modulus. 自己養生材を用いた試験対象3の圧縮強度とヤング係数との関係を示すグラフである。It is a graph which shows the relationship between the compressive strength of the test object 3 using a self-curing material, and Young's modulus.

以下、本発明に係る実施形態を説明する。
本実施形態は、環境負荷低減、塩害、アルカリ骨材反応抑制などを目的として高炉スラグ微粉末を混入したプレキャスト・コンクリート部材の製造方法に関するものである。本実施形態は、特に設計基準強度50N/mmのプレキャスト・コンクリート部材の製造において圧縮強度、耐久性、ひび割れ抵抗性の確保のために必要とされてきた外部から供給された水による3日間湿潤養生を省略することのできる製造方法である。
Embodiments according to the present invention will be described below.
The present embodiment relates to a method for producing a precast / concrete member mixed with blast furnace slag fine powder for the purpose of reducing environmental burden, salt damage, alkali-aggregate reaction suppression, and the like. This embodiment is wet for 3 days by water supplied from the outside, which has been required for securing compressive strength, durability and crack resistance, especially in the production of precast concrete members having a design standard strength of 50 N / mm 2. It is a manufacturing method that can omit curing.

図1は本実施形態のプレキャスト・コンクリート部材の製造方法におけるコンクリート打設から養生までの流れを示す図である。比較のため、図2に典型的な製造方法の流れを示す。
本実施形態のプレキャスト・コンクリート部材の製造方法は、
A.例えは早強ポルトランドセメントなどのセメントと、混和材としての高炉スラグ微粉末と、自己養生材として予め水を含ませた多孔質骨材を含む細骨材と、粗骨材と、水と、混和剤を混錬し、型枠に打ち込む工程Aと、
B.高炉スラグコンクリートの打設後、給温養生を行う工程Bと、
C.給温養生および脱枠後、外部から供給された水による3日間湿潤養生(図2の工程C1)を行わずに気乾養生を行うことによって、多孔質骨材から放出される水により高炉スラグコンクリートを内部から湿潤養生する工程Cと、を有する。
FIG. 1 is a diagram showing a flow from concrete placement to curing in the method for producing a precast concrete member of the present embodiment. For comparison, FIG. 2 shows a typical manufacturing method flow.
The manufacturing method of the precast concrete member of this embodiment is
A. For example, cement such as early-strength Portland cement, fine powder of blast furnace slag as an admixture, fine aggregate containing porous aggregate pre-watered as a self-curing material, coarse aggregate, water, Kneading the admixture and driving it into the mold,
B. After placing the blast furnace slag concrete, the process B for performing heat curing,
C. After heat curing and de-framework, blast furnace slag is removed by water released from the porous aggregate by performing air-drying curing without performing wet curing (step C1 in FIG. 2) with water supplied from the outside. And C for wet curing the concrete from the inside.

本実施形態のプレキャスト・コンクリート部材の製造方法によれば、図3に示すように、気乾養生において多孔質骨材11から放出される水Wにより高炉スラグ微粉末13を含む高炉スラグコンクリート12を内部から湿潤養生することによって、外部から供給された水による3日間湿潤養生を行って得られたものと同等の品質を有するプレキャスト・コンクリート部材を製造することができる。   According to the manufacturing method of the precast concrete member of this embodiment, as shown in FIG. 3, the blast furnace slag concrete 12 containing the blast furnace slag fine powder 13 by the water W released from the porous aggregate 11 in the air drying curing is obtained. By wet curing from the inside, a precast concrete member having quality equivalent to that obtained by performing wet curing with water supplied from the outside for 3 days can be produced.

これにより、プレキャスト・コンクリート部材工場内の湿潤養生水槽の設置、冬季製造におけるボイラーによる水温管理、脱枠後のコンクリート部材の水槽への移動などの作業が不要となり、製造コストの低減、製造効率の向上を図ることができる。   This eliminates the need for operations such as the installation of a wet curing water tank in the precast / concrete parts factory, the management of water temperature by a boiler in winter production, and the transfer of concrete parts to the aquarium after deframement, reducing manufacturing costs and improving production efficiency. Improvements can be made.

