本発明は、特定のRF出力信号を発生させる少なくとも1つの信号発生器と、nが1を超過する、又は1と等しいn個の測定ポートとを有し、RFカプラが各測定ポートに割り当てられ、RFカプラは、外部から特定のポートへ入力されるRF信号bnを結合するように設計され、少なくとも1つの信号発生器は、特定のRF出力信号を外部へ出力されるRF信号anとして、少なくとも1つの測定ポートへ供給するように配置及び設計される、請求項1の前文に記載のベクトルネットワークアナライザ(VNA)に関する。
電子工学の分野では、ベクトルネットワークアナライザ(VNA)は、電子線形コンポーネントの精密測定や、(LCRメータのような)低周波数とTHz範囲及び光学範囲までの高周波数の範囲における能動回路及び受動回路又はアセンブリのコンポーネントの精密測定に、長年、使用されている。VNAは、2n個の極パラメータ(Z又はYパラメータなど)に変換され得るn個のポートによるネットワーク(n=1,2,...)の散乱パラメータを記録する。しかしながら、特に中周波数又は高周波数(高速回路、つまりMHz及びGHz範囲の回路)の事例では、これら記録された測定データは非常に高い測定誤差を呈する。今日、これら測定誤差は、数学的方法により、ほとんどすべてのNF機器(LCRメータ)において著しく減少している。VNAにおける関連する系統誤差補正は、高速電子コンポーネント、つまりMHz及びGHz範囲のコンポーネントの精密測定が、専ら線形伝送作用により、ともかくも実行され得ることを保証する。
VNAの測定精度は、主として、系統誤差補正のための方法の有用性と、関連する校正基準とに左右される。系統誤差補正では、いわゆる校正手順の中で、一部又は全体が既知である試験対象機器の反射及び/又は伝送作用が測定される。補正データ(いわゆる誤差ファクター又は係数)は、特殊な計算方法を使用して、これらの測定データから取得される。これら補正データ及び対応する補正計算により、VNA及び入力ラインに系統誤差(結合ミス=クロストーク、整合ミス=反射)が見られない測定データが、所定の試験対象機器について取得され得る。
高周波技術(RF技術)において、コンポーネント及び回路の電気作用を説明する通常の形は、散乱パラメータ(Sパラメータとも呼ばれる)によるものである。散乱パラメータは、電流及び電圧ではなく波の特性と相互関係を持つ。この形の表示は、RF技術の物理条件に特に良く適している。必要に応じて、これらの散乱パラメータは、電流及び電圧と相互関係を持つ他の電気ネットワークパラメータに変換することができる。
図1は、散乱行列[S]を特徴とする第1ポート10と第2ポート12とを含む2ポートVNAを示す。波a1及び波a2は、逆方向に伝搬し、第1ポート及び第2ポートのそれぞれに接近する波b1及び波b2に対応する波である。その関係は以下の通りである。
線形コンポーネントは、周波数に関して記される、これらのSパラメータを通して適切に説明される。非線形効果を呈するコンポーネントの事例では、周波数f0の信号を一つのポートに送る際に、他のポートでは、この基本周波数(f0)と他の周波数の信号が発生される。これらは、例えば周波数m*f0(m=2,3,4,..)の高調波、又は、いくつかの伝送発生器が使用される際には相互変調積波又は混合積波であり得る。伝送発生器の1つが変調される場合には、周波数も対応して高い。
上述した散乱パラメータは、これらの非線形コンポーネントの伝送作用を説明するのにも有益に使用することもできる。しかしながら、ポートばかりでなく周波数も指定する必要があることを考慮すべきである。例えば、ベクトル散乱パラメータ値S21を、周波数f0の基本波については第1ポート10に、周波数f1=2*f0の高調波については第2ポート12に伝送パラメータとして挿入することが可能である。このような測定についての先行技術は、主として、純粋なスカラー設定を伴う。いくつかのベクトルネットワークアナライザは、高調波、相互変調波、混合積波、及び類似する波の測定を可能にするように構築されるソフトウェアオプションを備えている。しかしながら、これらの測定はスカラー方式のみで実行され、ゆえに系統誤差補正が行われない。
