JP2019048352A - Method of manufacturing multi-thread female screw and tap tool - Google Patents

Method of manufacturing multi-thread female screw and tap tool Download PDF

Info

Publication number
JP2019048352A
JP2019048352A JP2017173742A JP2017173742A JP2019048352A JP 2019048352 A JP2019048352 A JP 2019048352A JP 2017173742 A JP2017173742 A JP 2017173742A JP 2017173742 A JP2017173742 A JP 2017173742A JP 2019048352 A JP2019048352 A JP 2019048352A
Authority
JP
Japan
Prior art keywords
blade
tap tool
blades
processing
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017173742A
Other languages
Japanese (ja)
Other versions
JP6941294B2 (en
Inventor
正道 吉田
Masamichi Yoshida
正道 吉田
信明 栗田
Nobuaki Kurita
信明 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2017173742A priority Critical patent/JP6941294B2/en
Publication of JP2019048352A publication Critical patent/JP2019048352A/en
Application granted granted Critical
Publication of JP6941294B2 publication Critical patent/JP6941294B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)

Abstract

To provide a method of manufacturing a multi-thread female screw and a tap tool that has excellent processing accuracy while reducing processing resistance during processing.SOLUTION: In formation of a multi-thread female screw M with a number of threads J, a tap tool T is inserted into a work W with a prepared hole M0 formed in advance, the tap tool T including Y threads of blades En for processing screw grooves Mn equivalent to a measure Y of the number of threads J which is a natural number larger than 1 and smaller than J, and being formed so that the Y threads of blades En are point symmetry relative to an axis X. Then, the tap tool T and the work W are relatively moved along the axis X while relatively being rotated around the axis X. Then, basic processing for forming a multi-thread female screw M of Y threads in the work W is executed (J/Y) times while positioning the blade En at a part where formation of the multi-thread female screw M has not finished in the prepared hole M0 by relatively rotating the tap tool T and the work W by an angle equivalent to a multiple of (360/J) degrees around the axis X.SELECTED DRAWING: Figure 2

Description

本発明は、予め下孔が形成されたワークに対してタップ工具を用いて雌ねじ加工を施し、複数条数を有する雌ねじを形成する多条雌ねじの製造方法およびタップ工具に関する。   The present invention relates to a method for manufacturing a multi-threaded internal thread and a tap tool in which internal threads are formed by using a tap tool on a work in which a pilot hole is formed in advance, to form an internal thread having a plurality of threads.

従来、複数の条数を有する多条雌ねじの製造方法等に関する技術を記載したものとしては例えば以下の特許文献1に記載されたものがある。   DESCRIPTION OF RELATED ART Conventionally, there exist some which were described in the following patent document 1, for example as what described the technique regarding the manufacturing method etc. of the multi-threaded internal thread which has several thread numbers.

特許文献1に記載された技術は、外周面に螺旋状のねじ山を有する円柱状のタップ工具を素材の下孔にねじ込んで素材に多条の雌ねじを形成するものである。ここで用いられるタップ工具には、素材に形成する雌ねじの条数よりも少ない刃が形成されており、夫々の刃の周方向に沿った間隔が、360°を雌ねじの条数で割った値の倍数に設定されている。   According to the technique described in Patent Document 1, a cylindrical tap tool having a helical thread on the outer peripheral surface is screwed into a pilot hole of a material to form a multi-threaded internal thread on the material. The tap tool used here has a smaller number of blades than the number of female threads formed in the material, and the distance along the circumferential direction of each blade is 360 ° divided by the number of female threads It is set to a multiple of.

このタップ工具を素材に形成した下孔にねじ込み、形成予定の条数よりも少ないねじ溝が素材に形成される。これに続けて、タップ工具の各刃が孔の内周面のうち雌ねじが形成されていない部分に位置するようタップ工具を回転させる。回転角度は、360°を形成予定の雌ねじの条数で除算した値の倍数である。この状態でタップ工具を下孔にねじ込むことで残りの領域に雌ねじが形成される。   The tap tool is screwed into the lower hole formed in the material, and a thread groove smaller than the number of lines to be formed is formed in the material. Following this, the tap tool is rotated so that each blade of the tap tool is located at a portion of the inner circumferential surface of the hole where the internal thread is not formed. The rotation angle is a multiple of a value obtained by dividing 360 ° by the number of threads of the female screw to be formed. By screwing the tap tool into the lower hole in this state, an internal thread is formed in the remaining area.

このように、特許文献1の技術は、加工する条数を小分けしつつ多条雌ねじを形成することでタップ工具の加工抵抗を低減するというものである。   As described above, the technology of Patent Document 1 is to reduce the machining resistance of the tap tool by forming the multi-threaded internal thread while dividing the number of threads to be processed.

