JP2019051479A - Development waste liquid treating device and treating method - Google Patents

Development waste liquid treating device and treating method Download PDF

Info

Publication number
JP2019051479A
JP2019051479A JP2017177403A JP2017177403A JP2019051479A JP 2019051479 A JP2019051479 A JP 2019051479A JP 2017177403 A JP2017177403 A JP 2017177403A JP 2017177403 A JP2017177403 A JP 2017177403A JP 2019051479 A JP2019051479 A JP 2019051479A
Authority
JP
Japan
Prior art keywords
stage
filtrate
concentration
crystals
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017177403A
Other languages
Japanese (ja)
Other versions
JP7055326B2 (en
Inventor
平野 悟
Satoru Hirano
悟 平野
濱村 秀樹
Hideki Hamamura
秀樹 濱村
義浩 藤原
Yoshihiro Fujiwara
義浩 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2017177403A priority Critical patent/JP7055326B2/en
Priority to TW107117507A priority patent/TWI821186B/en
Priority to KR1020180080800A priority patent/KR102499569B1/en
Priority to CN201810998990.0A priority patent/CN109502860A/en
Publication of JP2019051479A publication Critical patent/JP2019051479A/en
Application granted granted Critical
Publication of JP7055326B2 publication Critical patent/JP7055326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/22Treatment of water, waste water, or sewage by freezing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/38Treatment of water, waste water, or sewage by centrifugal separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F2001/5218Crystallization
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

To provide a development waste liquid treating device and treating method capable of obtaining high-purity recovery liquid which can be recycled as developing liquid by concentration/cooling crystallization processing as highly refining processing on a post stage.MEANS: A developing waste liquid treating device 1 is composed of a prior stage cooling crystallization unit 2a and a post stage cooling crystallization unit 2b for performing highly refining processing with respect to recovery liquid which is recovered and refined by the prior stage cooling crystallization unit 2a. Both of the prior stage cooling crystallization unit 2a and the post stage cooling crystallization unit 2b are configured so as to perform a series of processing [concentration → cooling crystallization → crystal separation → dissolution]. The prior stage cooling crystallization unit 2a includes a prior stage concentration device 3a, a prior stage cooling crystallization device 4a, a prior stage solid liquid separation device 5a, a dissolution device 6a and a prior stage filtrate tank 7a. The post stage cooling crystallization unit 2b includes a post stage concentration device 3b, a post stage cooling crystallization device 4b, a post stage solid liquid separation device 5b, a dissolution tank 6b and a post stage filtrate tank 7b.SELECTED DRAWING: Figure 1

Description

本発明は、半導体や液晶工場における現像廃液から、不純物を除去し、再利用可能な現像液を回収する現像廃液処理装置及び処理方法に関する。   The present invention relates to a developing waste liquid treatment apparatus and a processing method for removing impurities from a developing waste liquid in a semiconductor or liquid crystal factory and collecting a reusable developer.

半導体や液晶工場における現像廃液から再利用可能な現像液(水酸化テトラメチルアンモニウム、水酸化テトラアルキルアンモニウム等)を回収するには、フォトレジスト等の不純物を除去する必要がある。回収方法としては、前処理として廃液を中和処理してフォトレジストを除去しておき、その後に電気分解処理による精製(特許文献1参照、以下、従来例1と称する。)やイオン交換樹脂による精製(特許文献2参照、以下、従来例2と称する。)を行うことが知られている。   In order to recover a reusable developer (tetramethylammonium hydroxide, tetraalkylammonium hydroxide, etc.) from developer wastewater in a semiconductor or liquid crystal factory, it is necessary to remove impurities such as photoresist. As a recovery method, the waste liquid is neutralized as a pretreatment to remove the photoresist, and then purified by electrolysis (see Patent Document 1, hereinafter referred to as Conventional Example 1) or ion exchange resin. It is known to perform purification (refer to Patent Document 2, hereinafter referred to as Conventional Example 2).

しかしながら、このような前処理でフォトレジストを除去する方法では、フォトレジスト濃度が高い場合や、処理すべき現像廃液が多量である場合には、フォトレジストの分離が困難であるという課題が生じていた。そこで、かかる課題を解消するために、現像廃液を濃縮し、更に冷却晶析を行う方法が提案されている(特許文献3参照、従来例3と称する。)。   However, in such a method of removing the photoresist by the pretreatment, there is a problem that it is difficult to separate the photoresist when the photoresist concentration is high or the development waste liquid to be processed is large. It was. Therefore, in order to solve such a problem, a method of concentrating development waste liquid and further performing cooling crystallization has been proposed (refer to Patent Document 3, referred to as Conventional Example 3).

再表2006−59760号公報No. 2006-59760 特開平4−228587号公報Japanese Patent Laid-Open No. 4-228487 特開平10−53567号公報JP-A-10-53567

上記濃縮・冷却晶析を用いた第3従来例では、中和処理等に比べてフォトレジストの除去が比較的容易であることから、フォトレジスト濃度が高い場合や、処理すべき現像廃液が多量である場合にも適用可能であり、第1従来例、第2従来例の課題は解決される。しかしながら、この第3従来例においては、まだ不純物の除去が十分でなく、現像液として再利用可能な高純度の回収液が得られていないのが現状である。
そこで、前段濃縮・冷却晶析処理に加えて、後段に高度精製処理を行い、現像液として再利用可能な高純度の回収液を得ることができる現像廃液処理装置及び処理方法が要望されていた。
In the third conventional example using the above-described concentration / cooling crystallization, the removal of the photoresist is relatively easy as compared with the neutralization treatment or the like. In this case, the problems of the first conventional example and the second conventional example are solved. However, in the third conventional example, impurities are not sufficiently removed yet, and a high-purity recovered liquid that can be reused as a developer has not been obtained.
Therefore, in addition to the pre-stage concentration / cooling crystallization process, there has been a demand for a development waste liquid treatment apparatus and a treatment method capable of obtaining a high-purity recovered liquid that can be reused as a developer by performing a high-purification process in the latter stage. .

本願発明は、上記課題に鑑みて考え出されたものであり、その目的は、後段に高度精製処理として冷却晶析処理を行い、現像液として再利用可能な高純度の回収液を得ることができる現像廃液処理装置及び処理方法を提供することである。   The present invention has been conceived in view of the above problems, and its purpose is to obtain a high-purity recovered liquid that can be reused as a developer by performing a cooling crystallization process as a highly purified process in the subsequent stage. It is an object to provide a developing waste liquid processing apparatus and processing method that can be used.

上記目的を達成するために、請求項1記載の発明は、現像廃液処理装置であって、現像廃液を濃縮する前段濃縮装置と、前記前段濃縮装置から供給される濃縮液を冷却晶析し、結晶が析出したスラリーを生成する前段冷却晶析装置と、前記前段冷却晶析装置から供給されるスラリーから結晶を分離する前段固液分離装置と、加熱手段を有し、前記前段固液分離装置から供給される結晶を加熱溶解する溶解装置と、前記溶解装置から供給される溶解液を冷却晶析し、結晶が析出したスラリーを生成する後段冷却晶析装置と、前記後段冷却晶析装置から供給されるスラリーから結晶を分離する後段固液分離装置と、前記後段固液分離装置から供給される結晶を溶解する溶解タンクと、を備えたことを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a development waste liquid treatment apparatus, wherein a pre-stage concentration apparatus for concentrating the development waste liquid, and a cooling liquid crystallized from the concentrate supplied from the pre-stage concentration apparatus, A first-stage cooling and crystallization apparatus for producing a slurry in which crystals are precipitated, a first-stage solid-liquid separation apparatus for separating crystals from the slurry supplied from the first-stage cooling and crystallization apparatus, and a heating means, From the melting device for heating and dissolving the crystal supplied from the above, the subsequent cooling and crystallizing device for cooling and crystallizing the solution supplied from the melting device and generating the slurry in which the crystal is precipitated, and the latter cooling and crystallizing device It is characterized by comprising a latter-stage solid-liquid separation device for separating crystals from the supplied slurry, and a dissolution tank for dissolving the crystals supplied from the latter-stage solid-liquid separation device.