最近のネットワークアナライザ(いくつかの事例では付加的なソフトウェア及びハードウェアソリューションを使用)では、このようなアセンブリ要素及びコンポーネントの非線形伝送特性は、系統誤差補正を含むベクトル値として測定される。このベクトルデータは、トランジスタなどのアセンブリ要素のモデリングには極めて重要である。
「Without-Thru」は、ベクトルネットワークアナライザにおける、このような非線形測定のための革新的な系統誤差補正方法として、特許文献1から周知である。この系統誤差補正方法は、スルー接続を全く必要としない(Without Thru)。三つの反射基準であるスルー“Thru”、ショートアンドマッチ“Short and Match”、又はロード“Load”に加えて、校正を実施するのに電力センサ及びコム発生器が必要とされる。
先行技術において、線形及び非線形Sパラメータの精密決定のためのこれら系統誤差補正方法は、すべてネットワークアナライザで実行され、その大部分が2*n個の測定ポイントを有し、nは測定ポートの数を表す。この設計は図2に示されている。RFシンセサイザ14は、切換スイッチ16を介して第1ポート18、第2ポート20、第3ポート22へ送られる正弦波信号を発生する。スイッチ位置IIIでは、信号の一部分が第1ラインカプラ24へ結合されて、第1測定ポイント26へ送られる。この第1測定ポイント26は、例えば、A/Dコンバータの形である。高周波数の事例では、付加的な局部発振器信号(LO信号)を必要とするA/Dコンバータの前にミキサ(不図示)が設置される。第1アウトプット28では、出力波a3に比例する信号が、評価ユニット、例えばコンピュータへ送られる。第3ポート22で発生される波の大部分は、試験対象機器(DUT)30へ進み、反射され、反射信号は、第2測定ポイント34で第2ラインカプラ32を介して変換され、第2アウトプット36を介して反射波b3として評価ユニットへ送られる。第1及び第2ラインカプラ24,32の他の二つのポートは、それぞれ、50Ω端子38を終端とする。
図2に示されたこの構造は、なかでも反射率計コンセプトと呼ばれる。7ターム誤差モデルに基づく多数の校正方法が、この反射率計コンセプトを必要とする。
最新のネットワークアナライザでは、切換スイッチ16は、対応する構成のRFシンセサイザによって置き換えられる、つまり各測定ポート18,20,22は独自のシンセサイザにより制御される。
ハードウェアに必要な投資が著しく軽減された構造が図3に描かれており、図1の上述した説明を参照して説明することができるように、同じ機能を持つ部品は図1と同じ参照番号で特定されている。図1による実施形態と対照的に、第1ライン指向性カプラ34がスイッチ16の上流に配設され、ゆえにスイッチ16と各ポート18,20,22との間の対応するライン指向性カプラは不要となっている。第1ライン指向性カプラ34は、こうして、RFシンセサイザ14から入力信号a1,a2,a3を検出する。このコンセプトでは、n+1個の測定ポイントのみが必要とされる。このコンセプトの短所の1つは、この事例では1つの校正方法のみが使用され得ることである。2ポート測定機器として、これは、12ターム方法とも呼ばれる、いわゆるSOLT方法を伴う。マルチポート方法としては、GSOLT方法と呼ばれる。
経済的な2ポートVNAは一方向のみに作動し、ゆえに切換スイッチ16を有しておらず、順方向パラメータS11及びS21のみを測定する。これらの機器は、2個のカプラと3個の測定ポイントを有する。b2の受信測定ポイントは、カプラをもはや必要としない。
ネットワークアナライザはとりわけ最大数の測定ポイントを有し、結果的に最も高価な電気測定機器である。最も経済的なVNAが使用される生産工学の分野では、測定品質が維持され、これに対応して機器コストが削減されるのである限り、VNAの単純化が歓迎される。最新測定技術の上級ユーザは、コストに関して可能な限り最少の投資で、また可能であればリアルタイムで、基本周波数においてばかりではなく周波数変換によってもベクトル散乱パラメータを測定できることを望む。しかしながら、周波数変換測定のための周知の解決法は、測定時間に関して受け入れ難いほど遅い。他方、多くの測定、例えば故障個所を判断するベクトルPIM測定では、従来の方法により提供される測定精度が得られない。また、これらの測定は迅速に実行される必要がある。しかしながら、各測定では局部発振器信号(LO信号)も測定されなければならないので、測定は所望の方法で実現することができない。発生、反射、伝送部分の検出を可能にするには、LO発生器の周波数も数回変更されなければならない。
