JP2019053820A - Power storage element - Google Patents

Power storage element Download PDF

Info

Publication number
JP2019053820A
JP2019053820A JP2017175029A JP2017175029A JP2019053820A JP 2019053820 A JP2019053820 A JP 2019053820A JP 2017175029 A JP2017175029 A JP 2017175029A JP 2017175029 A JP2017175029 A JP 2017175029A JP 2019053820 A JP2019053820 A JP 2019053820A
Authority
JP
Japan
Prior art keywords
negative electrode
turn
active material
electrode
folded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017175029A
Other languages
Japanese (ja)
Other versions
JP7008272B2 (en
Inventor
佐々木 丈
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2017175029A priority Critical patent/JP7008272B2/en
Publication of JP2019053820A publication Critical patent/JP2019053820A/en
Application granted granted Critical
Publication of JP7008272B2 publication Critical patent/JP7008272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

To provide a power storage element in which a stress in a turn part of an electrode body folded in a zigzag is suppressed.SOLUTION: A power storage element comprises an electrode body having a long first member including a first electrode 21, and a second member 26 that includes a second electrode 22 of which a polarity is different from that of the first electrode. The first member includes a first surface and a second surface opposite to the first surface, and includes at least one folding part including a pair of flat parts 233 in which both first surfaces are faced and a turn part 234 connecting both end parts. The second member is arranged between the pair of flat parts. The turn part includes a thin position that a part of the surface of an inner side of the folding part is recessed to a surface in an outer side from the other position, and a gap is formed in between the turn part and the second member.SELECTED DRAWING: Figure 11

Description

本発明は、折り返された第一の電極の間に第二の電極が配置された電極体を備える蓄電素子に関する。   The present invention relates to a power storage device including an electrode body in which a second electrode is disposed between folded first electrodes.

従来から、負極電極板及び正極電極板の一方の電極板がつづら折り状に積層されているリチウムイオン二次電池(以下、単に「電池」と称する)が知られている(特許文献1参照)。具体的に、この電池は、図19に示すように、負極電極板101と、正極電極板104と、両電極板101、104間に挿入されたセパレータ107とが、交互に積層されて構成された電極積層体である。   Conventionally, a lithium ion secondary battery (hereinafter simply referred to as “battery”) in which one electrode plate of a negative electrode plate and a positive electrode plate is stacked in a zigzag manner is known (see Patent Document 1). Specifically, as shown in FIG. 19, this battery is configured by alternately stacking negative electrode plates 101, positive electrode plates 104, and separators 107 inserted between both electrode plates 101 and 104. Electrode stack.

負極電極板101は、両面でセパレータ107と密着しており、長手方向に所定間隔で交互に折り畳まれてつづら折り状に積層された長尺の可撓性材料からなる電極板(長尺電極板と称する)である。負極の長尺電極板101は、銅箔102の両面に形成された負極活物質層103をもつ。   The negative electrode plate 101 is in intimate contact with the separator 107 on both sides, and is an electrode plate made of a long flexible material that is alternately folded at predetermined intervals in the longitudinal direction and stacked in a zigzag shape (long electrode plate and Called). A long electrode plate 101 of a negative electrode has a negative electrode active material layer 103 formed on both surfaces of a copper foil 102.

セパレータ107は、長尺の絶縁膜からなり、その厚さ方向に電荷の移動が可能な電池用セパレータである。このセパレータ107は、負極の長尺電極板101の両面に接して折り畳まれている。具体的に、セパレータ107は、長尺電極板101の銅箔102のうち、負極活物質層103の形成されている部分を両面から包み込んでいる。即ち、長尺電極板101とその両面を包むセパレータ107とは一体化して一体長尺物108を形成している。   The separator 107 is a battery separator made of a long insulating film and capable of moving charges in the thickness direction. The separator 107 is folded in contact with both surfaces of the negative electrode plate 101. Specifically, the separator 107 wraps the portion of the copper foil 102 of the long electrode plate 101 where the negative electrode active material layer 103 is formed from both sides. That is, the long electrode plate 101 and the separator 107 that wraps both sides thereof are integrated to form an integral long object 108.

正極電極板104は、両面でセパレータ107に密着しており、多数の互いに独立した短冊形状の電極板(短冊状電極板と称する)である。正極の各短冊状電極板104は、アルミニウム箔105の両面に形成された正極活物質層106をもつ。   The positive electrode plate 104 is in close contact with the separator 107 on both sides, and is a large number of independent strip-shaped electrode plates (referred to as strip-shaped electrode plates). Each strip-shaped electrode plate 104 of the positive electrode has a positive electrode active material layer 106 formed on both surfaces of the aluminum foil 105.

そして、長尺電極板101とセパレータ107とからなる一体長尺物108に対し、その両側から多数の短冊状電極板104が交互に積層されて電池100が構成されている。即ち、一枚の一体長尺物108と多数の短冊状電極板104との積層に際し、一体長尺物108はつづら折りに折り畳まれ、その間に短冊状電極板104が両側から挿入されて一体長尺物108に挟持された構造を電池100は持っている。   A battery 100 is configured by alternately laminating a plurality of strip-shaped electrode plates 104 from both sides of an integrated long object 108 including a long electrode plate 101 and a separator 107. That is, when laminating a single long piece 108 and a large number of strip-shaped electrode plates 104, the long piece 108 is folded in a zigzag manner, and the strip-shaped electrode plates 104 are inserted from both sides to be integrated long. The battery 100 has a structure sandwiched between the objects 108.

以上の電池100では、つづら折りに折り畳まれた一体長尺物108のターン部において、応力が生じ易い。具体的には、活物質の膨張等に伴って長尺電極板101の体積が大きくなるが、ターン部においては、この体積が大きくなった長尺電極板101の逃げ代が少ないため、応力が生じやすい。特に、一体長尺物108の厚みが大きい程、ターン部に生じる応力の大きさが顕著となる。   In the battery 100 described above, stress is easily generated in the turn portion of the integrally long object 108 folded in a zigzag manner. Specifically, the volume of the long electrode plate 101 increases with the expansion of the active material, etc., but in the turn portion, the long electrode plate 101 with the increased volume has a small escape allowance, so that the stress is increased. Prone to occur. In particular, the greater the thickness of the integral long object 108, the more pronounced the stress generated in the turn portion.

特開2014−103082号公報JP 2014-103082 A

そこで、本実施形態は、第一の電極を含む第一の部材の折り返し部におけるターン部に生じる応力を抑えることができる蓄電素子を提供することを目的とする。   In view of this, an object of the present embodiment is to provide a power storage device that can suppress stress generated in the turn portion in the folded portion of the first member including the first electrode.

本実施形態の蓄電素子は、
第一の電極を含む長尺な第一の部材と、前記第一の電極と極性が異なる第二の電極を含む第二の部材と、を有する電極体を備え、
前記第一の部材は、第一の面及び該第一の面と反対側の第二の面をそれぞれ有し且つ前記第一の面同士を対向させた一対の平坦部と、前記一対の平坦部の端部同士を接続するターン部と、を含む折り返し部を少なくとも一つ有し、
前記第二の部材は、前記一対の平坦部の間に配置され、
前記ターン部は、前記折り返し部の内側の面の一部が他の部位より外側の面に向けて凹んでいる薄肉の部位を有し、
該ターン部と前記第二の部材との間に隙間が形成されている。
The electricity storage device of this embodiment is
An electrode body having a long first member including a first electrode and a second member including a second electrode having a polarity different from that of the first electrode;
The first member has a first surface and a second surface opposite to the first surface, and a pair of flat portions in which the first surfaces are opposed to each other, and the pair of flat surfaces Having at least one folded part including a turn part connecting the ends of the parts,
The second member is disposed between the pair of flat portions,
The turn portion has a thin-walled portion in which a part of the inner surface of the folded portion is recessed toward the outer surface from other portions,
A gap is formed between the turn portion and the second member.

かかる構成によれば、第一の部材において、折り返し部のターン部が薄肉の部位を有することで、ターン部において生じる応力が抑えられる。   According to this configuration, in the first member, the turn portion of the folded portion has a thin portion, so that stress generated in the turn portion can be suppressed.

前記蓄電素子では、
前記第二の部材のターン部側の端縁は、前記一対の平坦部が並ぶ方向から見て、前記薄肉の部位と重なる位置にあってもよい。
In the storage element,
The edge on the turn part side of the second member may be located at a position overlapping the thin portion as seen from the direction in which the pair of flat parts are arranged.

このように、薄肉の部位と厚肉の部位(薄肉の部位以外の部位)とが形成された折り返し部の間において、一対の平坦部が並ぶ方向から見て第二の部材の端縁が薄肉の部位と重なる位置にあることで(例えば、図11参照)、第二の部材において、厚肉の部位に圧迫(挟持)されている部位の端部位置、即ち、折り返し部の厚肉の部位と薄肉の部位との境界位置に僅かな段差が生じ、これにより、折り返し部の間での第二の部材の位置ずれが効果的に抑えられる。   In this way, the edge of the second member is thin when viewed from the direction in which the pair of flat portions are arranged between the folded portions where the thin portion and the thick portion (the portion other than the thin portion) are formed. In the second member (see, for example, FIG. 11), in the second member, the end position of the portion pressed (clamped) by the thick portion, that is, the thick portion of the folded portion A slight step is generated at the boundary position between the thin portion and the thin portion, thereby effectively suppressing the displacement of the second member between the folded portions.

また、前記蓄電素子は、
前記電極体を収容するケースを備え、
前記電極体は、前記一対の平坦部が並ぶ方向から見て、前記薄肉の部位の端部位置と重なる領域が、前記一対の平坦部が並ぶ方向の両側から押圧された状態で前記ケースに収容されてもよい。
In addition, the power storage element is
A case for accommodating the electrode body;
The electrode body is accommodated in the case in a state where an area overlapping with an end position of the thin portion is pressed from both sides in the direction in which the pair of flat portions are aligned as viewed from the direction in which the pair of flat portions are aligned. May be.

かかる構成によれば、第二の部材において、折り返し部の厚肉の部位によって圧迫(挟持)されている部位の端部位置(即ち、薄肉の部位の端部位置)により大きな力が加わるため、折り返し部の間での第二の部材の位置ずれがより確実に抑えられる。   According to such a configuration, in the second member, a large force is applied to the end position of the portion that is pressed (clamped) by the thick portion of the folded portion (that is, the end portion position of the thin portion). The positional deviation of the second member between the folded portions can be more reliably suppressed.

前記蓄電素子では、
前記第一の電極は、前記薄肉の部位に相当する領域に、金属箔と、該金属箔における内側の面に重ねられる活物質層と、を有してもよい。
In the storage element,
The first electrode may include a metal foil and an active material layer superimposed on an inner surface of the metal foil in a region corresponding to the thin portion.

薄肉の部位において第二の部材に対向するように金属箔が露出していると、金属箔において電流集中に伴うデンドライトの発生及びその成長等が生じ易い。しかし、上記構成によれば、薄肉の部位に相当する領域において金属箔の内側を向いた面が活物質層で覆われているため、該部位における前記電流集中が防がれ、これにより、金属箔での前記デンドライトの発生及びその成長等を抑えることができる。   If the metal foil is exposed so as to face the second member in the thin portion, the dendrite is easily generated and grown due to current concentration in the metal foil. However, according to the above configuration, since the surface facing the inside of the metal foil is covered with the active material layer in the region corresponding to the thin-walled portion, the current concentration in the portion is prevented, whereby the metal Generation | occurrence | production of the said dendrite in foil, the growth, etc. can be suppressed.

