JP2019050096A - バイポーラ電極の製造方法及びバイポーラ電極の製造装置 - Google Patents

バイポーラ電極の製造方法及びバイポーラ電極の製造装置 Download PDF

Info

Publication number
JP2019050096A
JP2019050096A JP2017173019A JP2017173019A JP2019050096A JP 2019050096 A JP2019050096 A JP 2019050096A JP 2017173019 A JP2017173019 A JP 2017173019A JP 2017173019 A JP2017173019 A JP 2017173019A JP 2019050096 A JP2019050096 A JP 2019050096A
Authority
JP
Japan
Prior art keywords
conductive sheet
electrode
cutting
longitudinal direction
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017173019A
Other languages
English (en)
Inventor
合田 泰之
Yasuyuki Aida
泰之 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017173019A priority Critical patent/JP2019050096A/ja
Publication of JP2019050096A publication Critical patent/JP2019050096A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Shearing Machines (AREA)

Abstract

【課題】導電性シートの切断位置を調整できるバイポーラ電極の製造方法及びバイポーラ電極の製造装置を提供する。【解決手段】バイポーラ電極の製造方法では、帯状の導電性シートSと、導電性シートSの下面Sc及び上面Sdのそれぞれにおいて導電性シートSの長手方向に間欠的に配列された複数の正極36及び負極38とを有するワークWを長手方向に搬送しながら、導電性シートSの短手方向に沿った回転軸Axを有するダイカットロール120を回転軸Axの周りに回転させて、隣り合う負極38間において導電性シートSを切断する。切断前に、センサ130を用いて隣り合う負極38間のピッチPmを測定し、測定されたピッチPmと基準値Prとの差Δに応じてダイカットロール120を長手方向に移動する。【選択図】図3