米国特許出願第2010/0204943A1号明細書
本発明は、機械的及び電子的な構造に関して、またその動作と関連する測定手順とに関して、上述したタイプのベクトルネットワークアナライザを単純化するという問題に基づいている。
本発明によれば、請求項1に挙げられた特徴を持つ上述したタイプのベクトルネットワークアナライザにより、この問題が解決される。本発明の有利な実施形態は他の請求項に記載される。
本発明によれば、上述したタイプのベクトルネットワークアナライザでは、振幅及び/又は位相が、少なくとも1つの信号発生器のRF出力信号に対して、パラメータフィールドにおける少なくとも1つのパラメータに応じてVNAに検索可能に記憶され、RF信号発生器は、この少なくとも1つのパラメータに応じて振幅及び/又は位相において再現可能にRF出力信号を発生させるように設計される。
これは、第n測定ポートから出力されるRF信号anが別々に測定される必要がなく、パラメータフィールドから所望の精度で導出することができるという利点を有する。これは、散乱パラメータの決定のための信号anの測定ポイントが不要になることを意味する。基準測定ポイントはもう必要ではなく、同時に、ネットワークアナライザの校正可能性が制限されない。これは、量及び位相に関して、線形及び非線形の伝送値を、測定することを可能にし、ハードウェア及び時間に関する投資は非常に少ない。ゆえに、ミキサのためのベクトル及び周波数変換散乱パラメータ、高調波又は交互変調波の測定が、特に、非常に迅速に実行することができる。この時、測定ポートごとに1つの測定ポイントのみが必要とされるという事実は、ネットワークアナライザが著しく経済的に、またよりコンパクトな形で製造され得ることを意味する。
信号発生器がRFシンセサイザであることで、特に良好な再現可能性を有し、位相及び振幅が安定したRF出力信号が達成される。
周波数領域の散乱パラメータを決定するため、少なくとも1つのパラメータは、RF出力信号の周波数である。他のパラメータは、信号発生器の出力電力、周囲温度、及び/又は周波数ポイントごとの測定時間である。
信号発生器の少なくとも1つが位相同期ループ(PLL)を有することで、振幅及び位相が再現可能であるRF出力信号が達成される。
試験対象機器から測定ポートの方向に現れるRF信号bnを測定するため、各RFカプラは、対応するRF信号bnを測定する測定ポイントに割り当てられる。
特に10MHzの周波数を持つ基準信号、特に水晶信号又は水晶発振器信号(XCO信号)は、この信号が対応するRFカプラでのRF信号bnの受信を動作させるように提供されることで、測定ポートでの正弦波信号の特に良好な再現可能性が達成される。
測定ポイントがA/Dコンバータの形であることで、高い測定精度と組み合わされた、特に単純で経済的なVNAが達成される。
少なくとも1つのRFカプラが、特にラインカプラとしての指向性カプラの形であることで、RF信号の特に良好かつ精密な結合が達成される。
本発明によれば、上述したタイプの方法において、試験対象機器へ入力する少なくとも1つの電磁波anは、信号発生器により発生される電磁波anの振幅及び/又は位相が信号発生器による信号の発生に影響する少なくとも1つのパラメータに応じて記憶された記憶済みのパラメータフィールドから決定され、少なくとも1つのパラメータが決定され、信号発生器により発生された電磁波anの振幅及び/又は位相が、少なくとも1つのパラメータに対する値としてパラメータフィールドから導出される。