また、ターン部と第二の部材との間に隙間があるため、第二の部材に含まれる第二の電極の充放電に伴う膨張収縮によって第二の部材がターン部の奥に向けて伸びたり移動したりする可能性がある。薄肉の部位に相当する領域において金属箔の第二の部材側を向いた面を活物質層で覆うことで、前記電流集中を抑制することができる。   In addition, since there is a gap between the turn part and the second member, the second member extends toward the back of the turn part due to expansion and contraction associated with charge / discharge of the second electrode included in the second member. Or move. The current concentration can be suppressed by covering the surface of the metal foil facing the second member side in the region corresponding to the thin-walled portion with the active material layer.

また、前記蓄電素子では、
電解液と、
前記電解液及び前記電極体を収容するケースと、を備え、
前記第一の電極は、前記折り返し部において長尺方向の全域に配置される前記金属箔と、該金属箔の前記折り返し部の内側を向いた面の前記長尺方向の全域に重ねられる前記活物質層と、を有し、
前記長尺方向において、前記活物質層の前記薄肉の部位に相当する部位の密度は、他の部位の密度より高くてもよい。
Further, in the power storage element,
An electrolyte,
A case for accommodating the electrolytic solution and the electrode body,
The first electrode includes the metal foil disposed over the entire region in the longitudinal direction at the folded portion, and the active layer that is overlapped over the entire region in the longitudinal direction of the surface of the metal foil facing the inside of the folded portion. A material layer,
In the longitudinal direction, the density of the portion corresponding to the thin portion of the active material layer may be higher than the density of other portions.

このように、ターン部に活物質層が配置されると、蓄電素子の充放電に伴って該活物質層が膨張収縮することで該膨張収縮に伴う応力がターン部において発生するが、ターン部の薄肉の部位の活物質層の密度を高くして電解液の液浸透性を低下させることで前記充放電に伴う活物質層の膨張収縮量を抑え、これにより、ターン部での前記膨張収縮に伴う応力の発生を抑えることができる。   As described above, when the active material layer is disposed in the turn part, the stress associated with the expansion and contraction is generated in the turn part due to the expansion and contraction of the active material layer accompanying charging and discharging of the power storage element. The expansion and contraction amount of the active material layer accompanying the charge / discharge is suppressed by increasing the density of the active material layer in the thin-walled portion and reducing the liquid permeability of the electrolyte solution. It is possible to suppress the generation of stress associated with.

以上より、本実施形態によれば、第一の電極を含む第一の部材の折り返し部におけるターン部に生じる応力を抑えることができる蓄電素子を提供することができる。   As mentioned above, according to this embodiment, the electrical storage element which can suppress the stress which arises in the turn part in the folding | turning part of the 1st member containing a 1st electrode can be provided.

図1は、本実施形態に係る蓄電素子の斜視図である。FIG. 1 is a perspective view of a power storage device according to this embodiment. 図2は、前記蓄電素子の分解斜視図である。FIG. 2 is an exploded perspective view of the power storage element. 図3は、図1のIII−III位置の断面図である。3 is a cross-sectional view taken along the line III-III in FIG. 図4は、図1のIV−IV位置の断面図である。4 is a cross-sectional view taken along the line IV-IV in FIG. 図5は、電極体を説明するための斜視図である。FIG. 5 is a perspective view for explaining the electrode body. 図6は、図5のVI−VI位置における断面模式図である。6 is a schematic cross-sectional view at the position VI-VI in FIG. 図7は、負極の構成を説明するための図である。FIG. 7 is a diagram for explaining the configuration of the negative electrode. 図8は、負極の構成を説明するための図である。FIG. 8 is a diagram for explaining the configuration of the negative electrode. 図9は、つづら折り状態の負極の構成を説明するための斜視図である。FIG. 9 is a perspective view for explaining the structure of the negatively folded negative electrode. 図10は、折り返し部を説明するための斜視図である。FIG. 10 is a perspective view for explaining the folded portion. 図11は、電極体のターン部及びその周辺の拡大断面図である。FIG. 11 is an enlarged cross-sectional view of the turn portion of the electrode body and its periphery. 図12は、正極及びセパレータを含む第二の部材の構成を説明するための図である。FIG. 12 is a diagram for explaining the configuration of the second member including the positive electrode and the separator. 図13は、正極及びセパレータを含む第二の部材の構成を説明するための図である。FIG. 13 is a diagram for explaining the configuration of the second member including the positive electrode and the separator. 図14は、電極体において圧迫され易い領域を説明するための模式図である。FIG. 14 is a schematic diagram for explaining a region that is easily compressed in the electrode body. 図15は、他実施形態に係る電極体における平坦部とターン部との境界部を示す図である。FIG. 15 is a diagram illustrating a boundary portion between a flat portion and a turn portion in an electrode body according to another embodiment. 図16は、他実施形態に係る電極体における平坦部とターン部との境界部を示す図である。FIG. 16 is a diagram illustrating a boundary portion between a flat portion and a turn portion in an electrode body according to another embodiment. 図17は、前記蓄電素子を備える蓄電装置の斜視図である。FIG. 17 is a perspective view of a power storage device including the power storage element. 図18は、前記蓄電装置の分解斜視図である。FIG. 18 is an exploded perspective view of the power storage device. 図19は、従来の電池の積層構成を模式的に示す断面図である。FIG. 19 is a cross-sectional view schematically showing a stack structure of a conventional battery.

以下、本発明に係る蓄電素子の一実施形態について、図1〜図14を参照しつつ説明する。蓄電素子には、一次電池、二次電池、キャパシタ等がある。本実施形態では、蓄電素子の一例として、充放電可能な二次電池について説明する。尚、本実施形態の各構成部材(各構成要素)の名称は、本実施形態におけるものであり、背景技術における各構成部材(各構成要素)の名称と異なる場合がある。   Hereinafter, an embodiment of a power storage device according to the present invention will be described with reference to FIGS. Examples of the power storage element include a primary battery, a secondary battery, and a capacitor. In the present embodiment, a chargeable / dischargeable secondary battery will be described as an example of a power storage element. In addition, the name of each component (each component) of this embodiment is a thing in this embodiment, and may differ from the name of each component (each component) in background art.

本実施形態の蓄電素子は、非水電解質二次電池である。より詳しくは、蓄電素子は、リチウムイオンの移動に伴って生じる電子移動を利用したリチウムイオン二次電池である。この種の蓄電素子は、電気エネルギーを供給する。蓄電素子は、単一又は複数で使用される。具体的に、蓄電素子は、要求される出力及び要求される電圧が小さいときには、単一で使用される。一方、蓄電素子は、要求される出力及び要求される電圧の少なくとも一方が大きいときには、他の蓄電素子と組み合わされて蓄電装置に用いられる。前記蓄電装置では、該蓄電装置に用いられる蓄電素子が電気エネルギーを供給する。   The electricity storage device of this embodiment is a nonaqueous electrolyte secondary battery. More specifically, the power storage element is a lithium ion secondary battery that utilizes electron transfer that occurs as lithium ions move. This type of power storage element supplies electrical energy. One or a plurality of power storage elements are used. Specifically, the storage element is used singly when the required output and the required voltage are small. On the other hand, when at least one of a required output and a required voltage is large, the power storage element is used in a power storage device in combination with another power storage element. In the power storage device, a power storage element used in the power storage device supplies electric energy.

蓄電素子は、図1〜図4に示すように、電極体2を備える。また、蓄電素子1は、電極体2を収容するケース3と、少なくとも一部が外部に露出した状態でケース3に取り付けられる外部端子4と、電極体2と外部端子4とを接続する集電体5と、を備える。また、蓄電素子1は、電極体2とケース3との間に配置される絶縁部材6等も備える。尚、各図においては、構造を示すために、電極体2を構成する電極等の厚さを誇張して表す等、電極体2の構成を模式的に表している。   As shown in FIGS. 1 to 4, the power storage element includes an electrode body 2. In addition, the power storage element 1 includes a case 3 that houses the electrode body 2, an external terminal 4 that is attached to the case 3 with at least a portion exposed to the outside, and a current collector that connects the electrode body 2 and the external terminal 4. And a body 5. The power storage device 1 also includes an insulating member 6 and the like disposed between the electrode body 2 and the case 3. In each figure, in order to show the structure, the configuration of the electrode body 2 is schematically shown, such as exaggerating the thickness of the electrodes that constitute the electrode body 2.

電極体2は、図5及び図6にも示すように、第一の電極21を含む長尺な第一の部材と、第一の電極21と極性が異なる第二の電極22を含む第二の部材26と、を有する。本実施形態の電極体2では、第一の電極21は、負極であり、第二の電極22は、正極である。また、第一の部材は、負極21のみを含み、第二の部材26は、正極22とセパレータ25とを含む。   As shown in FIGS. 5 and 6, the electrode body 2 includes a long first member including the first electrode 21 and a second electrode 22 including a second electrode 22 having a polarity different from that of the first electrode 21. Member 26. In the electrode body 2 of the present embodiment, the first electrode 21 is a negative electrode, and the second electrode 22 is a positive electrode. The first member includes only the negative electrode 21, and the second member 26 includes the positive electrode 22 and the separator 25.

負極21は、図7及び図8にも示すように、金属箔211と、金属箔211の両面のそれぞれに重ねられる負極活物質層212と、を有する。即ち、負極21は、一つの金属箔211と一対の負極活物質層212とを有する。本実施形態の金属箔211は、例えば、銅箔である。この負極21は、図9にも示すように、長尺な帯状であり、ターン部234で折り返されている少なくとも一つの折り返し部23を有する。具体的には、以下の通りである。   As illustrated in FIGS. 7 and 8, the negative electrode 21 includes a metal foil 211 and a negative electrode active material layer 212 that is stacked on both surfaces of the metal foil 211. That is, the negative electrode 21 has one metal foil 211 and a pair of negative electrode active material layers 212. The metal foil 211 of this embodiment is a copper foil, for example. As shown in FIG. 9, the negative electrode 21 has a long strip shape and has at least one folded portion 23 folded at the turn portion 234. Specifically, it is as follows.

負極活物質層212は、負極活物質と、バインダーと、を有する。   The negative electrode active material layer 212 includes a negative electrode active material and a binder.

負極活物質は、例えば、グラファイト、難黒鉛化炭素、及び易黒鉛化炭素などの炭素材、又は、ケイ素(Si)及び錫(Sn)などのリチウムイオンと合金化反応を生じる材料である。本実施形態の負極活物質は、グラファイトである。   The negative electrode active material is, for example, a carbon material such as graphite, non-graphitizable carbon, and graphitizable carbon, or a material that causes an alloying reaction with lithium ions such as silicon (Si) and tin (Sn). The negative electrode active material of this embodiment is graphite.

負極活物質層212に用いられるバインダーは、例えば、ポリフッ化ビニリデン(PVDF)、エチレンとビニルアルコールとの共重合体、ポリメタクリル酸メチル、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリビニルアルコール、ポリアクリル酸、ポリメタクリル酸、スチレンブタジエンゴム(SBR)である。本実施形態のバインダーは、ポリフッ化ビニリデンである。   Examples of the binder used for the negative electrode active material layer 212 include polyvinylidene fluoride (PVDF), a copolymer of ethylene and vinyl alcohol, polymethyl methacrylate, polyethylene oxide, polypropylene oxide, polyvinyl alcohol, polyacrylic acid, and polymethacrylic acid. Acid, styrene butadiene rubber (SBR). The binder of this embodiment is polyvinylidene fluoride.

