JP2019055108A - sewing machine - Google Patents

sewing machine Download PDF

Info

Publication number
JP2019055108A
JP2019055108A JP2017182283A JP2017182283A JP2019055108A JP 2019055108 A JP2019055108 A JP 2019055108A JP 2017182283 A JP2017182283 A JP 2017182283A JP 2017182283 A JP2017182283 A JP 2017182283A JP 2019055108 A JP2019055108 A JP 2019055108A
Authority
JP
Japan
Prior art keywords
feed
sewing
rotation angle
pitch
sewing machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017182283A
Other languages
Japanese (ja)
Other versions
JP7030464B2 (en
Inventor
秋山 辰仁
Tatsuhito Akiyama
辰仁 秋山
隆 日塔
Takashi Hito
隆 日塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Original Assignee
Juki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp filed Critical Juki Corp
Priority to JP2017182283A priority Critical patent/JP7030464B2/en
Priority to CN201811108964.2A priority patent/CN109537182B/en
Priority to DE102018123365.5A priority patent/DE102018123365A1/en
Publication of JP2019055108A publication Critical patent/JP2019055108A/en
Application granted granted Critical
Publication of JP7030464B2 publication Critical patent/JP7030464B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B27/00Work-feeding means
    • D05B27/02Work-feeding means with feed dogs having horizontal and vertical movements
    • D05B27/08Work-feeding means with feed dogs having horizontal and vertical movements with differential feed motions
    • DTEXTILES; PAPER
    • D05SEWING; EMBROIDERING; TUFTING
    • D05BSEWING
    • D05B27/00Work-feeding means
    • D05B27/22Work-feeding means with means for setting length of stitch

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Sewing Machines And Sewing (AREA)

Abstract

To variously adjust the shape of a locus of a circulating operation of a feed dog.SOLUTION: A sewing machine 100 includes: a needle vertical movement mechanism; a sewing machine motor 16 which becomes the driving source; a feed dog 31; a horizontal feed mechanism 40 which obtains power from the sewing machine motor and transmits a reciprocating operation in a horizontal direction to the feed dog; a vertical feed mechanism 60 which imparts a reciprocating operation in a vertical direction to the feed dog; a feed adjusting body 55 which varies the amplitude of the reciprocating operation in the horizontal direction transmitted from the sewing machine motor to the feed dog by a rotation operation; a feed adjusting motor 57 which changes a rotation angle of the feed adjusting body so as to change and adjust a sewing pitch; and a control device 90 which controls the feed adjusting motor. The control device controls the feed adjusting motor during one cycle of the vertical movement of a needle bar and varies the rotation angle of the feed adjusting body a plurality of times, thereby performing control to change the shape of a locus of a circulating operation of the feed dog while maintaining a target sewing pitch.SELECTED DRAWING: Figure 5

Description

本発明は、送り調節を行うミシンに関する。   The present invention relates to a sewing machine that performs feed adjustment.

送り歯の動作を自在に行うために、ミシンモーターから動力を得て送り歯に対する送り歯の水平方向の往復動作を行う水平送り機構と、ミシンモーターから動力を得て送り歯に対する送り歯の上下方向の往復動作を行う上下送り機構と、ミシンモーターから水平送り機構に伝わる水平方向の往復動作の振幅を回動により変動させる送り調節体と、送り調節体の回動角度を変えて縫いピッチを変更調節する送り調節モーターとを備えるミシンが従来から使用されている(例えば、特許文献1参照)。   In order to freely operate the feed dog, a horizontal feed mechanism that obtains power from the sewing motor and reciprocates in the horizontal direction of the feed dog with respect to the feed dog, and a vertical feed mechanism with respect to the feed dog that receives power from the sewing machine motor A vertical feed mechanism that reciprocates in the direction, a feed adjuster that varies the amplitude of the horizontal reciprocation that is transmitted from the sewing machine motor to the horizontal feed mechanism, and a rotation angle of the feed adjuster to change the sewing pitch. 2. Description of the Related Art A sewing machine including a feed adjustment motor that changes and adjusts has been conventionally used (see, for example, Patent Document 1).

特開昭56−91790号公報JP 56-91790 A

しかしながら、上記従来のミシンは、送り調節モーターを制御して縫製中に任意に縫いピッチを変更することはできるが、送り歯の周回動作の軌跡の形状を多様に変更調節することはできなかった。   However, the above-mentioned conventional sewing machine can arbitrarily change the sewing pitch during sewing by controlling the feed adjusting motor, but cannot change and adjust the shape of the trajectory of the feed dog's circular movement in various ways. .

本発明は、送り歯の周回動作の軌跡の形状を多様に変更調節可能とすることをその目的とする。   An object of the present invention is to enable various changes and adjustments of the shape of the trajectory of the feed dog's circular motion.

請求項1記載の発明は、ミシンにおいて、
針棒を上下動させる針上下動機構と、
前記針上下動機構の駆動源となるミシンモーターと、
針板の上の被縫製物を送る送り歯と、
前記ミシンモーターから動力を得て前記送り歯に対して水平方向の往復動作を伝達する水平送り機構と、
前記送り歯に対して上下方向の往復動作を付与する上下送り機構と、
前記ミシンモーターから前記送り歯に伝達される水平方向の往復動作の振幅を回動動作により変動させる送り調節体と、
当該送り調節体の回動角度を変えて縫いピッチを変更調節する送り調節モーターと、
前記送り調節モーターを制御する制御装置とを備えるミシンにおいて、
前記制御装置が、前記針棒の上下動の一周期の間に前記送り調節モーターを制御して前記送り調節体の回動角度を複数回変動させることで、前記送り歯の周回動作の軌跡の形状を変更する制御を行うことを特徴とする。
The invention according to claim 1 is a sewing machine,
A needle up-and-down movement mechanism that moves the needle bar up and down;
A sewing machine motor as a drive source of the needle up-and-down movement mechanism;
A feed dog that feeds the material to be sewn on the needle plate;
A horizontal feed mechanism that obtains power from the sewing machine motor and transmits a reciprocating motion in the horizontal direction to the feed dog;
A vertical feed mechanism for applying a reciprocating motion in the vertical direction to the feed dog;
A feed adjuster that varies the amplitude of a horizontal reciprocating motion transmitted from the sewing machine motor to the feed dog by a turning motion;
A feed adjustment motor that changes and adjusts the sewing pitch by changing the rotation angle of the feed adjustment body;
In a sewing machine comprising a control device for controlling the feed adjustment motor,
The control device controls the feed adjustment motor during one cycle of the vertical movement of the needle bar to change the rotation angle of the feed adjustment body a plurality of times, thereby allowing the trajectory of the feed dog to rotate. Control for changing the shape is performed.

請求項2記載の発明は、請求項1記載のミシンにおいて、
前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の内の少なくとも一方とで、それぞれ大きさが異なる第一の縫いピッチと第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする。
The invention according to claim 2 is the sewing machine according to claim 1,
The control device includes a first sewing pitch that is different in size between a passing point that is the highest position in the trajectory of the feed dog and at least one of two passing points that are the height of the needle plate upper surface. And the feed adjusting motor is controlled so that the rotation angle of the feed adjusting body becomes the second sewing pitch.

請求項3記載の発明は、請求項2記載のミシンにおいて、
前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで前記第一の縫いピッチになる送り調節体の回動角度となり、針板上面高さとなる前記二つの通過点で前記第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする。
The invention according to claim 3 is the sewing machine according to claim 2,
The control device has a rotation angle of the feed adjusting body that becomes the first sewing pitch between a passing point that is the highest position and a passing point that is the lowest position in the trajectory of the feed dog's orbiting operation, The feed adjustment motor is controlled so that the rotation angle of the feed adjustment body becomes the second sewing pitch at the two passing points.

請求項4記載の発明は、請求項2記載のミシンにおいて、
前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで前記第一の縫いピッチになる送り調節体の回動角度となり、針板上面高さとなる前記二つの通過点の一方で前記第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする。
The invention according to claim 4 is the sewing machine according to claim 2,
The control device has a rotation angle of the feed adjusting body that becomes the first sewing pitch between a passing point that is the highest position and a passing point that is the lowest position in the trajectory of the feed dog's orbiting operation, The feed adjustment motor is controlled so that one of the two passing points becomes a rotation angle of the feed adjustment body that becomes the second sewing pitch.

請求項5記載の発明は、請求項2から4のいずれか一項に記載のミシンにおいて、
前記第一の縫いピッチを前記第二の縫いピッチよりも大きい値としたことを特徴とする。
The invention according to claim 5 is the sewing machine according to any one of claims 2 to 4,
The first sewing pitch is larger than the second sewing pitch.

請求項6記載の発明は、請求項1記載のミシンにおいて、
前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の一方と、前記針板上面高さとなる二つの通過点の他方とで、それぞれ大きさが異なる第一から第三の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする。
The invention according to claim 6 is the sewing machine according to claim 1,
The control device includes: a passing point that is the highest position in the trajectory of the feed dog's orbiting operation; one of two passing points that are the needle plate upper surface height; and the other of the two passing points that are the needle plate upper surface height; Then, the feed adjusting motor is controlled so that the rotation angle of the feed adjusting body becomes the first to third sewing pitches having different sizes.

請求項7記載の発明は、請求項6記載のミシンにおいて、
前記第一の縫いピッチを前記第二の縫いピッチよりも大きい値とし、前記第三の縫いピッチを前記第一の縫いピッチよりも大きい値としたことを特徴とする。
The invention according to claim 7 is the sewing machine according to claim 6,
The first sewing pitch is set to a value larger than the second sewing pitch, and the third sewing pitch is set to a value larger than the first sewing pitch.

本発明は、上記構成により、送り歯の周回動作の軌跡の形状を多様に変更調節可能となる。   According to the present invention, the shape of the trajectory of the feed dog's orbiting operation can be changed and adjusted in various ways.