特開2008−284571号公報JP 2008-284571 A

ただし、特許文献1に記載の製造方法およびタップ工具では、一回の加工の際に機能させる刃の数や配置が特定されていない。例えば、刃の条数は雌ねじの条数よりも少ないというだけである。刃どうしの周方向に沿った配置間隔も360度を雌ねじの条数で割った値の倍数というだけである。よって、例えば、特許文献1の図2に示すように、条数が5の場合で3条の刃が周上の一か所側に集められた状態になる場合がある。   However, in the manufacturing method and the tap tool described in Patent Document 1, the number and arrangement of the blades to be functioned in one processing are not specified. For example, the number of blades of the blade is only smaller than the number of female threads. The arrangement interval along the circumferential direction between the blades is also a multiple of 360 degrees divided by the number of threads of the female screw. Therefore, for example, as shown in FIG. 2 of Patent Document 1, when the number of rows is 5, there may be a state where three blades are collected on one side of the circumference.

このようなタップ工具で素材を加工すると、タップ工具の周方向に沿った一部の領域に加工負荷が集中するため、タップ工具が曲り変形し易くなり、雌ねじの加工精度が悪化してしまう。   When processing the material with such a tap tool, the processing load is concentrated on a partial region along the circumferential direction of the tap tool, so the tap tool is easily bent and deformed, and the processing accuracy of the female screw is deteriorated.

また、5条の雌ねじを形成する場合にタップ工具の刃の条数を3とした場合、二回目の加工では、タップ工具の刃の一つは、一回目の加工で形成したねじ溝の一つを重ねて加工することになる。この場合に、既に一度加工したねじ溝の形状が乱され、各条のねじ溝の形状が不均一になる恐れもある。   In addition, when forming five internal threads, assuming that the number of blades of the tap tool is 3, in the second processing, one of the blades of the tap tool is one of the screw grooves formed in the first processing. Will be processed in layers. In this case, there is a possibility that the shape of the screw groove already processed once may be disturbed, and the shape of the screw groove of each strip may become uneven.

このように、従来の多条雌ねじの製造方法では、加工抵抗を減らすなど加工作業の改善はされるものの、常に高精度の多条雌ねじが形成されるか否かについては未だ改善の余地があった。
このような理由から、従来より、加工時の加工抵抗を低減しつつ、加工精度に優れた多条雌ねじの製造方法およびタップ工具が求められている。
As described above, in the conventional method of manufacturing a multi-threaded internal thread, although the processing operation is improved by reducing the processing resistance, there is still room for improvement as to whether or not the multi-threaded internal thread with high accuracy is always formed. The
For these reasons, conventionally, there has been a demand for a method and tap tool for manufacturing multi-threaded internal threads with excellent machining accuracy while reducing machining resistance during machining.

(特徴構成)
本発明に係る多条雌ねじの製造方法の特徴構成は、
条数Jの雌ねじを形成する際に、
予め下孔が形成されたワークに、
前記条数Jの1より大きくJより小さい自然数である約数Yの分のねじ溝を加工するY条の刃を備え、前記Y条の刃が軸芯に対して点対称となるよう形成されたタップ工具を挿入し、
前記タップ工具と前記ワークとを前記軸芯の周りに相対回転させつつ前記軸芯に沿って相対移動させ、前記Y条の前記雌ねじを前記ワークに形成する基本加工を、前記タップ工具と前記ワークとを前記軸芯の回りに(360/J)度の倍数分だけ相対回転させて、前記刃を前記下孔のうち前記雌ねじの形成が終了していない部位に位置取りさせつつ(J/Y)回行う点にある。
(Feature configuration)
The characteristic configuration of the method for manufacturing multi-threaded internal thread according to the present invention is
When forming an internal thread with a thread number J,
For workpieces with pre-formed holes,
The Y-row blade is formed to process a thread groove of a submultiple Y which is a natural number greater than 1 and less than J of the number J, and the Y-row blade is formed to be point symmetrical with respect to the axis Insert the tap tool,
The tap tool and the work are fundamentally processed to relatively move the tap tool and the work along the axis while relatively rotating the tap tool and the work around the axis to form the female thread of the Y-strip on the work. Are relatively rotated by a multiple of (360 / J) degrees around the axis, and the blade is positioned at a portion of the pilot hole where the formation of the female screw is not completed (J / Y ) It is in the point to carry out.

(効果)
本製造方法で用いるタップ工具は、雌ねじに形成するねじ溝の条数Jよりも少ない条数Yの刃を備えているから、一回の基本加工の最中に生じる加工抵抗が小さくなる。よって、タップ工具が加工抵抗によって捩じられるなどの変形が少なくなり、雌ねじの加工精度が向上する。また、加工抵抗が小さくなるため、加工装置の必要トルクも少なくて済み、多条雌ねじの加工を効率的に行うことができる。
(effect)
The tap tool used in the present manufacturing method is provided with a blade having a number Y of threads smaller than the number J of threads of the thread formed in the female screw, so that the machining resistance generated during one basic machining becomes small. Therefore, deformation such as twisting of the tap tool due to machining resistance is reduced, and the machining accuracy of the female screw is improved. Further, since the machining resistance is reduced, the required torque of the machining device can be reduced, and the multi-threaded internal thread can be machined efficiently.