負極活物質層212は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の負極活物質層212は、導電助剤を有していない。   The negative electrode active material layer 212 may further include a conductive additive such as ketjen black (registered trademark), acetylene black, or graphite. The negative electrode active material layer 212 of this embodiment does not have a conductive additive.

折り返し部23は、図10に示すように、谷折り側の面である第一の面231及び山折り側の面(即ち、第一の面231と反対側の面)である第二の面232をそれぞれ有し且つ第一の面231同士を対向させた一対の平坦部233と、一対の平坦部233の端部同士を接続するターン部234と、を含む。本実施形態の負極21は、ターン部234を反対に向けた状態で隣り合う折り返し部23同士がその一部(平坦部233)を共通させた状態で連続するつづら折り状態(蛇腹状)である。   As shown in FIG. 10, the folded portion 23 includes a first surface 231 that is a valley-folded surface and a second surface that is a mountain-folded surface (that is, a surface opposite to the first surface 231). Each of the flat surfaces 233 includes a pair of flat portions 233 and the first surfaces 231 face each other, and a turn portion 234 that connects the ends of the pair of flat portions 233. The negative electrode 21 of the present embodiment is in a zigzag folded state (bellows shape) in which the turn-up portions 234 face each other and the adjacent folded portions 23 are continuous with a part (flat portion 233) in common.

換言すると、負極21は、所定方向(図9の左右方向)の一方側が開放されるように折り返された折り返し部(第一の折り返し部)23Aと、前記所定方向の他方側が開放されるように折り返された折り返し部(第二の折り返し部)23Bとが交互に配置されたつづら折り状態である。そして、一つの折り返し部(第一折り返し部)23Aに着目したときに、第一折り返し部23Aと、その隣(図9における後ろ側)の折り返し部(第二折り返し部)23Bとでは、第一折り返し部23Aのターン部234Aと、第二折り返し部23Bのターン部234Bとの間の平坦部233A、233Bを共通させている。   In other words, the negative electrode 21 has a folded portion (first folded portion) 23A that is folded back so that one side in a predetermined direction (left-right direction in FIG. 9) is opened, and the other side in the predetermined direction is opened. In this state, the folded portions (second folded portions) 23B that are folded are alternately folded. When attention is paid to one folded portion (first folded portion) 23A, the first folded portion 23A and the adjacent folded portion (second folded portion in FIG. 9) (second folded portion) 23B Flat portions 233A and 233B between the turn portion 234A of the folded portion 23A and the turn portion 234B of the second folded portion 23B are made common.

この場合、図9に示すように、第一折り返し部23Aに着目したときの平坦部233Aでは、第一折り返し部23Aにおける谷折り面側の面が第一の面231Aであり、その反対側の面(山折り側の面)が第二の面232Aである。一方、第二折り返し部23Bに着目したときの平坦部233B(第一折り返し部23Aの平坦部233Aと共通させた平坦部233B)では、第二折り返し部23Bにおける谷折り面側の面が第一の面231Bであり、その反対側の面(山折り側の面)が第二の面232Bである。即ち、第一折り返し部23Aと第二折り返し部23Bとで共通させている平坦部233A、233Bでは、第一折り返し部23Aに着目したときと、第二折り返し部23Bに着目したときとで、第一の面(折り返し部23において向かい合う面)231と第二の面(折り返し部において反対方向を向く面)232とが逆になる。   In this case, as shown in FIG. 9, in the flat portion 233A when paying attention to the first folded portion 23A, the surface on the valley folded surface side in the first folded portion 23A is the first surface 231A, and the opposite side The surface (surface on the mountain fold side) is the second surface 232A. On the other hand, in the flat portion 233B (flat portion 233B shared with the flat portion 233A of the first folded portion 23A) when the second folded portion 23B is focused, the surface on the valley folded surface side in the second folded portion 23B is the first. The surface 231 </ b> B on the opposite side (the surface on the mountain fold side) is the second surface 232 </ b> B. That is, in the flat portions 233A and 233B shared by the first folded portion 23A and the second folded portion 23B, the first folded portion 23A and the second folded portion 23B are focused on when the first folded portion 23A is focused on. One surface (surface facing the folded portion 23) 231 and the second surface (surface facing the opposite direction in the folded portion) 232 are reversed.

具体的には、図9に示すように、負極21では、帯状の負極21が長尺方向において所定間隔で交互に折り返されることによって、平坦部233とターン部234とが交互に形成されている。即ち、長尺な負極21が、図7に示す長手方向に所定間隔で交互に設定された山折り線21Aの位置と谷折り線21Bの位置とで山折りと谷折りとが交互に繰り返されることによって、つづら折り状態となる。これにより、負極21は、複数の平坦部233と複数のターン部234とを有し、複数の平坦部233のそれぞれは、平行若しくは略平行に並び、複数のターン部234のそれぞれは、隣り合う平坦部233の前記長尺方向の一端側の端部同士と他端側の端部同士とを交互に接続している。   Specifically, as shown in FIG. 9, in the negative electrode 21, the flat portions 233 and the turn portions 234 are alternately formed by alternately folding the strip-shaped negative electrodes 21 at predetermined intervals in the longitudinal direction. . That is, in the long negative electrode 21, the mountain fold and the valley fold are alternately repeated at the position of the mountain fold line 21A and the position of the valley fold line 21B alternately set at predetermined intervals in the longitudinal direction shown in FIG. As a result, the spelling is folded. Accordingly, the negative electrode 21 has a plurality of flat portions 233 and a plurality of turn portions 234, each of the plurality of flat portions 233 being arranged in parallel or substantially in parallel, and each of the plurality of turn portions 234 being adjacent to each other. The ends of the flat portion 233 on the one end side in the longitudinal direction are alternately connected to the ends on the other end side.

また、この帯状の負極21では、図7及び図8に示すように、山折り線21Aを含む領域(折り返されたときにターン部234となる領域)210と谷折り線21Bを含む領域(折り返されたときにターン部となる領域)210とにおいて、折り返されたときに内側となる面側の負極活物質層212には、負極21の短手方向に延びる溝が形成されている。即ち、折り返し部23のターン部234は、折り返し部23の内側の面の一部(領域210)が他の部位より外側の面に向けて凹んでいる薄肉の部位を有する。本実施形態の負極21では、ターン部234の全体が薄肉の部位である。   Moreover, in this strip-shaped negative electrode 21, as shown in FIG.7 and FIG.8, the area | region (area | region used as the turn part 234 when folded) 210 and the area | region (folded back) containing the mountain fold line 21A are included. In the negative electrode active material layer 212 on the surface side that becomes the inner side when folded, a groove extending in the short direction of the negative electrode 21 is formed. In other words, the turn portion 234 of the folded portion 23 has a thin portion in which a part of the inner surface (region 210) of the folded portion 23 is recessed toward the outer surface from other portions. In the negative electrode 21 of the present embodiment, the entire turn portion 234 is a thin portion.

また、本実施形態の負極21では、領域210において、負極21の両面(即ち、金属箔211の両面に重ねられた負極活物質層212のそれぞれ)に、前記溝が形成されている(図7及び図8参照)。この溝は、金属箔211に負極活物質が塗布されて一定の厚さの負極活物質層212が形成された後、負極活物質層212の領域210を厚さ方向に圧縮することによって形成されている。即ち、負極活物質層212において、ターン部(薄肉の部位)234に相当する部位(即ち、領域210)の密度は、他の部位(平坦部233に相当する部位)の密度より高くなっている。そして、負極21の領域210に設けられた溝に第二の部材26の端縁部を当接させた状態で負極21を該溝の位置で折り返すことで、折り返し部23が形成される。このとき、第二の部材26のターン部234側の端縁は、図11に示すように、ターン部234の内側に位置する。そして、ターン部234と第二の部材26の端部との間には、隙間γが形成される。   In the negative electrode 21 of the present embodiment, in the region 210, the groove is formed on both surfaces of the negative electrode 21 (that is, each of the negative electrode active material layers 212 stacked on both surfaces of the metal foil 211) (FIG. 7). And FIG. 8). This groove is formed by compressing the region 210 of the negative electrode active material layer 212 in the thickness direction after the negative electrode active material is applied to the metal foil 211 to form the negative electrode active material layer 212 having a certain thickness. ing. That is, in the negative electrode active material layer 212, the density of the portion (that is, the region 210) corresponding to the turn portion (thin portion) 234 is higher than the density of the other portion (the portion corresponding to the flat portion 233). . Then, the folded portion 23 is formed by folding the negative electrode 21 at the position of the groove with the edge of the second member 26 in contact with the groove provided in the region 210 of the negative electrode 21. At this time, the edge of the second member 26 on the turn part 234 side is located inside the turn part 234 as shown in FIG. A gap γ is formed between the turn part 234 and the end of the second member 26.

以下では、平坦部233が並ぶ方向を直交座標系におけるX軸方向とし、平坦部233に対してターン部234が配置されている方向(図9における左右方向)を直交座標系におけるY軸方向とし、ターン部234の旋回軸Sの延びる方向(図9参照)を直交座標系のZ軸方向とする。   In the following, the direction in which the flat portions 233 are arranged is the X-axis direction in the orthogonal coordinate system, and the direction in which the turn portions 234 are arranged with respect to the flat portion 233 (the left-right direction in FIG. 9) is the Y-axis direction in the orthogonal coordinate system. The direction in which the turning axis S of the turn portion 234 extends (see FIG. 9) is taken as the Z-axis direction of the orthogonal coordinate system.

複数の平坦部233のそれぞれは、図7、図9、及び図10に示すように、矩形状の平坦部本体2331と、平坦部本体2331の矩形状の輪郭を構成する一辺から突出する(本実施形態の例では、Z軸方向の端縁からZ軸方向に延びる)負極タブ2332と、を有する。本実施形態の平坦部本体2331は、Y軸方向に長い矩形状である。平坦部本体2331では、金属箔211の両面が負極タブ2332側の端部を残して負極活物質層212に覆われ、負極タブ2332では、金属箔211が露出している。即ち、負極タブ2332は、負極活物質層212を有しない。   As shown in FIGS. 7, 9, and 10, each of the plurality of flat portions 233 protrudes from a rectangular flat portion main body 2331 and one side that forms a rectangular outline of the flat portion main body 2331 (this book The example embodiment includes a negative electrode tab 2332 (extending in the Z-axis direction from the edge in the Z-axis direction). The flat portion main body 2331 of the present embodiment has a rectangular shape that is long in the Y-axis direction. In the flat portion main body 2331, both surfaces of the metal foil 211 are covered with the negative electrode active material layer 212 except for the end on the negative electrode tab 2332 side, and the metal foil 211 is exposed on the negative electrode tab 2332. That is, the negative electrode tab 2332 does not have the negative electrode active material layer 212.

つづら折り状態の負極21において、各平坦部233の負極タブ2332は、X軸方向から見て重なっている。本実施形態の負極21では、各負極タブ2332は、平坦部本体2331のZ軸方向の一方(図9における上側)の端縁におけるY軸方向の一方(図9における右側)の端部からZ軸方向に延びている。この複数の平坦部本体2331のそれぞれから延びている負極タブ2332は、束ねられ、外部端子4と集電体5を介して接続されている(図3参照)。本実施形態の負極タブ2332の束は、溶接によって集電体5に接続されている。   In the zigzag folded negative electrode 21, the negative electrode tabs 2332 of the flat portions 233 overlap each other when viewed from the X-axis direction. In the negative electrode 21 of the present embodiment, each negative electrode tab 2332 is formed from one end (right side in FIG. 9) in the Y-axis direction at one end (upper side in FIG. 9) of the flat portion main body 2331 in the Z-axis direction. It extends in the axial direction. The negative electrode tabs 2332 extending from each of the plurality of flat portion main bodies 2331 are bundled and connected via the external terminals 4 and the current collector 5 (see FIG. 3). The bundle of negative electrode tabs 2332 of this embodiment is connected to the current collector 5 by welding.