なお、細骨材には、自己養生材としての多孔質骨材11の他、砂等の天然骨材を含むものが使用され、粗骨材は砂利や砕石等の天然骨材を含むものが使用される。自己養生材としての多孔質骨材11には、吸水率が高く、吸水しても体積変化の少ない骨材が好ましい。例えば、日本メサライト工業社製のメサライト(登録商標)、太平洋セメント社製のアサノライト(登録商標)などの人工軽量骨材や、廃瓦細骨材などが挙げられる。メサライト(登録商標)、アサノライト(登録商標)などの人工軽量骨材については、工場出荷時にプレウェッティングし、廃瓦細骨材については7日間吸水させることによって、いずれも内部に貯水する内部養生水が飽和状態となったものが用いられる。   In addition to the porous aggregate 11 as a self-healing material, those containing natural aggregate such as sand are used as the fine aggregate, and the coarse aggregate includes natural aggregate such as gravel and crushed stone. used. The porous aggregate 11 as a self-curing material is preferably an aggregate having a high water absorption rate and a small volume change even when water is absorbed. Examples thereof include artificial lightweight aggregates such as Mesalite (registered trademark) manufactured by Nippon Mesalite Industry Co., Ltd. and Asanolite (registered trademark) manufactured by Taiheiyo Cement Co., and waste tile fine aggregates. Artificial lightweight aggregates such as Mesalite (registered trademark) and Asanolite (registered trademark) are pre-wetted at the time of shipment from the factory, and waste tile fine aggregates are internally stored by absorbing water for 7 days. What the curing water became saturated is used.

高炉スラグコンクリート材には、混和剤として減水剤、AE剤、高性能減水剤、高性能AE減水剤が混入されることが好ましい。   The blast furnace slag concrete material is preferably mixed with a water reducing agent, an AE agent, a high performance water reducing agent, and a high performance AE water reducing agent as an admixture.

以下、本実施形態の製造方法により製造されたプレキャスト・コンクリート部材について、収縮ひずみ、圧縮強度、ヤング係数の試験を行った結果を示す。
プレキャスト・コンクリート部材の目標性状は以下の通りとした。
強度保証値の目標値=60N/mm(特性値50N/mm
プレストレス導入時の強度保証値の目標値=42N/mm(特性値35N/mm
スランプ=18±2.5cm
空気量=6.0%
Hereafter, the result of having done the test of shrinkage strain, compressive strength, and Young's modulus about the precast concrete member manufactured by the manufacturing method of this embodiment is shown.
The target properties of precast concrete members were as follows.
Target value of guaranteed strength value = 60 N / mm 2 (characteristic value 50 N / mm 2 )
Target value of the intensity guaranteed when prestress introduced = 42N / mm 2 (characteristic value 35N / mm 2)
Slump = 18 ± 2.5cm
Air volume = 6.0%

試験対象のプレキャスト・コンクリート部材として、以下の配合を有するものを準備した。
試験対象1.細骨材に混入する自己養生材としてメサライト(登録商標)を用いたもので、容積置換率(以下、単に「置換率」と呼ぶ。)を30%、50%、70%とした3種類。
試験対象2.細骨材に混入する自己養生材としてアサノライト(登録商標)を用いたもので、置換率を30%、50%、70%とした3種類。
試験対象3.細骨材に混入する自己養生材として廃瓦細骨材を用いたもので、置換率を30%、50%とした2種類。
比較のため、
試験対象4.細骨材に自己養生材を用いない基準配合のコンクリート材を給温養生後、3日間湿潤養生し、その後、気乾養生したもの。
試験対象5.細骨材に自己養生材を用いない基準配合のコンクリート材を給温養生後、気乾養生したもの。
についても試験した。
A precast concrete member to be tested was prepared having the following composition.
Test subject 1. Mesalite (registered trademark) is used as a self-healing material mixed in fine aggregates, and the volume replacement rate (hereinafter simply referred to as “replacement rate”) is 30%, 50%, and 70%.
Test subject 2. Asanolite (registered trademark) is used as a self-healing material mixed in fine aggregate, and the replacement rate is 30%, 50%, and 70%.
2. Test object It uses waste tile fine aggregate as a self-healing material mixed in fine aggregate, and two types with replacement rates of 30% and 50%.
For comparison,
Test subject 4. A concrete material with a standard composition that does not use a self-curing material for fine aggregate is heat-cured and then wet-cured for 3 days, and then air-dried.
Test subject 5. A concrete material with a standard composition that does not use a self-curing material for fine aggregate, and then air-cured and cured after heating.
Were also tested.