これは、第n測定ポートから出力されるRF信号anが別々に測定される必要がなく、パラメータフィールドから所望の精度で導出され得るという利点を有する。これは、散乱パラメータの決定のための信号anの測定ポイントが不要となることを意味する。基準測定ポイントはもはや必要とされず、同時にネットワークアナライザの校正可能性は制限されない。これは、量及び位相に関して、線形及び非線形の伝送値を、測定することを可能にし、ハードウェア及び時間に関する投資は非常に低い。こうして、特に、ミキサのためのベクトル及び周波数変換散乱パラメータ、高調波、又は相互変調波の測定が非常に迅速に実行することが可能となる。
信号発生器がRFシンセサイザであることで、特に良好な再現可能性を有するとともに位相及び振幅において安定したRF出力信号が達成される。
周波数領域での散乱パラメータを決定するために、少なくとも1つのパラメータはRF出力信号の周波数である。他のパラメータは、信号発生器の出力電力、周囲温度、及び/又は周波数ポイントごとの測定時間を含む。
位相同期ループ(PLL)を含む、少なくとも1つの信号発生器が基準信号、特に水晶発振器の基準信号と結合されることで、振幅及び位相において再現可能であるRF出力信号が達成される。
試験対象機器へ出入力する電磁波an及びbnの定義を含む、2ポート(機器)の形の試験対象電子機器の概略図を示す。
先行技術による切換スイッチと6個の測定ポイントとを含む3ポートベクトルネットワークアナライザのブロック図を示す。
先行技術による切換スイッチと4個の測定ポイントとを含む3ポートベクトルネットワークアナライザのブロック図を示す。
本発明によるベクトルネットワークアナライザの好適な実施形態のブロック図を示す。
図4に挙げられた本発明によるベクトルネットワークアナライザの「第1ポート」について誤差係数の信号フロー図を示す。
以下では、図面を参照して本発明がさらに詳しく説明される。
図4に示された本発明によるネットワークアナライザの好適な実施形態は、信号発生器110と、切換スイッチ112と、3個の測定ポート「第1ポート」114、「第2ポート」116、「第3ポート」118とを備える。各測定ポート114,116,118は、ラインカプラの形のRFカプラ120が割り当てられ、各RFカプラ120は測定ポイント122と電気的に接続されている。測定ポート114,116,118は試験対象電子機器125の対応ポートに接続され、その散乱パラメータ(Sパラメータ)が決定される。これは、例として散乱行列[S]で表されている。しかしながら、伝送行列又は連鎖行列の散乱パラメータも決定され得る。「散乱パラメータ」の用語は、試験対象電子機器125の電気特性を入力及び出力波an及びbnに関して表すか、これらの波an及びbnを互いに相関を持たせる何らかの行列の要素と同義であることが意図される。第nポートのRFカプラ120が、試験対象機器125から測定ポイント122を介して当該の「ポートn」へ入力される第n波bnを測定して、関連するアウトプット124からこれを出力するように、RFカプラ120が配置され、nは1を超える、又は1と等しく、nはN未満又はNと等しく、Nはベクトルネットワークアナライザの測定ポートの数である。図4に示された例では、Nは3に等しい。
本発明によるベクトルネットワークアナライザは、N個の測定ポイント122を有する、つまりこの時、Nポート機器を測定するために、N個の測定ポイント122のみが必要とされる。切換スイッチ112は、例えば、対応する数(この事例では3個)の接続可能なシンセサイザ(不図示)により形成される。信号発生器110は、例えば、RFシンセサイザの形であり、少なくとも1つの局部発振器(混合発振器)126が設けられる。局部発振器126は、混合発振器信号fLO128を測定ポイント122へ供給する。局部発振器126と信号発生器110の両方は、例えば、位相同期ループ(PLL)を介して水晶発振器132の基準信号fref130と位相同期される。
少なくとも1つの信号発生器110は信号anを供給し、その振幅及び位相は既知で再現可能である。これらの特性(振幅及び位相)は、少なくとも1つのパラメータに応じた周波数変換散乱パラメータ(Sパラメータ)の測定ごとに1回決定され、検索可能状態でパラメータフィールド134に記憶される。記憶される信号anのパラメータフィールド134は周波数全体に及び、任意で、信号発生器110の出力電力、周囲温度T、周波数ポイントごとの測定時間t、その他のような他の値にも及ぶ。言い換えると、信号発生器110により発生される信号anは、少なくとも1つのパラメータに応じてパラメータフィールド134に記憶されるのである。こうして、例示的パラメータとしての所定又は既知の周波数について、パラメータフィールド134から、対応する「第nポート」を介して試験対象機器125へ入力される波anを読み取ることができ、付加的な測定ポイントで、この波anを測定する必要はない。
