JP2019053864A - Solid oxide fuel cell unit - Google Patents

Solid oxide fuel cell unit Download PDF

Info

Publication number
JP2019053864A
JP2019053864A JP2017176213A JP2017176213A JP2019053864A JP 2019053864 A JP2019053864 A JP 2019053864A JP 2017176213 A JP2017176213 A JP 2017176213A JP 2017176213 A JP2017176213 A JP 2017176213A JP 2019053864 A JP2019053864 A JP 2019053864A
Authority
JP
Japan
Prior art keywords
layer side
outer layer
fuel cell
gas flow
sofc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017176213A
Other languages
Japanese (ja)
Inventor
育孝 讃岐
Yasutaka Sanuki
育孝 讃岐
太一郎 加藤
Taichiro Kato
太一郎 加藤
延章 大栗
Nobuaki Oguri
延章 大栗
鈴木 祐司
Yuji Suzuki
祐司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017176213A priority Critical patent/JP2019053864A/en
Publication of JP2019053864A publication Critical patent/JP2019053864A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

To provide a solid oxide fuel that can ensure excellent operation stability by simplifying the structure, facilitating manufacturing, reducing costs, and performing temperature control of the solid oxide fuel cell uniformly and with high precision.SOLUTION: An enclosure member (20) includes an inner layer side heat resistant enclosure member (21), outer layer side low heat insulation enclosure members (22, 22', 22''), and outer layer high heat insulation enclosure members (23, 23', 23''). The inner layer side heat resistant enclosure member (21) is located in substantially the entire area (10U, 10L, 10M) in the fuel gas flow direction of a SOFC (10). The outer layer side low heat insulation enclosure members (22, 22', 22'') are located on the outer layer side of the inner layer side heat resistant enclosure member (21) and in the middle portion (10M) in the fuel gas flow direction. The outer layer high heat insulation enclosure members (23, 23', 23'') are located on the outer layer side of the inner layer side heat resistant enclosure member (21) and at least one of the ends (10U, 10 L) in the fuel gas flow direction.SELECTED DRAWING: Figure 3

Description

本発明は、固体酸化物形燃料電池ユニットに関する。   The present invention relates to a solid oxide fuel cell unit.

近年、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)の開発が進められている。SOFCは、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。SOFCは、現在知られている燃料電池の形態の中では、発電の動作温度が最も高く(例えば900℃〜1000℃)、発電効率が最も高いという特性を持つ。   In recent years, development of a solid oxide fuel cell (SOFC) has been promoted. SOFC is a power generation mechanism in which oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, where the oxide ions react with hydrogen or carbon monoxide to generate electrical energy. . The SOFC has the characteristics that the power generation operating temperature is the highest (for example, 900 ° C. to 1000 ° C.) and the power generation efficiency is the highest among the currently known fuel cell configurations.

特許文献1には、燃料電池スタックと、当該燃料電池スタックを収納するとともに当該燃料電池スタックから外部への放熱を抑制するための多層構造を有する燃料電池ケースとを有する燃料電池モジュールが開示されている。燃料電池ケースは、燃料電池スタックよりも低温の第1のガス(空気)が流れる第1のガス流路層と、この第1のガス流路層の内側に設けられて第1のガス(空気)よりも高温の第2のガス(燃料電池スタックから排気される排気ガス)が流れる第2のガス流路層とを有している。そして、第1のガス流路層の燃料電池スタック側の流路壁に設けられた高熱伝導性部材が、燃料電池スタックの中央部(高温部)と近接する部位において、第2のガス流路層を貫通して、第2のガス流路層の燃料電池スタック側の流路壁と接触している。   Patent Document 1 discloses a fuel cell module having a fuel cell stack and a fuel cell case that houses the fuel cell stack and has a multilayer structure for suppressing heat dissipation from the fuel cell stack to the outside. Yes. The fuel cell case includes a first gas passage layer through which a first gas (air) having a temperature lower than that of the fuel cell stack flows, and a first gas (air) provided inside the first gas passage layer. And a second gas flow path layer through which a second gas (exhaust gas exhausted from the fuel cell stack) having a higher temperature than) flows. Then, the second gas flow path is provided at a portion where the high thermal conductivity member provided on the flow path wall on the fuel cell stack side of the first gas flow path layer is close to the center part (high temperature part) of the fuel cell stack. The layer passes through the layer and is in contact with the channel wall on the fuel cell stack side of the second gas channel layer.

特許文献2には、燃料電池スタックの空気流路にファンで空気を供給し又はノズルで水を供給することにより燃料電池スタックを冷却して温度制御を行う燃料電池システムが開示されている。   Patent Document 2 discloses a fuel cell system in which temperature is controlled by cooling the fuel cell stack by supplying air to the air flow path of the fuel cell stack with a fan or supplying water with a nozzle.

特許文献3には、外部改質器への被改質ガスの供給量を増加させて当該外部改質器の周辺部に局所的な吸熱状態を発生させることにより、複数の燃料電池セルを冷却して温度制御を行う固体酸化物形燃料電池装置が開示されている。   In Patent Document 3, a plurality of fuel cells are cooled by increasing a supply amount of a gas to be reformed to an external reformer to generate a local endothermic state in a peripheral portion of the external reformer. A solid oxide fuel cell device that performs temperature control is disclosed.

特開2010−49969号公報JP 2010-49969 A 特開2007−323993号公報JP 2007-323993 A 特開2013−8456号公報JP 2013-8456 A

しかしながら、特許文献1〜特許文献3は、次のような技術課題を有している。   However, Patent Documents 1 to 3 have the following technical problems.