給温養生に関しては、温度20℃で前養生を3時間、その後、3時間をかけて温度45℃まで給温し、4時間保持し、さらに4時間かけて温度20℃まで下げて、完了した。給温養生期間の湿度は95%とした。気乾養生は、温度20℃、湿度60%の条件で実施した。   Regarding the temperature curing, the pre-curing was carried out at a temperature of 20 ° C. for 3 hours, then over 3 hours, heated to a temperature of 45 ° C., held for 4 hours, and further lowered to a temperature of 20 ° C. over a further 4 hours. . The humidity during the heating and curing period was 95%. The air drying curing was carried out under conditions of a temperature of 20 ° C. and a humidity of 60%.

[収縮ひずみの試験結果]
図4は各試験対象のコンクリート打設後7日間の収縮ひずみの試験結果を示すグラフである。このグラフでは、収縮ひずみの膨張側をプラス(+)、収縮側をマイナス(−)として表してある。また、このグラフでは、試験対象1、2、3のうち自己養生材としてメサライト(登録商標)を用いた置換率30%、50%、70%の試験対象1の試験結果のみを示した。試験対象2および試験対象3の収縮ひずみの測定結果は試験対象1と同様である。
[Test result of shrinkage strain]
FIG. 4 is a graph showing the test results of the shrinkage strain for 7 days after placing concrete for each test object. In this graph, the expansion side of the shrinkage strain is expressed as plus (+), and the contraction side is expressed as minus (−). Moreover, in this graph, only the test result of the test object 1 with the replacement ratios of 30%, 50%, and 70% using Mesalite (registered trademark) as the self-curing material among the test objects 1, 2, and 3 is shown. The measurement result of the shrinkage strain of the test object 2 and the test object 3 is the same as that of the test object 1.

このグラフから明らかなように、自己養生材を用いない試験対象4、5において、湿潤養生を行った試験対象4では湿潤養生期間の収縮ひずみはごく僅かであったが、湿潤養生を行わない試験対象5では脱枠後から収縮ひずみが増大した。自己養生材を用いた試験対象1においては、置換率を70%とした場合の収縮ひずみが最も小さく、置換率を30%とした場合のコンクリート打設後7日目の収縮ひずみは、3日間湿潤養生を行った試験対象4と同等であった。   As is clear from this graph, in the test objects 4 and 5 that do not use the self-curing material, the test object 4 that performed the wet curing had very little shrinkage strain during the wet curing period, but the test that did not perform the wet curing. In the subject 5, the shrinkage strain increased after the frame was removed. In the test object 1 using the self-curing material, the shrinkage strain when the replacement rate is 70% is the smallest, and the shrinkage strain on the seventh day after placing the concrete when the replacement rate is 30% is 3 days. It was equivalent to the test object 4 which performed wet curing.

[圧縮強度の試験結果]
図5は各試験対象のコンクリート打設後28日目の圧縮強度の試験結果を示すグラフである。
自己養生材を用いた試験対象1、2の圧縮強度はいずれも自己養生材を用いない試験対象4、5のそれよりも高いことが確認された。自己養生材を用いた試験対象1、2,3間では、試験対象1、試験対象2、試験対象3の順に高かった。自己養生材として廃瓦細骨材を用いた試験対象3の圧縮強度は、自己養生材を用いない3日間湿潤養生の試験対象4の同等であった。このため、圧縮強度の観点では、自己養生材としてはメサライト(登録商標)が最も優れることが考えられる。
[Compressive strength test results]
FIG. 5 is a graph showing the test results of the compressive strength on the 28th day after placing concrete for each test object.
It was confirmed that the compressive strengths of the test objects 1 and 2 using the self-curing material were higher than those of the test objects 4 and 5 not using the self-curing material. Among test objects 1, 2, and 3 using self-curing materials, test object 1, test object 2, and test object 3 were higher in this order. The compressive strength of the test object 3 using the waste tile fine aggregate as the self-curing material was the same as the test object 4 of the wet curing for 3 days without using the self-curing material. For this reason, from the viewpoint of compressive strength, it is considered that Mesalite (registered trademark) is the most excellent self-curing material.