上記の如く、多重の冷却晶析処理を行うことにより、現像液として再利用可能な高純度の回収液を得ることができる。   As described above, by performing multiple cooling crystallization processes, a high-purity recovered liquid that can be reused as a developer can be obtained.

請求項2記載の発明は、請求項1記載の現像廃液処理装置であって、前記後段固液分離装置により結晶が分離・除去された後のろ液を濃縮すると共に、濃縮液を前記後段冷却晶析装置に供給する後段濃縮装置と、前記後段固液分離装置により結晶が分離・除去された後のろ液に含まれる不純物濃度を測定する後段不純物測定手段と、ろ液を前記後段濃縮装置に返送する第1返送ラインと、ろ液を前記前段濃縮装置に返送する第2返送ラインと、
前記第2返送ラインに設けられる後段制御弁と、前記後段不純物測定手段の測定結果により、不純物の濃度が設定値未満の場合には前記後段制御弁を閉状態とし、ろ液を前記後段濃縮装置に返送し、不純物の濃度が設定値以上の場合には前記後段制御弁を開状態とし、ろ液の少なくとも一部を前記前段濃縮装置に返送するようにろ液の返送通路を切換える後段切換制御手段と、を備えたことを特徴とする。
The invention according to claim 2 is the developing waste liquid treatment apparatus according to claim 1, wherein the filtrate after the crystals are separated and removed by the latter-stage solid-liquid separation apparatus is concentrated, and the concentrate is cooled in the latter-stage cooling. A latter-stage concentrator for supplying to the crystallizer, a latter-stage impurity measuring means for measuring the impurity concentration contained in the filtrate after the crystals have been separated and removed by the latter-stage solid-liquid separator, and the filtrate for the latter-stage concentrator A first return line that returns to the first concentration line, a second return line that returns the filtrate to the pre-concentrator,
When the concentration of impurities is less than a set value according to the measurement result of the latter control valve provided in the second return line and the latter impurity measuring means, the latter control valve is closed, and the filtrate is supplied to the latter concentration device. When the impurity concentration is equal to or higher than the set value, the latter control valve is opened, and the latter switching control is performed to switch the filtrate return passage so that at least a part of the filtrate is returned to the former concentrator. Means.

上記構成によれば、回収率向上と純度向上の効果を奏する。具体的には以下の通りである。
(1)ろ液を後段濃縮装置に返すことで、回収率を上げることができる。
(2)ただし、ろ液を後段濃縮装置に返す処理を継続すると、後段冷却晶析側における不純物濃度が徐々に高くなる。設定値以上の濃度になった場合には、ろ液を前段濃縮装置に戻すことで、後段の不純物濃度を下げることができ、回収液の純度の向上を図ることができる。
(3)不純物濃度が高い場合、ろ液を外部に排出しても良いが、回収率を下げることになる。ろ液を前段濃縮装置に戻すことで、回収率を下げること無く処理ができる。前段濃縮装置に戻すろ液は、前段冷却晶析側で不純物が大きく低減されているため、前段濃縮装置における不純物量に大きな影響を与えること無く、再度回収処理できる。
According to the said structure, there exists an effect of a recovery rate improvement and a purity improvement. Specifically, it is as follows.
(1) The recovery rate can be increased by returning the filtrate to the subsequent concentration apparatus.
(2) However, if the process of returning the filtrate to the subsequent concentration apparatus is continued, the impurity concentration on the subsequent cooling crystallization side gradually increases. When the concentration is higher than the set value, returning the filtrate to the pre-concentrator can lower the impurity concentration in the post-stage and improve the purity of the recovered liquid.
(3) When the impurity concentration is high, the filtrate may be discharged to the outside, but the recovery rate is lowered. By returning the filtrate to the pre-concentrator, the treatment can be performed without reducing the recovery rate. The filtrate returned to the pre-concentrator can be recovered again without greatly affecting the amount of impurities in the pre-concentrator because the impurities are greatly reduced on the pre-cooling crystallization side.

請求項3記載の発明は、請求項1又は2記載の現像廃液処理装置であって、前記前段固液分離装置により結晶が分離・除去された後のろ液に含まれる不純物濃度を測定する前段不純物測定手段と、ろ液を前記前段濃縮装置に返送する第3返送ラインと、ろ液を外部に排出する排出ラインと、前記排出ラインに設けられる前段制御弁と、前記前段不純物測定手段の測定結果により、不純物の濃度が設定値未満の場合には前記前段制御弁を閉状態とし、ろ液を前記前段濃縮装置に返送し、不純物の濃度が設定値以上の場合には前記前段制御弁を開状態とし、ろ液の少なくとも一部を外部に排出するようにろ液の返送通路を切換える前段切換制御手段と、を備えたことを特徴とする。   The invention according to claim 3 is the development waste liquid treatment apparatus according to claim 1 or 2, wherein the first stage of measuring the concentration of impurities contained in the filtrate after the crystals have been separated and removed by the first-stage solid-liquid separation apparatus. Impurity measurement means, a third return line for returning filtrate to the pre-concentrator, a discharge line for discharging filtrate to the outside, a pre-stage control valve provided in the discharge line, and measurement of the pre-stage impurity measurement means As a result, when the concentration of impurities is less than a set value, the front-stage control valve is closed, and the filtrate is returned to the front-stage concentrator, and when the concentration of impurities is higher than the set value, the front-stage control valve is turned on. And a pre-stage switching control means for switching the filtrate return path so that at least a part of the filtrate is discharged to the outside.

上記構成によれば、回収率向上と純度向上の効果を奏する。具体的には以下の通りである。
(1)ろ液を前段濃縮装置に返すことで、回収率を上げることができる。
(2)ただし、ろ液を前段濃縮装置に返す処理を継続すると、前段冷却晶析ユニットにおける不純物濃度が徐々に高くなるため、設定値以上の濃度になった場合には、ろ液を外部に排出することで不純物濃度の上昇を抑制でき、回収液の純度の向上を図ることができる。
According to the said structure, there exists an effect of a recovery rate improvement and a purity improvement. Specifically, it is as follows.
(1) The recovery rate can be increased by returning the filtrate to the pre-concentrator.
(2) However, if the process of returning the filtrate to the pre-concentration device is continued, the impurity concentration in the pre-cooling crystallization unit gradually increases, so if the concentration exceeds the set value, the filtrate is removed to the outside. By discharging, an increase in impurity concentration can be suppressed, and the purity of the recovered liquid can be improved.

請求項4記載の発明は、請求項1〜3の何れかに記載の現像廃液処理装置であって、前記前段濃縮装置と前記後段濃縮装置の少なくともいずれか一方は蒸発濃縮装置であり、蒸発濃縮させた際に発生する蒸気を凝縮することで凝縮水を生成し、前段濃縮装置と後段濃縮装置の少なくともいずれか一方で生成された凝縮水を、溶解水として前記溶解装置と前記溶解タンクの少なくともいずれか一方に供給するように構成されたことを特徴とする。   Invention of Claim 4 is a development waste liquid processing apparatus in any one of Claims 1-3, Comprising: At least any one of the said front | former stage concentration apparatus and the said back | latter stage concentration apparatus is an evaporative concentration apparatus, and evaporative concentration Condensate water is generated by condensing the steam generated at the time, and the condensed water generated in at least one of the pre-stage concentrator and the post-stage concentrator is used as dissolved water as at least the dissolution apparatus and the dissolution tank. It is characterized by being configured to supply to either one.