さらに、本製造方法で用いるタップ工具は、Y条分の刃を軸芯に対して点対称となるように配置している。よって加工時にタップ工具に作用する加工抵抗は軸芯の周りにバランスよく分散されるから、加工に際してタップ工具が曲り変形せず、正確なねじ溝を形成することができる。   Furthermore, in the tap tool used in the present manufacturing method, the blades for Y strips are arranged so as to be point-symmetrical with respect to the axis. Therefore, since the machining resistance acting on the tap tool at the time of machining is distributed in a well-balanced manner around the axis, the tap tool is not bent and deformed at the time of machining, and an accurate thread groove can be formed.

そのうえ、タップ工具に形成される刃の条数はワークに形成する雌ねじの条数Jの約数Yであるから、基本加工を複数回に分けて行うに際して、既に形成したねじ溝の形状を乱さないように加工を進めることができる。よって、形成された全てのねじ溝の精度が高まり、高品質の多条雌ねじを得ることができる。   Moreover, since the number of blades of the blade formed on the tap tool is a divisor Y of the number J of female threads formed on the work, the shape of the already formed screw groove is disturbed when performing basic machining in multiple steps. You can proceed with processing so as not to Therefore, the precision of all the formed screw grooves is enhanced, and high quality multi-threaded internal thread can be obtained.

(特徴構成)
本発明に係る多条雌ねじの製造方法においては、前記タップ工具が、前記タップ工具を把持する把持部と、前記把持部に隣接する領域に、前記Y条の前記刃を第2刃として設けた第2刃部と、前記第2刃部に対して前記把持部とは反対側に隣接する領域に、前記第2刃の外径寸法よりも小さな外径寸法を有し、前記第2刃に連続する刃筋を有するものを含めて前記第2刃の数よりも多く前記条数J以下の自然数である条数Kを有し、前記軸芯に対して点対称に配置された第1刃を設けた第1刃部と、を備えていると好都合である。
(Feature configuration)
In the manufacturing method of the multi-threaded internal thread according to the present invention, the tap tool is provided with a grip portion for gripping the tap tool and the blade of the Y strip as a second blade in a region adjacent to the grip portion. A second blade portion and an outer diameter dimension smaller than an outer diameter dimension of the second blade are provided in a region adjacent to the second blade portion on the opposite side to the grip portion, and the second blade portion A first blade having a number K of natural numbers equal to or less than the number J of the second blades and including one having continuous blade streaks, which is disposed point-symmetrically with respect to the axial center It is convenient to provide a first blade portion provided with

(効果)
本方法のタップ工具を用いる場合、一回の基本加工を行う際に、まず、タップ工具の先端部に形成された第1刃によってねじ溝が形成される。第1刃の外径寸法は第2刃に比べて小さく設定してあり、雌ねじの歯底までを完全に形成するものではない。この第1刃は、軸芯に対して点対称に配置されており、タップ工具に作用する加工抵抗が軸芯の周りにバランスよく配置される。また第1刃の条数Kは、第2刃の数よりも多く、雌ねじの条数J以下の自然数であればよいから、第1刃の数や配置は雌ねじの形状等に応じて適宜設定することができる。
(effect)
When using the tap tool of the present method, when performing one basic processing, first, a screw groove is formed by the first blade formed at the tip of the tap tool. The outer diameter of the first blade is set smaller than that of the second blade, and it does not completely form the bottom of the female screw. The first blade is disposed point-symmetrically with respect to the axis, and the machining resistance acting on the tapping tool is disposed in a well-balanced manner around the axis. In addition, the number of first blades must be a natural number that is greater than the number of second blades and less than or equal to the number of female threads J. Therefore, the number and arrangement of the first blades are appropriately set according to the shape of the female screw, etc. can do.

この第1刃の加工に続いて第2刃が加工を行う。第2刃はJ条のねじ溝の一部であるY条分のねじ溝を加工し、形成予定の歯底までを完全に加工する。   Following the processing of the first blade, the second blade performs processing. The second blade processes the Y groove thread groove which is a part of the J groove thread groove, and completely processes the tooth bottom to be formed.