ミシンのベッド部内の主要な構成を示す斜視図である。It is a perspective view which shows the main structures in the bed part of a sewing machine. 送り調節機構の斜視図である。It is a perspective view of a feed adjustment mechanism. ミシンの制御系を示すブロック図である。It is a block diagram which shows the control system of a sewing machine. 図4(A)は基準形の軌跡の形状を実現するためのミシン一回転中の送り調節体の支軸回りの回動角度変化を示す図、図4(B)は通常の送りを行う場合の基準形の軌跡の形状を示す図、図4(C)は高さ調節後の軌跡の形状を示す図である。FIG. 4A is a diagram showing a change in the rotation angle around the support shaft of the feed adjusting body during one rotation of the sewing machine for realizing the shape of the trajectory of the reference shape, and FIG. 4B is a case where normal feeding is performed. FIG. 4C is a diagram showing the shape of the trajectory after the height adjustment. 図5(A)は変形軌跡(1)の形状を実現するための送り調節体の支軸回りの回動角度変化を示す図、図5(B)は変形軌跡(1)の形状を示す図である。FIG. 5A is a view showing a change in the rotation angle around the support shaft of the feed adjusting body for realizing the shape of the deformation locus (1), and FIG. 5B is a view showing the shape of the deformation locus (1). It is. 図6(A)は変形軌跡(2)の形状を実現するための送り調節体の支軸回りの回動角度変化を示す図、図6(B)は変形軌跡(2)の形状を示す図である。FIG. 6A is a view showing a change in the rotation angle around the support shaft of the feed adjusting body for realizing the shape of the deformation locus (2), and FIG. 6B is a view showing the shape of the deformation locus (2). It is. 図7(A)は変形軌跡(3)の形状を実現するための送り調節体の支軸回りの回動角度変化を示す図、図7(B)は変形軌跡(3)の形状を示す図である。FIG. 7A is a diagram showing a rotation angle change around the support shaft of the feed adjusting body for realizing the shape of the deformation locus (3), and FIG. 7B is a diagram showing the shape of the deformation locus (3). It is. 図8(A)は変形軌跡(4)の形状を実現するための送り調節体の支軸回りの回動角度変化を示す図、図8(B)は変形軌跡(4)の形状を示す図である。FIG. 8A is a view showing a change in the rotation angle around the support shaft of the feed adjusting body for realizing the shape of the deformation locus (4), and FIG. 8B is a view showing the shape of the deformation locus (4). It is. 図9(A)は変形軌跡(5)の形状を実現するための送り調節体の支軸回りの回動角度変化を示す図、図9(B)は変形軌跡(5)の形状を示す図である。FIG. 9A is a view showing a change in the rotation angle around the support shaft of the feed adjusting body for realizing the shape of the deformation locus (5), and FIG. 9B is a view showing the shape of the deformation locus (5). It is. 図10(A)は基準形の長円の軌跡における送り歯と布押さえの押え圧の関係を示し、図10(B)は変形軌跡(1)の矩形の軌跡における送り歯と布押さえの押え圧の関係を示す説明図である。FIG. 10A shows the relationship between the feed dog and the presser foot pressure on the elliptical locus of the standard shape, and FIG. 10B shows the feed dog and presser foot presser on the rectangular locus of the deformation locus (1). It is explanatory drawing which shows the relationship of a pressure.

[実施形態の概略構成]
以下、本発明の実施形態である送り調節機構を備えるミシンについて詳細に説明する。
図1はミシン100のベッド部内の主要な構成を示す斜視図である。
図1に示すように、ミシン100は、上軸の回転により縫い針を上下動させる図示しない針上下動機構と、上軸回転の駆動源となるミシンモーター16(図3参照)と、上糸を下糸に絡める釜12と、縫い針の上下動に同期して針板11上の被縫製物たる布地を送る布送り機構30と、上軸から布送り機構30の上下送り軸33に回転力を伝達するベルト機構20と、上記各構成を支持するミシンフレーム(図示略)と、上記各構成を制御する制御装置90(図3参照)とを備えている。
なお、上記ミシン100はいわゆる本縫いミシンであり、一般的な本縫いミシンが備える天秤機構、糸調子、布押さえ等の各構成を備えているが、これらは周知のものなので説明は省略する。
[Schematic Configuration of Embodiment]
Hereinafter, a sewing machine including a feed adjustment mechanism according to an embodiment of the present invention will be described in detail.
FIG. 1 is a perspective view showing a main configuration in the bed portion of the sewing machine 100.
As shown in FIG. 1, the sewing machine 100 includes a needle vertical movement mechanism (not shown) that moves the sewing needle up and down by rotating the upper shaft, a sewing machine motor 16 (see FIG. 3) that serves as a drive source for rotating the upper shaft, and an upper thread. Rotate the hook 12 around the lower thread, the cloth feed mechanism 30 that feeds the cloth to be sewn on the needle plate 11 in synchronization with the vertical movement of the sewing needle, and the upper shaft to the vertical feed shaft 33 of the cloth feed mechanism 30. A belt mechanism 20 that transmits force, a sewing machine frame (not shown) that supports each of the above components, and a control device 90 (see FIG. 3) that controls each of the above components are provided.
The sewing machine 100 is a so-called lockstitch sewing machine, and includes various components such as a balance mechanism, a thread tension, and a cloth presser that are included in a general lockstitch sewing machine.

上記ミシンフレームは、ミシンの全体において下部に位置するベッド部と、ベッド部の長手方向の一端部において上方に立設された立胴部と、立胴部の上端部からベッド部と同方向に延設された図示しないアーム部とを備えている。
なお、以下の説明では、ベッド部の長手方向に平行な水平方向をY軸方向とし、水平であってY軸方向に直交する方向をX軸方向とし、X軸及びY軸方向に直交する方向をZ軸方向とする。
The sewing machine frame includes a bed portion positioned at a lower portion of the entire sewing machine, a standing body portion erected upward at one end portion in the longitudinal direction of the bed portion, and an upper end portion of the standing body portion in the same direction as the bed portion. And an extended arm portion (not shown).
In the following description, the horizontal direction parallel to the longitudinal direction of the bed portion is defined as the Y-axis direction, the horizontal direction orthogonal to the Y-axis direction is defined as the X-axis direction, and the direction orthogonal to the X-axis and Y-axis directions. Is the Z-axis direction.

[針上下動機構及びベルト機構]
針上下動機構は、アーム部の内側に配設され、ミシンモーター16に回転駆動されると共にY軸方向に沿って配設された上軸と、縫い針を下端部で保持する針棒と、上軸の回転力を上下動の往復駆動力に変換して針棒に伝達するクランク機構とを備えている(いずれも図示略)。
そして、ベルト機構20は、上軸に固定装備された主動プーリと、布送り機構30の上下送り軸33に固定装備された従動プーリ21と、主動プーリと従動プーリ21とに掛け渡されたタイミングベルト22とを備えている。そして、ベルト機構20により、上下送り軸33は上軸と同速度で全回転を行う。
なお、ベルト機構20に替えてZ軸方向に沿った縦軸と傘歯車からなる歯車伝達機構で上軸から上下送り軸33に回転力を伝達しても良い。
[Needle vertical movement mechanism and belt mechanism]
The needle up-and-down moving mechanism is disposed on the inner side of the arm portion, is rotationally driven by the sewing machine motor 16 and is disposed along the Y-axis direction, a needle bar that holds the sewing needle at the lower end portion, And a crank mechanism that converts the rotational force of the upper shaft into a reciprocating driving force that moves up and down and transmits it to the needle bar (all not shown).
The belt mechanism 20 includes a main pulley fixedly mounted on the upper shaft, a driven pulley 21 fixedly mounted on the vertical feed shaft 33 of the cloth feed mechanism 30, and a timing spanned between the main pulley and the driven pulley 21. Belt 22. Then, the belt mechanism 20 causes the vertical feed shaft 33 to fully rotate at the same speed as the upper shaft.
Instead of the belt mechanism 20, the rotational force may be transmitted from the upper shaft to the vertical feed shaft 33 by a gear transmission mechanism including a vertical axis along the Z-axis direction and a bevel gear.

[布送り機構]
図1に示すように、布送り機構30は、針板11の開口から出没して布地を所定方向に送る送り歯31と、送り歯31を保持する送り台32と、ミシンモーター16から動力を得て送り台32に対してX軸方向(水平方向)の往復動作を伝達する水平送り機構40と、送り台32に対して上下方向の往復動作を付与する上下送り機構60とを備えている。
[Cloth feed mechanism]
As shown in FIG. 1, the cloth feed mechanism 30 receives power from a feed dog 31 that moves in and out from the opening of the needle plate 11 to feed the fabric in a predetermined direction, a feed base 32 that holds the feed dog 31, and the sewing machine motor 16. The horizontal feed mechanism 40 that transmits the reciprocating motion in the X-axis direction (horizontal direction) to the feed base 32 and the vertical feed mechanism 60 that imparts the reciprocating motion in the vertical direction to the feed base 32 are provided. .

[水平送り機構]
水平送り機構40は、送り台32に対するX軸方向の往復動作のストロークを調節する送り調節機構50と、上下送り軸33からX軸方向に沿った往復動作を取り出すコネクティングロッド41と、送り調節機構50を介してコネクティングロッド41から往復回動が付与される水平送り軸42と、水平送り軸42の往復回動駆動力を送り方向(X軸方向)の往復駆動力に変換して送り台32に伝達する水平送りアーム43とを備えている。
[Horizontal feed mechanism]
The horizontal feed mechanism 40 includes a feed adjusting mechanism 50 that adjusts the stroke of the reciprocating operation in the X-axis direction with respect to the feed base 32, a connecting rod 41 that takes out the reciprocating operation along the X-axis direction from the vertical feed shaft 33, and a feed adjusting mechanism. The horizontal feed shaft 42 to which reciprocating rotation is applied from the connecting rod 41 via 50, and the reciprocating rotational driving force of the horizontal feed shaft 42 are converted into reciprocating driving force in the feed direction (X-axis direction), thereby the feed base 32. And a horizontal feed arm 43 for transmitting to the head.

コネクティングロッド41は、その一端部が上下送り軸33に固定装備された偏心カム44を回転可能に保持しており、他端部が送り調節機構50に連結されている。かかるコネクティングロッド41は、その長手方向がおおむねX軸方向に沿うように配置されており、上下送り軸33が全回転で駆動すると、コネクティングロッド41の他端部は偏心カム44の偏心量の二倍のストロークでその長手方向に沿って往復動作を行う。かかるコネクティングロッド41の往復動作が送り調節機構50を介して水平送り軸42への往復回動力として伝達される。   One end of the connecting rod 41 rotatably holds an eccentric cam 44 fixedly mounted on the vertical feed shaft 33, and the other end is connected to the feed adjusting mechanism 50. The connecting rod 41 is arranged so that the longitudinal direction thereof is generally along the X-axis direction. When the vertical feed shaft 33 is driven at full rotation, the other end of the connecting rod 41 has two eccentric amounts of the eccentric cam 44. A reciprocating motion is performed along the longitudinal direction with a double stroke. The reciprocating motion of the connecting rod 41 is transmitted as reciprocating power to the horizontal feed shaft 42 via the feed adjusting mechanism 50.

[送り調節機構]
送り調節機構50は、図1及び図2に示すように、水平送り軸42に固定装備されると共に水平送り軸42を中心とする半径方向外側に延出された揺動アーム51と、コネクティングロッド41の他端部と揺動アーム51とを連結する一対の第一のリンク体53と、コネクティングロッド41の他端部の往復運動方向をX−Z平面に沿ったいずれかの方向に誘導する一対の第二のリンク体54と、第二のリンク体54による誘導方向を決定する送り調節体55と、送り調節体55と一体的に回動する支軸52と、支軸52に固定装備されると共に支軸52を中心とする半径方向外側に延出された入力アーム56と、送り調節体55を回動させて上下送り軸33から送り台32に伝達されるX軸方向(水平方向)の往復動作量を調節する送り調節モーター57と、送り調節モーター57の出力軸から入力アーム56に回動力を伝達する二つの伝達リンク58,59とを備えている。
なお、水平送り軸42と上下送り軸33の位置は入れ替えて配置されていても良い。
[Feed adjustment mechanism]
As shown in FIGS. 1 and 2, the feed adjusting mechanism 50 is fixedly mounted on the horizontal feed shaft 42 and extends outward in the radial direction around the horizontal feed shaft 42, and a connecting rod. The reciprocating motion direction of the pair of first link bodies 53 that connect the other end of 41 and the swing arm 51 and the other end of the connecting rod 41 is guided in any direction along the XZ plane. A pair of second link bodies 54, a feed adjusting body 55 that determines the guiding direction by the second link body 54, a support shaft 52 that rotates integrally with the feed adjusting body 55, and a fixed attachment to the support shaft 52 The X-axis direction (horizontal direction) transmitted to the feed base 32 from the vertical feed shaft 33 by rotating the feed adjustment body 55 and the input arm 56 extended radially outward with the support shaft 52 as the center. ) Feed adjustment to adjust the amount of reciprocation A motor 57, and a two transmission links 58 and 59 for transmitting the input arm 56 twice the power from the output shaft of the feed adjusting motor 57.
Note that the positions of the horizontal feed shaft 42 and the vertical feed shaft 33 may be interchanged.