上記構成によれば、凝縮水を溶解水として利用することにより、別途に溶解水を供給することを抑制できる。また、蒸発濃縮装置を適用することで、生成される凝縮水温度が高くなるため、結晶の溶解が容易となる。さらに、濃縮装置が蒸発濃縮装置の場合に、高温の凝縮水を溶解装置に供給すれば、溶解装置において加熱するエネルギーを少なくできる。なお、後段濃縮装置で生成される凝縮水量は少ないが、不純物の含有が極めて低い綺麗な溶液であるので、回収液の純度向上の観点から溶解タンクに供給するのが好ましい。   According to the said structure, supplying condensed water separately can be suppressed by using condensed water as dissolved water. Moreover, since the condensed water temperature produced | generated becomes high by applying an evaporative concentration apparatus, melt | dissolution of a crystal | crystallization becomes easy. Furthermore, when the concentrating device is an evaporative concentrating device, if high-temperature condensed water is supplied to the dissolving device, energy to be heated in the dissolving device can be reduced. In addition, although the amount of condensed water produced | generated by a back | latter stage concentration apparatus is small, since it is a beautiful solution with very low content of impurities, it is preferable to supply it to a dissolution tank from the viewpoint of improving the purity of the recovered liquid.

請求項5記載の発明は、現像廃液処理方法であって、現像廃液を濃縮する前段濃縮工程と、前記前段濃縮工程で得られた濃縮液を冷却晶析し、結晶が析出したスラリーを生成する前段冷却晶析工程と、前記前段冷却晶析工程で得られたスラリーから結晶を分離する前段固液分離工程と、前記前段固液分離工程で得られた結晶を加熱溶解する加熱溶解工程と、前記加熱溶解工程で得られた溶解液を冷却晶析し、結晶が析出したスラリーを生成する後段冷却晶析工程と、前記後段冷却晶析工程で得られたスラリーから結晶を分離する後段固液分離工程と、前記後段固液分離工程で得られた結晶を溶解する溶解工程と、を備えたことを特徴とする。   The invention according to claim 5 is a processing method for developing waste liquid, and a pre-concentration step for concentrating the developing waste liquid, and cooling and crystallizing the concentrated liquid obtained in the pre-concentration step to produce a slurry in which crystals are deposited. A pre-cooling crystallization step, a pre-solid-liquid separation step of separating crystals from the slurry obtained in the pre-cooling crystallization step, a heating dissolution step of heating and dissolving the crystals obtained in the pre-solid-liquid separation step, The solution obtained in the heating and dissolving step is cooled and crystallized to produce a slurry in which crystals are precipitated. The latter cooling and crystallizing step for separating the crystals from the slurry obtained in the latter cooling and crystallizing step. It is characterized by comprising a separation step and a dissolution step for dissolving the crystals obtained in the latter solid-liquid separation step.

上記構成によれば、現像液として再利用可能な高純度の回収液を得ることができる。   According to the above configuration, a high-purity recovered liquid that can be reused as a developer can be obtained.

本発明によれば、多重の冷却晶析処理を行うことにより、現像液として再利用可能な高純度の回収液を得ることができる。   According to the present invention, by performing multiple cooling crystallization processes, a high-purity recovered liquid that can be reused as a developer can be obtained.

実施の形態に係る現像廃液処理装置の全体構成図。1 is an overall configuration diagram of a development waste liquid treatment apparatus according to an embodiment. 他の実施の形態に係る現像廃液処理装置の一部の構成を示す部分構成図。The partial block diagram which shows the structure of a part of the developing waste liquid processing apparatus which concerns on other embodiment.

以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。   Hereinafter, the present invention will be described in detail based on embodiments. Note that the present invention is not limited to the following embodiments.

図1は実施の形態に係る現像廃液処理装置の全体構成図である。現像廃液処理装置1は、現像廃液から不純物を除去し、再利用可能な現像液(水酸化テトラメチルアンモニウム(TMAH))を回収する装置である。ここで、不純物は、フォトレジスト成分や現像処理の各工程において生じる銅・アルミニウム等の金属類が含まれる。なお、主たる不純物はフォトレジスト成分である。
この現像廃液処理装置1は、前段冷却晶析ユニット2aと、前段冷却晶析ユニット2aで回収精製された回収液(後述する図1の溶解装置6aで生成された溶解液に相当)に対して高度精製処理を行う後段冷却晶析ユニット2bとから構成されている。以下、前段冷却晶析ユニット2a及び後段冷却晶析ユニット2bの構成を具体的に説明する。
FIG. 1 is an overall configuration diagram of a development waste liquid treatment apparatus according to an embodiment. The development waste liquid treatment apparatus 1 is an apparatus that removes impurities from the development waste liquid and collects a reusable developer (tetramethylammonium hydroxide (TMAH)). Here, the impurities include a photoresist component and metals such as copper and aluminum generated in each step of development processing. The main impurity is a photoresist component.
The developing waste liquid treatment apparatus 1 is provided for the first-stage cooling and crystallization unit 2a and the recovered liquid recovered and purified by the first-stage cooling and crystallization unit 2a (corresponding to a solution generated by the dissolving apparatus 6a of FIG. 1 described later). It is comprised from the back | latter stage cooling crystallization unit 2b which performs a highly purified process. Hereinafter, the structure of the front | former stage cooling crystallization unit 2a and the back | latter stage cooling crystallization unit 2b is demonstrated concretely.

[前段冷却晶析ユニット2aの構成]
前段冷却晶析ユニット2aは、現像廃液を濃縮する前段濃縮装置3aと、前段濃縮装置3aで濃縮された濃縮液を冷却して溶解度を下げ濃縮液中の溶質を結晶させて結晶が析出したスラリーを生成する前段冷却晶析装置4aと、前段冷却晶析装置4aから供給されるスラリーから結晶を分離する前段固液分離装置5aと、加熱手段80を有し前段固液分離装置5aから供給される結晶を加熱溶解する溶解装置6aと、前段固液分離装置5aで結晶が分離・除去された後のろ液を貯留する前段ろ液タンク7aと、前段濃縮装置3aで得られた凝縮水を貯留する凝縮水タンク8aを有する。
[Configuration of Pre-cooling Crystallization Unit 2a]
The pre-cooling crystallization unit 2a includes a pre-concentration device 3a for concentrating the developing waste liquid, and a slurry in which crystals are precipitated by cooling the concentrated liquid concentrated by the pre-concentration device 3a to lower the solubility and crystallizing the solute in the concentrate. The first-stage cooling and crystallization apparatus 4a for generating the first and second stages, the first-stage solid / liquid separation apparatus 5a for separating the crystals from the slurry supplied from the first-stage cooling and crystallization apparatus 4a, and the heating means 80 are supplied from the first-stage solid / liquid separation apparatus 5a. A melting device 6a for heating and dissolving the crystals, a first filtrate tank 7a for storing the filtrate after the crystals are separated and removed by the first solid-liquid separation device 5a, and the condensed water obtained by the first concentration device 3a. It has a condensed water tank 8a to be stored.

前段濃縮装置3aは、現像廃液を飽和近くまで濃縮する濃縮装置であれば特に限定されるものではない。前段濃縮装置3aの例としては蒸発濃縮装置を挙げることができる。蒸発濃縮装置の例としては、供給された処理液(現像廃液)を熱源により蒸発させる蒸発缶と、蒸発缶内を低圧にする真空ポンプとを備えた低圧蒸発濃縮装置や、さらに発生蒸気を断熱圧縮する圧縮機を備え、圧縮機により温度と圧力が上昇した蒸気を蒸発缶に戻して処理液を蒸発するための熱源とするように構成された、蒸気圧縮型低圧蒸発濃縮装置を挙げることができる。   The pre-stage concentrator 3a is not particularly limited as long as it is a concentrator that concentrates the developing waste liquid to near saturation. An example of the pre-stage concentrator 3a is an evaporative concentrator. Examples of evaporative concentrators include a low-pressure evaporative concentrator equipped with an evaporator that evaporates the supplied processing solution (development waste liquid) with a heat source, and a vacuum pump that lowers the inside of the evaporator, and further, the generated steam is insulated. A vapor compression type low-pressure evaporative concentration apparatus comprising a compressor for compressing and configured to return the vapor whose temperature and pressure have been increased by the compressor to the evaporator and to serve as a heat source for evaporating the processing liquid. it can.