特許文献1は、第1のガス流路層と第2のガス流路層の流路壁を精密に加工してこれらに高熱伝導性部材を埋め込まなければならないため、構造の複雑化、製造の困難化、高コスト化を招いてしまう。   In Patent Document 1, since it is necessary to precisely process the flow path walls of the first gas flow path layer and the second gas flow path layer and embed high thermal conductivity members in these, the structure becomes complicated and the manufacturing process is difficult. It will be difficult and costly.

特許文献2は、燃料電池スタックの内部温度が不均一になるため(例えば燃料電池スタックの積層方向や流路方向の一端部と他端部と中央部に温度差が生じるため)、動作安定性が阻害されてしまう。また、燃料電池スタックの空気流路にファンで空気を供給し又はノズルで水を供給するだけでは冷却効果が不十分である。   In Patent Document 2, since the internal temperature of the fuel cell stack becomes non-uniform (for example, a temperature difference occurs between one end, the other end, and the center in the stacking direction of the fuel cell stack or the flow path direction) Will be disturbed. Moreover, the cooling effect is insufficient only by supplying air to the air flow path of the fuel cell stack with a fan or water with a nozzle.

特許文献3は、外部改質器の周辺部に局所的な吸熱状態を発生させるだけでは冷却効果が足りず、複数の燃料電池セルの温度が下がり難いという問題がある。また、複数の燃料電池セルの内部温度が不均一になるため、動作安定性が阻害されてしまう。   Patent Document 3 has a problem that a cooling effect is not sufficient only by generating a local endothermic state in the peripheral portion of the external reformer, and the temperature of the plurality of fuel cells is difficult to decrease. Moreover, since the internal temperature of a some fuel cell becomes non-uniform | heterogenous, operation | movement stability will be inhibited.

本発明はかかる点に鑑みてなされたものであり、構造の簡単化、製造の容易化、低コスト化を図るとともに、固体酸化物形燃料電池の温度制御を均一かつ高精度に実行することにより優れた動作安定性を確保することができる固体酸化物形燃料電池ユニットを提供することを目的の1つとする。   The present invention has been made in view of such points, and by simplifying the structure, facilitating production, and reducing costs, and performing temperature control of the solid oxide fuel cell uniformly and with high accuracy. One object of the present invention is to provide a solid oxide fuel cell unit capable of ensuring excellent operational stability.

本実施形態の固体酸化物形燃料電池ユニットは、その一態様では、燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、前記固体酸化物形燃料電池の燃料ガス流れ方向の側面を取り囲む包囲部材と、を有する固体酸化物形燃料電池ユニットであって、前記包囲部材は、前記燃料ガス流れ方向の略全域に位置する内層側耐熱包囲部材と、前記内層側耐熱包囲部材の外層側で且つ前記燃料ガス流れ方向の中間部に位置する外層側低断熱性包囲部材と、前記内層側耐熱包囲部材の外層側で且つ前記燃料ガス流れ方向の少なくとも一方の端部に位置する外層側高断熱性包囲部材と、を有することを特徴としている。   In one aspect, the solid oxide fuel cell unit of the present embodiment is a solid oxide fuel cell that generates electric power by an electrochemical reaction between a fuel gas and an oxidant gas, and a fuel gas flow of the solid oxide fuel cell. A solid oxide fuel cell unit that surrounds a side surface in the direction, wherein the surrounding member is an inner layer side heat-resistant surrounding member located in substantially the entire region in the fuel gas flow direction, and the inner layer side heat-resistant enclosure. An outer layer-side low heat insulating enclosure member located on the outer layer side of the member and in the middle of the fuel gas flow direction; and an outer layer side of the inner layer heat-resistant enclosure member and located at at least one end in the fuel gas flow direction And an outer layer side high thermal insulation surrounding member.

本発明によれば、構造の簡単化、製造の容易化、低コスト化を図るとともに、固体酸化物形燃料電池の温度制御を均一かつ高精度に実行することにより優れた動作安定性を確保することができる固体酸化物形燃料電池ユニットを提供することができる。   According to the present invention, the structure is simplified, the manufacture is facilitated, the cost is reduced, and the temperature control of the solid oxide fuel cell is performed uniformly and with high accuracy to ensure excellent operational stability. A solid oxide fuel cell unit can be provided.

本実施形態の固体酸化物形燃料電池ユニットを示す概略構成図である。It is a schematic block diagram which shows the solid oxide fuel cell unit of this embodiment. SOFCの発電時における燃料ガス流れ方向の温度分布を示す概念図である。It is a conceptual diagram which shows the temperature distribution of the fuel gas flow direction at the time of SOFC power generation. 第1実施形態による包囲部材の構成を示す断面図である。It is sectional drawing which shows the structure of the surrounding member by 1st Embodiment. 第2実施形態による包囲部材の構成を示す断面図である。It is sectional drawing which shows the structure of the surrounding member by 2nd Embodiment. 第3実施形態による包囲部材の構成を示す断面図である。It is sectional drawing which shows the structure of the surrounding member by 3rd Embodiment.

≪固体酸化物形燃料電池ユニット1の概略構成≫
図1は、本実施形態の固体酸化物形燃料電池ユニット(SOFCユニット)1を示す概略構成図である。以下の説明中の上下左右の各方向は、図中に記載した矢線方向を基準とする。
<< Schematic configuration of solid oxide fuel cell unit 1 >>
FIG. 1 is a schematic configuration diagram showing a solid oxide fuel cell unit (SOFC unit) 1 of the present embodiment. In the following description, the upper, lower, left, and right directions are based on the arrow direction indicated in the drawing.