信号発生器110の出力電力(振幅)は、制御ユニット136に配置された測定ユニット(パワーディテクター)を通して調整される。デバイダコンセプト及び位相周波数制御が適切に選択される場合には、混合発振器信号fLOに対する信号発生器110の位相同期のみが可能である。ゆえに、最新のコンセプトは、ランダム発生器を格納するシグマ−デルタデバイダを使用する。このようなシンセサイザ構造は、本発明によるVNAには適していない。本発明によるVNAのための最も単純で有用なデバイダコンセプトは、いくつかのループと(調節可能な)固定デバイダとを含む典型的なPLL構成である。
測定ポイント122は、例えばアナログ/デジタルコンバータの形である。本発明によるVNAの測定ポイント122に再現可能な正弦波信号が存在するために、例えば10MHzの基準信号fref130(水晶又はXCO信号とも呼ばれる)を通してアナログ/デジタルコンバータの受信が動作される。本発明によるVNAの出力信号が、VNAの基準信号fref130を通して動作されるオシロスコープで、各周波数ポイントについて常に同一である場合には、この信号は正しく発生される。この特殊な信号発生器110を通して生じる特性は、相対的な測定機器(従来のVNA)を絶対的な測定機器(本発明によるVNA)に変化させる。従来、周知のVNAでは、出力信号が測定と測定の間で変動することは容認されていた。反射率計の二つの波の値の間の関係のみが、常に再現可能でなければならなかった。対照的に、本発明によるVNAでは、測定データは、校正から測定まで常に絶対値として再現可能でなければならない。
本発明によるVNAは、以下で詳しく説明されるように線形測定での使用に適している。本発明によるVNAは7タームモデルを満たし、結果的にすべてのVNA校正方法をサポートする。2ポートの用途については、従来の二重反射率計は4個の測定ポイントを有する。本発明によるVNAでは、2個の基準測定ポイントが省略される。しかし、校正方法を実施するには、基準測定ポイントについて測定値が使用されなければならない。図5は、「第1ポート」114の例を参照して、誤差係数の信号フロー図の形で状況を示す。a1mは基準測定ポイントの測定値であり、a1は測定ポート1での再現可能な波である。b1は試験対象機器125から発する波である。b1mは基準測定ポイントでの測定値である。EDは、a1mとb1mとを相関させる誤差係数(b1m=ED*a1m)であり、a1mのクロストークを説明する。EFはa1mとa1とを相関させる誤差係数(a1=EF*a1m)である。ERはb1とb1mとを相関させる誤差係数(b1m=ER*b1)である。ESはb1とa1とを相関させる誤差係数(a1=ES*b1)であり、b1のクロストークを説明する。S11は、試験対象機器125の適応出力により試験対象機器125の入力反射係数を説明する散乱行列の散乱パラメータである。本発明によるVNAの単独測定ポイントの受信値b1mは、a1mのクロストークを表す。ここで、EDがゼロであるという概算が行われる。実際に、EDは低く、−35dBと−20dBの間の値である。この概算は、反射測定におけるdBの数十分の一の誤差につながる。伝送測定では、誤差はほとんど表現することができない。しかし、この事例では、誤差係数が縮小され、単純化された校正方法を使用することができる。
EDがゼロに等しくなく、a1が再現可能である一般的な事例については、a1mにはいかなる値(1など)も使用することができる。EFは比率a1/a1mのみから計算される。50オーム終端部による校正測定については、EDは比率b1m/a1mから計算される。