前段冷却晶析装置4aとしては、ジャケットや内部コイルによる冷却方式の晶析装置、外部循環冷却式晶析装置などが知られており、特に制限はない。ジャケット式晶析装置は、晶析を行う容器の周囲にジャケットを有し、当該ジャケット内にチラーからの冷水(又は冷媒)を通し、当該容器の壁面を介して冷却するタイプである。内部コイル式晶析装置は、晶析を行う容器内に冷却コイルを配置し、チラーからの冷水(又は冷媒)を冷却コイル内に通し、容器内の溶液を冷却するタイプである。外部循環冷却式晶析装置は、晶析槽とその外部に配置された冷却器とを配管、バルブ等から成る循環路で形成されており、冷却器としては、多管式冷却器が好適に使用される。容器内に撹拌翼やバッフルを具備し、内液が良好に撹拌できるものが好ましい。また、何れのタイプも、混合性の向上のため、内部にドラフトチューブを具備するのが好ましい。   As the pre-cooling crystallization apparatus 4a, a cooling crystallization apparatus using a jacket or an internal coil, an external circulation cooling crystallization apparatus, and the like are known, and there is no particular limitation. The jacket type crystallizer is a type in which a jacket is provided around a container for crystallization, and cold water (or a refrigerant) from a chiller is passed through the jacket and cooled through the wall of the container. The internal coil crystallizer is a type in which a cooling coil is disposed in a container for crystallization, and cold water (or refrigerant) from a chiller is passed through the cooling coil to cool the solution in the container. The external circulation cooling type crystallizer is formed by a circulation path composed of piping, valves, etc., between the crystallization tank and a cooler arranged outside thereof, and a multi-tube type cooler is suitable as the cooler. used. A container equipped with a stirring blade and a baffle in which the internal solution can be satisfactorily stirred is preferable. Moreover, it is preferable that any type has a draft tube inside for the improvement of a mixing property.

前段固液分離装置5aとしては、遠心分離機、ロータリーバキュームフィルターなどが挙げられる。なお、前段固液分離装置5aには洗浄用冷純水が供給されるようになっており、この結果、分離された結晶が冷純水で洗浄され、過剰な結晶を溶解させることなく結晶に付着している不純物が洗浄除去できる。   Examples of the first-stage solid-liquid separation device 5a include a centrifuge and a rotary vacuum filter. The pre-stage solid / liquid separation device 5a is supplied with cold pure water for washing, and as a result, the separated crystals are washed with cold pure water, and are converted into crystals without dissolving excessive crystals. The adhering impurities can be removed by washing.

溶解装置6aに備えられる加熱手段80としては、加熱蒸気を供給する構成や電気ヒータ等を例示できる。   Examples of the heating means 80 provided in the melting apparatus 6a include a configuration for supplying heated steam, an electric heater, and the like.

また、前段ろ液タンク7aには、タンク7内のろ液を前段濃縮部装置3aに返送する第3返送ライン9aが接続されている。第3返送ライン9aにはろ液ポンプ10aが設けられている。なお、第3返送ライン9aには分岐ライン11aが設けられており、第3返送ライン9aの一部と分岐ライン11aとにより、前段ろ液タンク7a内のろ液を循環させる循環ラインが構成されている。また、返送ライン9aには途中で分岐した排出ライン12aが設けられており、この排出ライン12aを通過してろ液が外部に排出されるようになっている。第3返送ライン9aには、ろ液に含まれる不純物(フォトレジスト成分や銅・アルミニウム等の金属類)の濃度を測定する吸光度計(前段不純物測定手段に相当)14aが設けられている。排出ライン12aには前段制御弁13aが設けられている。吸光度計14aの測定結果は制御装置(前段切換制御手段、後段切換制御手段に相当)40に与えられ、測定結果に応じて前段制御弁13aの開閉が制御される。具体的には、測定された不純物濃度が設定値未満の場合はろ液はすべて前段濃縮部装置3aに返送され、不純物濃度が設定値以上の場合はろ液の一部が排出ライン12aより外部に排出される。   In addition, a third return line 9a for returning the filtrate in the tank 7 to the previous stage concentration unit 3a is connected to the previous stage filtrate tank 7a. A filtrate pump 10a is provided in the third return line 9a. The third return line 9a is provided with a branch line 11a, and a part of the third return line 9a and the branch line 11a constitute a circulation line for circulating the filtrate in the preceding filtrate tank 7a. ing. The return line 9a is provided with a discharge line 12a branched in the middle, and the filtrate is discharged to the outside through the discharge line 12a. The third return line 9a is provided with an absorptiometer (corresponding to the previous stage impurity measuring means) 14a for measuring the concentration of impurities (photoresist components and metals such as copper and aluminum) contained in the filtrate. A pre-stage control valve 13a is provided in the discharge line 12a. The measurement result of the absorptiometer 14a is given to a control device (equivalent to the front-stage switching control means and the rear-stage switching control means) 40, and the opening / closing of the front-stage control valve 13a is controlled according to the measurement result. Specifically, when the measured impurity concentration is lower than the set value, all the filtrate is returned to the pre-concentration unit 3a, and when the impurity concentration is higher than the set value, a part of the filtrate is discharged to the outside from the discharge line 12a. Is done.

また、凝縮水タンク8aは、溶解装置6aと後述する溶解タンク6bに接続されており、溶解装置6a及び溶解タンク6bの溶解水として凝縮水が利用されるようになっている。
ここで、本明細書においては、「溶解水」は結晶を溶解するための水を意味し、「溶解液」は結晶が溶解された後の状態である液を意味する。換言すれば、溶解のために溶解装置6aや溶解タンク6bに供給される液を「溶解水」と定義し、溶解装置6aや溶解タンク6bにおいて溶解処理された後の液を「溶解液」と定義する。
なお、溶解装置6aから供給される溶解液は、後述する後段冷却晶析装置4bに与えられるようになっている。
The condensed water tank 8a is connected to a dissolving device 6a and a dissolving tank 6b described later, and condensed water is used as the dissolving water in the dissolving device 6a and the dissolving tank 6b.
Here, in this specification, “dissolved water” means water for dissolving crystals, and “dissolved liquid” means a liquid in a state after the crystals are dissolved. In other words, the liquid supplied to the dissolution apparatus 6a and the dissolution tank 6b for dissolution is defined as “dissolution water”, and the liquid after the dissolution treatment in the dissolution apparatus 6a and the dissolution tank 6b is referred to as “dissolution liquid”. Define.
In addition, the solution supplied from the dissolving device 6a is supplied to the later-stage cooling and crystallizing device 4b described later.

[後段冷却晶析ユニット2bの構成]
後段冷却晶析ユニット2bは、基本的には前段冷却晶析ユニット2aと同様の構成を有しており、前段冷却晶析ユニット2bの各構成部分には対応する数字に添え字bを付して示す。具体的は、後段冷却晶析ユニット2bは、後段濃縮装置3bと、後段冷却晶析装置4bと、後段固液分離装置5bと、溶解タンク6bと、後段ろ液タンク7bと、第1返送ライン9bと、ろ液ポンプ10bと、分岐ライン11bと、吸光度計(後段不純物測定手段に相当)14bとを有する。後段濃縮装置3bの例としては、前段と同様の蒸発濃縮装置を挙げることができる。溶解タンク6bと溶解装置6aとは溶解処理を行う点において共通するが、溶解タンク6bは溶解装置6aに備えられる加熱手段80を有しておらず、一般的な溶解タンクと同様である。また、吸光度計14bの測定結果は制御装置40に与えられ、測定結果に応じて後段制御弁13bの開閉が制御されようになっている。なお、後段冷却晶析ユニット2bでは、ろ液を外部に排出する排出ライン12aに代えて、ろ液を前段濃縮装置3aに返送する第2返送ライン20が設けられている。従って、吸光度計14bによる不純物濃度の測定結果に応じて、後段ろ液タンク7b内のろ液は後段濃縮装置3bにすべて返送されるか、ろ液の一部が前段濃縮装置3aに返送されるようにろ液通路が切換えるように構成されている。
[Configuration of the latter cooling crystallization unit 2b]
The post-cooling crystallization unit 2b basically has the same configuration as that of the pre-cooling crystallization unit 2a, and each component of the pre-cooling crystallization unit 2b is appended with a suffix b. Show. Specifically, the latter cooling crystallization unit 2b includes a latter concentration apparatus 3b, a latter cooling crystallization apparatus 4b, a latter solid-liquid separation apparatus 5b, a dissolution tank 6b, a latter filtrate tank 7b, and a first return line. 9b, a filtrate pump 10b, a branch line 11b, and an absorptiometer (corresponding to a subsequent impurity measuring means) 14b. As an example of the latter stage concentration apparatus 3b, the same evaporation concentration apparatus as the previous stage can be mentioned. The dissolution tank 6b and the dissolution apparatus 6a are common in that the dissolution process is performed, but the dissolution tank 6b does not have the heating means 80 provided in the dissolution apparatus 6a, and is the same as a general dissolution tank. Further, the measurement result of the absorbance meter 14b is given to the control device 40, and the opening and closing of the rear control valve 13b is controlled according to the measurement result. In the latter stage cooling crystallization unit 2b, a second return line 20 for returning the filtrate to the former stage concentration device 3a is provided instead of the discharge line 12a for discharging the filtrate to the outside. Therefore, according to the measurement result of the impurity concentration by the absorptiometer 14b, all of the filtrate in the latter-stage filtrate tank 7b is returned to the latter-stage concentrator 3b, or a part of the filtrate is returned to the former-stage concentrator 3a. Thus, the filtrate passage is configured to be switched.