SOFCユニット1は、固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)10を有している。SOFC10は、複数のセルを積層または集合体として構成したセルスタックを有している。各セルは空気極と燃料極で電解質を挟んだ基本構成を有しており、各セルの間にはセパレータが介在している。セルスタックの各セルは電気的に直列に接続されている。SOFC10は、空気極で生成された酸化物イオンが電解質を透過して燃料極に移動し、燃料極で酸化物イオンが水素又は一酸化炭素と反応することにより電気エネルギーを発生する発電メカニズムである。   The SOFC unit 1 has a solid oxide fuel cell (SOFC) 10. The SOFC 10 has a cell stack in which a plurality of cells are stacked or assembled. Each cell has a basic configuration in which an electrolyte is sandwiched between an air electrode and a fuel electrode, and a separator is interposed between the cells. Each cell of the cell stack is electrically connected in series. The SOFC 10 is a power generation mechanism in which oxide ions generated at the air electrode permeate the electrolyte and move to the fuel electrode, and the oxide ions react with hydrogen or carbon monoxide at the fuel electrode to generate electrical energy. .

本実施形態のSOFC10(セルスタック)は、例えば、上下方向に長く左右方向に短い円柱形状をなすことができるが、SOFC10(セルスタック)の形状はこれに限定されず、種々の設計変更が可能である(三角柱や四角柱などの多角柱形状とすることも可能であるし、平板状のセルを多数積層したセルスタックとすることも可能である)。   The SOFC 10 (cell stack) of the present embodiment can have a cylindrical shape that is long in the vertical direction and short in the horizontal direction, but the shape of the SOFC 10 (cell stack) is not limited to this, and various design changes are possible. (It can also be a polygonal prism shape such as a triangular prism or a quadrangular prism, or a cell stack in which a large number of flat cells are stacked).

SOFC10は、酸化剤ガス流路(カソードガス流路)11と、燃料ガス流路(アノードガス流路)12とを有している。図1では、作図の便宜上の理由によりSOFC10の内部の酸化剤ガス流路11と燃料ガス流路12を各々一本の線として描いているが、実際には、酸化剤ガス流路11と燃料ガス流路12は別々の流路で、各々複数存在している。酸化剤ガス流路11の入口部には、空気ブロア13から取り込まれて熱交換器(加熱機構)14により加熱された酸化剤ガスが供給され、酸化剤ガス流路11の出口部からは、酸化剤ガスの排出ガスが排出される。燃料ガス流路12の入口部には、燃料ガス供給器(図示略)から取り込まれて熱交換器(加熱機構)により加熱された燃料ガスが供給され、燃料ガス流路12の出口部からは、燃料ガスの排出ガスが排出される。酸化剤ガス流路11に供給された酸化剤ガスと燃料ガス流路12に供給された燃料ガスが電気化学反応を起こすことにより、直流電流が発生する(SOFC10が発電する)。   The SOFC 10 has an oxidant gas channel (cathode gas channel) 11 and a fuel gas channel (anode gas channel) 12. In FIG. 1, the oxidant gas flow path 11 and the fuel gas flow path 12 inside the SOFC 10 are drawn as a single line for reasons of drawing convenience. The gas flow path 12 is a separate flow path, and there are a plurality of gas flow paths. An oxidant gas taken in from the air blower 13 and heated by the heat exchanger (heating mechanism) 14 is supplied to the inlet of the oxidant gas flow path 11, and from the outlet of the oxidant gas flow path 11, Oxidant gas exhaust gas is discharged. A fuel gas taken in from a fuel gas supply device (not shown) and heated by a heat exchanger (heating mechanism) is supplied to the inlet portion of the fuel gas passage 12, and from the outlet portion of the fuel gas passage 12 The exhaust gas of the fuel gas is discharged. The oxidant gas supplied to the oxidant gas flow path 11 and the fuel gas supplied to the fuel gas flow path 12 cause an electrochemical reaction to generate a direct current (SOFC 10 generates power).

図1において、SOFC10の酸化剤ガス流路11と燃料ガス流路12は上下方向に延びており、酸化剤ガス流路11の下方から上方に向かって酸化剤ガスが流れており、燃料ガス流路12の上方から下方に向かって燃料ガスが流れている。このため本実施形態では、図1中の上下方向がSOFC10の「酸化剤ガス流れ方向」と「燃料ガス流れ方向」に該当する。但し、SOFC10の「酸化剤ガス流れ方向」と「燃料ガス流れ方向」は、必ずしも一直線に延びる方向に限定されることはなく、巨視的に見たときの方向を意味している。すなわち、酸化剤ガス流路11と燃料ガス流路12が上下方向に一直線に延びているのではなく、例えば、左右方向に屈曲する箇所を介在しながら上下方向に延びているような場合であっても、上下方向がSOFC10の「酸化剤ガス流れ方向」と「燃料ガス流れ方向」に該当する。   In FIG. 1, the oxidant gas flow path 11 and the fuel gas flow path 12 of the SOFC 10 extend in the vertical direction, and the oxidant gas flows from the lower side to the upper side of the oxidant gas flow path 11. The fuel gas flows from the upper side to the lower side of the path 12. Therefore, in this embodiment, the vertical direction in FIG. 1 corresponds to the “oxidant gas flow direction” and the “fuel gas flow direction” of the SOFC 10. However, the “oxidant gas flow direction” and the “fuel gas flow direction” of the SOFC 10 are not necessarily limited to a direction extending in a straight line, but mean directions when viewed macroscopically. That is, the oxidant gas channel 11 and the fuel gas channel 12 do not extend in a straight line in the vertical direction, but, for example, extend in the vertical direction with a portion bent in the horizontal direction. Even in this case, the vertical direction corresponds to the “oxidant gas flow direction” and the “fuel gas flow direction” of the SOFC 10.