第一のリンク体53は、一端部がコネクティングロッド41の他端部に連結され、他端部が揺動アーム51の揺動端部に連結され、これら両端部はいずれもY軸回りに回動可能に連結されている。
第二のリンク体54は、一端部が第一のリンク体53の一端部と共にコネクティングロッド41の他端部に連結され、他端部が送り調節体55の回動端部に連結され、これら両端部はいずれもY軸回りに回動可能に連結されている。
送り調節体55は、その基端部にY軸方向に沿った支軸52が固定装備されており、当該支軸52はミシンフレーム内でY軸回りに回動可能に支持されている。
また、送り調節体55の回動端部は第二のリンク体54の他端部とY軸回りに回動可能に連結されている。
The first link body 53 has one end connected to the other end of the connecting rod 41 and the other end connected to the swing end of the swing arm 51, both of which rotate around the Y axis. It is linked movably.
One end portion of the second link body 54 is connected to the other end portion of the connecting rod 41 together with one end portion of the first link body 53, and the other end portion is connected to the rotating end portion of the feed adjusting body 55. Both end portions are connected so as to be rotatable about the Y axis.
The feed adjusting body 55 is fixedly equipped with a support shaft 52 along the Y-axis direction at the base end portion, and the support shaft 52 is supported so as to be rotatable around the Y-axis in the sewing machine frame.
Further, the rotation end portion of the feed adjusting body 55 is connected to the other end portion of the second link body 54 so as to be rotatable around the Y axis.

送り調節機構50では、第一のリンク体53と第二のリンク体54のそれぞれの長手方向が一致する状態、つまり各リンク体53,54が丁度重なる状態となるように送り調節体55を回動させると、コネクティングロッド41の駆動力が揺動アーム51に伝わらない状態となる。このとき、水平送り軸42には往復回動動作が伝わらないので、送り台32のX軸方向の往復のストロークが0、即ち、縫いピッチが0となる。このように、各リンク体53,54が重なる状態となる送り調節体55の回動角度を「送り調節体55の中立角度」とする。   In the feed adjusting mechanism 50, the feed adjusting body 55 is rotated so that the longitudinal directions of the first link body 53 and the second link body 54 coincide with each other, that is, the link bodies 53, 54 are just overlapped. When moved, the driving force of the connecting rod 41 is not transmitted to the swing arm 51. At this time, since the reciprocating rotation is not transmitted to the horizontal feed shaft 42, the reciprocating stroke of the feed base 32 in the X-axis direction is 0, that is, the sewing pitch is 0. In this way, the rotation angle of the feed adjusting body 55 in which the link bodies 53 and 54 overlap each other is referred to as a “neutral angle of the feed adjusting body 55”.

そして、この送り調節体55を中立角度から一方に回動させると、その回動角度量に応じて揺動アーム51側に往復の揺動動作が付与され、これにより正送り方向の縫いピッチを大きくすることができる。
また、この送り調節体55を中立角度から逆方向に回動させると、やはりその回動角度量に応じて揺動アーム51側に往復の揺動動作を付与することができるが、この場合には、位相が反転して伝達され、これにより逆送り方向の縫いピッチを大きくすることができる。
When the feed adjusting body 55 is rotated from the neutral angle to one side, a reciprocating swinging motion is applied to the swinging arm 51 in accordance with the amount of the pivoting angle, thereby increasing the sewing pitch in the forward feed direction. Can be bigger.
Further, when the feed adjusting body 55 is rotated in the reverse direction from the neutral angle, a reciprocating swinging operation can be imparted to the swinging arm 51 side according to the rotational angle amount. Is transmitted with the phase reversed, and thereby the sewing pitch in the reverse feed direction can be increased.

送り調節モーター57は、ベッド部内のY軸方向一端部側において、出力軸をY軸方向に向けて配置されている。前述した伝達リンク58は、その長手方向を概ねX軸方向に向けてその一端部が送り調節モーター57の出力軸に固定装備されている。従って、送り調節モーター57の駆動により伝達リンク58の他端部は上下に回動を行う。
伝達リンク59は、その長手方向が概ねZ軸方向に沿った状態で、その下端部が伝達リンク58の他端部にY軸回りに回動可能に連結されている。従って、送り調節モーター57の駆動により伝達リンク59は全体的に上下動を行う。
入力アーム56は、支軸52に固定装備されると共に支軸52から概ねX軸方向に沿って延出されており、その延出端部は伝達リンク59の上端部にY軸回りに回動可能に連結されている。
これらにより、送り調節モーター57が駆動すると、伝達リンク58,59及び入力アーム56を介して送り調節体55を回動させることができる。
The feed adjustment motor 57 is arranged with the output shaft directed in the Y-axis direction on one end side in the Y-axis direction in the bed portion. One end of the transmission link 58 is fixed to the output shaft of the feed adjustment motor 57 with its longitudinal direction being substantially in the X-axis direction. Accordingly, the other end portion of the transmission link 58 rotates up and down by driving the feed adjusting motor 57.
The transmission link 59 has a lower end connected to the other end of the transmission link 58 so as to be rotatable about the Y axis in a state where the longitudinal direction thereof is substantially along the Z-axis direction. Accordingly, the transmission link 59 moves up and down as a whole by driving the feed adjusting motor 57.
The input arm 56 is fixedly mounted on the support shaft 52 and extends substantially along the X-axis direction from the support shaft 52, and its extended end rotates around the Y axis at the upper end of the transmission link 59. Connected as possible.
Accordingly, when the feed adjusting motor 57 is driven, the feed adjusting body 55 can be rotated via the transmission links 58 and 59 and the input arm 56.

水平送り軸42は、ベッド部内においてY軸方向に沿って回転可能に支持されており、上下送り軸33に対して布地の送り方向下流側(図1における左方)に配置されている。かかる水平送り軸42の立胴部側の一端部には前述した送り調節機構50を介して上下送り軸33から往復回動力が付与され、水平送り軸42の他端部からは水平送りアーム43を介して送り台32にX軸方向に沿った往復動作を伝達する。   The horizontal feed shaft 42 is supported in the bed portion so as to be rotatable along the Y-axis direction, and is disposed on the downstream side in the fabric feed direction (left side in FIG. 1) with respect to the vertical feed shaft 33. A reciprocating power is applied from the vertical feed shaft 33 to the one end portion of the horizontal feed shaft 42 on the vertical trunk portion side via the feed adjusting mechanism 50 described above, and a horizontal feed arm 43 is provided from the other end portion of the horizontal feed shaft 42. The reciprocating motion along the X-axis direction is transmitted to the feed base 32 via the.

水平送りアーム43は、その基端部が水平送り軸42の針板11側の端部に固定連結され、その揺動端部はほぼ上方に向けられた状態でY軸回りに回動可能に送り台32に連結されている。
従って、水平送りアーム43は、ミシンモーター16の駆動により送り台32をX軸方向に沿って往復移動させることができる。また、送り台32のX軸方向に沿った往復動作のストロークは、送り調節機構50の送り調節モーター57を制御することにより、任意に調節することができる。
The horizontal feed arm 43 has a base end fixedly connected to an end of the horizontal feed shaft 42 on the throat plate 11 side, and a swinging end of the horizontal feed arm 43 can be rotated about the Y axis while being directed substantially upward. It is connected to the feed base 32.
Accordingly, the horizontal feed arm 43 can reciprocate the feed base 32 along the X-axis direction by driving the sewing machine motor 16. Further, the stroke of the reciprocating operation along the X-axis direction of the feed base 32 can be arbitrarily adjusted by controlling the feed adjustment motor 57 of the feed adjustment mechanism 50.

[上下送り機構]
上下送り機構60は、図1に示すように、前述した全回転を行う上下送り軸33と、上下送り軸33の針板11側の端部に固定装備された円形の偏心カム61と、当該偏心カム61を一端部で回転可能に保持するコネクティングロッド62とを備えている。
[Vertical feed mechanism]
As shown in FIG. 1, the vertical feed mechanism 60 includes a vertical feed shaft 33 that performs the above-described full rotation, a circular eccentric cam 61 that is fixedly installed at the end of the vertical feed shaft 33 on the needle plate 11 side, A connecting rod 62 that rotatably holds the eccentric cam 61 at one end is provided.

コネクティングロッド62は、一端部は前述したように偏心カム61を擁し、他端部は送り台32のX軸方向の一端部に対してY軸回りに回動可能に連結されている。また、コネクティングロッド62は、他端部が上方に延出されている。
このため、上下送り軸33に全回転が付与されると、偏心カム61の偏心量の二倍のストロークでその上下方向に沿って往復動作を行い、送り台32に往復上下動を付与することができる。
One end of the connecting rod 62 has the eccentric cam 61 as described above, and the other end is connected to one end of the feed base 32 in the X-axis direction so as to be rotatable about the Y-axis. Moreover, the other end part of the connecting rod 62 is extended upwards.
For this reason, when full rotation is applied to the vertical feed shaft 33, the reciprocating operation is performed along the vertical direction with a stroke twice the eccentric amount of the eccentric cam 61, and the reciprocating vertical motion is applied to the feed base 32. Can do.

[送り台]
送り台32は、針板11の下方に配設され、布送り方向(X軸方向)における一端部がコネクティングロッド62に連結され、他端部が水平送りアーム43に連結されている。また、送り台32の長手方向中間位置の上部には送り歯31が固定装備されている。
これにより、送り台32はその一端部から上下方向に往復駆動力が付与され、他端部からは同じ周期で送り方向の往復駆動力が付与される。そして、これらの往復駆動力を合成することでX−Z平面に沿った長円の軌跡を描いて周回動作を行うこととなる。この送り台32に伴って送り歯31も長円の周回動作を行い、当該長円周回動作の軌跡の上部領域を移動する際に送り歯31の先端部が針板11の開口部から上方に突出し、布地を送ることを可能としている。
[Feeding base]
The feed base 32 is disposed below the needle plate 11, one end in the cloth feed direction (X-axis direction) is connected to the connecting rod 62, and the other end is connected to the horizontal feed arm 43. Further, a feed dog 31 is fixedly installed at the upper part of the intermediate position in the longitudinal direction of the feed base 32.
Thus, the feed base 32 is given a reciprocating drive force in the vertical direction from one end thereof, and a reciprocating drive force in the feed direction is given from the other end in the same cycle. Then, by combining these reciprocating driving forces, a circular motion is performed by drawing an elliptical trajectory along the XZ plane. The feed dog 31 also performs an elliptical circular motion with the feed base 32, and the tip of the feed dog 31 moves upward from the opening of the needle plate 11 when moving in the upper region of the locus of the elliptical circular motion. Protrusions and fabrics can be sent.