[現像廃液処理装置1]
次いで、現像廃液処理装置1の処理動作について説明する。
先ず、現像廃液は前段濃縮装置3aに供給される。前段濃縮装置3aでは、飽和近くまで濃縮された濃縮液が生成される。この前段濃縮装置3aにおいて低圧蒸発濃縮装置を使用した場合は、低圧蒸発により濃縮液温度が低くなるため、次の冷却晶析に必要なエネルギーを少なくできる。また、蒸気圧縮型蒸発濃縮装置を使用すると、蒸発缶で発生した蒸気を圧縮機により断熱圧縮して高温に持ち上げるので、蒸気加熱の場合に比べてエネルギー効率がよく、さらに省エネルギー化が図られる。なお、前段濃縮装置3aで生成される凝縮水は凝縮水タンク8aに供給される。
[Development waste liquid treatment device 1]
Next, the processing operation of the development waste liquid processing apparatus 1 will be described.
First, the developing waste liquid is supplied to the pre-stage concentrator 3a. In the pre-stage concentrator 3a, a concentrated liquid concentrated to near saturation is generated. When a low-pressure evaporative concentrator is used in the pre-stage concentrator 3a, the temperature of the concentrate is lowered by the low-pressure evaporation, so that the energy required for the next cooling crystallization can be reduced. In addition, when a vapor compression type evaporation concentrator is used, the vapor generated in the evaporator can be adiabatically compressed by the compressor and raised to a high temperature, so that energy efficiency is better than in the case of vapor heating and further energy saving is achieved. In addition, the condensed water produced | generated with the pre-stage concentrator 3a is supplied to the condensed water tank 8a.

次いで、濃縮液は前段冷却式晶析装置4aに供給される。前段冷却式晶析装置4aは、濃縮液を冷却して溶解度を下げ、濃縮液中の溶質(TMAH)を結晶させて析出する。そして、前段冷却式晶析装置4aから結晶化されたTMAHを含むスラリーが前段固液分離装置5aに排出される。   Next, the concentrated liquid is supplied to the pre-cooling crystallizer 4a. The pre-cooling crystallizer 4a cools the concentrate to lower the solubility, and crystallizes and precipitates the solute (TMAH) in the concentrate. Then, the slurry containing TMAH crystallized from the pre-cooling crystallizer 4a is discharged to the pre-solid-liquid separator 5a.

次いで、前段固液分離装置5aにおいて、液と分離されてTMAHの結晶固形物(TMAH・5HO)が取り出される。このTMAHの結晶固形物は冷純水で洗浄され、溶解装置6aに排出される。溶解装置6aでは、結晶固形物(TMAH・5HO)に少量の水(溶解水)を添加して加熱溶解を行い、飽和濃度に近い高温の溶解液を生成する。そして、この溶解装置6aで生成された溶解液は後段冷却晶析装置4bに与えられる。 Next, in the former solid-liquid separator 5a, the TMAH crystal solid (TMAH · 5H 2 O) is taken out by being separated from the liquid. The TMAH crystal solid is washed with cold pure water and discharged to the dissolving device 6a. In the dissolving device 6a, a small amount of water (dissolved water) is added to the crystalline solid (TMAH · 5H 2 O) and dissolved by heating to generate a high-temperature solution close to the saturation concentration. And the melt | dissolution solution produced | generated by this melt | dissolution apparatus 6a is given to the back | latter stage cooling crystallization apparatus 4b.

このように溶解装置6aにおいて加熱溶解を行うのは以下の理由による。即ち、後段冷却晶析ユニット2bにおける後段冷却晶析に先駆けて飽和濃度に近い高温の溶解液とする必要がある。この点に関して、TMAHは前段における濃縮→冷却晶析→固液分離の処理によりTMAH・5HOの結晶となり、TMAH・5HOは63℃以上の加熱で自己水により溶解液となる。そのため、63℃以上で加熱すれば、少量の水を添加するだけで、飽和濃度に近い高温の溶解液が生成できる。したがって、大量の水で結晶を溶解し、再度蒸発濃縮することで飽和に近い溶解液とする必要がなくなる。このような処理により、結晶を溶解し、再度結晶化することで不純物を低減できる。 In this way, the melting by the melting apparatus 6a is performed for the following reason. That is, prior to the subsequent cooling crystallization in the subsequent cooling crystallization unit 2b, it is necessary to obtain a high-temperature solution close to the saturation concentration. In this regard, TMAH becomes TMAH · 5H 2 O crystals by the process of concentration → cooling crystallization → solid-liquid separation in the previous stage, and TMAH · 5H 2 O becomes a solution by self-water by heating at 63 ° C. or higher. Therefore, if it heats at 63 degreeC or more, only the addition of a small amount of water can produce | generate the high-temperature solution near saturation concentration. Therefore, it is not necessary to dissolve the crystals with a large amount of water and evaporate and concentrate again to obtain a solution close to saturation. By such treatment, impurities can be reduced by dissolving the crystals and recrystallization.

一方、結晶固形物が分離・除去された後のろ液は、前段ろ液タンク7aに排出される。
なお、溶解装置6aでは、凝縮水タンク8aから供給される凝縮水を溶解水として利用する。このとき、凝縮水は高温のため、溶解装置6aにおいて加熱するエネルギーを少なくできる。
On the other hand, the filtrate after the crystalline solid is separated and removed is discharged to the pre-stage filtrate tank 7a.
In the dissolution apparatus 6a, the condensed water supplied from the condensed water tank 8a is used as the dissolved water. At this time, since the condensed water is at a high temperature, the energy to be heated in the melting device 6a can be reduced.

一方、前段ろ液タンク7a内のろ液は、吸光度計14aにより不純物濃度が測定されており、不純物濃度が設定値未満の場合は前段制御弁13aが閉状態に維持され、ろ液タンク7a内のろ液はすべて前段濃縮装置3aに返送される。不純物濃度が設定値以上の場合は前段制御弁13aが開状態となり、ろ液タンク7a内のろ液の一部が外部に排出される。これにより、前段冷却晶析ユニット2a内での不純物濃度の上昇を抑制し、溶解装置6aからの溶解液(前段冷却晶析ユニット2aの回収液に相当)の純度を向上することができる。   On the other hand, the filtrate in the first-stage filtrate tank 7a is measured for the impurity concentration by the absorbance meter 14a. When the impurity concentration is less than the set value, the first-stage control valve 13a is maintained in the closed state, and the filtrate tank 7a All the filtrate is returned to the pre-concentrator 3a. When the impurity concentration is equal to or higher than the set value, the upstream control valve 13a is opened, and a part of the filtrate in the filtrate tank 7a is discharged to the outside. Thereby, it is possible to suppress an increase in the impurity concentration in the pre-cooling crystallization unit 2a and to improve the purity of the solution from the dissolving device 6a (corresponding to the recovered liquid of the pre-cooling crystallization unit 2a).