Description

本発明の一側面は、バイポーラ電極の製造方法及びバイポーラ電極の製造装置に関する。
複数のバイポーラ電極がセパレータを介して積層されたバイポーラ電池が知られている(特許文献1参照)。各バイポーラ電極は、電極板と、電極板の第1面に設けられた正極と、電極板の第2面に設けられた負極とを有している。
特開2005−135764号公報
バイポーラ電極を製造する方法としては、例えば以下の方法が考えられる。まず、帯状の導電性シートの第1面に、導電性シートの長手方向において複数の正極を間欠的に塗工し、帯状の導電性シートの第2面に、導電性シートの長手方向において複数の負極を間欠的に塗工する。次に、導電性シートを長手方向に搬送しながら、短手方向に沿った回転軸を有するダイカットロールを当該回転軸の周りに回転させて、隣り合う正極間及び隣り合う負極間において導電性シートを切断する。これにより、個片化されたバイポーラ電極が得られる。
導電性シートの短手方向に延びる単一の刃がダイカットロールの外周面に設けられていると、ダイカットロールが1回転する度に刃が導電性シートに入り込むことになる。よって、導電性シートの長手方向における切断位置のピッチは一定(ダイカットロールの周長と同じ)となるので、切断位置を調整することはできない。この場合、例えば隣り合う負極間のピッチが塗工のバラつきによって変動すると、隣り合う負極間の切断予定位置とは異なる位置で切断が行われる。さらに、切断位置のずれはその後の切断においても解消されないため、ずれ量が積算されてしまう。
本発明の一側面は、導電性シートの切断位置を調整できるバイポーラ電極の製造方法及びバイポーラ電極の製造装置を提供することを目的とする。
本発明の一側面に係るバイポーラ電極の製造方法は、帯状の導電性シートと、前記導電性シートの両面のそれぞれにおいて前記導電性シートの長手方向に間欠的に配列された複数の活物質層とを有するワークを前記長手方向に搬送しながら、前記導電性シートの短手方向に沿った回転軸を有する切断ロールを前記回転軸の周りに回転させて、隣り合う前記活物質層間において前記導電性シートを切断する工程を含み、前記切断する工程の前に、センサを用いて隣り合う前記活物質層間のピッチを測定する工程と、測定された前記ピッチと前記ピッチの基準値との差に応じて前記切断ロールを前記長手方向に移動する工程と、を含む。
このバイポーラ電極の製造方法によれば、測定された隣り合う活物質層間のピッチと基準値との差に応じて切断ロールを長手方向に移動することによって、導電性シートの切断位置を調整することができる。例えば、隣り合う活物質層間のピッチが基準値よりも大きい場合には、ワークの搬送方向における上流側に切断ロールを移動すると、実際の切断位置を隣り合う活物質層間の切断予定位置に近づけることができる。反対に、隣り合う活物質層間のピッチが基準値よりも小さい場合には、ワークの搬送方向における下流側に切断ロールを移動すると、実際の切断位置を隣り合う活物質層間の切断予定位置に近づけることができる。
上記製造方法は、前記導電性シートを切断して得られる前記バイポーラ電極の電極板の周縁部に枠体を接合する工程を更に含み、前記導電性シートの下面に設けられた前記活物質層が正極であり、前記導電性シートの上面に設けられた前記活物質層が負極であり、前記長手方向における前記負極の大きさは前記長手方向における前記正極の大きさよりも大きく、前記枠体は、前記負極が設けられた前記電極板の上面に接合されてもよい。
この場合、導電性シートを切断した後、バイポーラ電極の姿勢を変えることなく電極板の上面に枠体を接合することができる。また、長手方向における負極の大きさを長手方向における正極の大きさよりも大きくすると、隣り合う負極同士の間隔を隣り合う正極同士の間隔よりも小さくできる。
本発明の一側面に係るバイポーラ電極の製造装置は、帯状の導電性シートと、前記導電性シートの両面のそれぞれにおいて前記導電性シートの長手方向に間欠的に配列された複数の活物質層とを有するワークを長手方向に搬送する搬送装置と、前記導電性シートの短手方向に沿った回転軸を有し、前記回転軸の周りに回転することによって、隣り合う前記活物質層間において前記導電性シートを切断する切断ロールと、隣り合う前記活物質層間のピッチを測定するセンサと、測定された前記ピッチと前記ピッチの基準値との差に応じて前記切断ロールを前記長手方向に移動する駆動装置と、を備える。
このバイポーラ電極の製造装置によれば、測定された隣り合う活物質層間のピッチと基準値との差に応じて切断ロールを長手方向に移動することによって、導電性シートの切断位置を調整することができる。
本発明の一側面によれば、導電性シートの切断位置を調整できるバイポーラ電極の製造方法及びバイポーラ電極の製造装置が提供され得る。
蓄電モジュールを備える蓄電装置の実施形態を示す概略断面図である。 図1の蓄電装置を構成する蓄電モジュールを示す概略断面図である。 実施形態に係るバイポーラ電極の製造装置を模式的に示す正面図である。 図3のバイポーラ電極の製造装置の一部を示す平面図である。 実施形態に係るバイポーラ電極の製造方法を示すフローチャートである。 枠体が接合されたバイポーラ電極を示す断面図である。
以下、添付図面を参照しながら本発明の実施形態が詳細に説明される。図面の説明において、同一又は同等の要素には同一符号が用いられ、重複する説明は省略される。図面には必要に応じてXYZ直交座標系が示される。例えば、X方向及びY方向が水平方向であり、Z方向が鉛直方向である。