複数のターン部234のそれぞれは、つづら折り状態の負極21において、Z軸方向に延びる軸を旋回軸S(図9参照)として帯状の負極21が旋回(方向転換)している(換言すると、旋回軸S周りに湾曲している)部位である。ターン部234においても、金属箔211の両面が負極活物質層212に覆われている。即ち、ターン部234において、金属箔211のターン部234の内側(第二の部材26側)を向いた面に、負極活物質層212が重ねられている。また、金属箔211のターン部234の外側を向いた面にも、負極活物質層212が重ねられている。   In each of the plurality of turn portions 234, the belt-shaped negative electrode 21 is swung (turning direction) in the zigzag negative electrode 21 with the axis extending in the Z-axis direction as a swivel axis S (see FIG. 9) (in other words, swiveling) It is a part that is curved around the axis S). Also in the turn part 234, both surfaces of the metal foil 211 are covered with the negative electrode active material layer 212. That is, in the turn part 234, the negative electrode active material layer 212 is overlaid on the surface of the metal foil 211 facing the inside of the turn part 234 (second member 26 side). Further, the negative electrode active material layer 212 is also superimposed on the surface of the metal foil 211 facing the outside of the turn part 234.

このターン部234は、平坦部233より薄い(厚み寸法が小さい)。即ち、ターン部234は、負極21(折り返し部23)における薄肉の部位であり、平坦部233は、負極21(折り返し部23)における厚肉の部位である(図8参照)。   This turn part 234 is thinner than the flat part 233 (thickness dimension is small). That is, the turn part 234 is a thin part in the negative electrode 21 (folded part 23), and the flat part 233 is a thick part in the negative electrode 21 (folded part 23) (see FIG. 8).

正極22は、図5、図6、図12、及び図13にも示すように、金属箔221と、金属箔221の両面のそれぞれに重ねられる正極活物質層222と、を有する。即ち、正極22は、一つの金属箔221と一対の正極活物質層222とを有する。本実施形態の金属箔221は、例えば、アルミニウム箔である。この正極22は、つづら折り状態の負極21において、X軸方向に隣り合う平坦部233間のそれぞれに配置されている。このため、本実施形態の電極体2は、複数の正極22を有している。   As illustrated in FIGS. 5, 6, 12, and 13, the positive electrode 22 includes a metal foil 221 and a positive electrode active material layer 222 that is stacked on both surfaces of the metal foil 221. That is, the positive electrode 22 includes one metal foil 221 and a pair of positive electrode active material layers 222. The metal foil 221 of this embodiment is, for example, an aluminum foil. The positive electrode 22 is disposed between the flat portions 233 adjacent to each other in the X-axis direction in the zigzag negative electrode 21. For this reason, the electrode body 2 of this embodiment has a plurality of positive electrodes 22.

正極活物質層222は、正極活物質と、バインダーと、を有する。   The positive electrode active material layer 222 includes a positive electrode active material and a binder.

本実施形態の正極活物質は、例えば、リチウム金属酸化物である。具体的に、正極活物質は、例えば、LiaMebOc(Meは、1又は2以上の遷移金属を表す)によって表される複合酸化物(LiaCoyO、LiaNixO、LiaMnzO、LiaNixCoyMnzO等)、LiaMeb(XOc)d(Meは、1又は2以上の遷移金属を表し、Xは例えばP、Si、B、Vを表す)によって表されるポリアニオン化合物(LiaFebPO、LiaMnbPO、LiaMnbSiO、LiaCobPOF等)である。本実施形態の正極活物質は、LiNi1/3Co1/3Mn1/3である。 The positive electrode active material of this embodiment is a lithium metal oxide, for example. Specifically, the positive electrode active material is, for example, a composite oxide represented by LiaMebOc (Me represents one or more transition metals) (LiaCoyO 2 , LiaNixO 2 , LiaMnzO 4 , LiaNixCoyMnzO 2 etc.), LiaMeb ( XOc) d (Me represents one or more transition metals, and X represents, for example, P, Si, B, V) (LiaFebPO 4 , LiaMnbPO 4 , LiaMnbSiO 4 , LiaCobPO 4 F, etc.) ). The positive electrode active material of this embodiment is LiNi 1/3 Co 1/3 Mn 1/3 O 2 .

正極活物質層222に用いられるバインダーは、負極活物質層212に用いられたバインダーと同様のものである。本実施形態のバインダーは、ポリフッ化ビニリデンである。   The binder used for the positive electrode active material layer 222 is the same as the binder used for the negative electrode active material layer 212. The binder of this embodiment is polyvinylidene fluoride.

正極活物質層222は、ケッチェンブラック(登録商標)、アセチレンブラック、黒鉛等の導電助剤をさらに有してもよい。本実施形態の正極活物質層222は、導電助剤としてアセチレンブラックを有する。   The positive electrode active material layer 222 may further include a conductive additive such as ketjen black (registered trademark), acetylene black, or graphite. The positive electrode active material layer 222 of this embodiment has acetylene black as a conductive additive.

具体的に、複数の正極22のそれぞれは、正極本体(電極本体)223と、正極本体223の周縁から延びる正極タブ(延出片)224と、を有する。詳しくは、複数の正極22のそれぞれは、矩形状の正極本体(電極本体)223と、正極本体223の矩形状の輪郭を構成する一辺から突出する(本実施形態の例では、Z軸方向の端縁からZ軸方向に延びる)正極タブ224と、を有する。本実施形態の正極本体223は、Y軸方向に長い矩形状である。正極本体223では、金属箔221の両面の全域が正極活物質層222に覆われ、正極タブ224では、金属箔221が露出している。即ち、正極タブ224は、正極活物質層222を有しない。   Specifically, each of the plurality of positive electrodes 22 includes a positive electrode main body (electrode main body) 223 and a positive electrode tab (extending piece) 224 extending from the periphery of the positive electrode main body 223. Specifically, each of the plurality of positive electrodes 22 protrudes from a rectangular positive electrode main body (electrode main body) 223 and one side constituting the rectangular outline of the positive electrode main body 223 (in the example of the present embodiment, in the Z-axis direction). Positive electrode tab 224 (extending in the Z-axis direction from the edge). The positive electrode main body 223 of the present embodiment has a rectangular shape that is long in the Y-axis direction. In the positive electrode body 223, the entire area of both surfaces of the metal foil 221 is covered with the positive electrode active material layer 222, and the metal foil 221 is exposed in the positive electrode tab 224. That is, the positive electrode tab 224 does not have the positive electrode active material layer 222.

正極本体223における正極活物質層222は、X軸方向に対向する(詳しくは、セパレータ25を介して対向する)平坦部233の負極活物質層212よりZ軸方向において小さい。   The positive electrode active material layer 222 in the positive electrode main body 223 is smaller in the Z-axis direction than the negative electrode active material layer 212 of the flat portion 233 facing in the X-axis direction (specifically, facing through the separator 25).

電極体2において、各正極22の正極タブ224は、X軸方向から見て重なっている。本実施形態の正極22では、各正極タブ224は、正極本体223のZ軸方向の一方(図5における上側)の端縁におけるY軸方向の他方(平坦部本体2331に対する負極タブ2332の位置とは反対側:図5における左側)の端部からZ軸方向に延びている。この複数の正極本体223のそれぞれから延びている正極タブ224は、束ねられ、外部端子4と集電体5を介して接続されている。本実施形態の正極タブ224の束は、負極タブ2332の束と同様に、溶接によって集電体5と接続されている(図3参照)。   In the electrode body 2, the positive electrode tab 224 of each positive electrode 22 overlaps when viewed from the X-axis direction. In the positive electrode 22 of the present embodiment, each positive electrode tab 224 includes the position of the negative electrode tab 2332 on the other end in the Y-axis direction (the upper side in FIG. 5) of the positive electrode body 223 in the Z-axis direction (upper side in FIG. 5). Is extending in the Z-axis direction from the end on the opposite side (left side in FIG. 5). The positive electrode tabs 224 extending from each of the plurality of positive electrode bodies 223 are bundled and connected via the external terminals 4 and the current collector 5. The bundle of the positive electrode tabs 224 of the present embodiment is connected to the current collector 5 by welding similarly to the bundle of the negative electrode tabs 2332 (see FIG. 3).

セパレータ25は、絶縁性を有する部材であり、負極21と正極22との間に配置される。これにより、電極体2において、負極21と正極22とが互いに絶縁される。また、セパレータ25は、ケース3内において、電解液を保持する。これにより、蓄電素子1の充放電時において、セパレータ25を挟んで対向する負極21と正極22との間を、リチウムイオンが移動可能となる。   The separator 25 is an insulating member and is disposed between the negative electrode 21 and the positive electrode 22. Thereby, in the electrode body 2, the negative electrode 21 and the positive electrode 22 are insulated from each other. The separator 25 holds the electrolytic solution in the case 3. Thereby, at the time of charging / discharging of the electrical storage element 1, a lithium ion becomes movable between the negative electrode 21 and the positive electrode 22 which oppose on both sides of the separator 25.

このセパレータ25は、帯状であり、例えば、ポリエチレン、ポリプロピレン、セルロース、ポリアミドなどの多孔質膜によって構成される。本実施形態のセパレータ25は、SiO粒子、Al粒子、ベーマイト(アルミナ水和物)等の無機粒子を含んだ無機層を、多孔質膜によって形成された基材の上に設けることで形成されている。本実施形態のセパレータ25の基材は、例えば、ポリエチレンによって形成される。 The separator 25 has a band shape, and is constituted by a porous film such as polyethylene, polypropylene, cellulose, polyamide, and the like. In the separator 25 of the present embodiment, an inorganic layer containing inorganic particles such as SiO 2 particles, Al 2 O 3 particles, boehmite (alumina hydrate) is provided on a substrate formed of a porous film. It is formed with. The base material of the separator 25 of this embodiment is formed of, for example, polyethylene.

本実施形態のセパレータ25は、正極22を覆っている。具体的に、セパレータ25は、正極本体223全体をX軸方向に挟み込むように覆っている。このセパレータ25は、図5、図12及び図13に示すように、矩形状のものを、間に正極22を挟み込むようにして長尺方向の中央部で折り返し、ターン部を除いた三辺(各縁部)を接合(接着、溶着等)されている。このとき、正極タブ224は、折り返されたセパレータ25から突出し(図5参照)、前記接合は、正極タブ224を避けて行われている。   The separator 25 of the present embodiment covers the positive electrode 22. Specifically, the separator 25 covers the entire positive electrode main body 223 so as to be sandwiched in the X-axis direction. As shown in FIGS. 5, 12, and 13, the separator 25 is a rectangular shape that is folded back at the center in the longitudinal direction so that the positive electrode 22 is sandwiched between the three sides (excluding the turn portion) ( Each edge) is joined (adhered, welded, etc.). At this time, the positive electrode tab 224 protrudes from the folded separator 25 (see FIG. 5), and the joining is performed avoiding the positive electrode tab 224.