次いで、後段冷却晶析ユニット2bにおいて以下の処理が行われる。具体的には、溶解装置6aから供給される溶解液が後段冷却晶析装置4bに供給され、後段冷却晶析装置4bにおいて冷却晶析処理され、後段固液分離装置5bにおいて結晶分離処理(TMAHの結晶固形物の冷純水による洗浄処理を含む)され、溶解タンク6bにおいて結晶に水(溶解水)を加えることで溶解処理が行われ、溶解タンク6bから最終品として回収TMAH液が回収される。このように前段冷却晶析及び後段冷却晶析の多重冷却晶析処理を行う構成とすることにより、現像液として再利用可能な高純度を備えた回収TMAH液が得られることになる。   Next, the following processing is performed in the rear cooling crystallization unit 2b. Specifically, the solution supplied from the dissolving device 6a is supplied to the subsequent cooling and crystallizing device 4b, cooled and crystallized in the subsequent cooling and crystallizing device 4b, and crystal separation (TMAH) in the subsequent solid-liquid separating device 5b. The crystal solids are washed with cold pure water), and the dissolution process is performed by adding water (dissolution water) to the crystals in the dissolution tank 6b, and the recovered TMAH liquid is recovered from the dissolution tank 6b as the final product. The Thus, by setting it as the structure which performs the multiple cooling crystallization process of a front | former stage cooling crystallization and a back | latter stage cooling crystallization, the collection | recovery TMAH liquid provided with the high purity which can be reused as a developing solution is obtained.

一方、後段固液分離装置5bで結晶固形物が分離・除去された後のろ液は、後段ろ液タンク7bに排出され、更に後段濃縮装置3bに返送され濃縮処理される。次いで後段冷却晶析装置4bにおいて、後段濃縮装置3bからの再濃縮液と溶解装置6aからの溶解液とが混合されて後段冷却晶析装置4bに供給され、後段冷却晶析装置4bにおいて冷却晶析処理される。このような構成により、回収率が向上する。
なお、後段濃縮装置3bで生成された凝縮水は、前段濃縮装置3aで生成された凝縮水と同様に、凝縮水タンク8aに供給されるようになっている。
On the other hand, the filtrate after the crystal solids are separated and removed by the latter-stage solid-liquid separation device 5b is discharged to the latter-stage filtrate tank 7b, and further returned to the latter-stage concentration apparatus 3b for concentration treatment. Next, in the latter cooling crystallization apparatus 4b, the reconcentrated liquid from the latter concentration apparatus 3b and the dissolution liquid from the dissolving apparatus 6a are mixed and supplied to the latter cooling crystallization apparatus 4b. Analyzed. With such a configuration, the recovery rate is improved.
In addition, the condensed water produced | generated by the back | latter stage concentration apparatus 3b is supplied to the condensed water tank 8a similarly to the condensed water produced | generated by the front | former stage concentration apparatus 3a.

後段冷却晶析ユニット2bの処理が前段冷却晶析ユニット2aの処理と異なる点は以下の通りである。即ち、後段ろ液タンク7bから返送されるろ液における不純物濃度が設定値未満の場合は後段制御弁13bが閉状態に維持され、後段ろ液タンク7b内のろ液はすべて後段濃縮装置3bに返送される。そして、不純物濃度が設定値以上となると、後段制御弁13bが開状態となり、後段ろ液タンク7b内のろ液の一部が前段濃縮装置3aに返送される。これにより、最終品としての回収液の純度を向上することができる。   The difference between the processing of the rear cooling crystallization unit 2b and the processing of the previous cooling crystallization unit 2a is as follows. That is, when the impurity concentration in the filtrate returned from the latter filtrate tank 7b is less than the set value, the latter control valve 13b is kept closed, and all the filtrate in the latter filtrate tank 7b is sent to the latter concentration device 3b. Will be returned. When the impurity concentration becomes equal to or higher than the set value, the rear control valve 13b is opened, and a part of the filtrate in the rear filtrate tank 7b is returned to the front concentration device 3a. Thereby, the purity of the recovered liquid as the final product can be improved.

(その他の事項)
(1)上記実施の形態では、前段濃縮装置3aで生成された凝縮水はすべて凝縮水タンク8aに供給されるようなっていたが、図2に示すように、凝縮水供給ラインL10の途中で分岐する分岐ラインL11を設け、この分岐ラインL11に予熱器50及び冷却器51を設けるように構成してもよい。このような図2の構成により、凝縮水の一部は予熱器50を通過して現像廃液と熱交換され、現像廃液が予熱されることになる。また、凝縮水は予熱器50及び冷却器51を通過することにより冷却され、この冷却された凝縮水は前段固液分離装置5a及び後段固液分離装置5bの少なくとも一方に供給し、結晶洗浄水として利用することが可能となる。
(Other matters)
(1) In the above embodiment, all the condensed water generated in the pre-concentrator 3a is supplied to the condensed water tank 8a, but as shown in FIG. 2, in the middle of the condensed water supply line L10. A branch line L11 that branches may be provided, and the preheater 50 and the cooler 51 may be provided in the branch line L11. With such a configuration of FIG. 2, a part of the condensed water passes through the preheater 50 and is heat-exchanged with the developing waste liquid, so that the developing waste liquid is preheated. Further, the condensed water is cooled by passing through the preheater 50 and the cooler 51, and this cooled condensed water is supplied to at least one of the front-stage solid / liquid separation device 5a and the rear-stage solid / liquid separation device 5b, and the crystal washing water is supplied. It becomes possible to use as.

(2)上記実施の形態では、前段濃縮装置3aで生成された凝縮水は、溶解水として溶解装置6a及び溶解タンク6bの両者に供給するように構成し、後段濃縮装置3bで生成された濃縮水は、溶解水として溶解装置タンク6a及び溶解タンク6bの両者に供給するように構成されていた。しかし、前段濃縮装置3aで生成された濃縮水は、溶解装置6a及び溶解タンク6bのいずれか一方にのみ供給するように構成して、後段濃縮装置3bで生成された濃縮水は、溶解装置6a及び溶解タンク6bのいずれか一方にのみ供給するように構成してもよい。   (2) In the above embodiment, the condensed water generated in the former-stage concentrating device 3a is configured to be supplied to both the dissolving device 6a and the dissolving tank 6b as dissolved water, and the concentrated water generated in the latter-stage concentrating device 3b. The water was configured to be supplied to both the dissolution apparatus tank 6a and the dissolution tank 6b as dissolved water. However, the concentrated water generated by the former-stage concentrator 3a is configured to be supplied only to one of the dissolving apparatus 6a and the dissolving tank 6b, and the concentrated water generated by the latter-stage concentrator 3b is used as the dissolving apparatus 6a. Alternatively, it may be configured to supply only to either one of the dissolution tank 6b.

更に、凝縮水を溶解水として利用する構成としては、前段濃縮装置3aのみ又は後段濃縮装置3bのみであってもよい。   Furthermore, the configuration using the condensed water as dissolved water may be only the pre-stage concentrator 3a or the post-stage concentrator 3b.

なお、後段濃縮装置3bで生成された凝縮水は量は少ないが、不純物の含有が極めて低い綺麗な水であるので、回収液の純度向上の観点から溶解タンク6bに供給するのが好ましい。   In addition, although the amount of the condensed water produced in the latter-stage concentrating device 3b is small, it is clean water containing very low impurities, so that it is preferably supplied to the dissolution tank 6b from the viewpoint of improving the purity of the recovered liquid.

(3)上記実施の形態では、ろ液の不純物濃度測定については吸光度計により吸光度を測定するように構成したが、これに限定されずその他の方法で測定してもよい。   (3) In the above embodiment, the measurement of the impurity concentration of the filtrate is configured to measure the absorbance with an absorptiometer, but the present invention is not limited to this and may be measured by other methods.

(4)上記実施の形態における加熱装置6aに代えて、溶解タンク(加熱手段80を有さない)を使用し、当該溶解タンクで生成した溶解液を後段濃縮装置3bに供給するように構成してもよい。   (4) Instead of the heating device 6a in the above embodiment, a dissolution tank (without the heating means 80) is used, and the solution generated in the dissolution tank is supplied to the subsequent concentration device 3b. May be.