図1を参照して、蓄電装置の実施形態について説明する。図1に示される蓄電装置10は、例えばフォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリとして用いられる。蓄電装置10は、複数(本実施形態では3つ)の蓄電モジュール12を備えるが、単一の蓄電モジュール12を備えてもよい。蓄電モジュール12は、バイポーラ電池である。蓄電モジュール12は、例えばニッケル水素二次電池、リチウムイオン二次電池等の二次電池であるが、電気二重層キャパシタであってもよい。以下の説明では、ニッケル水素二次電池を例示する。
複数の蓄電モジュール12は、例えば金属板等の導電板14を介して積層され得る。積層方向から見て、蓄電モジュール12及び導電板14は例えば矩形形状を有する。各蓄電モジュール12の詳細については後述する。導電板14は、蓄電モジュール12の積層方向(Z方向)において両端に位置する蓄電モジュール12の外側にもそれぞれ配置される。導電板14は、隣り合う蓄電モジュール12と電気的に接続される。これにより、複数の蓄電モジュール12が積層方向に直列に接続される。積層方向において、一端に位置する導電板14には正極端子24が接続されており、他端に位置する導電板14には負極端子26が接続されている。正極端子24は、接続される導電板14と一体であってもよい。負極端子26は、接続される導電板14と一体であってもよい。正極端子24及び負極端子26は、積層方向に交差する方向(X方向)に延在している。これらの正極端子24及び負極端子26により、蓄電装置10の充放電を実施できる。
導電板14は、蓄電モジュール12において発生した熱を放出するための放熱板としても機能し得る。導電板14の内部に設けられた複数の空隙14aを空気等の冷媒が通過することにより、蓄電モジュール12からの熱を効率的に外部に放出できる。各空隙14aは例えば積層方向に交差する方向(Y方向)に延在する。積層方向から見て、導電板14は、蓄電モジュール12よりも小さいが、蓄電モジュール12と同じかそれより大きくてもよい。
蓄電装置10は、交互に積層された蓄電モジュール12及び導電板14を積層方向に拘束する拘束部材16を備え得る。拘束部材16は、一対の拘束プレート16A,16Bと、拘束プレート16A,16B同士を連結する連結部材(ボルト18及びナット20)とを備える。各拘束プレート16A,16Bと導電板14との間には、例えば樹脂フィルム等の絶縁フィルム22が配置される。各拘束プレート16A,16Bは、例えば鉄等の金属によって構成されている。積層方向から見て、各拘束プレート16A,16B及び絶縁フィルム22は例えば矩形形状を有する。絶縁フィルム22は導電板14よりも大きくなっており、各拘束プレート16A,16Bは、蓄電モジュール12よりも大きくなっている。積層方向から見て、拘束プレート16Aの縁部には、ボルト18の軸部を挿通させる挿通孔16A1が蓄電モジュール12よりも外側となる位置に設けられている。同様に、積層方向から見て、拘束プレート16Bの縁部には、ボルト18の軸部を挿通させる挿通孔16B1が蓄電モジュール12よりも外側となる位置に設けられている。積層方向から見て各拘束プレート16A,16Bが矩形形状を有している場合、挿通孔16A1及び挿通孔16B1は、拘束プレート16A,16Bの角部に位置する。
一方の拘束プレート16Aは、負極端子26に接続された導電板14に絶縁フィルム22を介して突き当てられ、他方の拘束プレート16Bは、正極端子24に接続された導電板14に絶縁フィルム22を介して突き当てられている。ボルト18は、例えば一方の拘束プレート16A側から他方の拘束プレート16B側に向かって挿通孔16A1及び挿通孔16B1に通される。他方の拘束プレート16Bから突出するボルト18の先端には、ナット20が螺合されている。これにより、絶縁フィルム22、導電板14及び蓄電モジュール12が挟持されてユニット化されると共に、積層方向に拘束荷重が付加される。
図2を参照して、蓄電装置を構成する蓄電モジュールについて説明する。図2に示される蓄電モジュール12は、複数のバイポーラ電極32が積層された積層体30を備える。バイポーラ電極32の積層方向から見て、積層体30は、例えば矩形形状を有する。隣り合うバイポーラ電極32間にはセパレータ40が配置され得る。
各バイポーラ電極32は、電極板34と、電極板34の第1面34cに設けられた正極36と、電極板34の第2面34dに設けられた負極38とを含む。積層体30において、一のバイポーラ電極32の正極36は、セパレータ40を挟んで積層方向に隣り合う一方のバイポーラ電極32の負極38と対向し、一のバイポーラ電極32の負極38は、セパレータ40を挟んで積層方向に隣り合う他方のバイポーラ電極32の正極36と対向している。
積層方向において、積層体30の一端には、内側面(図示下側の面)に負極38が配置された電極板34が配置される。この電極板34は負極側終端電極に相当する。積層方向において、積層体30の他端には、内側面(図示上側の面)に正極36が配置された電極板34が配置される。この電極板34は正極側終端電極に相当する。負極側終端電極の負極38は、セパレータ40を介して最上層のバイポーラ電極32の正極36と対向している。正極側終端電極の正極36は、セパレータ40を介して最下層のバイポーラ電極32の負極38と対向している。これら終端電極の電極板34はそれぞれ隣り合う導電板14(図1参照)に接続される。
蓄電モジュール12は、バイポーラ電極32の積層方向に延在し、積層体30を収容する筒状の樹脂部50を備える。樹脂部50は、複数の電極板34の周縁部34aを保持する。樹脂部50は、積層体30を取り囲むように構成されている。樹脂部50は、バイポーラ電極32の積層方向から見て例えば矩形形状を有している。すなわち、樹脂部50は例えば角筒状である。