この正極22を挟み込んだ状態のセパレータ25は、X軸方向から見て矩形状であり、Z軸方向の寸法は、負極21の平坦部233の寸法より大きく、Y軸方向の寸法も、平坦部233の寸法より大きい。上述のように、本実施形態の電極体2では、正極22と、この正極22を挟み込んだ状態のセパレータ25とが、第二の部材26を構成している。   The separator 25 in a state where the positive electrode 22 is sandwiched has a rectangular shape when viewed from the X-axis direction, the dimension in the Z-axis direction is larger than the dimension of the flat portion 233 of the negative electrode 21, and the dimension in the Y-axis direction is also a flat portion. It is larger than the size of 233. As described above, in the electrode body 2 of this embodiment, the positive electrode 22 and the separator 25 sandwiching the positive electrode 22 constitute the second member 26.

複数の第二の部材26のそれぞれは、上述のように、Y軸方向の一方の端縁(ターン部234側の端縁)がターン部(薄肉の部位)234の内側(Y軸方向の奥)に位置するように、各折り返し部23の間に配置されている。換言すると、各第二の部材26のターン部234側の端縁は、X軸方向(第二の部材26が折り返し部23に挟まれている方向)から見て、薄肉の部位(本実施形態の例では、ターン部234)と重なる位置にある。   As described above, each of the plurality of second members 26 has one end edge in the Y-axis direction (end edge on the turn part 234 side) inside the turn part (thin portion) 234 (back in the Y-axis direction). ) Are disposed between the folded portions 23. In other words, the edge on the turn portion 234 side of each second member 26 is a thin portion (this embodiment) when viewed from the X-axis direction (the direction in which the second member 26 is sandwiched between the folded portions 23). In the example shown in FIG.

図1〜図4に戻り、ケース3は、開口を有するケース本体31と、ケース本体31の開口を塞ぐ(閉じる)蓋板32と、を有する。このケース3では、ケース本体31と蓋板32とによって内部空間が画定される。ケース3は、この内部空間に、電極体2と共に電解液を収容する。   Returning to FIGS. 1 to 4, the case 3 includes a case main body 31 having an opening and a lid plate 32 that closes (closes) the opening of the case main body 31. In the case 3, an internal space is defined by the case main body 31 and the lid plate 32. The case 3 accommodates the electrolyte together with the electrode body 2 in this internal space.

この電解液は、非水溶液系電解液である。この電解液は、有機溶媒に電解質塩を溶解させることによって得られる。有機溶媒は、例えば、プロピレンカーボネート及びエチレンカーボネートなどの環状炭酸エステル類、ジメチルカーボネート、ジエチルカーボネート、及びエチルメチルカーボネートなどの鎖状カーボネート類である。電解質塩は、LiClO、LiBF、及びLiPF等である。本実施形態の電解液は、エチレンカーボネート、ジメチルカーボネート、及びエチルメチルカーボネートを、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:2:5の割合で調整した混合溶媒に、1mol/LのLiPFを溶解させたものである。 This electrolytic solution is a non-aqueous solution electrolytic solution. This electrolytic solution is obtained by dissolving an electrolyte salt in an organic solvent. Examples of the organic solvent include cyclic carbonates such as propylene carbonate and ethylene carbonate, and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate. The electrolyte salt is LiClO 4 , LiBF 4 , LiPF 6 or the like. The electrolytic solution of the present embodiment was prepared by adding 1 mol / L LiPF 6 to a mixed solvent prepared by adjusting ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate at a ratio of ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate = 3: 2: 5. Is dissolved.

ケース3は、上記の電解液に耐性を有する金属によって形成される。本実施形態のケース3は、例えば、アルミニウム、又は、アルミニウム合金等のアルミニウム系金属材料によって形成される。   Case 3 is formed of a metal having resistance to the above electrolyte. The case 3 of the present embodiment is formed of an aluminum metal material such as aluminum or an aluminum alloy, for example.

ケース本体31は、板状の閉塞部311と、閉塞部311の周縁に接続される筒状の胴部(周壁)312と、を備える。   The case main body 31 includes a plate-like closing part 311 and a cylindrical body part (peripheral wall) 312 connected to the periphery of the closing part 311.

閉塞部311は、ケース本体31が開口を上に向けた姿勢で配置されたときにケース本体31の下端に位置する(即ち、前記開口が上を向いたときのケース本体31の底壁部となる)部位である。本実施形態の閉塞部311は、矩形状である。   The closing portion 311 is positioned at the lower end of the case body 31 when the case body 31 is arranged with the opening facing upward (ie, the bottom wall portion of the case body 31 when the opening faces upward). Part). The obstruction | occlusion part 311 of this embodiment is rectangular shape.

胴部312は、角筒形状、より詳しくは、偏平な角筒形状を有する。胴部312は、閉塞部311の周縁における長辺から延びる一対の長壁部313と、閉塞部311の周縁における短辺から延びる一対の短壁部314とを有する。短壁部314が一対の長壁部313の対応(詳しくは、X軸方向に対向)する端部同士をそれぞれ接続することによって、角筒状の胴部312が形成される。   The body portion 312 has a rectangular tube shape, more specifically, a flat rectangular tube shape. The body portion 312 has a pair of long wall portions 313 extending from the long side at the periphery of the closing portion 311 and a pair of short wall portions 314 extending from the short side at the periphery of the closing portion 311. By connecting the end portions of the short wall portion 314 corresponding to the pair of long wall portions 313 (specifically, facing each other in the X-axis direction), a rectangular tube-shaped body portion 312 is formed.

以上のように、ケース本体31は、開口方向(Z軸方向)における一方の端部が塞がれた角筒形状(即ち、有底角筒形状)を有する。   As described above, the case body 31 has a rectangular tube shape (that is, a bottomed rectangular tube shape) in which one end portion in the opening direction (Z-axis direction) is closed.

蓋板32は、ケース本体31の開口を塞ぐ部材である。この蓋板32の輪郭形状は、ケース本体31の開口周縁部310(図2参照)に対応した形状である。即ち、蓋板32は、Y軸方向に長い矩形状の板材である。   The lid plate 32 is a member that closes the opening of the case body 31. The outline shape of the cover plate 32 is a shape corresponding to the opening peripheral edge 310 (see FIG. 2) of the case main body 31. That is, the lid plate 32 is a rectangular plate material that is long in the Y-axis direction.

以上のように構成されるケース3には、負極21の各平坦部233が長壁部313と平行(略平行)となる(即ち、各ターン部234が短壁部314と対向する)ように、絶縁部材6に覆われた状態の電極体2が収容される(図2〜図4参照)。このとき、ケース3は、電極体2の全体をX軸方向に圧迫(押圧)した状態で該電極体2を収容する。   In the case 3 configured as described above, each flat portion 233 of the negative electrode 21 is parallel (substantially parallel) to the long wall portion 313 (that is, each turn portion 234 faces the short wall portion 314). The electrode body 2 covered with the insulating member 6 is accommodated (see FIGS. 2 to 4). At this time, the case 3 accommodates the electrode body 2 in a state where the entire electrode body 2 is pressed (pressed) in the X-axis direction.

つづら折り状態の負極21の各折り返し部23では、ターン部234及びその近傍のX軸方向の厚さ寸法が、一対の平坦部233のX軸方向の厚さ寸法より若干大きくなっている。このため、電極体2がケース3に収容されることで該ケース3(一対の長壁部313)からX軸方向に圧迫(押圧)されると、各折り返し部23の間において、第二の部材26のY軸方向の両端部(即ち、各折り返し部23のターン部234に近い部位、及びターン部234がX軸方向に隣り合う部位:図14の領域α参照)がX軸方向に圧迫される。即ち、電極体2は、X軸方向から見て、負極21の長尺方向におけるターン部234の端部位置(詳しくは、負極21の長尺方向において(即ち、長尺な負極21に沿った方向において)折り返し部23の厚さ寸法が小さくなり始める位置)と重なる領域αがX軸方向の両側から押圧された状態でケース3に収容される。   In each folded portion 23 of the zigzag folded negative electrode 21, the thickness dimension in the X-axis direction of the turn part 234 and the vicinity thereof is slightly larger than the thickness dimension of the pair of flat portions 233 in the X-axis direction. For this reason, when the electrode body 2 is accommodated in the case 3 and pressed (pressed) in the X-axis direction from the case 3 (the pair of long wall portions 313), the second member is interposed between the folded portions 23. 26, both ends in the Y-axis direction (that is, a portion close to the turn portion 234 of each folded portion 23 and a portion where the turn portion 234 is adjacent in the X-axis direction: see region α in FIG. 14) are pressed in the X-axis direction. The That is, when viewed from the X-axis direction, the electrode body 2 has an end position of the turn portion 234 in the longitudinal direction of the negative electrode 21 (specifically, in the longitudinal direction of the negative electrode 21 (that is, along the long negative electrode 21). In the direction, the region α overlapping with the position where the thickness dimension of the folded portion 23 starts to decrease is accommodated in the case 3 in a state of being pressed from both sides in the X-axis direction.

外部端子4は、他の蓄電素子の外部端子又は外部機器等と電気的に接続される部位である。このため、外部端子4は、導電性を有する部材によって形成される。また、外部端子4は、溶接性の高い金属材料によって形成される。例えば、正極の外部端子4は、アルミニウム又はアルミニウム合金等のアルミニウム系金属材料によって形成され、負極の外部端子4は、銅又は銅合金等の銅系金属材料によって形成される。本実施形態の外部端子4は、少なくとも一部がケース3の外部に露出した状態で蓋板32に取り付けられる。   The external terminal 4 is a part that is electrically connected to an external terminal of another power storage element or an external device. For this reason, the external terminal 4 is formed of a conductive member. The external terminal 4 is formed of a metal material having high weldability. For example, the positive external terminal 4 is formed of an aluminum-based metal material such as aluminum or an aluminum alloy, and the negative external terminal 4 is formed of a copper-based metal material such as copper or a copper alloy. The external terminal 4 of the present embodiment is attached to the lid plate 32 with at least a part thereof exposed to the outside of the case 3.

絶縁部材6は、絶縁性を有する樹脂によって形成されている。具体的に、絶縁部材6は、図2〜図4に示すように、所定の形状に裁断された絶縁性を有するシート状の部材を折り曲げることによって袋状に形成されている。本実施形態の絶縁部材6は、ケース3に沿った形の袋状である。   The insulating member 6 is made of an insulating resin. Specifically, as shown in FIGS. 2 to 4, the insulating member 6 is formed in a bag shape by bending an insulating sheet-like member cut into a predetermined shape. The insulating member 6 of the present embodiment has a bag shape along the case 3.

以上の蓄電素子1によれば、負極21(第一の部材)において、折り返し部23のターン部234が薄肉の部位を有することで、ターン部234において生じる応力が抑えられる。しかも、ターン部(薄肉の部位)234の内側の負極活物質層212が平坦部233の負極活物質層212より薄いことで、ターン部234において負極21と第二の部材26との間に隙間γが形成される(図11参照)。これにより、充放電時に生じたガスが該隙間γを通って外部に抜け易く、且つ、電解液が該隙間γを通ってターン部234の内側に位置する第二の部材26の部位や、ターン部234の負極活物質層212に供給され易くなる。   According to the power storage device 1 described above, in the negative electrode 21 (first member), the turn portion 234 of the folded portion 23 has a thin portion, so that stress generated in the turn portion 234 is suppressed. In addition, since the negative electrode active material layer 212 inside the turn portion (thin portion) 234 is thinner than the negative electrode active material layer 212 of the flat portion 233, there is a gap between the negative electrode 21 and the second member 26 in the turn portion 234. γ is formed (see FIG. 11). Thereby, the gas generated at the time of charging / discharging easily escapes to the outside through the gap γ, and the portion of the second member 26 located inside the turn portion 234 through the gap γ or the turn It becomes easy to be supplied to the negative electrode active material layer 212 of the portion 234.