SOFCユニット1は、SOFC10の燃料ガス流れ方向(上方から下方に向かう方向、以下では単に上下方向と呼ぶ)の側面を取り囲む包囲部材20を有している。この包囲部材20の具体的な構成は、後述する第1実施形態〜第3実施形態で詳細に説明する。   The SOFC unit 1 has an enclosing member 20 that surrounds the side surface of the fuel gas flow direction of the SOFC 10 (the direction from the top to the bottom, hereinafter simply referred to as the vertical direction). A specific configuration of the surrounding member 20 will be described in detail in first to third embodiments described later.

SOFCユニット1は、SOFC10の上端面を覆う上端側ヘッダ部材30と、SOFC10の下端面を覆う下端側ヘッダ部材40とを有している。上端側ヘッダ部材30と下端側ヘッダ部材40には、SOFC10から延出する酸化剤ガス流路11と燃料ガス流路12を構成するための配管構造が施されている。   The SOFC unit 1 includes an upper end header member 30 that covers the upper end surface of the SOFC 10 and a lower end header member 40 that covers the lower end surface of the SOFC 10. The upper end header member 30 and the lower end header member 40 are provided with piping structures for constituting the oxidant gas passage 11 and the fuel gas passage 12 extending from the SOFC 10.

SOFCユニット1は、上端側蓋部材50と下端側蓋部材60とを有している。上端側蓋部材50は、包囲部材20の上端面、並びに上端側ヘッダ部材30の側面及び上端面を覆う逆U字型の形状をなしている。下端側蓋部材60は、包囲部材20の下端面、並びに下端側ヘッダ部材40の側面及び下端面を覆うU字型の形状をなしている。上端側蓋部材50と下端側蓋部材60には、SOFC10から延出する酸化剤ガス流路11と燃料ガス流路12を構成するための配管構造が施されている。   The SOFC unit 1 has an upper end side lid member 50 and a lower end side lid member 60. The upper end side lid member 50 has an inverted U-shape that covers the upper end surface of the surrounding member 20 and the side surfaces and upper end surface of the upper end side header member 30. The lower end side lid member 60 has a U-shape that covers the lower end surface of the surrounding member 20, and the side surface and lower end surface of the lower end side header member 40. The upper end side lid member 50 and the lower end side lid member 60 are provided with a piping structure for constituting the oxidant gas passage 11 and the fuel gas passage 12 extending from the SOFC 10.

SOFCユニット1は、SOFC10、包囲部材20、上端側ヘッダ部材30、下端側ヘッダ部材40、上端側蓋部材50及び下端側蓋部材60の結合体を気密状態で収納する気密筐体70を有している。   The SOFC unit 1 has an airtight housing 70 that houses a combined body of the SOFC 10, the surrounding member 20, the upper end side header member 30, the lower end side header member 40, the upper end side lid member 50, and the lower end side lid member 60 in an airtight state. ing.

≪SOFC10の発電時における燃料ガス流れ方向の温度分布≫
SOFC10の発電時には、燃料ガス流れ方向(上下方向)の位置に応じてSOFC10の温度が変動する。図2では、発明の理解を容易にするため、SOFC10の温度領域を、燃料ガス流れ方向(上下方向)の基端部(上端部)10Uと先端部(下端部)10Lと中間部10Mの3つに分割している。図2に明らかなように、SOFC10の発電時には、SOFC10の中間部10Mが最も高温(例えば800〜1000℃程度)となり、SOFC10の基端部(上端部)10Uが2番目に高温(例えば700〜900℃程度)となり、SOFC10の先端部(下端部)10Lが最も低温(例えば600〜800℃程度)となる。本実施形態では、SOFC10の燃料ガス流れ方向(上下方向)の温度制御を均一かつ高精度に実行することにより優れた動作安定性を確保するべく、SOFCユニット1の包囲部材20に工夫を施している。以下、包囲部材20の具体的な構成について、第1実施形態〜第3実施形態を参照して詳細に説明していく。
≪Temperature distribution in fuel gas flow direction during SOFC10 power generation≫
During power generation of the SOFC 10, the temperature of the SOFC 10 varies depending on the position in the fuel gas flow direction (vertical direction). In FIG. 2, in order to facilitate understanding of the invention, the temperature range of the SOFC 10 is divided into 3 parts of a base end part (upper end part) 10U, a front end part (lower end part) 10L and an intermediate part 10M in the fuel gas flow direction (vertical direction). It is divided into two. As apparent from FIG. 2, during power generation of the SOFC 10, the intermediate portion 10M of the SOFC 10 has the highest temperature (for example, about 800 to 1000 ° C.), and the base end portion (upper end portion) 10U of the SOFC 10 has the second highest temperature (for example, 700 to The end portion (lower end portion) 10L of the SOFC 10 has the lowest temperature (for example, about 600 to 800 ° C.). In the present embodiment, the envelope member 20 of the SOFC unit 1 is devised to ensure excellent operational stability by performing temperature control in the fuel gas flow direction (vertical direction) of the SOFC 10 uniformly and with high accuracy. Yes. Hereinafter, a specific configuration of the surrounding member 20 will be described in detail with reference to the first to third embodiments.