樹脂部50は、電極板34の周縁部34aに接合されて、その周縁部34aを保持する第1シール部52と、積層方向に交差する方向(X方向及びY方向)において第1シール部52の外側に設けられた第2シール部54とを有する。
樹脂部50の内壁を構成する第1シール部52は、複数のバイポーラ電極32(すなわち積層体30)における電極板34の周縁部34aの全周にわたって設けられている。第1シール部52は、電極板34の周縁部34aに例えば溶着されており、その周縁部34aをシールする。すなわち、第1シール部52は、電極板34の周縁部34aに接合されている。各バイポーラ電極32の電極板34の周縁部34aは、第1シール部52に埋没した状態で保持されている。積層体30の両端に配置された電極板34の周縁部34aも、第1シール部52に埋没した状態で保持されている。これにより、積層方向に隣り合う電極板34,34間には、当該電極板34,34と第1シール部52とによって気密に仕切られた内部空間が形成されている。当該内部空間には、例えば水酸化カリウム水溶液等のアルカリ溶液からなる電解液(不図示)が収容されている。
樹脂部50の外壁を構成する第2シール部54は、バイポーラ電極32の積層方向に延在する第1シール部52の外周面52aを覆っている。第2シール部54の内周面54aは、第1シール部52の外周面52aに例えば溶着されており、その外周面52aをシールする。すなわち、第2シール部54は、第1シール部52の外周面52aに接合されている。第1シール部52に対する第2シール部54の溶着面(接合面)は、例えば4つの矩形平面をなす。
電極板34は、例えばニッケルからなる矩形の金属箔である。電極板34の周縁部34aは、正極活物質及び負極活物質の塗工されない未塗工領域となっている。未塗工領域では、電極板34が露出している。その未塗工領域が、樹脂部50の内壁を構成する第1シール部52に埋没して保持されている。正極36を構成する正極活物質としては、例えば水酸化ニッケルが挙げられる。負極38を構成する負極活物質としては、例えば水素吸蔵合金が挙げられる。電極板34の第2面34dにおける負極38の形成領域は、電極板34の第1面34cにおける正極36の形成領域に対して一回り大きくてもよい。
セパレータ40は、例えばシート状に形成されている。セパレータ40は、例えば矩形形状を有する。セパレータ40を形成する材料としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン系樹脂からなる多孔質フィルム、ポリプロピレン、ポリエチレンテレフタレート(PET)、メチルセルロース等からなる織布又は不織布等が例示される。また、セパレータ40は、フッ化ビニリデン樹脂化合物で補強されたものであってもよい。なお、セパレータ40は、シート状に限られず、袋状のものを用いてもよい。
樹脂部50(第1シール部52及び第2シール部54)は、例えば絶縁性の樹脂を用いた射出成形によって矩形の筒状に形成されている。樹脂部50を構成する樹脂材料としては、例えばポリプロピレン(PP)、ポリフェニレンサルファイド(PPS)、又は変性ポリフェニレンエーテル(変性PPE)等が挙げられる。
次に、図3及び図4を参照しながら蓄電モジュール12のバイポーラ電極32の製造装置について説明する。図3は、バイポーラ電極32の製造装置100を模式的に示す正面図である。図4は、図3の製造装置100の一部を示す平面図である。
図3及び図4に示されるように、バイポーラ電極32の製造装置100は、搬送装置110と、切断ロールとしてのダイカットロール120と、センサ130と、駆動装置140とを備える。
搬送装置110は、帯状のワークWをその長手方向(X方向)に搬送する。ワークWは、帯状の導電性シートSと、導電性シートSの両面(下面Sc及び上面Sd)のそれぞれにおいて導電性シートSの長手方向に間欠的に配列された複数の活物質層(正極36及び負極38)とを有する。正極36及び負極38は、導電性シートSの厚み方向(Z方向)から見て例えば矩形形状を有する活物質層である。複数の正極36間には導電性シートSの上面Sdが露出している。複数の負極38間には導電性シートSの下面Scが露出している。上面Sdは、短手方向における正極36の両側においても露出している。下面Scは、短手方向における負極38の両側においても露出している。
搬送装置110は、ワークWを間に挟んで搬送する一対の搬送ロール112a,112bと、ワークWの搬送方向(X方向)において搬送ロール112a,112bよりも下流側に配置される搬送部114とを備える。搬送ロール112a,112bは例えばニップロールである。搬送部114は、ワークWを支持する帯状のキャリアフィルム116を搬送する複数(本実施形態では4つ)のロール114a,114b,114c,114dを有する。キャリアフィルム116は、例えばPETフィルム等の樹脂フィルムである。キャリアフィルム116は、ロール114aからロール114b,114cを通ってロール114dまで搬送される。ロール114aはキャリアフィルム116を供給し、ロール114dはキャリアフィルム116を巻取る。キャリアフィルム116が搬送されることによって、キャリアフィルム116に支持されたワークWも搬送される。キャリアフィルム116は、循環するループ状のキャリアフィルムであってもよい。この場合、キャリアフィルム116は、ロール114dからロール114aに戻る。よって、キャリアフィルム116を繰り返し使用できる。搬送装置110は、搬送部114に代えて、搬送ロール112a,112bと同様の一対の搬送ロールを備えてもよい。この場合、一対の搬送ロール間にワークWを挟んで搬送することができる。