[ヤング係数の試験結果]
図6Aは試験対象1の圧縮強度とヤング係数との関係、図6Bは試験対象2の圧縮強度とヤング係数との関係、図6Cは試験対象3の圧縮強度とヤング係数との関係を示すグラフである。
試験対象1、試験対象2、試験対象3のいずれの場合も、置換率が高くなるに従いヤング係数は小さくなる傾向があった。また、試験対象1、試験対象2、試験対象3のいずれの場合も、置換率が30%の場合のヤング係数は、自己養生材を用いない3日間湿潤養生の試験対象4と同等以上であったが、置換率が50%、70%の場合のヤング係数は、自己養生材を用いない3日間湿潤養生の試験対象4に比べ小さくなる傾向があった。
[Young modulus test results]
6A shows the relationship between the compressive strength and Young's modulus of the test object 1, FIG. 6B shows the relationship between the compressive strength and Young's modulus of the test object 2, and FIG. 6C shows the relationship between the compressive strength and Young's modulus of the test object 3. It is.
In any case of the test object 1, the test object 2, and the test object 3, the Young's modulus tended to decrease as the substitution rate increased. Further, in any of the test object 1, the test object 2, and the test object 3, the Young's modulus when the replacement rate is 30% is equal to or higher than the test object 4 of the 3-day wet curing without using the self-curing material. However, the Young's modulus when the replacement ratio was 50% or 70% tended to be smaller than that of the test object 4 of the wet curing for 3 days without using the self-curing material.

また、試験対象1、試験対象2、試験対象3のいずれの場合も、置換率が30%の場合の圧縮強度とヤング係数との関係は、土木学会コンクリート標準示方書に記載されている圧縮強度とヤング係数との関係(標示式)と同等の値を示したが、置換率が50%、70%の場合の圧縮強度とヤング係数との関係は標示式に比べ小さくなる傾向があった。圧縮強度とヤング係数との関係の観点では、置換率を30%以下とすることが望ましいと考えられる。   Moreover, in any of the test object 1, the test object 2, and the test object 3, the relationship between the compressive strength and the Young's modulus when the substitution rate is 30% is the compressive strength described in the Japan Society of Civil Engineers Concrete Standard Specification. However, the relationship between the compressive strength and the Young's modulus when the substitution rate was 50% or 70% tended to be smaller than that of the labeling formula. From the viewpoint of the relationship between the compressive strength and the Young's modulus, it is considered that the substitution rate is desirably 30% or less.

以上の試験から、自己養生材としてメサライト(登録商標)、アサノライト(登録商標)、廃瓦細骨材のいずれかを用いた場合であっても、置換率の選定次第で、3日間湿潤養生の試験対象4と同等以上の品質の高炉スラグコンクリートが得られることが確認された。さらに、圧縮強度の観点では、メサライト(登録商標)を採用することが望ましいことを確認できた。   From the above test, even if Mesalite (registered trademark), Asanolite (registered trademark), or waste tile fine aggregate is used as the self-curing material, it is moist-cured for 3 days depending on the selection of the replacement rate. It was confirmed that a blast furnace slag concrete having a quality equivalent to or better than that of the test object 4 was obtained. Furthermore, from the viewpoint of compressive strength, it was confirmed that it was desirable to adopt Mesalite (registered trademark).

所要の強度を満足する水結合比(W/B)は、算定試験の結果、メサライト(登録商標)の場合は36%、アサノライト(登録商標)および廃瓦細骨材の場合には34%であった。   The water bond ratio (W / B) satisfying the required strength is 36% in the case of Mesalite (registered trademark) and 34% in the case of Asanolite (registered trademark) and waste tile fine aggregate as a result of calculation test. Met.

11…多孔質骨材
12…高炉スラグコンクリート
13…高炉スラグ微粉末
11 ... Porous aggregate 12 ... Blast furnace slag concrete 13 ... Blast furnace slag fine powder

Claims (2)