また、本実施形態の蓄電素子1では、薄肉の部位(ターン部234)と厚肉の部位(他の部位(本実施形態の例では、平坦部233))とが形成された折り返し部23の間において、X軸方向から見て第二の部材26の端縁がターン部(薄肉の部位)234と重なる位置にあることで(例えば、図11参照)、第二の部材26において、厚肉の部位(平坦部233)に圧迫(挟持)されている部位の端部位置、即ち、折り返し部23の厚肉の部位(平坦部233)と薄肉の部位(ターン部234)との境界位置に僅かな段差が生じる(図11の符号β参照)。これにより、折り返し部23の間での第二の部材26の位置ずれが効果的に抑えられる。尚、図11の部分拡大図は、境界位置の段差を強調して模式的に表している。   Further, in the electricity storage device 1 of the present embodiment, the folded portion 23 in which the thin portion (turn portion 234) and the thick portion (other portions (flat portion 233 in the example of the present embodiment)) are formed. Since the edge of the second member 26 overlaps with the turn portion (thin portion) 234 when viewed from the X-axis direction (see, for example, FIG. 11), the second member 26 has a thick wall. At the end position of the part pressed (clamped) by the part (flat part 233), that is, at the boundary position between the thick part (flat part 233) and the thin part (turn part 234) of the folded part 23 A slight level difference occurs (see symbol β in FIG. 11). Thereby, the position shift of the 2nd member 26 between the folding | returning parts 23 is suppressed effectively. Note that the partial enlarged view of FIG. 11 schematically illustrates the step at the boundary position with emphasis.

この場合、X軸方向から見て、第二の部材26のうち薄肉の部位(本実施形態の例ではターン部234)と重なる位置にある部位の厚みT1は、第二の部材26のうち厚肉の部位(本実施形態の例では平坦部233)に圧迫されている部位の厚みT2よりも大きいとよい。これにより、折り返し部23の間での第二の部材26の位置ずれがより効果的に抑えられる。   In this case, when viewed from the X-axis direction, the thickness T1 of the portion that overlaps the thin portion of the second member 26 (the turn portion 234 in the example of the present embodiment) is the thickness of the second member 26. The thickness may be larger than the thickness T2 of the portion pressed against the meat portion (flat portion 233 in the example of the present embodiment). Thereby, the position shift of the 2nd member 26 between the folding | returning parts 23 is suppressed more effectively.

また、本実施形態の蓄電素子1では、電極体2は、X軸方向(第二の部材26の法線方向)から見て、負極21の長尺方向におけるターン部234の端部位置(即ち、本実施形態の例では、薄肉の部位の端部位置)と重なる領域α(図14参照)がX軸方向の両側から押圧された状態でケース3に収容されている。このため、第二の部材26において、折り返し部23の厚肉の部位(平坦部233)によって圧迫(挟持)されている部位の端部位置により大きな力が加わり、その結果、折り返し部23の間での第二の部材26の位置ずれがより確実に抑えられる。   Further, in the power storage device 1 of the present embodiment, the electrode body 2 has the end position (that is, the end portion of the turn portion 234 in the longitudinal direction of the negative electrode 21 as viewed from the X-axis direction (the normal direction of the second member 26)) In the example of the present embodiment, the region α (see FIG. 14) that overlaps the end position of the thin portion is accommodated in the case 3 while being pressed from both sides in the X-axis direction. For this reason, in the second member 26, a large force is applied to the end position of the portion pressed (clamped) by the thick portion (flat portion 233) of the folded portion 23, and as a result, the gap between the folded portions 23 is obtained. Thus, the positional deviation of the second member 26 is more reliably suppressed.

ターン部234において第二の部材26に対向するように金属箔211が露出していると、金属箔211において電流集中に伴うデンドライトの発生及びその成長等が生じ易い。そこで、本実施形態の蓄電素子1では、負極21が、ターン部234に相当する領域に、金属箔211と、該金属箔211における第二の部材25側(折り返し部23の内側)を向いた面に重ねられる負極活物質層212と、を有している、即ち、金属箔211の第二の部材26側を向いた面を負極活物質層212で覆うことで、前記電流集中を抑制し、これにより、金属箔211での前記デンドライトの発生及びその成長等を抑えている。   If the metal foil 211 is exposed so as to face the second member 26 in the turn part 234, the metal foil 211 is likely to generate dendrite and grow due to current concentration. Therefore, in the electricity storage device 1 of the present embodiment, the negative electrode 21 faces the metal foil 211 and the second member 25 side (inside the folded portion 23) in the metal foil 211 in a region corresponding to the turn portion 234. The negative electrode active material layer 212 overlaid on the surface, that is, the surface facing the second member 26 side of the metal foil 211 is covered with the negative electrode active material layer 212 to suppress the current concentration. Thereby, generation | occurrence | production of the said dendrite in the metal foil 211, its growth, etc. are suppressed.

より詳細には、本実施形態の蓄電素子1では、ターン部234と第二の部材26との間に隙間γがあるため(図11参照)、第二の部材26に含まれる正極22の充放電に伴う膨張収縮によって第二の部材26がターン部234の奥に向けて(図11における上側に向けて)伸びたり移動したりする可能性がある。このため、第二の部材26がターン部234の金属箔211に近づき、電流集中に伴うデンドライトの発生及びその成長等の新たな課題が発生し得る。しかし、本実施形態のターン部234のように、金属箔211の第二の部材26側を向いた面を負極活物質層212で覆うことで、前記電流集中を抑制し、これにより、金属箔211での前記デンドライトの発生及びその成長を抑えている。さらには、本実施形態のターン部234において、金属箔211に重ねられる負極活物質層212によって隙間γを小さくすることで、第二の部材26の伸びや移動をも抑えられる。   More specifically, in the electricity storage device 1 of the present embodiment, since there is a gap γ between the turn portion 234 and the second member 26 (see FIG. 11), the positive electrode 22 included in the second member 26 is charged. There is a possibility that the second member 26 extends or moves toward the back of the turn part 234 (toward the upper side in FIG. 11) due to expansion and contraction accompanying discharge. For this reason, the second member 26 approaches the metal foil 211 of the turn part 234, and new problems such as generation and growth of dendrites accompanying current concentration may occur. However, the current concentration is suppressed by covering the surface of the metal foil 211 facing the second member 26 side with the negative electrode active material layer 212 as in the turn part 234 of the present embodiment, and thereby the metal foil. The generation and growth of the dendrite at 211 are suppressed. Furthermore, in the turn part 234 of the present embodiment, the gap γ is reduced by the negative electrode active material layer 212 overlaid on the metal foil 211, whereby the elongation and movement of the second member 26 can be suppressed.

本実施形態の負極21のように、ターン部234に負極活物質層212が配置されると、蓄電素子1の充放電に伴って該負極活物質層212が膨張収縮することで該膨張収縮に伴う応力がターン部234において発生する。そこで、本実施形態の蓄電素子1では、負極21の長尺方向(長尺な負極21に沿った方向)において、負極活物質層212のターン部(薄肉の部位)234に相当する部位の密度を、他の部位(本実施形態の例では、平坦部233)の密度より高くしている。このように、ターン部234の負極活物質層212の密度を高くして電解液の液浸透性を低下させることで前記充放電に伴う負極活物質層212の膨張収縮量を抑えることができる。これにより、本実施形態の蓄電素子1では、ターン部234での前記膨張収縮に伴う応力の発生を抑えることができる。   When the negative electrode active material layer 212 is disposed in the turn part 234 as in the negative electrode 21 of the present embodiment, the negative electrode active material layer 212 expands and contracts as the power storage element 1 is charged / discharged. The accompanying stress is generated in the turn part 234. Therefore, in the power storage device 1 of the present embodiment, the density of the portion corresponding to the turn portion (thin portion) 234 of the negative electrode active material layer 212 in the long direction of the negative electrode 21 (the direction along the long negative electrode 21). Is made higher than the density of other parts (in the example of this embodiment, the flat part 233). As described above, by increasing the density of the negative electrode active material layer 212 of the turn part 234 and reducing the liquid permeability of the electrolytic solution, the amount of expansion and contraction of the negative electrode active material layer 212 accompanying the charge / discharge can be suppressed. Thereby, in the electrical storage element 1 of this embodiment, generation | occurrence | production of the stress accompanying the said expansion / contraction in the turn part 234 can be suppressed.

また、上記のように、ターン部234の負極活物質層212の密度を平坦部233の負極活物質層212の密度より高くする場合、本実施形態の蓄電素子1のように、負極活物質層212におけるバインダーをポリフッ化ビニリデンとすることが好ましい。これは、バインダーにポリフッ化ビニリデンを用いることで、負極活物質層212と金属箔211との結着力が高まり、これにより、負極活物質層212の剥がれが防がれ、その結果、電極体2において負極活物資層212の剥がれに起因する電流集中が生じ難くなるからである。   In addition, as described above, when the density of the negative electrode active material layer 212 in the turn part 234 is higher than the density of the negative electrode active material layer 212 in the flat part 233, the negative electrode active material layer as in the power storage element 1 of the present embodiment. The binder at 212 is preferably polyvinylidene fluoride. This is because the use of polyvinylidene fluoride as the binder increases the binding force between the negative electrode active material layer 212 and the metal foil 211, thereby preventing the negative electrode active material layer 212 from being peeled off. This is because current concentration due to peeling of the negative electrode active material layer 212 hardly occurs.

尚、ターン部234の負極活物質層212の密度を平坦部233の負極活物質層212の密度より高くしない場合には、負極活物質層212のバインダーに、カルボキシメチルセルロースナトリウム(SBR)−スチレンブタジエンコポリマー(CMC)を用いることが好ましい。これは、バインダーをSBR−CMCとすることで、ターン部234の負極活物質層212の密度を平坦部233の負極活物質層212の密度より高くしなくても、負極活物質層212と金属箔211との結着力の低下が生じず、これにより、負極活物質層212の剥がれに起因する電流集中が生じ難いからである。   In the case where the density of the negative electrode active material layer 212 in the turn part 234 is not higher than the density of the negative electrode active material layer 212 in the flat part 233, sodium carboxymethylcellulose (SBR) -styrene butadiene is used as the binder of the negative electrode active material layer 212. It is preferable to use a copolymer (CMC). This is because when the binder is SBR-CMC, the negative electrode active material layer 212 of the turn part 234 does not have to be higher than the density of the negative electrode active material layer 212 of the flat part 233. This is because a decrease in the binding force with the foil 211 does not occur, so that current concentration due to the peeling of the negative electrode active material layer 212 hardly occurs.

また、本実施形態の蓄電素子1において、ターン部234では、金属箔211の内側の負極活物質層212がZ軸方向の全域に配置され、ケース3内には、電解液(余剰電解液:セパレータ25が保持しきれずにケース3の下部に溜まっている電解液)が貯留されている。このため、ターン部234が重力方向に延びる姿勢で蓄電素子1が配置される、即ち、蓄電素子1が外部端子4を上方に向けた状態で配置されると、ターン部234の下端で負極活物質層212に接触して電解液(余剰電解液)が該負極活物質層212によって吸い上げられる。これにより、電解液が浸透し難いターン部234の内周側の負極活物質層212に対して電解液が好適に供給される。   In the electricity storage device 1 of the present embodiment, in the turn part 234, the negative electrode active material layer 212 inside the metal foil 211 is disposed in the entire area in the Z-axis direction, and an electrolyte (excess electrolyte: Electrolyte solution stored in the lower part of the case 3 without being able to hold the separator 25 is stored. For this reason, when the electricity storage device 1 is arranged with the turn portion 234 extending in the direction of gravity, that is, when the electricity storage device 1 is arranged with the external terminal 4 facing upward, the negative electrode active at the lower end of the turn portion 234. In contact with the material layer 212, the electrolytic solution (excess electrolytic solution) is sucked up by the negative electrode active material layer 212. As a result, the electrolytic solution is suitably supplied to the negative electrode active material layer 212 on the inner peripheral side of the turn part 234 where the electrolytic solution is difficult to permeate.