[ミシンの制御系]
上記ミシン100の制御系を図3のブロック図に示す。この図3に示すように、ミシン100は、各構成の動作制御を行う制御装置90を備えている。そして、この制御装置90には、ミシンモーター16及び送り調節モーター57が各々のモーター駆動回路16a,57aを介して接続されている。
また、ミシンモーター16には、その回転数を検出するエンコーダ161が併設されており、このエンコーダ161もモーター駆動回路16aを介して制御装置90に接続されている。
[Sewing machine control system]
The control system of the sewing machine 100 is shown in the block diagram of FIG. As shown in FIG. 3, the sewing machine 100 includes a control device 90 that controls the operation of each component. The control device 90 is connected to a sewing machine motor 16 and a feed adjustment motor 57 via respective motor drive circuits 16a and 57a.
Further, the sewing machine motor 16 is provided with an encoder 161 for detecting the number of rotations thereof, and this encoder 161 is also connected to the control device 90 via a motor drive circuit 16a.

制御装置90は、CPU91、ROM92、RAM93、EEPROM94(EEPROMは登録商標)を備え、後述する各種の動作制御を実行する。なお、EEPROM94に替えて、フラッシュメモリー、EPROM又はHDD等の不揮発性の記憶装置を備える構成としても良い。
また、制御装置90には、後述する布送り機構30に対する各種の動作制御の実行や設定を入力するための操作入力部96がインターフェイス97を介して接続されている。
The control device 90 includes a CPU 91, a ROM 92, a RAM 93, and an EEPROM 94 (EEPROM is a registered trademark), and executes various operation controls to be described later. Instead of the EEPROM 94, a nonvolatile storage device such as a flash memory, EPROM, or HDD may be provided.
Further, an operation input unit 96 for inputting execution and setting of various operation controls for the cloth feed mechanism 30 described later is connected to the control device 90 via an interface 97.

[布送り機構の動作制御(基準形の軌跡パターン)]
ミシン100では、送り歯31の布送り方向に沿った往復動作のストロークを送り調節モーター57により任意に変更可能であることから、上軸一回転の間に送り調節モーター57を複数回駆動させる制御を行うことにより、送り歯31の周回動作の軌跡の形状を多様に変更することが可能である。
図4(B)は通常の送りを行う場合の基準形の軌跡の形状である。図4(B)では横軸が送り歯31のX軸方向の位置、縦軸がZ軸方向の送り歯31の位置を示し、横軸の左側が送り方向下流側、縦軸の0となる位置が針板11の上面の高さである。
一方、図4(A)は、縦軸が図4(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示しており、横軸が送り歯31の位相角度を示している。なお、送り歯31の周回を360°とし、送り歯31が上死点の位置をスタート(0°)として示している。
なお、送り歯31の周回角度360°は、縫い針の一周期と同期している。
[Operation control of cloth feed mechanism (reference pattern)
In the sewing machine 100, since the stroke of the reciprocating operation along the cloth feeding direction of the feed dog 31 can be arbitrarily changed by the feed adjusting motor 57, the feed adjusting motor 57 is driven a plurality of times during one rotation of the upper shaft. By performing the above, it is possible to variously change the shape of the trajectory of the orbiting operation of the feed dog 31.
FIG. 4B shows the shape of a reference-form trajectory when normal feeding is performed. In FIG. 4B, the horizontal axis indicates the position of the feed dog 31 in the X-axis direction, the vertical axis indicates the position of the feed dog 31 in the Z-axis direction, the left side of the horizontal axis is downstream in the feed direction, and the vertical axis is 0. The position is the height of the upper surface of the needle plate 11.
On the other hand, in FIG. 4A, the vertical axis indicates the rotation angle around the support shaft 52 of the feed adjusting body 55 for realizing the locus shape of FIG. 4B, and the horizontal axis indicates the feed dog 31. The phase angle is shown. Note that the circumference of the feed dog 31 is 360 °, and the position of the top dead center of the feed dog 31 is indicated as a start (0 °).
The rotation angle 360 ° of the feed dog 31 is synchronized with one cycle of the sewing needle.

基準形の軌跡の形状で送り歯31が周回動作を行う際には、図4(A)に示すように、送り調節体55の回動角度は上軸一回転の間、一定の角度を維持している。
なお、以下の説明では、この基準形の軌跡の形状における縫いピッチを第一の縫いピッチP1(図5(A)参照)とし、当該基準形の軌跡で送り歯31が周回動作を行う送り調節体55の回動角度をθ1とする。
また、送り調節体55の回動角度を中立角度に近づけると布送り方向のストロークが短くなり、中立角度から離れると布送り方向のストロークが長くなる。
When the feed dog 31 performs the revolving motion in the shape of the reference trajectory, as shown in FIG. 4A, the rotation angle of the feed adjusting body 55 is kept constant during one rotation of the upper shaft. doing.
In the following description, the sewing pitch in the shape of the reference-form trajectory is the first sewing pitch P1 (see FIG. 5A), and the feed adjustment is performed in which the feed dog 31 performs the revolving operation on the reference-form trajectory. The rotation angle of the body 55 is assumed to be θ1.
Further, when the rotation angle of the feed adjusting body 55 is made closer to the neutral angle, the stroke in the cloth feeding direction is shortened, and when it is away from the neutral angle, the stroke in the cloth feeding direction is lengthened.

この基準形の軌跡では、針板11の上面を基準として上下にほぼ対称な長円となる。
制御装置90は、基準形の軌跡で縫製を行う場合には、毎針の上軸一回転の間、送り調節体55の回動角度をθ1に維持するように送り調節モーター57を制御する。
In this reference-form trajectory, the ellipse is substantially symmetrical vertically with respect to the upper surface of the needle plate 11.
The control device 90 controls the feed adjustment motor 57 so that the rotation angle of the feed adjustment body 55 is maintained at θ1 during one rotation of the upper shaft of each needle when sewing is performed with a reference-form trajectory.

[布送り機構の動作制御(変形軌跡(1)の軌跡パターン)]
図5(B)中において実線で示されているのはボックス送りと呼ばれる変形軌跡(1)の形状、図5(A)は、図5(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示している。
この変形軌跡(1)は前述した基準形の軌跡よりも矩形に近い形状であり、送り歯31が上昇中と下降中の送り方向(X方向)の位置変化が少なく、送り歯31の先端部が針板11の上面から突出している間の高さ変動が小さい。
例えば、送り台32に対する送り歯31の取り付け位置を高く調節した場合には、基準形の長円の軌跡は、図4(C)に示すように送り歯31の軌跡が縦軸方向に水平移動する(図中の二点鎖線は送り歯31の回転軌跡の中心の高さを示す)。そのため、送り歯31の先端が針板の上面から突出してから送り歯位相270°までの間と、送り歯位相90°から送り歯31の先端が針板の下面へ下降するまでの間において、被縫製物を送り方向とは逆側へ送ってしまう送り戻しと呼ばれる現象が発生して縫いピッチが変動するという問題が生じる。
しかし、変形軌跡(1)に示すようなボックス送りの場合、送り歯31が上昇中と下降中の送り方向(X方向)の位置変化が少ないため、送り戻しが発生せず、送り台32に対する送り歯31の取り付け位置を変更しても縫いピッチの変動が生じにくい。
また、図10(A)に示すように、基準形の長円の軌跡の場合、送り歯31が上昇中と下降中における布押さえ17による押え圧が不安定になり易いが、図10(B)に示すように、変形軌跡(1)の矩形の軌跡の場合、送り歯31が被縫製物に接して送る間の布押さえ17による押さえ圧をほぼ一定に維持することができ、精度良く送りを行うことが可能である。
[Operation control of cloth feeding mechanism (deformation locus (1) locus pattern)]
In FIG. 5 (B), the solid line indicates the shape of the deformation locus (1) called box feed, and FIG. 5 (A) shows the feed adjuster for realizing the locus shape of FIG. 5 (B). The rotation angle of 55 around the support shaft 52 is shown.
The deformed locus (1) has a shape closer to a rectangle than the reference shape locus described above, and there is little change in the position of the feed dog 31 in the feed direction (X direction) when the feed dog 31 is rising and lowering, and the tip of the feed dog 31 Is small in height variation while protruding from the upper surface of the needle plate 11.
For example, when the attachment position of the feed dog 31 with respect to the feed base 32 is adjusted to be high, the trajectory of the reference ellipse is horizontally moved in the vertical axis direction as shown in FIG. (The two-dot chain line in the figure indicates the height of the center of the rotation locus of the feed dog 31). Therefore, between the time when the tip of the feed dog 31 protrudes from the upper surface of the needle plate to the feed dog phase 270 °, and between the time of the feed dog phase 90 ° and the time when the tip of the feed dog 31 descends to the lower surface of the needle plate, There arises a problem that the sewing pitch fluctuates due to a phenomenon called “feed back” in which the workpiece is fed in the direction opposite to the feed direction.
However, in the case of box feed as shown in the deformation locus (1), there is little change in the position in the feed direction (X direction) while the feed dog 31 is moving up and down, so feed back does not occur and Even if the attachment position of the feed dog 31 is changed, the sewing pitch hardly changes.
Further, as shown in FIG. 10A, in the case of the elliptical trajectory of the standard shape, the presser pressure by the cloth presser 17 when the feed dog 31 is rising and lowering tends to become unstable. In the case of the rectangular trajectory of the deformation trajectory (1), the pressing pressure by the cloth presser 17 while the feed dog 31 is in contact with the workpiece to be sent can be maintained almost constant, and the feed is accurately performed. Can be done.