外径の小さい第1刃でK条分のねじ溝を加工することで、2回目の基本加工に際して回転位相を変更したタップ工具の第1刃が、1回目の基本加工で形成されたねじ溝によって案内される。1回目の基本加工では第2刃によってY条分のねじ溝だけが完全に加工されるが、他のねじ溝は第1刃によって浅く加工されるに過ぎない。よって、2回目の基本加工を行う際に、位相が変更された第1刃が各ねじ溝を倣うことになっても、第1刃は、先の基本加工で仕上げ加工が終了しているねじ溝の多くの領域とは接触しない。   The first groove of the tap tool whose rotational phase has been changed in the second basic processing by processing the thread groove for K strips with the first blade with a small outer diameter is the screw groove formed in the first basic processing Guided by In the first basic processing, only the Y groove thread groove is completely processed by the second blade, but the other screw grooves are only shallowly processed by the first blade. Therefore, when performing the second basic processing, even if the first blade whose phase has been changed follows each screw groove, the first blade is a screw whose finish processing has been completed by the previous basic processing. It does not contact many areas of the groove.

このように、本構成のタップ工具を用いることで、Y条分のねじ溝が分割形成される場合でも、夫々のねじ溝についての仕上げ加工は一回となり、精度のよい多条雌ねじを形成することができる。   As described above, by using the tap tool of the present configuration, even when the thread grooves for Y strips are formed separately, the finishing process for each thread groove is performed once, and a multi-row internal thread with high accuracy is formed. be able to.

さらに、本構成のタップ工具を用いることで、2回目以降の基本加工に際してタップ工具の位相が確実に設定され、タップ工具の位相設定につき加工機械に対する依存度が緩和される。よって、加工設備のコスト低減が可能となり、高精度な多条雌ねじを効率的に得ることができる。   Furthermore, by using the tap tool of this configuration, the phase of the tap tool is reliably set in the second and subsequent basic processings, and the degree of dependence on the phase setting of the tap tool on the processing machine is alleviated. Therefore, the cost of the processing facility can be reduced, and a highly accurate multi-threaded internal thread can be efficiently obtained.

(特徴構成)
本発明に係る多条雌ねじ加工用のタップ工具の特徴構成は、
条数Jの多条雌ねじを形成すべく刃部と把持部とを備え、
前記刃部が、
前記条数Jの1より大きくJより小さい自然数である約数Yの分のねじ溝を加工するY条の第2刃を、軸芯に対して点対称となる状態で、前記把持部と隣接する領域に設けた第2刃部と、
前記第2刃部に対して前記把持部とは反対側に隣接する領域に、前記第2刃の外径寸法よりも小さな外径寸法を有し、前記第2刃に連続する刃筋を有するものを含めて前記第2刃の数よりも多く前記条数J以下の自然数である条数Kを有し、前記軸芯に対して点対称に配置された第1刃を設けた第1刃部と、を備えた点にある。
(Feature configuration)
The characteristic configuration of the tapping tool for multi-row internal thread processing according to the present invention is
It has a blade and a grip to form a multi-row female screw with J number of threads,
The blade portion is
The second blade of Y strip for processing a thread groove of a submultiple Y which is a natural number greater than 1 and less than J of the number J is adjacent to the gripping portion in a state of point symmetry with respect to the axial center A second blade provided in the
The outer diameter dimension smaller than the outer diameter dimension of the second blade is provided in a region adjacent to the second blade portion on the opposite side to the grip portion, and has a blade streak continuous with the second blade. A first blade provided with a first blade which is a natural number more than the number of the second blades and not more than the number of the second blades and which is smaller than the number of the second blades and which is disposed point-symmetrically with respect to the axis It is in the point provided with

(効果)
本構成のタップ工具は、第2刃として、形成予定のJ条のねじ溝数よりも少ないY条分だけが設けられており、加工抵抗を低減することができる。しかも、Y条分の第2刃は軸芯に対して点対称に設けられているため、加工抵抗の発生が軸芯を中心にバランスよく分散される。このため加工に際してタップ工具に曲り変形やねじり変形が生じず、精度のよい多条雌ねじを形成することができる。
(effect)
The tap tool of this configuration is provided with only a Y-strip having a smaller number of thread grooves than the J-strip to be formed as the second blade, so that the machining resistance can be reduced. Moreover, since the second blades for Y strips are provided point-symmetrically with respect to the axial center, the occurrence of machining resistance is dispersed in a well-balanced manner around the axial center. For this reason, bending and twisting deformation do not occur in the tap tool during processing, and it is possible to form a multi-threaded internal thread with high accuracy.

また、本構成のタップ工具を用いる場合、一回目の加工では、先端部に形成され、第2刃の数よりも多く条数J以下の自然数である条数Kの第1刃によって浅いねじ溝が形成され、それに続く第2刃の加工によってY条分のねじ溝を形成予定の歯底まで完全に仕上げ加工する。   In addition, when using the tap tool of this configuration, a shallow thread groove is formed by the first blade having a number K of rows which is a natural number equal to or smaller than the number of second blades and is a natural number greater than the number of second blades in the first processing. Is formed, and the Y groove thread groove is completely finished to the bottom of the tooth to be formed by subsequent processing of the second blade.