ダイカットロール120は、ワークWの搬送方向(X方向)においてキャリアフィルム116を搬送するロール114bとロール114cとの間に配置される。ダイカットロール120は、導電性シートSの短手方向(Y方向)に沿った回転軸Axを有する切断ロールの一例である。ダイカットロール120は、回転軸Axに沿った軸部121と、軸部121に接続されたロール本体122と、ロール本体122の外周面122sに設けられ短手方向に延びる刃124とを有する。ダイカットロール120は、回転軸Axの周りに回転することによって、隣り合う正極36間及び隣り合う負極38間において導電性シートSを切断する。これにより、短手方向に沿った切断線が導電性シートSに形成される。ダイカットロール120の回転速度は、ワークW及びキャリアフィルム116の搬送速度と同期しており、例えば一定である。短手方向における刃124の長さは、導電性シートSの幅よりも大きくなっている。本実施形態のダイカットロール120は単一の刃124を有しているが、周方向において等間隔に配置された複数の刃124を有してもよい。
ワークWを挟んでダイカットロール120の反対側には、支持ロール126が配置される。支持ロール126は、ワークWの搬送方向(X方向)においてキャリアフィルム116を搬送するロール114bとロール114cとの間に配置される。よって、支持ロール126とダイカットロール120との間には、キャリアフィルム116及びワークWが介在することになる。図3に示されるように、刃124がワークWに当たっていないと、ダイカットロール120の外周面122sがワークWの負極38に接触する。刃124がワークWに当たると、導電性シートSが切断される。このとき、導電性シートSが完全に切断されるように、キャリアフィルム116の一部が切断されてもよい。
センサ130は、例えばX方向において隣り合う負極38間のピッチPmを測定する。この場合、センサ130は、負極38の上方に配置される。センサ130は、例えばカラーセンサであってもよいし、高さセンサであってもよい。カラーセンサは、負極38と導電性シートSとの色の違いを検出する。高さセンサは、導電性シートSの上面Sdからの負極38の高さを検出する。いずれの場合でも、センサ130によって、例えば負極38の前縁38fを検出することができる。長手方向における各負極38の前縁38fの位置を検出することによって、隣り合う負極38間のピッチPmを測定することができる。測定されたピッチPmのデータは、センサ130からコントローラ150に送られる。
センサ130は、負極38の前縁38fに代えて長手方向における負極38の後縁を検出してもよい。また、センサ130は、隣り合う正極36間のピッチを測定してもよい。この場合、センサ130は、正極36の下方に配置される。
駆動装置140は、ダイカットロール120の軸部121に接続され得る。駆動装置140は、例えば長手方向に延在する一対のレール142上をスライドすることによってダイカットロール120を長手方向に移動可能である。駆動装置140は、回転軸Axの周りにダイカットロール120を回転させる回転駆動装置として機能してもよい。駆動装置140は、支持ロール126にも接続され、ダイカットロール120と共に支持ロール126を長手方向に移動可能である。
駆動装置140は、測定されたピッチPmとピッチPmの基準値Prとの差Δに応じてダイカットロール120を長手方向に移動する。ダイカットロール120の移動距離は例えば差Δと同じである。基準値Prは、例えば予め決定された設計値である。基準値Prは、コントローラ150内に記憶されており、コントローラ150が、測定されたピッチPmと基準値Prとの差Δを算出する。差Δの絶対値は例えば1mm以下であってもよいし、0.5mm以下であってもよい。コントローラ150は、この差Δに応じてダイカットロール120を長手方向に移動するように駆動装置140を制御する。測定されたピッチPmが基準値Prよりも大きい場合、駆動装置140は、ワークWの搬送方向における上流側にダイカットロール120を移動する。すなわち、ダイカットロール120を下流から上流に向かう方向X2に移動する。測定されたピッチPmが基準値Prよりも小さい場合、駆動装置140は、ワークWの搬送方向における下流側にダイカットロール120を移動する。すなわち、ダイカットロール120を上流から下流に向かう方向X1に移動する。このようにして、長手方向における切断位置間のピッチPcを調整することができる。ピッチPcは、長手方向におけるバイポーラ電極32の大きさと同じである。
バイポーラ電極32の製造装置100は、個片化されたバイポーラ電極32を搬送する搬送コンベア160を備え得る。搬送コンベア160は、キャリアフィルム116から剥離されたバイポーラ電極32を受け取って次工程に搬送する。
上記バイポーラ電極32の製造装置100によれば、測定された隣り合う負極38間のピッチPmと基準値Prとの差Δに応じてダイカットロール120を長手方向に移動することによって、導電性シートSの切断位置を調整することができる。
次に、図3〜図5を参照しながらバイポーラ電極の製造方法について説明する。図5は、バイポーラ電極の製造方法を示すフローチャートである。バイポーラ電極32は、製造装置100を用いて以下のようにして製造され得る。
(準備工程)
まず、ワークWを準備する(工程S1)。例えば、導電性シートSの下面Scにおいて長手方向に間欠的に複数の正極36を塗工する。同様に、導電性シートSの上面Sdにおいて長手方向に間欠的に複数の負極38を塗工する。このようにして得られたワークWは、例えば供給ロールに巻き回される。導電性シートSの下面Scには正極36が設けられ、導電性シートSの上面Sdには負極38が設けられる。長手方向における負極38の大きさは長手方向における正極36の大きさよりも大きい。供給ロールから供給されたワークWは、搬送装置110によって搬送される。