≪第1実施形態≫
図3は、第1実施形態による包囲部材20の構成を示す断面図である。
<< First Embodiment >>
FIG. 3 is a cross-sectional view showing the configuration of the surrounding member 20 according to the first embodiment.

包囲部材20は、その最内層に、SOFC10の燃料ガス流れ方向(上下方向)の略全域(基端部10Uと先端部10Lと中間部10Mに亘る略全域)に位置する内層側耐熱包囲部材21を有している。この内層側耐熱包囲部材21は、耐熱性と低断熱性を併せ持つ材料、例えば、最高使用温度が1000℃を超える多結晶質アルミナ短繊維から構成することができる。   The enveloping member 20 has an inner layer side heat-resistant enclosing member 21 located in the innermost layer of the SOFC 10 in substantially the entire fuel gas flow direction (vertical direction) (substantially the entire region extending from the base end 10U, the distal end 10L, and the intermediate portion 10M). have. The inner layer side heat-resistant surrounding member 21 can be made of a material having both heat resistance and low heat insulation properties, for example, a polycrystalline alumina short fiber having a maximum use temperature exceeding 1000 ° C.

包囲部材20は、内層側耐熱包囲部材21の外層側で且つSOFC10の燃料ガス流れ方向(上下方向)の中間部(中間部10M)に位置する外層側低断熱性包囲部材22を有している。この外層側低断熱性包囲部材22は、例えば、セラミックファイバーを連続的に積層してニードルパンチ処理で毛布状に成形したもの、又は、バルクファイバーに無機バインダー若しくは有機バインダーを添加して板状に成形したものから構成することができる。   The surrounding member 20 has an outer layer side low heat insulating surrounding member 22 located on the outer layer side of the inner layer side heat resistant surrounding member 21 and in the middle portion (intermediate portion 10M) in the fuel gas flow direction (vertical direction) of the SOFC 10. . The outer layer side low thermal insulation surrounding member 22 is formed, for example, by continuously laminating ceramic fibers and forming them into a blanket shape by needle punching, or by adding an inorganic binder or an organic binder to bulk fibers into a plate shape. It can be constructed from a molded one.

包囲部材20は、内層側耐熱包囲部材21の外層側で且つSOFC10の燃料ガス流れ方向(上下方向)の一端部(基端部10U)と他端部(先端部10L)に位置する外層側高断熱性包囲部材23を有している。この外層側高断熱性包囲部材23は、超低熱伝導特性を持つシリカナノ粒子を主成分として含んだ繊維材料から構成することができる。   The surrounding member 20 is located on the outer layer side of the inner layer side heat-resistant surrounding member 21 and on the outer layer side height located at one end (base end portion 10U) and the other end portion (leading end portion 10L) of the SOFC 10 in the fuel gas flow direction (vertical direction). A heat insulating surrounding member 23 is provided. The outer layer side high heat insulating surrounding member 23 can be made of a fiber material containing silica nanoparticles having ultra-low thermal conductivity as a main component.

このように、外層側低断熱性包囲部材22と外層側高断熱性包囲部材23は、断熱性能が異なる別々の部材から構成されている。断熱性能は、主に包囲部材の熱伝導率と厚さによって決まる。   Thus, the outer layer side low heat insulation surrounding member 22 and the outer layer side high heat insulation surrounding member 23 are comprised from the separate member from which heat insulation performance differs. The heat insulating performance is mainly determined by the thermal conductivity and thickness of the surrounding member.

外層側低断熱性包囲部材22と外層側高断熱性包囲部材23の「低断熱性」と「高断熱性」の文言は、絶対的な基準ではなく、相対的な基準で使用している。すなわち、部材の断熱性能を評価するパラメータが特定の基準を満足しないから「低断熱性」、これとは逆に、特定の基準を満足するから「高断熱性」というわけではなく、単に、外層側低断熱性包囲部材22と外層側高断熱性包囲部材23の断熱性能を比較したときに、前者が後者よりも低い(後者が前者よりも高い)という意味である。   The words “low thermal insulation” and “high thermal insulation” of the outer layer side low thermal insulation surrounding member 22 and the outer layer side high thermal insulation surrounding member 23 are used on a relative basis, not on an absolute basis. In other words, the parameter for evaluating the heat insulation performance of a member does not satisfy a specific standard, but “low heat insulation”, on the contrary, it does not mean “high heat insulation” because it satisfies a specific standard. When the heat insulating performance of the side low heat insulating surrounding member 22 and the outer layer side high heat insulating surrounding member 23 are compared, the former means lower than the latter (the latter is higher than the former).

以上のように構成された包囲部材20によれば、SOFC10の燃料ガス流れ方向(上下方向)の側面の略全域に亘って内層側耐熱包囲部材21が設けられているので、SOFC10の発電時の熱によってSOFCユニット1が損傷するのを防止することができる。   According to the surrounding member 20 configured as described above, the inner layer side heat-resistant surrounding member 21 is provided over substantially the entire side surface of the fuel gas flow direction (vertical direction) of the SOFC 10, so that the SOFC 10 can generate power at the time of power generation. It is possible to prevent the SOFC unit 1 from being damaged by heat.