外径の小さい第1刃でK条分のねじ溝を加工することで、2回目の加工に際して第1刃が各ねじ溝を倣うことになる。尚、この場合に、第1刃は先に仕上げ加工が終了しているねじ溝の大部分の領域には接触しない。つまり、2回目以降の加工においてはタップ工具の位相が確実に設定され、2回目以降の加工が正確なものとなる。   By processing the thread groove for K strips with the first blade having a small outer diameter, the first blade follows each thread groove at the time of the second processing. In this case, the first blade does not come in contact with the area of most of the screw grooves that has already been finished. That is, in the second and subsequent processes, the phase of the tap tool is reliably set, and the second and subsequent processes become accurate.

このように本構成のタップ工具を用いることで、多条雌ねじをY条分のねじ溝ごとに分割形成する場合でも、夫々のねじ溝を完成させる仕上げ加工は一回となって精度のよい多条雌ねじを形成することができる。さらに、タップ工具の位相設定につき加工機械の駆動精度に対する依存度が緩和されるから、加工設備のコスト低減が可能となり、高精度な多条雌ねじを効率的に得ることができる。   By using the tap tool of this configuration as described above, even when multi-threaded female threads are divided and formed for each thread groove of Y threads, one finishing process for completing each thread groove is performed once, and the accuracy is high. An internal thread can be formed. Furthermore, since the dependency on the drive accuracy of the processing machine in setting the phase of the tap tool is alleviated, the cost of the processing facility can be reduced, and a highly accurate multi-row internal thread can be efficiently obtained.

第1実施形態に係るタップ工具を示す外観図An external view showing a tap tool according to a first embodiment 第1実施形態に係る多条雌ねじの製造手順を示す説明図Explanatory drawing which shows the manufacturing procedure of the multi-threaded internal thread which concerns on 1st Embodiment. 第2実施形態に係るタップ工具を示す外観図An external view showing a tap tool according to a second embodiment 第2実施形態に係る多条雌ねじの製造手順を示す説明図Explanatory drawing which shows the manufacture procedure of the multi-threaded internal thread which concerns on 2nd Embodiment. 第2実施形態のタップ工具における刃部の構成例を示す説明図Explanatory drawing which shows the structural example of the blade part in the tap tool of 2nd Embodiment

〔第1実施形態〕
本発明に係る多条雌ねじMを加工するタップ工具Tおよび多条雌ねじMの製造方法の第1実施形態につき図1および図2に基づいて説明する。図1は、タップ工具Tを示す外観図であり、図2は、多条雌ねじMの製造手順を示す説明図である。
First Embodiment
A first embodiment of a method for manufacturing a tapping tool T for processing a multi-threaded internal thread M and a multi-threaded internal thread M according to the present invention will be described based on FIG. 1 and FIG. FIG. 1 is an external view showing the tap tool T, and FIG. 2 is an explanatory view showing a manufacturing procedure of the multi-threaded internal thread M. As shown in FIG.

(タップ工具の外観)
本実施形態では、例えばワークWに4条(M1〜M4)の多条雌ねじMを切削形成する例を示す。図1に示すように、本実施形態で用いるタップ工具Tは、工作機械などに把持されるよう基端側に形成された把持部Hと、この把持部Hに隣接して設けられ、ワークWに切り込んで加工を行う刃部Eとを備えている。
(Appearance of tapping tool)
In the present embodiment, for example, an example in which a multi-strip internal thread M having four strips (M1 to M4) is cut and formed on the work W is shown. As shown in FIG. 1, the tap tool T used in the present embodiment is provided adjacent to the grip portion H formed on the base end side so as to be gripped by a machine tool or the like, and the workpiece W And a blade portion E for cutting and processing.

刃部Eには、形成する多条雌ねじMの条数Jである4条に対して例えば半分の2条分の刃E21,E23が形成されている。これら2条の刃E21,E23は、回転中心である軸芯Xを挟んで互いに対称に配置されている。対称であれば、加工時の加工抵抗が軸芯Xを中心として周方向にバランスよく作用する。よって、加工に際してタップ工具Tが曲がり変形したり、回転姿勢が乱れたりすることがなく、ワークWの加工精度が高まる。   The blade portion E is formed with, for example, two halves of blades E21 and E23 corresponding to four stripes which is the number of stripes J of the multi-strip female screw M to be formed. The two blades E21 and E23 are arranged symmetrically with respect to the axis X which is the rotation center. If symmetrical, the machining resistance at the time of machining acts in a well-balanced manner around the axis X in the circumferential direction. Therefore, the tap tool T is not bent or deformed during processing, or the rotational attitude is not disturbed, and the processing accuracy of the workpiece W is enhanced.