上記変形軌跡(1)の形状で送り歯31を送るには、上軸一回転の間に、送り調節体55が第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2との間で複数回の変動動作が行われるよう送り調節モーター57が制御される。なお、図5(B)において、第一の縫いピッチP1の軌跡形状を一点鎖線、第二の縫いピッチP2の場合の軌跡形状を二点鎖線で例示する。
つまり、制御装置90は、変形軌跡(1)における最高位置となる通過点α及び最低位置となる通過点βで第一の縫いピッチP1(回動角度θ1)となり、針板上面高さとなる二つの通過点b,eで第二の縫いピッチP2(回動角度θ2)となるように送り調節モーター57の制御を行って回動角度を変動させる。
なお、回動角度θ1は回動角度θ2よりも中立角度から離れた角度(縫いピッチを大きくする角度)であり、中立角度から離れる角度を大、中立角度に近づく角度を小とする。
In order to feed the feed dog 31 in the shape of the deformation locus (1), the rotation angle θ1 at which the feed adjusting body 55 becomes the first sewing pitch P1 and the second sewing pitch P2 during one rotation of the upper shaft The feed adjustment motor 57 is controlled so that the fluctuating operation is performed a plurality of times with respect to the rotation angle θ2. In FIG. 5B, the locus shape of the first sewing pitch P1 is exemplified by a one-dot chain line, and the locus shape in the case of the second sewing pitch P2 is exemplified by a two-dot chain line.
That is, the control device 90 has the first sewing pitch P1 (rotation angle θ1) at the passing point α that is the highest position and the passing point β that is the lowest position in the deformation locus (1), and the height of the needle plate upper surface. The feed adjustment motor 57 is controlled so as to change the rotation angle so that the second sewing pitch P2 (rotation angle θ2) is reached at the two passing points b and e.
The rotation angle θ1 is an angle farther from the neutral angle than the rotation angle θ2 (an angle for increasing the sewing pitch), the angle away from the neutral angle is large, and the angle approaching the neutral angle is small.

より詳細には、変形軌跡(1)における通過点α−aの区間において、送り調節体55の回動角度をθ1に維持し、通過点a−bの区間において、送り調節体55の回動角度をθ1からθ2に漸減し、通過点b−cの区間において、送り調節体55の回動角度をθ2からθ1に漸増し、通過点βを含む通過点c−dの区間において、送り調節体55の回動角度をθ1に維持し、通過点d−eの区間において、送り調節体55の回動角度をθ1からθ2に漸減し、通過点e−fの区間において、送り調節体55の回動角度をθ2からθ1に漸増し、通過点f−αの区間において、送り調節体55の回動角度をθ1に維持するよう送り調節モーター57の制御を行う。
つまり、上軸一回転の間に送り調節体55の回動角度θ1とθ2の間を二往復で変動させている。
More specifically, the rotation angle of the feed adjusting body 55 is maintained at θ1 in the section of the passing point α-a in the deformation trajectory (1), and the rotation of the feed adjusting body 55 in the section of the passing point ab. The angle is gradually decreased from θ1 to θ2, and the rotation angle of the feed adjusting body 55 is gradually increased from θ2 to θ1 in the section of the passing point bc, and the feed adjustment is performed in the section of the passing point cd including the passing point β. The rotation angle of the body 55 is maintained at θ1, and the rotation angle of the feed adjustment body 55 is gradually decreased from θ1 to θ2 in the section of the passing point de, and the feed adjustment body 55 in the section of the passage point ef. Is gradually increased from θ2 to θ1, and the feed adjustment motor 57 is controlled so that the rotation angle of the feed adjustment body 55 is maintained at θ1 in the section of the passing point f−α.
That is, the rotation angle θ1 and θ2 of the feed adjusting body 55 is changed in two reciprocations during one rotation of the upper shaft.

なお、変形軌跡(1)の形状は、第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2との間での送り調節体55の回動角度の変動により実現するが、実際の縫いピッチは第二の縫いピッチP2となる。
そして、変形軌跡(1)の形状を任意の縫いピッチで行うことができるように、制御装置90のEEPROM94には、変形軌跡(1)の形状で送り歯を周回移動させつつ様々なサイズの縫いピッチで送りを行うことができるように、縫製を行う種々の縫いピッチごとに第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせが用意されている。
そして、操作入力部96から、変形軌跡(1)の形状と縫いピッチの選択が行われると、CPU91は、EEPROM94内から第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせを読み出し、送り調節体55の回動角度の変動制御を実行する。
The shape of the deformation locus (1) is that of the rotation angle of the feed adjusting body 55 between the rotation angle θ1 that becomes the first sewing pitch P1 and the rotation angle θ2 that becomes the second sewing pitch P2. The actual sewing pitch is the second sewing pitch P2, although this is realized by the variation.
Then, the EEPROM 94 of the control device 90 has various sizes of sewing while the feed dog is moved around in the shape of the deformation locus (1) so that the shape of the deformation locus (1) can be performed at an arbitrary sewing pitch. An appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 is prepared for each of various sewing pitches to be sewn so that the feed can be performed at the pitch.
When the shape of the deformation locus (1) and the sewing pitch are selected from the operation input unit 96, the CPU 91 reads an appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 from the EEPROM 94. Then, fluctuation control of the rotation angle of the feed adjusting body 55 is executed.

[布送り機構の動作制御(変形軌跡(2)の軌跡パターン)]
図6(B)は変形軌跡(2)の形状、図6(A)は、図6(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示している。
この変形軌跡(2)は、送り歯31の送り歯31の上昇区間は基準形の軌跡と同じ長円状であり、下降区間は変形軌跡(1)と同じ矩形状である。
この軌跡で送り歯31を送ると、送り前半で送り歯31が被縫製物に徐々に保持して送り出すことができるので、薄物の被縫製物の送りに適している。
[Operation control of fabric feed mechanism (deformation locus (2) locus pattern)]
6B shows the shape of the deformation locus (2), and FIG. 6A shows the rotation angle around the support shaft 52 of the feed adjusting body 55 for realizing the locus shape of FIG. 6B. Yes.
In this deformation locus (2), the ascending section of the feed dog 31 of the feed dog 31 has the same oval shape as the reference locus, and the descending section has the same rectangular shape as the deformation locus (1).
If the feed dog 31 is fed along this locus, the feed dog 31 can be gradually held and fed to the sewing product in the first half of feeding, which is suitable for feeding a thin sewing product.

上記変形軌跡(2)の形状で送り歯31を送るには、制御装置90は、送り歯31の変形軌跡(2)における最高位置及び最低位置となる通過点と、針板上面高さとなる二つの通過点の内の一方(下降時の通過点)とで、それぞれ第一の縫いピッチP1(回動角度θ1)と第二の縫いピッチP2(回動角度θ2)となるように送り調節モーター57による送り調節体55の回動角度の変動制御を行っている。
より具体的には、上軸一回転の間に、送り歯31の最高位置から針板高さまで下降する間に送り調節体55の回動角度をθ1からθ2に漸減し、針板高さから最低位置まで下降する間に送り調節体55の回動角度をθ2からθ1に漸増し、最低位置から最高位置までの間は送り調節体55の回動角度をθ1に維持するように送り調節モーター57の制御を行う。
つまり、上軸一回転の間に送り調節体55の回動角度θ1とθ2の間を一往復で変動させている。
In order to feed the feed dog 31 in the shape of the deformation trajectory (2), the control device 90 has two passage points which are the highest and lowest positions in the deformation trajectory (2) of the feed dog 31 and the height of the needle plate upper surface. Feed adjustment motor so that one of the two passing points (passing point when lowered) has a first sewing pitch P1 (rotation angle θ1) and a second sewing pitch P2 (rotation angle θ2), respectively. Fluctuation control of the rotation angle of the feed adjusting body 55 by 57 is performed.
More specifically, during one rotation of the upper shaft, the rotation angle of the feed adjusting body 55 is gradually decreased from θ1 to θ2 while descending from the highest position of the feed dog 31 to the needle plate height, and from the needle plate height. The feed adjustment motor 55 gradually increases the rotation angle of the feed adjustment body 55 from θ2 to θ1 while descending to the lowest position, and maintains the rotation angle of the feed adjustment body 55 at θ1 from the lowest position to the highest position. 57 is controlled.
That is, the rotation angle θ1 and θ2 of the feed adjusting body 55 is changed in one reciprocation during one rotation of the upper shaft.

なお、変形軌跡(2)の形状は、第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2との間での送り調節体55の回動角度の変動により実現するが、実際の縫いピッチはP1×1/2+P2×1/2となる。
そして、変形軌跡(2)の形状を任意の縫いピッチで行うことができるように、制御装置90のEEPROM94には、変形軌跡(2)の形状で送り歯を周回移動させつつ様々なサイズの縫いピッチで送りを行うことができるように、縫製を行う種々の縫いピッチごとに第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせが用意されている。
そして、操作入力部96から、変形軌跡(2)の形状と縫いピッチの選択が行われると、CPU91は、EEPROM94内から第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせを読み出し、送り調節体55の回動角度の変動制御を実行する。
The shape of the deformation locus (2) is that of the rotation angle of the feed adjusting body 55 between the rotation angle θ1 that becomes the first sewing pitch P1 and the rotation angle θ2 that becomes the second sewing pitch P2. The actual sewing pitch is P1 × 1/2 + P2 × 1/2, although this is realized by variation.
Then, the EEPROM 94 of the control device 90 has various sizes of sewing while the feed dog is moved around in the shape of the deformation locus (2) so that the shape of the deformation locus (2) can be performed at an arbitrary sewing pitch. An appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 is prepared for each of various sewing pitches to be sewn so that the feed can be performed at the pitch.
When the shape of the deformation trajectory (2) and the sewing pitch are selected from the operation input unit 96, the CPU 91 reads an appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 from the EEPROM 94. Then, fluctuation control of the rotation angle of the feed adjusting body 55 is executed.

[布送り機構の動作制御(変形軌跡(3)の軌跡パターン)]
図7(B)は変形軌跡(3)の形状、図7(A)は、図7(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示している。
この変形軌跡(3)は、送り歯31の上昇区間は変形軌跡(1)と同じ矩形状であり、送り歯31の下降区間は基準形の軌跡と同じ長円状である。
この軌跡で送り歯31を送ると、送り前半で送り歯31が被縫製物に十分に圧接し、送り後半で徐々に下降するので、送りの際の被縫製物を強力に保持して送り出すことができ、厚物の被縫製物の送りに適している。
[Operation control of fabric feed mechanism (deformation locus (3) locus pattern)]
FIG. 7B shows the shape of the deformation trajectory (3), and FIG. 7A shows the rotation angle around the support shaft 52 of the feed adjusting body 55 for realizing the trajectory shape of FIG. 7B. Yes.
In this deformation trajectory (3), the ascending section of the feed dog 31 has the same rectangular shape as the deformation trajectory (1), and the descending section of the feed dog 31 has the same oval shape as the reference-form trajectory.
When the feed dog 31 is fed along this locus, the feed dog 31 is sufficiently pressed against the workpiece in the first half of feeding and gradually descends in the second half of feeding, so that the workpiece to be fed during feeding is held strongly and fed out. Suitable for feeding thick sewing products.