また、最も高温となるSOFC10の中間部10Mに対応(隣接)して外層側低断熱性包囲部材22が設けられているので、SOFC10の発電時における中間部10Mからの熱が側方に放熱しやすくなる(放熱量が増大する)。一方、比較的低温となるSOFC10の基端部10Uと先端部10Lに対応(隣接)して外層側高断熱性包囲部材23が設けられているので、SOFC10の発電時における基端部10Uと先端部10Lからの熱が側方に放熱しにくくなる(放熱量が減少する)。その結果、SOFC10の燃料ガス流れ方向(上下方向)の温度制御を均一かつ高精度に実行することにより優れた動作安定性を確保することが可能になる。すなわち、高出力が得られるセル反応領域を広げて発電効率を向上させるとともに、SOFC10を熱自立させることができる(別途の加熱部を設けることなくSOFC10を安定的に運転することができる)。図3中の実線Lは、第1実施形態のSOFCユニット1におけるSOFC10の燃料ガス流れ方向(上下方向)の温度分布を表しており、図3中の破線Hは、従来品のSOFCユニットにおけるSOFCの燃料ガス流れ方向(上下方向)の温度分布を表している。図3中の実線Lの方が、図3中の破線Hよりも、燃料ガス流れ方向(上下方向)における温度分布のバラツキが少ないことを示している。   Further, since the outer layer side low thermal insulation surrounding member 22 is provided corresponding to (adjacent to) the intermediate portion 10M of the SOFC 10 that is the highest temperature, the heat from the intermediate portion 10M during the power generation of the SOFC 10 is dissipated to the side. Easier (heat dissipation increases). On the other hand, since the outer layer side high thermal insulation surrounding member 23 is provided corresponding to (adjacent to) the base end portion 10U and the front end portion 10L of the SOFC 10 which is relatively low in temperature, the base end portion 10U and the front end during power generation of the SOFC 10 It becomes difficult for the heat from the portion 10L to radiate to the side (the amount of heat radiated decreases). As a result, it is possible to ensure excellent operational stability by performing temperature control in the fuel gas flow direction (vertical direction) of the SOFC 10 uniformly and with high accuracy. That is, the cell reaction region in which high output can be obtained can be expanded to improve the power generation efficiency, and the SOFC 10 can be thermally independent (the SOFC 10 can be stably operated without providing a separate heating unit). The solid line L in FIG. 3 represents the temperature distribution in the fuel gas flow direction (vertical direction) of the SOFC 10 in the SOFC unit 1 of the first embodiment, and the broken line H in FIG. 3 represents the SOFC in the conventional SOFC unit. Represents the temperature distribution in the fuel gas flow direction (vertical direction). The solid line L in FIG. 3 indicates that there is less variation in the temperature distribution in the fuel gas flow direction (vertical direction) than the broken line H in FIG.

さらに、SOFC10の燃料ガス流れ方向(上下方向)の側方に包囲部材20(内層側耐熱包囲部材21、外層側低断熱性包囲部材22、外層側高断熱性包囲部材23)に設けるだけなので、SOFCユニット1の構造の簡単化、製造の容易化、低コスト化を図ることができる。   Furthermore, since it is only provided on the side of the fuel gas flow direction (vertical direction) of the SOFC 10 on the surrounding member 20 (the inner layer side heat resistant surrounding member 21, the outer layer side low heat insulating surrounding member 22, the outer layer side high heat insulating surrounding member 23), The structure of the SOFC unit 1 can be simplified, the manufacturing can be facilitated, and the cost can be reduced.

≪第2実施形態≫
図4は、第2実施形態による包囲部材20の構成を示す断面図である。第2実施形態では、外層側低断熱性包囲部材22’と外層側高断熱性包囲部材23’を同一の材料から構成してその厚みにより断熱性能を異ならせている。より具体的に、外層側低断熱性包囲部材22’の厚みを外層側高断熱性包囲部材23’の厚みよりも小さく設定している。第2実施形態の構成により、SOFC10の中間部10Mからの放熱量が増加してSOFC10の中間部10Mの温度が低下する。その結果、第2実施形態の方が従来よりもSOFCユニット1内の温度分布が少なくなる。図4中の実線Lは、第2実施形態のSOFCユニット1におけるSOFC10の燃料ガス流れ方向(上下方向)の温度分布を表し、図4中の破線Hは、従来品のSOFCユニットにおけるSOFCの燃料ガス流れ方向(上下方向)の温度分布を表している。図4中の実線Lは、図4中の破線Hよりも、燃料ガス流れ方向(上下方向)における温度分布のバラツキが少ないことを示している。
<< Second Embodiment >>
FIG. 4 is a cross-sectional view showing a configuration of the surrounding member 20 according to the second embodiment. In the second embodiment, the outer layer side low heat insulating surrounding member 22 ′ and the outer layer side high heat insulating surrounding member 23 ′ are made of the same material, and the heat insulating performance is varied depending on the thickness thereof. More specifically, the thickness of the outer layer side low heat insulating surrounding member 22 ′ is set smaller than the thickness of the outer layer side high heat insulating surrounding member 23 ′. With the configuration of the second embodiment, the amount of heat released from the intermediate portion 10M of the SOFC 10 increases and the temperature of the intermediate portion 10M of the SOFC 10 decreases. As a result, the temperature distribution in the SOFC unit 1 is smaller in the second embodiment than in the prior art. The solid line L in FIG. 4 represents the temperature distribution in the fuel gas flow direction (vertical direction) of the SOFC 10 in the SOFC unit 1 of the second embodiment, and the broken line H in FIG. 4 represents the SOFC fuel in the conventional SOFC unit. It represents the temperature distribution in the gas flow direction (vertical direction). A solid line L in FIG. 4 indicates that there is less variation in temperature distribution in the fuel gas flow direction (vertical direction) than the broken line H in FIG.