尚、本発明の蓄電素子は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、ある実施形態の構成に他の実施形態の構成を追加することができ、また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることができる。さらに、ある実施形態の構成の一部を削除することができる。   In addition, the electrical storage element of this invention is not limited to the said embodiment, Of course, a various change can be added in the range which does not deviate from the summary of this invention. For example, the configuration of another embodiment can be added to the configuration of a certain embodiment, and a part of the configuration of a certain embodiment can be replaced with the configuration of another embodiment. Furthermore, a part of the configuration of an embodiment can be deleted.

上記実施形態の折り返し部23では、薄肉の部位(折り返し部23の内側の面の一部が他の部位より外側の面に向けて凹んでいる部位)が負極21の長尺方向においてターン部234の全域に設けられているが、この構成に限定されない。薄肉の部位は、負極21の長尺方向においてターン部234の一部に設けられていてもよい。かかる構成によれば、ターン部234において生じる応力が抑えられる。   In the folded portion 23 of the above-described embodiment, the thin portion (the portion in which a part of the inner surface of the folded portion 23 is recessed toward the outer surface) is the turn portion 234 in the longitudinal direction of the negative electrode 21. However, the present invention is not limited to this configuration. The thin part may be provided in a part of the turn part 234 in the longitudinal direction of the negative electrode 21. According to such a configuration, the stress generated in the turn part 234 is suppressed.

また、上記実施形態のターン部234では、金属箔211の両面の負極活物質層212が、平坦部233の負極活物質層212より薄いが、この構成に限定されない。例えば、ターン部234において、金属箔211より内側の負極活物質層212のみが、平坦部233の負極活物質層212より薄くてもよい。   Moreover, in the turn part 234 of the said embodiment, although the negative electrode active material layer 212 of both surfaces of the metal foil 211 is thinner than the negative electrode active material layer 212 of the flat part 233, it is not limited to this structure. For example, in the turn part 234, only the negative electrode active material layer 212 inside the metal foil 211 may be thinner than the negative electrode active material layer 212 of the flat part 233.

かかる構成によっても、負極21(第一の部材)において、折り返し部23のターン部234が、他の部位(平坦部233)より薄肉となる、即ち、金属箔211の両面の負極活物質層212が平坦部233の負極活物質層212と同じ厚さ寸法である場合に比べて薄肉となるため、ターン部234において生じる応力が抑えられる。   Even with this configuration, in the negative electrode 21 (first member), the turn part 234 of the folded part 23 is thinner than the other part (flat part 233), that is, the negative electrode active material layers 212 on both surfaces of the metal foil 211. Is thinner than the case where it has the same thickness as that of the negative electrode active material layer 212 of the flat portion 233, so that the stress generated in the turn portion 234 is suppressed.

また、かかる構成によっても、ターン部234の内側の負極活物質層212が平坦部233の負極活物質層212より薄いため、ターン部234において負極21と第二の部材26との間に隙間γが形成される。これにより、充放電時に生じたガスが該隙間を通って外部に抜け易く、且つ、電解液が該隙間を通ってターン部234の内側に位置する第二の部材26の部位や、ターン部234の負極活物質層212に供給され易くなる。   Also with this configuration, since the negative electrode active material layer 212 inside the turn part 234 is thinner than the negative electrode active material layer 212 of the flat part 233, the gap γ is formed between the negative electrode 21 and the second member 26 in the turn part 234. Is formed. Accordingly, the gas generated during charging / discharging easily escapes to the outside through the gap, and the electrolyte solution passes through the gap and the portion of the second member 26 located inside the turn part 234 or the turn part 234. The negative electrode active material layer 212 is easily supplied.

上記実施形態の電極体2では、第二の部材26のターン部234側の端縁がターン部234の内側面に当接しているが、この構成に限定されない。第二の部材26のターン部234側の端縁は、ターン部234の内側面と接触していなくてもよい。   In the electrode body 2 of the above-described embodiment, the end edge of the second member 26 on the turn part 234 side is in contact with the inner side surface of the turn part 234, but is not limited to this configuration. The edge of the second member 26 on the turn part 234 side may not be in contact with the inner surface of the turn part 234.

上記実施形態の負極21(折り返し部23)では、平坦部233とターン部234との境界が段差形状であるが、この構成に限定されない。例えば、図15や図16に示すように、ターン部234は、平坦部233とターン部234との境界から厚さ寸法が漸減する構成であってもよい。この場合、負極21の長尺方向において、折り返し部23の厚さ寸法が小さくなり始める位置(薄肉端部位置)が平坦部233とターン部234との境界位置である。   In the negative electrode 21 (folded portion 23) of the above embodiment, the boundary between the flat portion 233 and the turn portion 234 has a stepped shape, but is not limited to this configuration. For example, as shown in FIGS. 15 and 16, the turn part 234 may have a configuration in which the thickness dimension gradually decreases from the boundary between the flat part 233 and the turn part 234. In this case, in the longitudinal direction of the negative electrode 21, the position (thin end position) where the thickness dimension of the folded portion 23 begins to decrease is the boundary position between the flat portion 233 and the turn portion 234.

上記実施形態の蓄電素子1では、ケース3は、電極体2の全体をX軸方向に圧迫するが、この構成に限定されない。電極体2は、ケース3の内部において、少なくとも、X軸方向から見てターン部234の端部位置と重なる領域αがX軸方向の両側から押圧されていればよい(図14参照)。この圧迫は、ケース3によって行われてもよく、ケース3の内部に配置される部材によって行われてもよい。   In the electricity storage device 1 of the above embodiment, the case 3 presses the entire electrode body 2 in the X-axis direction, but is not limited to this configuration. The electrode body 2 is only required to be pressed from both sides in the X-axis direction at least in the region 3 overlapping the end position of the turn part 234 when viewed from the X-axis direction inside the case 3 (see FIG. 14). This compression may be performed by the case 3 or may be performed by a member disposed inside the case 3.

例えば、ケース3にエンボス加工が施される等により、ケース3の内面から電極体2に向かって突出する凸部が形成され、当該凸部により電極体2を圧迫してもよい。また、ケース3に収容される絶縁部材6のうち、電極体2を圧迫したい部分に対応する領域の厚みを大きくすることにより、電極体2を圧迫してもよい。さらに、電極体2の外周に絶縁テープを貼りつけることにより電極体2を圧迫してもよい。この場合、電極体2の外周寸法が、絶縁テープを貼りつける前よりも絶縁テープを貼りつけた後のほうが小さくなるように絶縁テープを貼りつけるとよい。   For example, a convex portion that protrudes from the inner surface of the case 3 toward the electrode body 2 may be formed by embossing the case 3, and the electrode body 2 may be pressed by the convex portion. Moreover, you may press the electrode body 2 by enlarging the thickness of the area | region corresponding to the part which wants to press the electrode body 2 among the insulating members 6 accommodated in case 3. FIG. Further, the electrode body 2 may be pressed by attaching an insulating tape to the outer periphery of the electrode body 2. In this case, the insulating tape may be applied so that the outer peripheral dimension of the electrode body 2 is smaller after the insulating tape is applied than before the insulating tape is applied.

また、上記実施形態においては、蓄電素子が充放電可能な非水電解質二次電池(例えばリチウムイオン二次電池)として用いられる場合について説明したが、蓄電素子の種類や大きさ(容量)は任意である。また、上記実施形態において、蓄電素子の一例として、リチウムイオン二次電池について説明したが、これに限定されるものではない。例えば、本発明は、種々の二次電池、その他、一次電池や、電気二重層キャパシタ等のキャパシタの蓄電素子にも適用可能である。   Moreover, in the said embodiment, although the case where an electrical storage element was used as a nonaqueous electrolyte secondary battery (for example, lithium ion secondary battery) which can be charged / discharged was demonstrated, the kind and magnitude | size (capacity | capacitance) of an electrical storage element are arbitrary. It is. Moreover, in the said embodiment, although the lithium ion secondary battery was demonstrated as an example of an electrical storage element, it is not limited to this. For example, the present invention can be applied to various secondary batteries, other primary batteries, and power storage elements of capacitors such as electric double layer capacitors.

上記実施形態の蓄電素子(例えば電池)1は、例えば図17及び図18に示すような蓄電装置(蓄電素子が電池の場合は電池モジュール)11に用いられてもよい。この蓄電装置11は、複数の蓄電素子1と、蓄電素子1と隣接する複数の隣接部材12と、複数の蓄電素子1及び複数の隣接部材12をひとまとめに保持する保持部材13と、異なる蓄電素子1の外部端子4同士を導通可能に接続するバスバ14と、を備える。また、この蓄電装置11は、複数の蓄電素子1と保持部材13との間に配置されるインシュレータ15等も備える。この蓄電装置11では、本発明の技術が少なくとも一つの蓄電素子1に適用されていればよい。   The power storage element (for example, battery) 1 of the above-described embodiment may be used for a power storage device (a battery module in the case where the power storage element is a battery) 11 as illustrated in FIGS. 17 and 18, for example. The power storage device 11 includes a plurality of power storage elements 1, a plurality of adjacent members 12 adjacent to the power storage elements 1, a holding member 13 that collectively holds the plurality of power storage elements 1 and the plurality of adjacent members 12, and different power storage elements And a bus bar 14 that connects the external terminals 4 to each other in a conductive manner. The power storage device 11 also includes an insulator 15 or the like disposed between the plurality of power storage elements 1 and the holding member 13. In this power storage device 11, the technology of the present invention only needs to be applied to at least one power storage element 1.

保持部材13は、X軸方向に隣接部材12を介して並ぶ複数の蓄電素子1をX軸方向の両側から挟み込む一対の終端部材131と、一対の終端部材131を連結する連結部材132と、を有する。この保持部材13は、各蓄電素子1において少なくとも電極体2の所定領域がX軸方向の両側からケース3を介して押圧(圧迫)されるように複数の蓄電素子1を保持する。ここで、電極体2の所定領域とは、X軸方向から見て、各折り返し部23の薄肉の部位(上記実施形態の例ではターン部234)の端部を含む領域(詳しくは、負極21の長尺方向において折り返し部23の厚さ寸法が小さくなり始める位置と重なる領域、換言すると、ターン部(薄肉の部位)234と厚肉の部位(折り返し部23における薄肉の部位以外の部位)との境界を含む領域)αである(図14参照)。   The holding member 13 includes a pair of terminal members 131 that sandwich the plurality of power storage elements 1 arranged in the X-axis direction via the adjacent members 12 from both sides in the X-axis direction, and a connecting member 132 that connects the pair of terminal members 131. Have. The holding member 13 holds the plurality of power storage elements 1 such that at least a predetermined region of the electrode body 2 is pressed (pressed) via the case 3 from both sides in the X-axis direction in each power storage element 1. Here, the predetermined region of the electrode body 2 is a region (specifically, the negative electrode 21) including the end of the thin portion (turn portion 234 in the example of the above embodiment) of each folded portion 23 when viewed from the X-axis direction. A region that overlaps the position where the thickness dimension of the folded portion 23 starts to decrease in the long direction, in other words, a turn portion (thin portion) 234 and a thick portion (a portion other than the thin portion in the folded portion 23). (Region including the boundary of) α (see FIG. 14).