上記変形軌跡(3)の形状で送り歯31を送るには、制御装置90は、送り歯31の変形軌跡(3)における最高位置及び最低位置となる通過点と、針板上面高さとなる二つの通過点の内の一方(上昇時の通過点)とで、それぞれ第一の縫いピッチP1(回動角度θ1)と第二の縫いピッチP2(回動角度θ2)となるように送り調節モーター57を制御する。
より具体的には、上軸一回転の間に、送り歯31の最高位置から最低位置まで調節体55の回動角度をθ1に維持し、最低位置から針板高さまで上昇する間に送り調節体55の回動角度をθ1からθ2に漸減し、針板高さから最高位置まで上昇する間に送り調節体55の回動角度をθ2からθ1に漸増するように送り調節モーター57の制御を行う。
つまり、上軸一回転の間に送り調節体55の回動角度θ1とθ2の間を一往復で変動させている。
In order to feed the feed dog 31 in the shape of the deformation trajectory (3), the control device 90 has two passage points which are the highest and lowest positions in the deformation trajectory (3) of the feed dog 31 and the height of the needle plate upper surface. Feed adjustment motor so that one of the two passing points (passing point when ascending) has a first sewing pitch P1 (rotation angle θ1) and a second sewing pitch P2 (rotation angle θ2), respectively. 57 is controlled.
More specifically, the rotation angle of the adjusting body 55 is maintained at θ1 from the highest position to the lowest position of the feed dog 31 during one rotation of the upper shaft, and the feed adjustment is performed while the adjustment body 55 is raised from the lowest position to the needle plate height. The rotation angle of the body 55 is gradually reduced from θ1 to θ2, and the feed adjustment motor 57 is controlled so that the rotation angle of the feed adjustment body 55 gradually increases from θ2 to θ1 while rising from the needle plate height to the highest position. Do.
That is, the rotation angle θ1 and θ2 of the feed adjusting body 55 is changed in one reciprocation during one rotation of the upper shaft.

なお、変形軌跡(3)の形状は、第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2との間での送り調節体55の回動角度の変動により実現するが、実際の縫いピッチはP1×1/2+P2×1/2となる。
そして、変形軌跡(3)の形状を任意の縫いピッチで行うことができるように、制御装置90のEEPROM94には、変形軌跡(3)の形状で送り歯を周回移動させつつ様々なサイズの縫いピッチで送りを行うことができるように、縫製を行う種々の縫いピッチごとに第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせが用意されている。
そして、操作入力部96から、変形軌跡(3)の形状と縫いピッチの選択が行われると、CPU91は、EEPROM94内から第一の縫いピッチP1と第二の縫いピッチP2の適正な組み合わせを読み出し、送り調節体55の回動角度の変動制御を実行する。
The shape of the deformation locus (3) is that of the rotation angle of the feed adjusting body 55 between the rotation angle θ1 that becomes the first sewing pitch P1 and the rotation angle θ2 that becomes the second sewing pitch P2. The actual sewing pitch is P1 × 1/2 + P2 × 1/2, although this is realized by variation.
Then, the EEPROM 94 of the control device 90 has various sizes of sewing while the feed dog is moved around in the shape of the deformation locus (3) so that the shape of the deformation locus (3) can be performed at an arbitrary sewing pitch. An appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 is prepared for each of various sewing pitches to be sewn so that the feed can be performed at the pitch.
When the shape of the deformation locus (3) and the sewing pitch are selected from the operation input unit 96, the CPU 91 reads an appropriate combination of the first sewing pitch P1 and the second sewing pitch P2 from the EEPROM 94. Then, fluctuation control of the rotation angle of the feed adjusting body 55 is executed.

[布送り機構の動作制御(変形軌跡(4)の軌跡パターン)]
図8(B)は変形軌跡(4)の形状、図8(A)は、図8(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示している。
この変形軌跡(4)は、送り歯31の上昇区間は基準形の軌跡よりも布送り方向に長い長円状であり、送り歯31の下降区間は変形軌跡(1)と同じ矩形状である。
この軌跡で送り歯31を送ると、送り前半で送り歯31が被縫製物により徐々に保持して送り出すことができるので、変形軌跡(2)よりもさらに薄物の被縫製物の送りに適している。
[Operation control of fabric feed mechanism (deformation locus (4) locus pattern)]
FIG. 8B shows the shape of the deformation locus (4), and FIG. 8A shows the rotation angle around the support shaft 52 of the feed adjusting body 55 for realizing the locus shape of FIG. 8B. Yes.
In this deformation locus (4), the ascending section of the feed dog 31 has an oval shape that is longer in the cloth feeding direction than the reference-form locus, and the descending section of the feed dog 31 has the same rectangular shape as the deformation locus (1). .
When the feed dog 31 is fed along this locus, the feed dog 31 can be gradually held and fed out by the workpiece in the first half of the feed, so that it is suitable for feeding a thin workpiece further than the deformation locus (2). Yes.

上記変形軌跡(4)の形状で送り歯31を送るには、制御装置90は、送り歯31の変形軌跡(4)における最高位置及び最低位置となる通過点と、針板上面高さとなる二つの通過点の内の一方(下降時の通過点)と、針板上面高さとなる二つの通過点の内の他方(上昇時の通過点)とで、それぞれ第一の縫いピッチP1(回動角度θ1)と第二の縫いピッチP2(回動角度θ2)と第三の縫いピッチP3(回動角度θ3)となるように送り調節モーター57を制御する(但し、θ2<θ1<θ3)。
より具体的には、上軸一回転の間に、送り歯31の最高位置から針板高さまで下降する間に送り調節体55の回動角度をθ1からθ2に漸減し、針板高さから最低位置まで下降する間に送り調節体55の回動角度をθ2からθ1に漸増し、最低位置から針板高さまで上昇する間に送り調節体55の回動角度をθ1からθ3に漸増し、針板高さから最高位置まで上昇する間に送り調節体55の回動角度をθ3からθ1に漸減するように送り調節モーター57の制御を行う。
つまり、上軸一回転の間に送り調節体55の回動角度θ1とθ2の間を一往復、回動角度θ1とθ3の間を一往復で変動させている。
In order to feed the feed dog 31 in the shape of the deformation trajectory (4), the control device 90 has the highest and lowest passing points in the deformation trajectory (4) of the feed dog 31 and the needle plate upper surface height. One of the two passing points (passing point at the time of lowering) and the other one of the two passing points (the passing point at the time of ascent) of the needle plate upper surface height (passing point at the time of rising), respectively. The feed adjustment motor 57 is controlled so that the angle θ1), the second sewing pitch P2 (rotation angle θ2), and the third sewing pitch P3 (rotation angle θ3) are satisfied (however, θ2 <θ1 <θ3).
More specifically, during one rotation of the upper shaft, the rotation angle of the feed adjusting body 55 is gradually decreased from θ1 to θ2 while descending from the highest position of the feed dog 31 to the needle plate height, and from the needle plate height. The rotation angle of the feed adjustment body 55 is gradually increased from θ2 to θ1 while descending to the lowest position, and the rotation angle of the feed adjustment body 55 is gradually increased from θ1 to θ3 while being raised from the lowest position to the needle plate height. The feed adjustment motor 57 is controlled so that the rotation angle of the feed adjustment body 55 gradually decreases from θ3 to θ1 while the needle plate height rises from the needle plate height.
That is, during one rotation of the upper shaft, the reciprocation angle 55 of the feed adjustment body 55 is reciprocated between one rotation and the reciprocation between the rotation angles θ1 and θ3.

なお、変形軌跡(4)の形状は、第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2と第三の縫いピッチP3となる回動角度θ3との間での送り調節体55の回動角度の変動により実現するが、実際の縫いピッチはP2×1/2+P3×1/2となる。
そして、変形軌跡(4)の形状を任意の縫いピッチで行うことができるように、制御装置90のEEPROM94には、変形軌跡(4)の形状で送り歯を周回移動させつつ様々なサイズの縫いピッチで送りを行うことができるように、縫製を行う種々の縫いピッチごとに第一の縫いピッチP1と第二の縫いピッチP2と第三の縫いピッチP3の適正な組み合わせが用意されている。
そして、操作入力部96から、変形軌跡(4)の形状と縫いピッチの選択が行われると、CPU91は、EEPROM94内から第一の縫いピッチP1と第二の縫いピッチP2と第三の縫いピッチP3の適正な組み合わせを読み出し、送り調節体55の回動角度の変動制御を実行する。
The shape of the deformation locus (4) includes a rotation angle θ1 that becomes the first sewing pitch P1, a rotation angle θ2 that becomes the second sewing pitch P2, and a rotation angle θ3 that becomes the third sewing pitch P3. However, the actual sewing pitch is P2 × 1/2 + P3 × 1/2.
Then, the EEPROM 94 of the control device 90 has various sizes of sewing while the feed dog is moved around in the shape of the deformation locus (4) so that the shape of the deformation locus (4) can be performed at an arbitrary sewing pitch. An appropriate combination of the first sewing pitch P1, the second sewing pitch P2, and the third sewing pitch P3 is prepared for each of various sewing pitches to be sewn so that the feed can be performed at the pitch.
When the shape of the deformation locus (4) and the sewing pitch are selected from the operation input unit 96, the CPU 91 selects the first sewing pitch P1, the second sewing pitch P2, and the third sewing pitch from the EEPROM 94. An appropriate combination of P3 is read out, and fluctuation control of the rotation angle of the feed adjusting body 55 is executed.

[布送り機構の動作制御(変形軌跡(5)の軌跡パターン)]
図9(B)は変形軌跡(5)の形状、図9(A)は、図9(B)の軌跡形状を実現するための送り調節体55の支軸52回りの回動角度を示している。
この変形軌跡(5)は、送り歯31の上昇区間は変形軌跡(1)と同じ矩形状であり、送り歯31の下降区間は基準形の軌跡よりも布送り方向に長い長円状である。
この軌跡で送り歯31を送ると、送り前半で送り歯31が被縫製物により十分に圧接し、送り後半で徐々に下降するので、変形軌跡(3)よりもさらに薄物の被縫製物の送りに適している。
[Operation control of cloth feeding mechanism (deformation locus (5) locus pattern)]
FIG. 9B shows the shape of the deformation locus (5), and FIG. 9A shows the rotation angle around the support shaft 52 of the feed adjusting body 55 for realizing the locus shape of FIG. 9B. Yes.
In this deformation locus (5), the ascending section of the feed dog 31 has the same rectangular shape as the deformation locus (1), and the descending section of the feed dog 31 has an oval shape that is longer in the cloth feeding direction than the reference-form locus. .
When the feed dog 31 is fed along this trajectory, the feed dog 31 is sufficiently pressed against the sewing product in the first half of the feed, and gradually descends in the second half of the feed, so that the feed of the sewing material that is thinner than the deformation trajectory (3) Suitable for

上記変形軌跡(5)の形状で送り歯31を送るには、制御装置90は、送り歯31の変形軌跡(5)における最高位置及び最低位置となる通過点と、針板上面高さとなる二つの通過点の内の一方(下降時の通過点)と、針板上面高さとなる二つの通過点の内の他方(上昇時の通過点)とで、それぞれ第一の縫いピッチP1(回動角度θ1)と第三の縫いピッチP3(回動角度θ3)と第二の縫いピッチP2(回動角度θ2)となるように送り調節モーター57を制御する(但し、θ2<θ1<θ3)。
より具体的には、上軸一回転の間に、送り歯31の最高位置から針板高さまで下降する間に送り調節体55の回動角度をθ1からθ3に漸増し、針板高さから最低位置まで下降する間に送り調節体55の回動角度をθ3からθ1に漸減し、最低位置から針板高さまで上昇する間に送り調節体55の回動角度をθ1からθ2に漸減し、針板高さから最高位置まで上昇する間に送り調節体55の回動角度をθ2からθ1に漸増するように送り調節モーター57の制御を行う。
つまり、上軸一回転の間に送り調節体55の回動角度θ1とθ2の間を一往復、回動角度θ1とθ3の間を一往復で変動させている。
In order to feed the feed dog 31 in the shape of the deformation trajectory (5), the control device 90 has two passing points which are the highest position and the lowest position in the deformation trajectory (5) of the feed dog 31 and the height of the needle plate upper surface. One of the two passing points (passing point at the time of lowering) and the other one of the two passing points (the passing point at the time of ascent) of the needle plate upper surface height (passing point at the time of rising), respectively. The feed adjustment motor 57 is controlled so that the angle θ1), the third sewing pitch P3 (rotation angle θ3), and the second sewing pitch P2 (rotation angle θ2) are satisfied (however, θ2 <θ1 <θ3).
More specifically, during one rotation of the upper shaft, the rotation angle of the feed adjusting body 55 is gradually increased from θ1 to θ3 while descending from the highest position of the feed dog 31 to the needle plate height, and from the needle plate height. The rotation angle of the feed adjustment body 55 is gradually decreased from θ3 to θ1 while descending to the lowest position, and the rotation angle of the feed adjustment body 55 is gradually decreased from θ1 to θ2 while it is elevated from the lowest position to the needle plate height, The feed adjusting motor 57 is controlled so that the rotation angle of the feed adjusting body 55 is gradually increased from θ2 to θ1 while it is raised from the needle plate height to the highest position.
That is, during one rotation of the upper shaft, the reciprocation angle 55 of the feed adjustment body 55 is reciprocated between one rotation and the reciprocation between the rotation angles θ1 and θ3.