≪第3実施形態≫
図5は、第3実施形態による包囲部材20の構成を示す断面図である。第3実施形態では、外層側低断熱性包囲部材22”と外層側高断熱性包囲部材23”を断熱性能が異なる別々の材料から構成した上で、さらにその厚みにより断熱性能を異ならせている。より具体的に、外層側低断熱性包囲部材22”の厚みを外層側高断熱性包囲部材23”の厚みよりも小さく設定している。第3実施形態の構成により、SOFC10の中間部10Mからの放熱量が増加してSOFC10の中間部10Mの温度が低下する。その結果、第3実施形態の方が従来よりもSOFCユニット1内の温度分布が少なくなる。図5中の実線Lは、第3実施形態のSOFCユニット1におけるSOFC10の燃料ガス流れ方向(上下方向)の温度分布を表しており、図5中の破線Hは、従来品のSOFCユニットにおけるSOFCの燃料ガス流れ方向(上下方向)の温度分布を表している。図5中の実線Lは、図5中の破線Hよりも、燃料ガス流れ方向(上下方向)における温度分布のバラツキが少なくなることを示している。
«Third embodiment»
FIG. 5 is a cross-sectional view showing a configuration of the surrounding member 20 according to the third embodiment. In the third embodiment, the outer layer side low heat insulating enclosure member 22 ″ and the outer layer side high heat insulating enclosure member 23 ″ are made of different materials having different heat insulation performance, and the heat insulation performance is further varied depending on the thickness thereof. . More specifically, the thickness of the outer layer side low heat insulating surrounding member 22 ″ is set smaller than the thickness of the outer layer side high heat insulating surrounding member 23 ″. With the configuration of the third embodiment, the amount of heat released from the intermediate portion 10M of the SOFC 10 increases and the temperature of the intermediate portion 10M of the SOFC 10 decreases. As a result, the temperature distribution in the SOFC unit 1 is smaller in the third embodiment than in the prior art. The solid line L in FIG. 5 represents the temperature distribution in the fuel gas flow direction (vertical direction) of the SOFC 10 in the SOFC unit 1 of the third embodiment, and the broken line H in FIG. 5 represents the SOFC in the conventional SOFC unit. Represents the temperature distribution in the fuel gas flow direction (vertical direction). A solid line L in FIG. 5 indicates that variation in temperature distribution in the fuel gas flow direction (vertical direction) is less than that of the broken line H in FIG.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている構成要素の大きさや形状、機能などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。   In addition, this invention is not limited to the said embodiment, It can change and implement variously. In the above-described embodiment, the size, shape, function, and the like of the components illustrated in the accompanying drawings are not limited thereto, and can be appropriately changed within a range in which the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.

上記実施の形態では、SOFC10の燃料ガス流れ方向の両端部(基端部10Uと先端部10L)に対応させて外層側高断熱性包囲部材23、23’又は23”を設ける場合を例示して説明した。しかし、SOFC10の燃料ガス流れ方向のいずれか一端部に対応させて外層側高断熱性包囲部材23、23’又は23”を設けてもよい。   In the above embodiment, the case where the outer layer side highly heat insulating surrounding member 23, 23 ′ or 23 ″ is provided corresponding to both ends (base end portion 10U and tip end portion 10L) of the SOFC 10 in the fuel gas flow direction is exemplified. However, the outer layer side highly heat insulating surrounding member 23, 23 ′ or 23 ″ may be provided corresponding to one end of the fuel gas flow direction of the SOFC 10.

上記の実施形態では、外層側低断熱性包囲部材22、22’又は22”と外層側高断熱性包囲部材23、23’又は23”の2種類の外層側断熱性包囲部材を設けた場合を例示して説明したが、3種類以上の外層側断熱性包囲部材を設けてもよい。   In the above embodiment, the case where two types of outer layer side heat insulating surrounding members, that is, the outer layer side low heat insulating surrounding member 22, 22 'or 22 "and the outer layer side high heat insulating surrounding member 23, 23' or 23" are provided. Although illustrated and demonstrated, you may provide three or more types of outer-layer side heat insulation surrounding members.

本発明の固体酸化物形燃料電池ユニットは、家庭用、業務用、その他のあらゆる産業分野の固体酸化物形燃料電池ユニットに適用して好適である。   The solid oxide fuel cell unit of the present invention is suitable for application to solid oxide fuel cell units for household, commercial, and other industrial fields.