本発明は、後段に高度精製処理として濃縮・冷却晶析処理を行い、現像液として再利用可能な高純度の回収液を得ることができる現像廃液処理装置及び処理方法に適用することが可能である。   The present invention can be applied to a development waste liquid treatment apparatus and a treatment method that can perform a concentration and cooling crystallization treatment as a highly purified treatment in the subsequent stage to obtain a high-purity recovered liquid that can be reused as a developer. is there.

1:現像廃液処理装置 2a:前段冷却晶析ユニット
2b:後段冷却晶析ユニット 3a:前段濃縮装置
3b:後段濃縮装置 4a:前段冷却晶析装置
4b:後段冷却晶析装置 5a:前段固液分離装置
5b:後段固液分離装置 6a:溶解装置
6b:溶解タンク 8a:凝縮水タンク
9a:第3返送ライン 9b:第1返送ライン
12a:排出ライン 13a:前段制御弁
13b:後段制御弁
14a:吸光度計(前段不純物測定手段)
14b:吸光度計(後段不純物測定手段)
20:第2返送ライン
40:制御装置(前段切換制御手段、後段切換制御手段)
80:加熱手段
1: Development waste liquid treatment device 2a: Pre-cooling crystallization unit 2b: Post-cooling crystallization unit 3a: Pre-concentration device
3b: latter stage concentrator 4a: former stage cooling crystallizer
4b: Subsequent cooling crystallizer 5a: Pre-stage solid-liquid separator 5b: Sub-stage solid-liquid separator 6a: Dissolver 6b: Dissolving tank 8a: Condensed water tank 9a: Third return line 9b: First return line 12a: Discharge line 13a: front stage control valve 13b: rear stage control valve 14a: Absorbance meter (front stage impurity measuring means)
14b: Absorbance meter (second-stage impurity measuring means)
20: Second return line 40: Control device (front stage switching control means, rear stage switching control means)
80: Heating means

Claims (5)

現像廃液を濃縮する前段濃縮装置と、
前記前段濃縮装置から供給される濃縮液を冷却晶析し、結晶が析出したスラリーを生成する前段冷却晶析装置と、
前記前段冷却晶析装置から供給されるスラリーから結晶を分離する前段固液分離装置と、
加熱手段を有し、前記前段固液分離装置から供給される結晶を加熱溶解する溶解装置と、
前記溶解装置から供給される溶解液を冷却晶析し、結晶が析出したスラリーを生成する後段冷却晶析装置と、
前記後段冷却晶析装置から供給されるスラリーから結晶を分離する後段固液分離装置と、
前記後段固液分離装置から供給される結晶を溶解する溶解タンクと、
を備えたことを特徴とする現像廃液処理装置。
A pre-concentrator for concentrating developer waste,
Cooling and crystallizing the concentrated liquid supplied from the preceding-stage concentrating device, and generating a slurry from which crystals have precipitated,
A pre-solid-liquid separation device for separating crystals from the slurry supplied from the pre-cooling crystallizer;
A melting device that has heating means and heat-dissolves crystals supplied from the preceding solid-liquid separation device;
A cooling crystallization apparatus for cooling and crystallizing the solution supplied from the dissolution apparatus to produce a slurry in which crystals are deposited; and
A latter-stage solid-liquid separation device for separating crystals from the slurry supplied from the latter-stage cooling crystallizer;
A dissolution tank for dissolving crystals supplied from the latter-stage solid-liquid separator;
A developing waste liquid treatment apparatus comprising:
前記後段固液分離装置により結晶が分離・除去された後のろ液を濃縮すると共に、濃縮液を前記後段冷却晶析装置に供給する後段濃縮装置と、
前記後段固液分離装置により結晶が分離・除去された後のろ液に含まれる不純物濃度を測定する後段不純物測定手段と、
ろ液を前記後段濃縮装置に返送する第1返送ラインと、
ろ液を前記前段濃縮装置に返送する第2返送ラインと、
前記第2返送ラインに設けられる後段制御弁と、
前記後段不純物測定手段の測定結果により、不純物の濃度が設定値未満の場合には前記後段制御弁を閉状態とし、ろ液を前記後段濃縮装置に返送し、不純物の濃度が設定値以上の場合には前記後段制御弁を開状態とし、ろ液の少なくとも一部を前記前段濃縮装置に返送するようにろ液の返送通路を切換える後段切換制御手段と、
を備えた請求項1記載の現像廃液処理装置。
A post-concentration device for concentrating the filtrate after the crystals are separated and removed by the post-stage solid-liquid separation device, and supplying the concentrate to the post-cooling crystallizer;
A post-stage impurity measuring means for measuring the impurity concentration contained in the filtrate after the crystals are separated and removed by the post-stage solid-liquid separation device;
A first return line for returning the filtrate to the latter concentration device;
A second return line for returning the filtrate to the pre-concentrator,
A rear control valve provided in the second return line;
When the concentration of impurities is less than a set value, the latter control valve is closed when the result of measurement by the latter impurity measuring means is less than the set value, and the filtrate is returned to the latter concentration device. The latter-stage control valve for switching the return path of the filtrate so that the latter-stage control valve is opened and at least a part of the filtrate is returned to the former-stage concentrator;
The development waste liquid processing apparatus of Claim 1 provided with.
前記前段固液分離装置により結晶が分離・除去された後のろ液に含まれる不純物濃度を測定する前段不純物測定手段と、
ろ液を前記前段濃縮装置に返送する第3返送ラインと、
ろ液を外部に排出する排出ラインと、
前記排出ラインに設けられる前段制御弁と、
前記前段不純物測定手段の測定結果により、不純物の濃度が設定値未満の場合には前記前段制御弁を閉状態とし、ろ液を前記前段濃縮装置に返送し、不純物の濃度が設定値以上の場合には前記前段制御弁を開状態とし、ろ液の少なくとも一部を外部に排出するようにろ液の返送通路を切換える前段切換制御手段と、
を備えた請求項1又は2記載の現像廃液処理装置。
Pre-stage impurity measuring means for measuring the impurity concentration contained in the filtrate after the crystals are separated and removed by the pre-stage solid-liquid separation device,
A third return line for returning the filtrate to the pre-concentrator,
A discharge line for discharging the filtrate to the outside;
A pre-stage control valve provided in the discharge line;
When the concentration of impurities is less than a set value, the previous control valve is closed when the result of measurement by the previous impurity measuring means is returned, the filtrate is returned to the previous concentration device, and the concentration of impurities is higher than the set value. A first-stage switching control means for switching the return passage of the filtrate so that the first-stage control valve is opened and at least a part of the filtrate is discharged to the outside;
The developing waste liquid treatment apparatus according to claim 1 or 2, further comprising:
前記前段濃縮装置と前記後段濃縮装置の少なくともいずれか一方は蒸発濃縮装置であり、蒸発濃縮させた際に発生する蒸気を凝縮することで凝縮水を生成し、前段濃縮装置と後段濃縮装置の少なくともいずれか一方で生成された凝縮水を、溶解水として前記溶解装置と前記溶解タンクの少なくともいずれか一方に供給するように構成された請求項1〜3の何れかに記載の現像廃液処理装置。   At least one of the pre-stage concentrator and the post-stage concentrator is an evaporative concentrator, and condensate is generated by condensing the vapor generated when evaporating and concentrating. At least one of the pre-stage concentrator and the post-stage concentrator is used. The development waste liquid processing apparatus according to any one of claims 1 to 3, wherein the condensed water generated in any one of the above is supplied as dissolved water to at least one of the dissolution apparatus and the dissolution tank. 現像廃液を濃縮する前段濃縮工程と、
前記前段濃縮工程で得られた濃縮液を冷却晶析し、結晶が析出したスラリーを生成する前段冷却晶析工程と、
前記前段冷却晶析工程で得られたスラリーから結晶を分離する前段固液分離工程と、
前記前段固液分離工程で得られた結晶を加熱溶解する加熱溶解工程と、
前記加熱溶解工程で得られた溶解液を冷却晶析し、結晶が析出したスラリーを生成する後段冷却晶析工程と、
前記後段冷却晶析工程で得られたスラリーから結晶を分離する後段固液分離工程と、
前記後段固液分離工程で得られた結晶を溶解する溶解工程と、
を備えたことを特徴とする現像廃液処理方法。
A pre-concentration step for concentrating developer waste,
Cooling and crystallization of the concentrated liquid obtained in the preceding concentration step, and the preceding cooling and crystallization step for producing a slurry in which crystals are precipitated,
A pre-solid-liquid separation step of separating crystals from the slurry obtained in the pre-cooling crystallization step;
A heating and dissolving step for heating and dissolving the crystals obtained in the previous solid-liquid separation step;
Cooling and crystallization of the solution obtained in the heating and dissolving step, and a subsequent cooling and crystallization step for producing a slurry in which crystals are precipitated,
A subsequent solid-liquid separation process for separating crystals from the slurry obtained in the latter cooling crystallization process;
A dissolving step for dissolving the crystals obtained in the latter solid-liquid separation step;
A processing method for developing waste liquid, comprising:
JP2017177403A 2017-09-15 2017-09-15 Development waste liquid treatment equipment and treatment method Active JP7055326B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017177403A JP7055326B2 (en) 2017-09-15 2017-09-15 Development waste liquid treatment equipment and treatment method
TW107117507A TWI821186B (en) 2017-09-15 2018-05-23 Imaging waste liquid treatment device and treatment method
KR1020180080800A KR102499569B1 (en) 2017-09-15 2018-07-11 Apparatus and method for treating development waste liquid
CN201810998990.0A CN109502860A (en) 2017-09-15 2018-08-29 Development waste liquid processing unit and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017177403A JP7055326B2 (en) 2017-09-15 2017-09-15 Development waste liquid treatment equipment and treatment method