混和材として高炉スラグ微粉末を使用し、予め吸水させた多孔質骨材を含む細骨材を含むコンクリートを打設し、給温養生を行い、脱枠後、外部から供給された水による湿潤養生を行うことなく気乾養生を行う
プレキャスト・コンクリート部材の製造方法。
Blast furnace slag fine powder is used as an admixture, and concrete containing fine aggregate including porous aggregate that has been pre-absorbed with water is placed, heat curing is performed, and after de-framed, it is moistened with water supplied from the outside A method for producing a precast / concrete member in which air-drying curing is performed without curing.
請求項1に記載のプレキャスト・コンクリート部材の製造方法であって、
前記細骨材における前記多孔質骨材の容積率が30%または略30%である
プレキャスト・コンクリート部材の製造方法。
It is a manufacturing method of the precast concrete member according to claim 1,
The method for producing a precast concrete member, wherein the volume ratio of the porous aggregate in the fine aggregate is 30% or substantially 30%.
JP2017179753A 2017-09-20 2017-09-20 Manufacturing method of precast concrete parts Active JP6955939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017179753A JP6955939B2 (en) 2017-09-20 2017-09-20 Manufacturing method of precast concrete parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017179753A JP6955939B2 (en) 2017-09-20 2017-09-20 Manufacturing method of precast concrete parts

Publications (2)

Publication Number Publication Date
JP2019055489A true JP2019055489A (en) 2019-04-11
JP6955939B2 JP6955939B2 (en) 2021-10-27

Family

ID=66106977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017179753A Active JP6955939B2 (en) 2017-09-20 2017-09-20 Manufacturing method of precast concrete parts

Country Status (1)

Country Link
JP (1) JP6955939B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184353A (en) * 2007-01-29 2008-08-14 Kajima Corp Mortar used for repair and tunnel maintenance and repair method using it
JP2008266130A (en) * 2007-03-26 2008-11-06 Hiroshima Univ High-strength concrete
JP2011195354A (en) * 2010-03-18 2011-10-06 Taiheiyo Cement Corp Method for producing high strength precast concrete

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008184353A (en) * 2007-01-29 2008-08-14 Kajima Corp Mortar used for repair and tunnel maintenance and repair method using it
JP2008266130A (en) * 2007-03-26 2008-11-06 Hiroshima Univ High-strength concrete
JP2011195354A (en) * 2010-03-18 2011-10-06 Taiheiyo Cement Corp Method for producing high strength precast concrete

Also Published As

Publication number Publication date
JP6955939B2 (en) 2021-10-27

Similar Documents

Publication Publication Date Title
CA2853766C (en) Concrete mix composition, mortar mix composition and method of making and curing concrete or mortar and concrete or mortar objects and structures
JP2019031438A (en) Concrete materials with modified rheology, methods of making the same, and uses thereof
CN102617059A (en) Phosphate base cementing agent
KR101363857B1 (en) A high-early strength type cement concrete composition for bridge pavement using high-early strength type mixed cement binder and method of bridge pavement using the same
CN111196704B (en) Concrete for prefabricated part and preparation method thereof
KR102117062B1 (en) Crack reduction type quick-hardening cement concrete composition comprising phase change material and functional binder, or repairing method for road pavement therewith
CN104692688A (en) Modified calcium oxide expansion agent for cement concrete and preparation method of modified calcium oxide expansion agent
CN111116119A (en) Green high-strength high-toughness concrete formula
WO2020015508A1 (en) Method for treating concrete hole or rebar exposure
JP5804470B2 (en) Binding material for paving material, paving material and method of using the paving material
KR101664273B1 (en) cement mortar compositon and cement mortar comprising the same, method thereof
JP6955939B2 (en) Manufacturing method of precast concrete parts
RU2332390C1 (en) Production method of lacquered concrete products
JP2015189628A (en) Method of producing crack-reduced cement product and crack-reduced cement product
KR101653564B1 (en) Ultra rapid hardening mortar composition and manufacturing method using the same
JP6396000B2 (en) Concrete pavement
KR101993873B1 (en) Concrete for Early Strength and Low-Shrinkage
JP2017057105A (en) Method for producing cement hardened body for humidity conditioning and the same hardened body
JP2017124950A (en) Concrete and production method of concrete
AU2015200172A1 (en) Concrete mix composition, mortar mix composition and method of making and curing concrete or mortar and concrete or mortar objects and structures
JP4791200B2 (en) Hydrated cured body and method for producing the same
JP7312385B1 (en) Method for producing concrete composition and method for producing concrete
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
RU2377205C1 (en) Method of production of large-size filler for concrete
KR101958911B1 (en) Binder for cement-based hardened product and concrete comprising the same, and structure manufactured by the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210830

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210830

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210830

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210906

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211004

R150 Certificate of patent or registration of utility model

Ref document number: 6955939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350