(測定工程)
次に、センサ130を用いて隣り合う負極38間のピッチPmを測定する(工程S2)。ピッチPmの測定は、搬送装置110によってワークWが搬送されている間に行われる。例えば、ワークWが搬送ロール112a,112bを通過した後、搬送部114に到達する前に、ピッチPmの測定が行われる。
(移動工程)
次に、測定されたピッチPmとピッチPmの基準値Prとの差Δに応じてダイカットロール120を長手方向に移動する(工程S3)。ダイカットロール120の移動は、ダイカットロール120を回転させながら、ダイカットロール120の刃124がワークWに接触していない間(測定されたピッチPmの下流側の切断位置と上流側の切断位置との間)に行われる。また、ダイカットロール120の移動は、搬送装置110によってワークWが搬送されている間に行われる。
(切断工程)
次に、ワークWを長手方向に搬送しながら、ダイカットロール120を回転軸Axの周りに回転させて、隣り合う負極38間において導電性シートSを切断する(工程S4)。個片化されたバイポーラ電極32は、搬送コンベア160によって次工程に搬送される。
(接合工程)
次に、必要に応じて、図6に示されるように、導電性シートSを切断して得られるバイポーラ電極32の電極板34の周縁部34aに枠体51を接合する(工程S5)。図6は、枠体51が接合されたバイポーラ電極32を示す断面図である。枠体51は、負極38が設けられた電極板34の第2面34d(上面)に接合される。これにより、枠体51と第2面34dとの間がシールされる。枠体51は、例えば枠状の樹脂フィルムである。枠体51は、バイポーラ電極32の上下面から熱プレスを行うことにより、第2面34dに溶着されてもよい。
本実施形態のバイポーラ電極の製造方法によれば、隣り合う負極38間のピッチPmと基準値Prとの差Δに応じてダイカットロール120を長手方向に移動することによって、導電性シートSの切断位置を調整することができる。例えば、隣り合う負極38間のピッチPmが基準値Prよりも大きい場合には、ワークWの搬送方向における上流側に差Δの絶対値と同じ距離だけダイカットロール120を移動すると、実際の切断位置を隣り合う負極38間の切断予定位置(例えば長手方向において負極38の前縁38fから一定距離離れた位置)に合わせることができる。反対に、隣り合う負極38間のピッチPmが基準値Prよりも小さい場合には、ワークWの搬送方向における下流側に差Δの絶対値と同じ距離だけダイカットロール120を移動すると、実際の切断位置を隣り合う負極38間の切断予定位置に合わせることができる。これにより、例えば、隣り合う負極38間のピッチPmが塗工のバラつきによって変動した場合であっても、隣り合う負極38間の切断予定位置と同じ位置で切断を行うことができる。このように、ダイカットロール120の移動によって、塗工のバラつきによるピッチPmの変動量を補正することができる。また、一度ピッチPmが基準値Prからずれてしまっても、ダイカットロール120の移動によって切断位置のずれが解消されるので、その後の切断においてずれ量が積算され難い。
さらに、切断位置を調整するために導電性シートSの搬送速度又はダイカットロール120の回転速度を変更する必要がないので、導電性シートSを一定の速度で搬送し、ダイカットロール120を一定の速度で回転させることができる。よって、導電性シートS又はダイカットロール120の急な加減速に起因する設備負荷を低減できる。
また、上記製造方法が枠体51を接合する工程S5を含む場合、導電性シートSを切断した後、バイポーラ電極32の姿勢を変えることなく電極板34の第2面34d(上面)に枠体51を接合することができる。また、長手方向における負極38の大きさが長手方向における正極36の大きさよりも大きいと、隣り合う負極38同士の間隔を隣り合う正極36同士の間隔よりも小さくできる。
上記接合工程の後、セパレータ40を介して、枠体51が接合された複数のバイポーラ電極32を積層し、図2の積層体30を得る。複数の枠体51が積層されることによって、第1シール部52が構成される。次に、第2シール部54を例えば射出成形により形成する。例えば、モールド内に、流動性を有する第2シール部54の樹脂材料を流し込むことによって、第2シール部54が形成され得る。
次に、注液口等を通じて、樹脂部50内に電解液を注入する。電解液を注入した後、注液口を封止することによって、蓄電モジュール12が製造される。その後、図1に示されるように、導電板14を介して複数の蓄電モジュール12を積層する。積層方向の両端に位置する導電板14にはそれぞれ正極端子24及び負極端子26が予め接続されている。その後、積層方向の両端に、絶縁フィルム22を介して一対の拘束プレート16A,16Bをそれぞれ配置し、ボルト18及びナット20を用いて、拘束プレート16A,16B同士を連結する。このようにして、図1に示される蓄電装置10が製造される。
以上、本発明の好適な実施形態について詳細に説明されたが、本発明は上記実施形態に限定されない。
32…バイポーラ電極、34…電極板、34a…周縁部、34d…第2面(上面)、36…正極(活物質層)、38…負極(活物質層)、51…枠体、100…製造装置、110…搬送装置、120…ダイカットロール(切断ロール)、124…刃、130…センサ、140…駆動装置、Ax…回転軸、S…導電性シート、Sc…下面、Sd…上面、W…ワーク。