1 固体酸化物形燃料電池ユニット(SOFCユニット)
10 固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)
10U 基端部(上端部)
10L 先端部(下端部)
10M 中間部
11 酸化剤ガス流路(カソードガス流路)
12 燃料ガス流路(アノードガス流路)
13 空気ブロア
14 熱交換器(加熱機構)
20 包囲部材
21 内層側耐熱包囲部材
22 22’ 22” 外層側低断熱性包囲部材
23 23’ 23” 外層側高断熱性包囲部材
30 上端側ヘッダ部材
40 下端側ヘッダ部材
50 上端側蓋部材
60 下端側蓋部材
70 気密筐体
1 Solid oxide fuel cell unit (SOFC unit)
10 Solid Oxide Fuel Cell (SOFC)
10U Base end (upper end)
10L Tip (lower end)
10M Intermediate part 11 Oxidant gas channel (cathode gas channel)
12 Fuel gas channel (Anode gas channel)
13 Air blower 14 Heat exchanger (heating mechanism)
20 Surrounding member 21 Inner layer side heat resistant surrounding member 22 22 '22 "Outer layer side low heat insulating surrounding member 23 23'23" Outer layer side high heat insulating surrounding member 30 Upper end side header member 40 Lower end side header member 50 Upper end side lid member 60 Lower end Side lid member 70 Airtight housing

Claims (4)

燃料ガスと酸化剤ガスの電気化学反応により発電する固体酸化物形燃料電池と、
前記固体酸化物形燃料電池の燃料ガス流れ方向の側面を取り囲む包囲部材と、
を有する固体酸化物形燃料電池ユニットであって、
前記包囲部材は、
前記燃料ガス流れ方向の略全域に位置する内層側耐熱包囲部材と、
前記内層側耐熱包囲部材の外層側で且つ前記燃料ガス流れ方向の中間部に位置する外層側低断熱性包囲部材と、
前記内層側耐熱包囲部材の外層側で且つ前記燃料ガス流れ方向の少なくとも一方の端部に位置する外層側高断熱性包囲部材と、
を有することを特徴とする固体酸化物形燃料電池ユニット。
A solid oxide fuel cell that generates electricity by an electrochemical reaction between a fuel gas and an oxidant gas;
An enclosing member surrounding a side surface of the solid oxide fuel cell in the fuel gas flow direction;
A solid oxide fuel cell unit comprising:
The surrounding member is
An inner layer side heat-resistant surrounding member located in substantially the entire region of the fuel gas flow direction;
An outer layer side low heat insulating enclosure member located on the outer layer side of the inner layer heat resistant enclosure member and in the middle of the fuel gas flow direction;
An outer layer side high thermal insulation surrounding member located on the outer layer side of the inner layer side heat resistant surrounding member and at least one end in the fuel gas flow direction;
A solid oxide fuel cell unit comprising:
前記外層側低断熱性包囲部材と前記外層側高断熱性包囲部材は、断熱性能が異なる別々の材料から構成されていることを特徴とする請求項1に記載の固体酸化物形燃料電池ユニット。   2. The solid oxide fuel cell unit according to claim 1, wherein the outer layer side low heat insulating surrounding member and the outer layer side high heat insulating surrounding member are made of different materials having different heat insulating performances. 前記外層側低断熱性包囲部材と前記外層側高断熱性包囲部材は、同一の材料から構成されていてその厚みにより断熱性能を異ならせていることを特徴とする請求項1に記載の固体酸化物形燃料電池ユニット。   2. The solid oxide according to claim 1, wherein the outer layer side low heat insulating enclosure member and the outer layer side high heat insulating enclosure member are made of the same material and have different heat insulation performance depending on their thickness. Physical fuel cell unit. 前記外層側低断熱性包囲部材と前記外層側高断熱性包囲部材は、断熱性能が異なる別々の材料から構成され、且つ、その厚みにより断熱性能を異ならせていることを特徴とする請求項1に記載の固体酸化物形燃料電池ユニット。   The outer layer side low heat insulating enclosure member and the outer layer side high heat insulating enclosure member are made of different materials having different heat insulation performances, and the heat insulation performances are different depending on their thicknesses. The solid oxide fuel cell unit described in 1.
JP2017176213A 2017-09-13 2017-09-13 Solid oxide fuel cell unit Pending JP2019053864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017176213A JP2019053864A (en) 2017-09-13 2017-09-13 Solid oxide fuel cell unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017176213A JP2019053864A (en) 2017-09-13 2017-09-13 Solid oxide fuel cell unit

Publications (1)

Publication Number Publication Date
JP2019053864A true JP2019053864A (en) 2019-04-04

Family

ID=66015216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017176213A Pending JP2019053864A (en) 2017-09-13 2017-09-13 Solid oxide fuel cell unit

Country Status (1)

Country Link
JP (1) JP2019053864A (en)

Similar Documents

Publication Publication Date Title
JP5065367B2 (en) Fuel cell module
JP5119234B2 (en) Fuel cell module
US20110250513A1 (en) Fuel cell
JP5109252B2 (en) Fuel cell
JP6415962B2 (en) Fuel cell cartridge and fuel cell module
JP5551495B2 (en) Fuel cell module
JP6111904B2 (en) Fuel cell device
JP5122319B2 (en) Solid oxide fuel cell
JP2008218277A (en) Fuel cell
JP2006342050A (en) Wire type micro reformer and micro fuel cell
US20060014056A1 (en) Reformer and fuel cell system having the same
JP2004139960A (en) Fuel cell
JP2011044361A (en) Fuel cell module
KR102375635B1 (en) Fuel cell stack assembly
JP4986403B2 (en) Power generator
JP4544055B2 (en) Fuel cell
JP2007005134A (en) Steam generator and fuel cell
JP2014505332A (en) Fuel cell system and stack
JP2019053864A (en) Solid oxide fuel cell unit
JP6479400B2 (en) Fuel cell device and fuel cell system
JP2007073358A (en) Fuel heat exchanger and fuel cell
KR20190026180A (en) Fuel cell stack
JP6973759B1 (en) Tube type SOFC
JP7579628B2 (en) Fuel Cell Systems
JP6930937B2 (en) Fuel cells, and fuel cell systems