このように本実施形態のタップ工具Tでは、作製する多条雌ねじMの条数Jに対して少ない条数Yの刃E2nを備えている。ただし、条数Jの多条雌ねじMを形成する際に、タップ工具Tが備える刃E2nの条数Yは条数Jの約数とし、1より大きくJより小さい自然数としている。これにより、タップ工具Tによる加工の回数が(J/Y)回となり、何れかのねじ溝Mnが重複して仕上げ加工される無駄が解消される。尚、夫々の加工を以降においては基本加工と称する。   As described above, in the tap tool T of the present embodiment, the blade E2n having a smaller number of rows Y than the number of rows J of the multi-row internal thread M to be manufactured is provided. However, when forming the multi-row internal thread M with the number of rows J, the number of rows Y of the blade E2n included in the tap tool T is a divisor of the number of rows J and is a natural number greater than 1 and smaller than J. As a result, the number of times of processing by the tap tool T becomes (J / Y) times, and the waste in which any of the screw grooves Mn is redundantly processed is eliminated. Incidentally, each processing is hereinafter referred to as basic processing.

(多条雌ねじの製造手順)
図2(a)乃至図2(d)に、第1実施形態に係る多条雌ねじMの製造手順を示す。ここでは、予め下孔M0が加工されたワークWに4条の多条雌ねじMを形成すべく、2条の刃E21,E23を備えたタップ工具Tを用いる場合を示す。図2(a)および図2(b)が1回目の基本加工に係る説明図であり、図2(c)および図2(d)が2回目の基本加工に係る説明図である。通常のタップ工具Tでは、ワークWに対する切込みを容易にするために、先端部の近傍では先端部に近付くほど外形寸法を小さくするテーパー部が設けられている。
(Manufacturing procedure of multi-row female screw)
FIGS. 2A to 2D show a manufacturing procedure of the multi-threaded internal thread M according to the first embodiment. Here, a case where a tap tool T provided with two blades E21 and E23 is used in order to form four multi-strip female threads M on a work W in which the lower hole M0 has been processed in advance. 2 (a) and 2 (b) are explanatory diagrams related to the first basic processing, and FIGS. 2 (c) and 2 (d) are explanatory diagrams related to the second basic processing. In an ordinary tap tool T, in order to facilitate cutting of the workpiece W, a tapered portion is provided near the tip so as to reduce the outer dimension so as to approach the tip.

図2(a)は、第1回目の基本加工において、タップ工具TがワークWの下孔M0に対して切り込みを開始した直後の状態を示している。このあと、タップ工具Tを軸芯Xの周りに回転させつつ軸芯Xに沿って送り操作する。このときのタップ工具TとワークWとの相対回転速度および軸芯Xに沿ったタップ工具Tの送り速度は形成する多条雌ねじMのピッチに応じて予め設定される。   FIG. 2A shows a state immediately after the tapping tool T starts cutting the lower hole M0 of the workpiece W in the first basic processing. Thereafter, while the tap tool T is rotated around the axis X, the feeding operation is performed along the axis X. The relative rotational speed between the tap tool T and the work W at this time and the feed speed of the tap tool T along the axis X are preset according to the pitch of the multi-row internal thread M to be formed.

図2(b)は、第1回目の加工においてワークWの下孔M0の終端まで2条分のねじ溝M1,M2が形成された状態を示している。加工するのは2条のねじ溝M1,M3であって数が少ないため、タップ工具Tに作用する加工抵抗は少ない。よって、加工機械の必要回転トルクが小さくて済むうえワークWの保持力も少なくて済み、大掛かりな加工機械を必要としない。また、加工条数が少ないため加工に際してワークWの発熱が少なく、熱によるワークWの変形および機械的特性の変化が最小に抑えられる。   FIG. 2B shows a state in which two thread grooves M1 and M2 are formed up to the end of the lower hole M0 of the workpiece W in the first processing. Since it is two screw grooves M1 and M3 to process and there are few numbers, the processing resistance which acts on the tap tool T is small. Therefore, the required rotational torque of the processing machine can be small, the holding power of the work W can be small, and a large-scale processing machine is not required. In addition, since the number of processed bars is small, the heat generation of the workpiece W is small at the time of processing, and the deformation of the workpiece W and the change in mechanical characteristics due to heat can be minimized.

図2(c)は、第2回目の加工においてワークWの下孔M0の始端に刃E21,E23が切り込んだ状態を示している。第1回目の基本加工の終了ののち、タップ工具TはワークWに対して軸芯Xの回りに(360/J)度の倍数分、即ち、90度だけ相対回転させて、刃E21,E23を下孔M0のうち多条雌ねじMの形成が終了していない部分に位置取りさせる。このとき、図外の加工機械およびワークWの把持装置は自身の姿勢を把握しており、タップ工具TとワークWとの相対角度は正確に設定される。   FIG. 2C shows a state in which the blades E21 and E23 are cut into the starting end of the lower hole M0 of the workpiece W in the second processing. After completion of the first basic machining, the tap tool T is rotated relative to the work W by a multiple of (360 / J) degrees, that is, 90 degrees, around the axis X, and the blades E21, E23. Is positioned in a portion of the lower hole M0 where the formation of the multi-threaded internal thread M is not completed. At this time, the processing machine (not shown) and the gripping device for the workpiece W grasp the posture of itself, and the relative angle between the tap tool T and the workpiece W is accurately set.