Claims (3)

  1. バイポーラ電極の製造方法であって、
    帯状の導電性シートと、前記導電性シートの両面のそれぞれにおいて前記導電性シートの長手方向に間欠的に配列された複数の活物質層とを有するワークを前記長手方向に搬送しながら、前記導電性シートの短手方向に沿った回転軸を有する切断ロールを前記回転軸の周りに回転させて、隣り合う前記活物質層間において前記導電性シートを切断する工程を含み、
    前記切断する工程の前に、
    センサを用いて隣り合う前記活物質層間のピッチを測定する工程と、
    測定された前記ピッチと前記ピッチの基準値との差に応じて前記切断ロールを前記長手方向に移動する工程と、
    を含む、バイポーラ電極の製造方法。
  2. 前記導電性シートを切断して得られる前記バイポーラ電極の電極板の周縁部に枠体を接合する工程を更に含み、
    前記導電性シートの下面に設けられた前記活物質層が正極であり、
    前記導電性シートの上面に設けられた前記活物質層が負極であり、
    前記長手方向における前記負極の大きさは前記長手方向における前記正極の大きさよりも大きく、
    前記枠体は、前記負極が設けられた前記電極板の上面に接合される、請求項1に記載のバイポーラ電極の製造方法。
  3. バイポーラ電極の製造装置であって、
    帯状の導電性シートと、前記導電性シートの両面のそれぞれにおいて前記導電性シートの長手方向に間欠的に配列された複数の活物質層とを有するワークを長手方向に搬送する搬送装置と、
    前記導電性シートの短手方向に沿った回転軸を有し、前記回転軸の周りに回転することによって、隣り合う前記活物質層間において前記導電性シートを切断する切断ロールと、
    隣り合う前記活物質層間のピッチを測定するセンサと、
    測定された前記ピッチと前記ピッチの基準値との差に応じて前記切断ロールを前記長手方向に移動する駆動装置と、
    を備える、バイポーラ電極の製造装置。
JP2017173019A 2017-09-08 2017-09-08 バイポーラ電極の製造方法及びバイポーラ電極の製造装置 Pending JP2019050096A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173019A JP2019050096A (ja) 2017-09-08 2017-09-08 バイポーラ電極の製造方法及びバイポーラ電極の製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173019A JP2019050096A (ja) 2017-09-08 2017-09-08 バイポーラ電極の製造方法及びバイポーラ電極の製造装置