Publications (2)

Publication Number Publication Date
JP2019051479A true JP2019051479A (en) 2019-04-04
JP7055326B2 JP7055326B2 (en) 2022-04-18

Family

ID=65745634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017177403A Active JP7055326B2 (en) 2017-09-15 2017-09-15 Development waste liquid treatment equipment and treatment method

Country Status (4)

Country Link
JP (1) JP7055326B2 (en)
KR (1) KR102499569B1 (en)
CN (1) CN109502860A (en)
TW (1) TWI821186B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546202B1 (en) * 1969-02-10 1980-11-21
JPH0631105A (en) * 1992-07-06 1994-02-08 Kennel F Griffith Multi-stage recrystallization of crystallizable substance for super purification
JPH1053567A (en) * 1996-08-12 1998-02-24 Showa Denko Kk Purification and recovery of tetraalkylammonium hydroxide from waste developer liquor
JPH1110134A (en) * 1997-06-20 1999-01-19 Fujitsu Ltd Waste liquid treating apparatus and waste liquid treating method
JPH11226302A (en) * 1998-02-12 1999-08-24 Kurita Water Ind Ltd Wastewater treatment method
JP2003340449A (en) * 2002-05-27 2003-12-02 Babcock Hitachi Kk Method for treating waste water containing tetraalkylammonium hydroxide
JP2004066102A (en) * 2002-08-06 2004-03-04 Babcock Hitachi Kk Waste liquid treatment method and equipment therefor
JP2008073639A (en) * 2006-09-22 2008-04-03 Kurita Water Ind Ltd Boron recovery apparatus
US20150375137A1 (en) * 2013-02-05 2015-12-31 Siemens Aktiengesellschaft Method and device for treatment of an amino acid salt solution that is contaminated with carbon

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3109525B2 (en) 1990-12-27 2000-11-20 クロリンエンジニアズ株式会社 Method for regenerating tetraalkylammonium hydroxide
JP2006157399A (en) 2004-11-29 2006-06-15 Hitachi Ltd Method for supporting exchange of electronic document with electronic signature, and information processing apparatus
SG160341A1 (en) * 2004-11-30 2010-04-29 Tokuyama Corp Method of treating waste developing solution
CN101529338B (en) * 2006-11-09 2012-01-25 株式会社德山 Method of neutralizing developer waste liquid containing tetraalkylammonium hydroxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546202B1 (en) * 1969-02-10 1980-11-21
JPH0631105A (en) * 1992-07-06 1994-02-08 Kennel F Griffith Multi-stage recrystallization of crystallizable substance for super purification
JPH1053567A (en) * 1996-08-12 1998-02-24 Showa Denko Kk Purification and recovery of tetraalkylammonium hydroxide from waste developer liquor
JPH1110134A (en) * 1997-06-20 1999-01-19 Fujitsu Ltd Waste liquid treating apparatus and waste liquid treating method
JPH11226302A (en) * 1998-02-12 1999-08-24 Kurita Water Ind Ltd Wastewater treatment method
JP2003340449A (en) * 2002-05-27 2003-12-02 Babcock Hitachi Kk Method for treating waste water containing tetraalkylammonium hydroxide
JP2004066102A (en) * 2002-08-06 2004-03-04 Babcock Hitachi Kk Waste liquid treatment method and equipment therefor
JP2008073639A (en) * 2006-09-22 2008-04-03 Kurita Water Ind Ltd Boron recovery apparatus
US20150375137A1 (en) * 2013-02-05 2015-12-31 Siemens Aktiengesellschaft Method and device for treatment of an amino acid salt solution that is contaminated with carbon

Also Published As

Publication number Publication date
TWI821186B (en) 2023-11-11
JP7055326B2 (en) 2022-04-18
TW201915071A (en) 2019-04-16
KR102499569B1 (en) 2023-02-15
KR20190031129A (en) 2019-03-25
CN109502860A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
JP5599168B2 (en) Solidification equipment for solution and waste liquid
TWI750158B (en) Treating method for polarizer manufacturing waste liquid
CN108862325A (en) The recovery and treatment method and equipment of sodium chloride-containing and potassium chloride high-salt wastewater
US11787718B2 (en) Zero-liquid discharge (ZLD) wastewater treatment apparatus and method
JP7055326B2 (en) Development waste liquid treatment equipment and treatment method
CN114949893B (en) Evaporation crystallization process and device for producing lithium chloride from salt lake brine
CN218665442U (en) Device for extracting high-purity lithium chloride and sodium chloride from lithium-rich salt lake
CN107879406B (en) High-salinity wastewater recovery method and high-salinity wastewater recovery system
TWI794188B (en) Treating method and treating device for polarizer manufacturing waste liquid
CN115745063A (en) Temperature-changing extraction, crystallization and desalination method
TW201922629A (en) Method for treating polarizing film manufacturing waste liquid comprising a first concentration step, a cooling and crystallization step, a solid-liquid separation step, and a second concentration step
CN106186006B (en) A kind of purifying lithium chloride method
JP4866448B2 (en) Method and apparatus for treating waste liquid containing inorganic salt
CN115849487B (en) Method for separating single salt and water from multi-component wastewater based on cascade concentrated eutectic freezing
CN108408759A (en) A kind of copper sulphate mother liquor purification recrystallization system and method
CN114394706B (en) Evaporation-freezing coupling high-concentration salt wastewater treatment method and system based on heat pump
CN217103446U (en) High salt waste water evaporation crystallization of coal industry divides salt device
KR20100135041A (en) Method and apparatus for treating an inorganic salt-containing waste liquid
CN103723745A (en) Purification method for sodium thiocyanate
CN220999474U (en) Brine recovery system
KR101971601B1 (en) Method for controlling and purifying boron for the chemical and volume control system using crystallization
JPS62275018A (en) Method for recovering valuable metal and acid from acidic waste liquor
CN208120766U (en) A kind of copper sulphate mother liquor purification recrystallization system
CN116253335A (en) Salt separation process of quaternary water salt system
TWI398412B (en) Process and apparatus for treating waste liquid containing inorganic salt

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181019

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220330

R150 Certificate of patent or registration of utility model

Ref document number: 7055326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150