この電極体2への押圧(圧迫)は、保持部材13によって複数の蓄電素子1が保持されることで加えられる構成でもよく、隣接部材12が蓄電素子1間に配置された状態で蓄電素子1と隣接部材12とが一緒に保持部材13に保持されることで加えられる構成でもよい。   The pressing (squeezing) to the electrode body 2 may be applied by holding the plurality of power storage elements 1 by the holding member 13, and the power storage element 1 with the adjacent member 12 disposed between the power storage elements 1. And the adjacent member 12 may be added by being held together by the holding member 13.

かかる構成によっても、複数の蓄電素子1のそれぞれの負極21の各折り返し部23の間に挟まれる第二の部材26において、厚肉の部位に圧迫(挟持)されている部位の端部位置、即ち、折り返し部23の厚肉の部位と薄肉の部位との境界位置に僅かな段差が生じ、これにより、各折り返し部23の間での第二の部材26の位置ずれが効果的に抑えられる。   Even in such a configuration, in the second member 26 sandwiched between the folded portions 23 of the respective negative electrodes 21 of the plurality of power storage elements 1, the end position of the portion pressed (clamped) by the thick portion, That is, a slight level difference is generated at the boundary position between the thick portion and the thin portion of the folded portion 23, thereby effectively suppressing the displacement of the second member 26 between the folded portions 23. .

1…蓄電素子、2…電極体、21…負極(電極)、21A…山折り線、21B…谷折り線、210…折り返されたときにターン部となる領域、211…金属箔、212…負極活物質層、22…正極(電極)、221…金属箔、222…正極活物質層、223…正極本体、224…正極タブ、23…折り返し部、23A…第一折り返し部、23B…第二折り返し部、231、231A、231B…第一の面、232、232A、232B…第二の面、233、233A、233B…平坦部、2331…平坦部本体、2332…負極タブ、234、234A、234B…ターン部、25…セパレータ、26…第二の部材、3…ケース、31…ケース本体、310…開口周縁部、311…閉塞部、312…胴部、313…長壁部、314…短壁部、32…蓋板、4…外部端子、5…集電体、6…絶縁部材、11…蓄電装置、12…隣接部材、13…保持部材、131…終端部材、132…連結部材、14…バスバ、15…インシュレータ、100…電池、101…負極電極板(長尺電極板)、102…銅箔、103…負極活物質層、104…正極電極板(短冊状電極板)、105…アルミニウム箔、106…正極活物質層、107…セパレータ、108…一体長尺物、S…旋回軸、α…ターン部の端部位置と重なる領域、β…セパレータの段差、γ…隙間   DESCRIPTION OF SYMBOLS 1 ... Power storage element, 2 ... Electrode body, 21 ... Negative electrode (electrode), 21A ... Mountain fold line, 21B ... Valley fold line, 210 ... Area | region used as a turn part when folded, 211 ... Metal foil, 212 ... Negative electrode Active material layer, 22 ... positive electrode (electrode), 221 ... metal foil, 222 ... positive electrode active material layer, 223 ... positive electrode body, 224 ... positive electrode tab, 23 ... folded portion, 23A ... first folded portion, 23B ... second folded , 231, 231A, 231B ... first surface, 232, 232A, 232B ... second surface, 233, 233A, 233B ... flat part, 2331 ... flat part body, 2332 ... negative electrode tab, 234, 234A, 234B ... Turn part, 25 ... Separator, 26 ... Second member, 3 ... Case, 31 ... Case body, 310 ... Opening peripheral part, 311 ... Closing part, 312 ... Body part, 313 ... Long wall part, 314 ... Short wall part, DESCRIPTION OF SYMBOLS 2 ... Cover plate, 4 ... External terminal, 5 ... Current collector, 6 ... Insulating member, 11 ... Power storage device, 12 ... Adjacent member, 13 ... Holding member, 131 ... Termination member, 132 ... Connecting member, 14 ... Bus bar, DESCRIPTION OF SYMBOLS 15 ... Insulator, 100 ... Battery, 101 ... Negative electrode plate (long electrode plate), 102 ... Copper foil, 103 ... Negative electrode active material layer, 104 ... Positive electrode plate (strip-shaped electrode plate), 105 ... Aluminum foil, 106 ... Positive electrode active material layer, 107 ... Separator, 108 ... Elongate object, S ... Swivel axis, α ... Region overlapping with end position of turn part, β ... Separator step, γ ... Gap

Claims (5)

第一の電極を含む長尺な第一の部材と、前記第一の電極と極性が異なる第二の電極を含む第二の部材と、を有する電極体を備え、
前記第一の部材は、第一の面及び該第一の面と反対側の第二の面をそれぞれ有し且つ前記第一の面同士を対向させた一対の平坦部と、前記一対の平坦部の端部同士を接続するターン部と、を含む折り返し部を少なくとも一つ有し、
前記第二の部材は、前記一対の平坦部の間に配置され、
前記ターン部は、前記折り返し部の内側の面の一部が他の部位より外側の面に向けて凹んでいる薄肉の部位を有し、
該ターン部と前記第二の部材との間に隙間が形成されている、蓄電素子。
An electrode body having a long first member including a first electrode and a second member including a second electrode having a polarity different from that of the first electrode;
The first member has a first surface and a second surface opposite to the first surface, and a pair of flat portions in which the first surfaces are opposed to each other, and the pair of flat surfaces Having at least one folded part including a turn part connecting the ends of the parts,
The second member is disposed between the pair of flat portions,
The turn portion has a thin-walled portion in which a part of the inner surface of the folded portion is recessed toward the outer surface from other portions,
The electrical storage element in which the clearance gap is formed between this turn part and said 2nd member.
前記第二の部材のターン部側の端縁は、前記一対の平坦部が並ぶ方向から見て、前記薄肉の部位と重なる位置にある、請求項1に記載の蓄電素子。   2. The power storage device according to claim 1, wherein an edge of the second member on a turn portion side is located at a position overlapping the thin portion as viewed from a direction in which the pair of flat portions are arranged. 前記電極体を収容するケースを備え、
前記電極体は、前記一対の平坦部が並ぶ方向から見て、前記薄肉の部位の端部位置と重なる領域が、前記一対の平坦部が並ぶ方向の両側から押圧された状態で前記ケースに収容されている、請求項2に記載の蓄電素子。
A case for accommodating the electrode body;
The electrode body is accommodated in the case in a state where an area overlapping with an end position of the thin portion is pressed from both sides in the direction in which the pair of flat portions are aligned as viewed from the direction in which the pair of flat portions are aligned. The electrical storage element according to claim 2, wherein
前記第一の電極は、前記薄肉の部位に相当する領域に、金属箔と、該金属箔における内側の面に重ねられる活物質層と、を有する、請求項1〜3のいずれか1項に記載の蓄電素子。   The first electrode according to any one of claims 1 to 3, wherein the first electrode includes a metal foil and an active material layer superimposed on an inner surface of the metal foil in a region corresponding to the thin portion. The electricity storage device described. 電解液と、
前記電解液及び前記電極体を収容するケースと、を備え、
前記第一の電極は、前記折り返し部において長尺方向の全域に配置される前記金属箔と、該金属箔の前記折り返し部の内側を向いた面の前記長尺方向の全域に重ねられる前記活物質層と、を有し、
前記長尺方向において、前記活物質層の前記薄肉の部位に相当する部位の密度は、他の部位の密度より高い、請求項4に記載の蓄電素子。
An electrolyte,
A case for accommodating the electrolytic solution and the electrode body,
The first electrode includes the metal foil disposed over the entire region in the longitudinal direction at the folded portion, and the active layer that is overlapped over the entire region in the longitudinal direction of the surface of the metal foil facing the inside of the folded portion. A material layer,
5. The power storage device according to claim 4, wherein a density of a portion corresponding to the thin portion of the active material layer is higher than a density of another portion in the longitudinal direction.
JP2017175029A 2017-09-12 2017-09-12 Power storage element Active JP7008272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017175029A JP7008272B2 (en) 2017-09-12 2017-09-12 Power storage element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017175029A JP7008272B2 (en) 2017-09-12 2017-09-12 Power storage element

Publications (2)

Publication Number Publication Date
JP2019053820A true JP2019053820A (en) 2019-04-04
JP7008272B2 JP7008272B2 (en) 2022-01-25

Family

ID=66015024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017175029A Active JP7008272B2 (en) 2017-09-12 2017-09-12 Power storage element

Country Status (1)

Country Link
JP (1) JP7008272B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124965U (en) * 1985-01-24 1986-08-06
JPH10326627A (en) * 1997-05-26 1998-12-08 Shin Kobe Electric Mach Co Ltd Square nonacqueous electrolyte battery
JP2003045474A (en) * 2001-08-03 2003-02-14 Nec Mobile Energy Kk Sealed battery
JP2004319348A (en) * 2003-04-18 2004-11-11 Ngk Spark Plug Co Ltd Plate-shaped battery and manufacturing method of the same
JP2011146219A (en) * 2010-01-14 2011-07-28 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61124965U (en) * 1985-01-24 1986-08-06
JPH10326627A (en) * 1997-05-26 1998-12-08 Shin Kobe Electric Mach Co Ltd Square nonacqueous electrolyte battery
JP2003045474A (en) * 2001-08-03 2003-02-14 Nec Mobile Energy Kk Sealed battery
JP2004319348A (en) * 2003-04-18 2004-11-11 Ngk Spark Plug Co Ltd Plate-shaped battery and manufacturing method of the same
JP2011146219A (en) * 2010-01-14 2011-07-28 Panasonic Corp Electrode group for nonaqueous secondary battery, and nonaqueous secondary battery using the same

Also Published As

Publication number Publication date
JP7008272B2 (en) 2022-01-25

Similar Documents

Publication Publication Date Title
JP6863710B2 (en) Secondary battery
CN105990598B (en) Electric storage element
KR20130132231A (en) A stepwise electrode assembly, and a battery cell, battery pack and device comprising the same
JP6748401B2 (en) Storage element
US11189886B2 (en) Stack-type nonaqueous electrolyte secondary battery
KR20130063709A (en) Pouch for secondary battery and secondary battery using the same
JP6970912B2 (en) A power storage element and a power storage device including a power storage element
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2017208177A (en) Power storage element and method of manufacturing power storage element
JP2019096466A (en) Power storage element
JP6738565B2 (en) Electric storage element and method for manufacturing electric storage element
JP2019036395A (en) Electrode and method for manufacturing storage device including the same
JP7096991B2 (en) Power storage element and manufacturing method of power storage element
JP2018081792A (en) Power storage element
JP6726398B2 (en) Storage element
JP2017004892A (en) Power storage element, and manufacturing method of power storage element
JP6955693B2 (en) Power storage element and manufacturing method of power storage element
CN113924674A (en) Secondary battery
JP7008272B2 (en) Power storage element
JP6975400B2 (en) Power storage element
JP6935056B2 (en) Power storage element
JP7303994B2 (en) Storage element
JP2019053824A (en) Power storage element, and method for manufacturing the same
JP7071706B2 (en) Power storage element
JP7116905B2 (en) Storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211223

R150 Certificate of patent or registration of utility model

Ref document number: 7008272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150