Publications (1)

Publication Number Publication Date
JP2019050096A true JP2019050096A (ja) 2019-03-28

Family

ID=65905883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173019A Pending JP2019050096A (ja) 2017-09-08 2017-09-08 バイポーラ電極の製造方法及びバイポーラ電極の製造装置

Country Status (1)

Country Link
JP (1) JP2019050096A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190317A (zh) * 2019-05-23 2019-08-30 无锡先导智能装备股份有限公司 极片入料机构及其控制方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110190317A (zh) * 2019-05-23 2019-08-30 无锡先导智能装备股份有限公司 极片入料机构及其控制方法

Similar Documents

Publication Publication Date Title
US11276903B2 (en) Electricity storage device and method for manufacturing electricity storage device
US20150129107A1 (en) Apparatus that sandwiches electrode sheet with separators
JP2011181395A (ja) 積層型リチウムイオン二次電池及びその製造方法と製造装置
JP2019016459A (ja) 蓄電装置およびその製造方法
JP6481258B2 (ja) 電気デバイスのセパレータ接合方法、電気デバイスのセパレータ接合装置、および電気デバイス
WO2016186209A1 (ja) 二次電池用の電極および二次電池の製造方法と製造装置
JP6801430B2 (ja) 蓄電モジュール及び蓄電モジュールの製造方法
KR101840859B1 (ko) 전극조립체 고정용 접착부재의 부가 장치
JP2019050096A (ja) バイポーラ電極の製造方法及びバイポーラ電極の製造装置
JP7024449B2 (ja) 電極製造装置及び電極製造方法
JP2015005332A (ja) 積層型電池
JP6520210B2 (ja) セパレータ付き電極の製造装置、及び、セパレータ付き電極の製造方法
EP4109609A1 (en) Apparatus and method for manufacturing unit cell
JP6911669B2 (ja) 蓄電モジュールの製造方法及び製造装置
JP2019003842A (ja) フィルム外装電池およびその製造方法
JP6575118B2 (ja) 電極積層装置
JP2019046744A (ja) バイポーラ電極の製造方法及びバイポーラ電極の製造装置
JP2019046743A (ja) バイポーラ電極の製造方法及びバイポーラ電極の製造装置
JP6984451B2 (ja) 計測装置及び計測方法
JP2017142939A (ja) 電極積層装置及び電極積層方法
JP7056444B2 (ja) 電極製造装置及び電極製造方法
JP2016207448A (ja) 枚葉積層型リチウムイオン電池の製造装置、および枚葉積層型リチウムイオン電池の製造方法
JP2019200955A (ja) 蓄電モジュールの製造方法
JP2019121454A (ja) 電極ユニット製造装置
JP2019057475A (ja) 蓄電モジュールの製造方法及び製造装置