図2(d)は、第2回目の基本加工が終了した状態を示している。これにより4条の多条雌ねじMがワークWに形成される。   FIG. 2D shows a state in which the second basic machining has been completed. As a result, four multi-strip female screws M are formed on the work W.

このように多条雌ねじMに形成するねじ溝Mnの条数Jよりも少ない条数Yの加工を行うことで、一回の基本加工に際しての加工負荷が低減され、タップ工具TおよびワークWの変形や変質が防止されて、正確な形状の多条雌ねじMが形成される。加工機械やワークWの把持装置も簡略化され、多条雌ねじMの加工が効率的なものとなる。   By processing the number Y of threads smaller than the number J of threads of the thread groove Mn formed in the multi-threaded internal thread M in this way, the processing load at the time of one basic processing is reduced. Deformation and deterioration are prevented, and a multi-threaded internal thread M having an accurate shape is formed. The processing machine and the gripping device for the workpiece W are also simplified, and the processing of the multi-threaded internal thread M becomes efficient.

そのうえ、タップ工具Tに形成される刃E2nの条数YはワークWに形成する多条雌ねじMの条数Jの約数であるから、基本加工を複数回に分けて行うに際して、既に形成したねじ溝Mnの形状が乱されることがない。よって、形成された全てのねじ溝Mnの精度が高まり、高品質の多条雌ねじMを得ることができる。   Moreover, since the number of rows Y of the blade E2n formed on the tap tool T is a divisor of the number of rows J of the multi-thread female screw M formed on the work W, it has already been formed when dividing basic machining into multiple times. The shape of the thread groove Mn is not disturbed. Therefore, the precision of all the formed screw grooves Mn is enhanced, and a high quality multi-threaded internal thread M can be obtained.

〔第2実施形態〕
本発明に係る多条雌ねじMを加工するタップ工具Tおよび多条雌ねじMの製造方法の第2実施形態につき図3および図4に基づいて説明する。ここでも多条雌ねじMの条数Jは4とする。
Second Embodiment
A second embodiment of a method for manufacturing a tapping tool T for processing a multi-threaded internal thread M and a multi-threaded internal thread M according to the present invention will be described based on FIG. 3 and FIG. Also in this case, the number of threads J of the multi-threaded internal thread M is four.

(タップ工具の外観)
図3に、第2実施形態に係るタップ工具Tの外観を示す。刃部Eのうち加工開始側の先端部には、加工する4条分の第1刃E11〜E14が形成されている。この領域を第1刃部E1と称する。この第1刃部E1に連続して把持部Hの側に第2刃部E2が形成されている。ここでの第2刃部E2は第2刃E21,E23の二つを有する。この第2刃E21,E23は、第1実施形態における刃E21,E23と同じである。
この2条分の第2刃E21,E23は、第1刃E11,E13に連続して形成される。尚、全ての第1刃E11〜E14は軸芯Xを中心とした点対称の位置に形成されており、二つの第2刃E21,E23も同様に軸芯Xに対して点対称である。
(Appearance of tapping tool)
The external appearance of the tap tool T concerning 2nd Embodiment is shown in FIG. Of the blade portion E, at the tip end portion on the processing start side, four first blades E11 to E14 for processing are formed. This area is referred to as a first blade E1. A second blade portion E2 is formed on the side of the holding portion H continuously to the first blade portion E1. The second blade portion E2 here has two of the second blades E21 and E23. The second blades E21 and E23 are the same as the blades E21 and E23 in the first embodiment.
The two second blades E21 and E23 are formed continuously to the first blades E11 and E13. Note that all the first blades E11 to E14 are formed at point-symmetrical positions with respect to the axis X, and the two second blades E21 and E23 are also point-symmetrical with respect to the axis X.

図3に示すように、第1刃E11〜E14は先端部のテーパー部に形成されており、第1刃E11〜E14の外形寸法は、第2刃E21,E23の外径寸法よりも小さく構成してある。これにより、例えば、第1刃E11〜E14が加工するねじ溝M1〜M4の深さは、完成したねじ溝M1〜M4の深さの数分の一に設定する。こうすることで、第1刃部E1によって生じる加工抵抗を少なくし、夫々の基本加工における加工抵抗を低く抑えることができる。   As shown in FIG. 3, the first blades E11 to E14 are formed in the tapered portion at the tip end, and the outer dimensions of the first blades E11 to E14 are smaller than the outer diameters of the second blades E21 and E23. Yes. Thus, for example, the depths of the screw grooves M1 to M4 processed by the first blades E11 to E14 are set to be a fraction of the depth of the completed screw grooves M1 to M4. By doing this, the machining resistance generated by the first blade E1 can be reduced, and the machining resistance in each basic machining can be suppressed low.