なお、変形軌跡(5)の形状は、第一の縫いピッチP1となる回動角度θ1と第二の縫いピッチP2となる回動角度θ2と第三の縫いピッチP3となる回動角度θ3との間での送り調節体55の回動角度の変動により実現するが、実際の縫いピッチはP2×1/2+P3×1/2となる。
そして、変形軌跡(5)の形状を任意の縫いピッチで行うことができるように、制御装置90のEEPROM94には、変形軌跡(5)の形状で送り歯を周回移動させつつ様々なサイズの縫いピッチで送りを行うことができるように、縫製を行う種々の縫いピッチごとに第一の縫いピッチP1と第二の縫いピッチP2と第三の縫いピッチP3の適正な組み合わせが用意されている。
そして、操作入力部96から、変形軌跡(5)の形状と縫いピッチの選択が行われると、CPU91は、EEPROM94内から第一の縫いピッチP1と第二の縫いピッチP2と第三の縫いピッチP3の適正な組み合わせを読み出し、送り調節体55の回動角度の変動制御を実行する。
The shape of the deformation locus (5) includes a rotation angle θ1 that becomes the first sewing pitch P1, a rotation angle θ2 that becomes the second sewing pitch P2, and a rotation angle θ3 that becomes the third sewing pitch P3. However, the actual sewing pitch is P2 × 1/2 + P3 × 1/2.
Then, the EEPROM 94 of the control device 90 has various sizes of sewing while moving the feed dog in the shape of the deformation locus (5) so that the shape of the deformation locus (5) can be performed at an arbitrary sewing pitch. An appropriate combination of the first sewing pitch P1, the second sewing pitch P2, and the third sewing pitch P3 is prepared for each of various sewing pitches to be sewn so that the feed can be performed at the pitch.
When the shape of the deformation locus (5) and the sewing pitch are selected from the operation input unit 96, the CPU 91 selects the first sewing pitch P1, the second sewing pitch P2, and the third sewing pitch from the EEPROM 94. An appropriate combination of P3 is read out, and fluctuation control of the rotation angle of the feed adjusting body 55 is executed.

[発明の実施形態による効果]
以上のように、ミシン100は、制御装置90が、針棒の上下動と同期した上軸の一周期の間に送り調節モーター57により送り調節体55の回動角度を変動させることで、目標とする縫いピッチを維持しつつ、送り歯31の周回動作の軌跡の形状を変更する制御を行っている。
これにより、送り歯31の周回動作の軌跡を多種多様な形状に変更することができ、多様な縫製条件に適した送り歯31の送りを行うことが可能となる。
[Effects of the Embodiment of the Invention]
As described above, the sewing machine 100 allows the control device 90 to change the rotation angle of the feed adjusting body 55 by the feed adjusting motor 57 during one cycle of the upper shaft synchronized with the vertical movement of the needle bar. The control is performed to change the shape of the trajectory of the feed dog 31 while maintaining the sewing pitch.
Thereby, the locus | trajectory of the rotation operation | movement of the feed dog 31 can be changed into various shapes, and it becomes possible to feed the feed dog 31 suitable for various sewing conditions.

さらに、制御装置90は、送り歯31の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の内の一方とで、それぞれ大きさが異なる第一の縫いピッチP1と第二の縫いピッチP2となるように送り調節モーター57を制御することで、例えば、前述した変形軌跡(2)や変形軌跡(3)の形状で送り歯31を送ることができ、前述したようなそれぞれの形状特性に応じた布送りで縫製を行うことが可能となる。   Further, the control device 90 performs the first stitching with different sizes at the passing point that is the highest position in the trajectory of the revolving motion of the feed dog 31 and one of the two passing points that is the height of the needle plate upper surface. By controlling the feed adjustment motor 57 so as to be the pitch P1 and the second sewing pitch P2, for example, the feed dog 31 can be fed in the shape of the deformation locus (2) and the deformation locus (3) described above, Sewing can be performed by cloth feeding according to each shape characteristic as described above.

また、制御装置90は、送り歯31の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで第一の縫いピッチP1となり、針板上面高さとなる二つの通過点で第二の縫いピッチP2となるように送り調節モーター57を制御するので、例えば、前述した変形軌跡(1)の形状で送り歯31を送ることができ、矩形に近い形状特性に応じた布送りで縫製を行うことが可能となる。   Further, the control device 90 has the first sewing pitch P1 between the passing point that is the highest position and the passing point that is the lowest position in the trajectory of the revolving motion of the feed dog 31, and the two passing points that are the needle plate upper surface height. Since the feed adjusting motor 57 is controlled so as to be the second sewing pitch P2, for example, the feed dog 31 can be fed in the shape of the deformation locus (1) described above, and the cloth feed according to the shape characteristic close to a rectangle Sewing can be performed with.

また、制御装置90は、送り歯31の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで第一の縫いピッチP1となり、針板上面高さとなる二つの通過点の一方で第二の縫いピッチP2となるように送り調節モーター57を制御することで、例えば、前述した変形軌跡(2)や変形軌跡(3)の形状で送り歯31を送ることができ、前述したようなそれぞれの形状特性に応じた布送りで縫製を行うことが可能となる。   Further, the control device 90 has the first sewing pitch P1 between the passing point which is the highest position and the passing point which is the lowest position in the trajectory of the revolving motion of the feed dog 31, and the two passing points which are the height of the needle plate upper surface. On the other hand, by controlling the feed adjustment motor 57 so as to be the second sewing pitch P2, for example, the feed dog 31 can be fed in the shape of the deformation locus (2) or the deformation locus (3) described above. Thus, it is possible to perform sewing by cloth feeding according to the respective shape characteristics.

また、制御装置90は、送り歯31の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の一方と、針板上面高さとなる二つの通過点の他方とで、それぞれ大きさが異なる第一から第三の縫いピッチP1〜P3となるように送り調節モーター57を制御することで、例えば、前述した変形軌跡(4)や変形軌跡(5)の形状で送り歯31を送ることができ、前述したようなそれぞれの形状特性に応じた布送りで縫製を行うことが可能となる。   The control device 90 also includes a passing point that is the highest position in the trajectory of the feed dog 31, one of the two passing points that are the needle plate upper surface height, and the other of the two passing points that are the needle plate upper surface height. By controlling the feed adjustment motor 57 so that the first to third sewing pitches P1 to P3 are different in size, for example, the shape of the deformation trajectory (4) or the deformation trajectory (5) described above is obtained. Thus, the feed dog 31 can be fed, and sewing can be performed by cloth feed according to the respective shape characteristics as described above.

[その他]
上述した変形軌跡(1)〜(5)では、いずれも、周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とでいずれも第一の縫いピッチP1となるように送り調節モーター57を制御する場合を例示したが、最低位置となる通過点は第一の縫いピッチP1と異なっていても良い。例えば、最低位置となる通過点は第一の縫いピッチP1よりも大きな値又は小さな値としても良い。
[Others]
In the above-described deformation trajectories (1) to (5), the feed adjustment is performed so that the first sewing pitch P1 is set at the passing point which is the highest position and the passing position which is the lowest position in the trajectory of the circular motion. Although the case where the motor 57 is controlled is illustrated, the passing point which is the lowest position may be different from the first sewing pitch P1. For example, the passing point which is the lowest position may be a value larger or smaller than the first sewing pitch P1.

また、上記ミシンの上下送り軸33は、全回転ではなく往復回動を行う構成としても良い。例えば、上軸に偏心カムを設け、当該偏心カムを一端部に擁するコネクティングロッドの他端部を上下送り軸33に固定したアームに連結して往復回動を付与しても良い。その場合、上下送り軸33からX軸方向に沿って延出された回動腕を送り台32に連結して上下動を付与する構成とする。
また、水平送り軸42は上下送り軸33からではなく上軸から往復回動を付与される構成としても良い。その場合、コネクティングロッド41の一端部側の偏心カムを上軸に装備することが望ましい。
Further, the vertical feed shaft 33 of the sewing machine may be configured to perform reciprocal rotation instead of full rotation. For example, an eccentric cam may be provided on the upper shaft, and the other end of the connecting rod holding the eccentric cam at one end may be connected to an arm fixed to the vertical feed shaft 33 to provide reciprocating rotation. In that case, the rotating arm extended along the X-axis direction from the vertical feed shaft 33 is connected to the feed base 32 to provide the vertical motion.
Further, the horizontal feed shaft 42 may be configured to be reciprocated from the upper shaft instead of the vertical feed shaft 33. In that case, it is desirable to equip the upper shaft with an eccentric cam on one end side of the connecting rod 41.

また、上記発明の実施形態では、本縫いミシンを例示したが、布送り機構30は、水平運動と上下運動の合成軌跡によって送り歯で被縫製物を送り、送り調節体の回動角度を変更して縫いピッチを変更するいずれのタイプのミシンにも適用可能である。   Further, in the embodiment of the present invention, a lockstitch sewing machine has been exemplified. However, the cloth feed mechanism 30 feeds the workpiece with the feed dog by the combined trajectory of the horizontal movement and the vertical movement, and changes the rotation angle of the feed adjusting body. Thus, the sewing machine can be applied to any type of sewing machine that changes the sewing pitch.