a1mが何らかの値(1など)として定義される場合には、ED及びEFはいかなる物理的送波値にも対応しない。実際、これは必要ではない。本発明によるVNAが線形測定にのみ使用される場合には、波a1が分かる必要はない。ネットワークアナライザの測定精度の制限は、発生器信号の再現可能性のみに左右される。しかしながら、正しい設計であれば、この精度はRF電子機器では非常に高い。
以下でより詳しく説明されるように、本発明によるVNAは非線形測定の使用にも適している。非線形測定については、先行技術との比較による第1の大きな違いは、コム発生器測定のための測定ポイントがもはや必要ないという事実である。ハードウェアは、線形測定についての本発明によるVNAのものに対応する。概して、周波数変換測定のための周知の校正方法が本発明によるVNAに使用されて、基準測定ポイントの測定データを固定値に設定する。しかしながら、信号発生器110の高い再現可能性は新たな可能性を提供する。ゆえに、本発明によるVNAは、この時、(測定ケーブルの前の)測定アダプタで、完全な周波数変換方式で一度校正されるだけでよい。その相互性のため、線形測定ケーブルの誤差は、線形測定技術(MSOなど)で使用される標準的な校正方法により個別に校正することができる。
本発明は、測定ポイントを測定ポートにつき1つのみ使用して、線形及び非線形の散乱パラメータ(Sパラメータ)を測定できるVNAの実現を可能にする。ゆえに、先行技術と比較したハードウェアの縮小により、線形コンポーネントの測定に加えて非線形コンポーネントの測定にもVNAを使用することが可能である。基準測定ポイントの省略は、実行されなければならない測定が少なく、測定時間の短縮という結果を生じることを意味する。この効果は、周波数変換測定では特に明白である。この新たな構造(n測定ポイントコンセプト)によりリアルタイムでこれらを実行することができる。線形機器及び周波数変換機器についてのハードウェア要件は、実質的に同一である。
ネットワーク解析の原理は、他の多くの分野で適用することができる。これらは、なかでも、レーダ技術、充填レベル測定及び湿度測定を含む。これらの挙げられた測定は、アンテナを使用して戸外で実行されることが多い。校正は、アンテナの前方で、又は戸外で実行され得る。必要なハードウェアの縮小を通して、測定精度は周知の解決法と比較して改良されている。例えば、現行のFMCWレーダは1つの測定ポイントを有し、VNAのように校正することができない。本発明では、レーダが測定ポイントを1つのみ有することもある。この事例では、伝送器から1つの測定ポイントまでのクロストークが計算され得る。FMCWレーダが伝送関数の実数部分のみを測定するのに対して、本発明を備えるレーダ機器は、複雑な伝送関数を測定することができ、ゆえに著しく高い測定精度を呈する。
本発明による方法では、先行技術でよく行われるように、波a1はもはや測定されず、パラメータフィールド134から読み取られる。この目的のため、信号発生器110を通して波a1の発生に影響を与える制御ユニット136により、少なくとも1つのパラメータが最初に決定される。これらは例えば、信号発生器110で調節される周波数と、任意で、信号発生器110で設定される出力電力、及び/又は周囲温度Tなどの他のパラメータである。この、又はこれらのパラメータにより、振幅及び/又は位相など、波a1の所望する値がパラメータフィールド134から読み取られる。この目的のため、波a1のための振幅及び/又は位相の値は、パラメータの各値についてのパラメータフィールド134に明確に記憶される。このような波a1の振幅及び/又は位相の値は、例えば散乱行列の散乱パラメータS11のさらなる計算に使用される。
パラメータフィールド134は、信号発生器について一度作成されるのみでよい。この目的のため、少なくとも1つのパラメータの異なる値について、振幅及び/又は位相の値が測定により一度決定され、パラメータフィールド134に記憶される。
ベクトルPIMのような周波数変換測定の事例では、完全な周波数変換方式でネットワークアナライザが一度のみ校正される。その後、ケーブル計算を測定する目的で、標準的な校正(MSOなど)のみが行われる。周波数変換測定における局部発振器126の位相誤差のための測定ポイントは、もはや必要とされない。