また、上下送りミシンや総合送りミシンと呼ばれる被縫製物に上側から接触して布送り動作を行う送り足を供えるミシンにおいては、送り調節体55に上送り足機構も連結しているため、上記発明の実施形態に記載した送り調節モーター57の制御によって送り調節体55の回動制御を行うことにより、上送り足の周回動作の軌跡の形状を変更することも可能である。   Further, in a sewing machine that is provided with a feed leg that performs a cloth feed operation by making contact with an article to be sewed from above, called a vertical feed sewing machine or a general feed sewing machine, an upper feed leg mechanism is also connected to the feed adjusting body 55. It is also possible to change the shape of the trajectory of the upper feed leg orbiting operation by controlling the rotation of the feed adjustment body 55 by the control of the feed adjustment motor 57 described in the embodiment of the invention.

11 針板
12 釜
16 ミシンモーター
30 布送り機構
31 送り歯
32 送り台
33 上下送り軸
40 水平送り機構
42 水平送り軸
50 送り調節機構
55 送り調節体
57 送り調節モーター
60 上下送り機構
90 制御装置
100 ミシン
a〜f,α,β 通過点
P1 第一の縫いピッチ
P2 第二の縫いピッチ
P3 第三の縫いピッチ
θ1〜θ3 回動角度
11 Needle plate 12 Hook 16 Sewing machine motor 30 Cloth feed mechanism 31 Feed dog 32 Feed base 33 Vertical feed shaft 40 Horizontal feed mechanism 42 Horizontal feed shaft 50 Feed adjustment mechanism 55 Feed adjustment body 57 Feed adjustment motor 60 Vertical feed mechanism 90 Control device 100 Sewing machines a to f, α, β Passing point P1 First sewing pitch P2 Second sewing pitch P3 Third sewing pitch θ1 to θ3 Rotation angle

Claims (7)

針棒を上下動させる針上下動機構と、
前記針上下動機構の駆動源となるミシンモーターと、
針板の上の被縫製物を送る送り歯と、
前記ミシンモーターから動力を得て前記送り歯に対して水平方向の往復動作を伝達する水平送り機構と、
前記送り歯に対して上下方向の往復動作を付与する上下送り機構と、
前記ミシンモーターから前記送り歯に伝達される水平方向の往復動作の振幅を回動動作により変動させる送り調節体と、
当該送り調節体の回動角度を変えて縫いピッチを変更調節する送り調節モーターと、
前記送り調節モーターを制御する制御装置とを備えるミシンにおいて、
前記制御装置が、前記針棒の上下動の一周期の間に前記送り調節モーターを制御して前記送り調節体の回動角度を複数回変動させることで、前記送り歯の周回動作の軌跡の形状を変更する制御を行うことを特徴とするミシン。
A needle up-and-down movement mechanism that moves the needle bar up and down;
A sewing machine motor as a drive source of the needle up-and-down movement mechanism;
A feed dog that feeds the material to be sewn on the needle plate;
A horizontal feed mechanism that obtains power from the sewing machine motor and transmits a reciprocating motion in the horizontal direction to the feed dog;
A vertical feed mechanism for applying a reciprocating motion in the vertical direction to the feed dog;
A feed adjuster that varies the amplitude of a horizontal reciprocating motion transmitted from the sewing machine motor to the feed dog by a turning motion;
A feed adjustment motor that changes and adjusts the sewing pitch by changing the rotation angle of the feed adjustment body;
In a sewing machine comprising a control device for controlling the feed adjustment motor,
The control device controls the feed adjustment motor during one cycle of the vertical movement of the needle bar to change the rotation angle of the feed adjustment body a plurality of times, thereby allowing the trajectory of the feed dog to rotate. A sewing machine characterized by performing control to change the shape.
前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の内の少なくとも一方とで、それぞれ大きさが異なる第一の縫いピッチと第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする請求項1記載のミシン。   The control device includes a first sewing pitch that is different in size between a passing point that is the highest position in the trajectory of the feed dog and at least one of two passing points that are the height of the needle plate upper surface. 2. The sewing machine according to claim 1, wherein the feed adjusting motor is controlled so as to be at a rotation angle of the feed adjusting body having a second sewing pitch. 前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで前記第一の縫いピッチになる送り調節体の回動角度となり、針板上面高さとなる前記二つの通過点で前記第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする請求項2記載のミシン。   The control device has a rotation angle of the feed adjusting body that becomes the first sewing pitch between a passing point that is the highest position and a passing point that is the lowest position in the trajectory of the feed dog's orbiting operation, 3. The sewing machine according to claim 2, wherein the feed adjusting motor is controlled so as to be a rotation angle of the feed adjusting body that becomes the second sewing pitch at the two passing points. 前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と最低位置となる通過点とで前記第一の縫いピッチになる送り調節体の回動角度となり、針板上面高さとなる前記二つの通過点の一方で前記第二の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする請求項2記載のミシン。   The control device has a rotation angle of the feed adjusting body that becomes the first sewing pitch between a passing point that is the highest position and a passing point that is the lowest position in the trajectory of the feed dog's orbiting operation, 3. The sewing machine according to claim 2, wherein the feed adjusting motor is controlled so as to have a rotation angle of the feed adjusting body that becomes the second sewing pitch at one of the two passing points. 前記第一の縫いピッチを前記第二の縫いピッチよりも大きい値としたことを特徴とする請求項1から4のいずれか一項に記載のミシン。   The sewing machine according to any one of claims 1 to 4, wherein the first sewing pitch is set to a value larger than the second sewing pitch. 前記制御装置は、前記送り歯の周回動作の軌跡における最高位置となる通過点と、針板上面高さとなる二つの通過点の一方と、前記針板上面高さとなる二つの通過点の他方とで、それぞれ大きさが異なる第一から第三の縫いピッチになる送り調節体の回動角度となるように前記送り調節モーターを制御することを特徴とする請求項1記載のミシン。   The control device includes: a passing point that is the highest position in the trajectory of the feed dog's orbiting operation; one of two passing points that are the needle plate upper surface height; and the other of the two passing points that are the needle plate upper surface height; 2. The sewing machine according to claim 1, wherein the feed adjustment motor is controlled so that the rotation angle of the feed adjustment body becomes the first to third sewing pitches having different sizes. 前記第一の縫いピッチを前記第二の縫いピッチよりも大きい値とし、前記第三の縫いピッチを前記第一の縫いピッチよりも大きい値としたことを特徴とする請求項6に記載のミシン。   The sewing machine according to claim 6, wherein the first sewing pitch is set to a value larger than the second sewing pitch, and the third sewing pitch is set to a value larger than the first sewing pitch. .
JP2017182283A 2017-09-22 2017-09-22 sewing machine Active JP7030464B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017182283A JP7030464B2 (en) 2017-09-22 2017-09-22 sewing machine
CN201811108964.2A CN109537182B (en) 2017-09-22 2018-09-21 Sewing machine
DE102018123365.5A DE102018123365A1 (en) 2017-09-22 2018-09-24 sewing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017182283A JP7030464B2 (en) 2017-09-22 2017-09-22 sewing machine

Publications (2)

Publication Number Publication Date
JP2019055108A true JP2019055108A (en) 2019-04-11
JP7030464B2 JP7030464B2 (en) 2022-03-07

Family

ID=65638337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017182283A Active JP7030464B2 (en) 2017-09-22 2017-09-22 sewing machine

Country Status (3)

Country Link
JP (1) JP7030464B2 (en)
CN (1) CN109537182B (en)
DE (1) DE102018123365A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575456A (en) * 2020-12-01 2021-03-30 杰克缝纫机股份有限公司 Cloth feeding device for realizing quasi-rectangular tooth track and sewing machine
WO2024077690A1 (en) * 2022-10-14 2024-04-18 浙江美机缝纫机有限公司 Rectangular track feeding mechanism on sewing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623168A (en) * 1990-07-17 1994-02-01 Pegasus Sewing Mach Mfg Co Ltd Up feeding device for sewing machine
JPH10127967A (en) * 1996-06-18 1998-05-19 Juki Corp Method and device for feeding fabric for sewing machine
JP2017080314A (en) * 2015-10-30 2017-05-18 ブラザー工業株式会社 Sewing machine and method for controlling sewing machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5691790A (en) 1979-12-27 1981-07-24 Mitsubishi Electric Corp Cloth feeding driving device for sewing machine
JP2003220288A (en) * 2002-01-31 2003-08-05 Juki Corp Feed dog inclination adjusting device
JP4177162B2 (en) * 2003-05-02 2008-11-05 Juki株式会社 Sewing machine feeder
JP2006181166A (en) * 2004-12-28 2006-07-13 Juki Corp Sewing machine
TWI706063B (en) * 2015-09-18 2020-10-01 日商重機股份有限公司 Sewing machine
CN105350186B (en) * 2015-09-30 2018-12-14 杰克缝纫机股份有限公司 Sewing machine feeding mechanism and sewing machine
CN105088547B (en) * 2015-09-30 2018-11-27 杰克缝纫机股份有限公司 Sewing machine feed lifting feeding mechanism and sewing machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623168A (en) * 1990-07-17 1994-02-01 Pegasus Sewing Mach Mfg Co Ltd Up feeding device for sewing machine
JPH10127967A (en) * 1996-06-18 1998-05-19 Juki Corp Method and device for feeding fabric for sewing machine
JP2017080314A (en) * 2015-10-30 2017-05-18 ブラザー工業株式会社 Sewing machine and method for controlling sewing machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575456A (en) * 2020-12-01 2021-03-30 杰克缝纫机股份有限公司 Cloth feeding device for realizing quasi-rectangular tooth track and sewing machine
CN112575456B (en) * 2020-12-01 2022-07-05 杰克科技股份有限公司 Cloth feeding device for realizing quasi-rectangular tooth track and sewing machine
WO2024077690A1 (en) * 2022-10-14 2024-04-18 浙江美机缝纫机有限公司 Rectangular track feeding mechanism on sewing machine

Also Published As

Publication number Publication date
CN109537182A (en) 2019-03-29
JP7030464B2 (en) 2022-03-07
DE102018123365A1 (en) 2019-03-28
CN109537182B (en) 2022-10-28

Similar Documents

Publication Publication Date Title
JP6761659B2 (en) sewing machine
JP4624169B2 (en) Sewing machine feeder
JP2017184980A (en) sewing machine
TWI706063B (en) Sewing machine
JP2019055108A (en) sewing machine
CN1144906C (en) Cloth feeding device for sewing machine
JP6166944B2 (en) sewing machine
US3783810A (en) Looper driving device with periodically variable speed in zig-zag chainstitch sewing machines
JP2018029681A (en) sewing machine
JP6045318B2 (en) sewing machine
JP6774775B2 (en) sewing machine
JP6552247B2 (en) sewing machine
CN108796838B (en) Sewing machine
TWI660086B (en) Tailor
US5802998A (en) Automatic sewing machine for various articles, in particular leather articles
JP2009247377A (en) Sewing machine
KR20040038716A (en) Sewing Machine
US3313258A (en) Needle jogging mechanisms
US2310176A (en) Needle-vibrating mechanism for sewing machines
CN215887475U (en) Template machine
CN211947505U (en) Automatic backstitch structure of sewing machine
JP2007195957A (en) Sewing machine
US479739A (en) dimond
US1129587A (en) Sewing-machine.
US2548869A (en) Sewing machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150