(多条雌ねじの製造手順)
多条雌ねじMの製造手順を図4(a)〜図4(d)に示す。図4(a)は、タップ工具TをワークWの下孔M0に食い込ませた状態を示している。図4(a)に示すように、第1刃部E1に4条分の全ての第1刃E11〜E14を形成することで、1回目の基本加工の開始時に、形成すべき四つのねじ溝M1〜M4の全ての位置をワークWに特定することができる。
(Manufacturing procedure of multi-row female screw)
The manufacturing procedure of the multi-strip female screw M is shown in FIGS. 4 (a) to 4 (d). FIG. 4A shows a state in which the tap tool T bites into the lower hole M0 of the workpiece W. FIG. As shown in FIG. 4A, by forming all four first blades E11 to E14 in the first blade E1, four screw grooves to be formed at the start of the first basic processing All positions of M1 to M4 can be specified as the workpiece W.

図4(b)は、タップ工具TをワークWの下孔M0を第2刃部E2によって加工している状態を示している。1回目の基本加工では、ねじ溝M1,M3のみが仕上げ加工される。   FIG.4 (b) has shown the state which is processing tap tool T by the 2nd blade part E2 for the lower hole M0 of the workpiece | work W. As shown in FIG. In the first basic processing, only the screw grooves M1 and M3 are finished.

図4(c)は、2回目の基本加工に際してタップ工具TをワークWに食い込ませた状態を示している。このとき、タップ工具Tの位相を90度変更する。この結果、例えば、第1刃E12,E14によって形成された完成途中のねじ溝M2,M4は、2回目の基本加工でタップ工具Tを切り込む際のガイドとなり、ねじ溝M2,M4が、改めて位相を変えた第1刃E11,E13のガイドとなる。   FIG. 4C shows a state in which the tap tool T bites into the workpiece W at the time of the second basic machining. At this time, the phase of the tap tool T is changed by 90 degrees. As a result, for example, the screw grooves M2 and M4 in the process of completion formed by the first blades E12 and E14 become guides when cutting the tap tool T in the second basic processing, and the screw grooves M2 and M4 have a phase again , And guides the first blades E11 and E13.

図4(d)は、2回目の基本加工が終了してタップ工具TをワークWから引き抜いた状態を示している。これにより、ワークWにはねじ溝M1〜M4が仕上げ加工される。   FIG. 4D shows a state in which the tap tool T has been pulled out of the work W after the second basic machining is completed. As a result, the screw grooves M1 to M4 are finished on the work W.

本実施形態の場合、2回目の基本加工において、1回目の基本加工で形成されたねじ溝M2,M4が過度に加工されることはない。2回目の基本加工においてタップ工具TをワークWに接触させる際に、例えばタップ工具Tを把持する加工機械の回転位相の固定を緩めることで、第1刃E11,E13の位置をねじ溝M2,M4に正確に位置合わせすることができるからである。   In the case of this embodiment, in the second basic processing, the screw grooves M2 and M4 formed in the first basic processing are not excessively processed. When the tap tool T is brought into contact with the workpiece W in the second basic processing, for example, the fixing of the rotational phase of the processing machine holding the tap tool T is loosened, whereby the positions of the first blades E11 and E13 are threaded M2, It is because it can align correctly to M4.

また、2回目の基本加工において、第1刃E11,E13は、1回目の基本加工において仕上げ加工されたねじ溝M2,M4を倣うことになるが、ねじ溝M2,M4の深さに比べて第1刃E11,E13の刃の高さは低いため、ねじ溝M2,M4の表面のうち第1刃E11,E13によって再度加工される恐れのある領域は限定される。よって、一旦、仕上げ形成されたねじ溝Mnが次回以降の基本加工によって乱されることがなく、仕上げ状態の良い多条雌ねじMを得ることができる。しかも、多条雌ねじMの加工を複数回に分けた場合でも、夫々において形成されるねじ溝Mnどうしの相対位置が正確に設定されるため、高精度な多条雌ねじMを得ることができる。   Further, in the second basic processing, the first blades E11 and E13 follow the screw grooves M2 and M4 finished in the first basic processing, but in comparison with the depths of the screw grooves M2 and M4. Since the heights of the first blades E11 and E13 are low, the area of the surface of the screw grooves M2 and M4 that may be processed again by the first blades E11 and E13 is limited. Therefore, the thread groove Mn once finished and formed is not disturbed by the basic processing after the next time, and it is possible to obtain the multi-threaded internal thread M in a well-finished state. In addition, even when the multi-threaded internal thread M is divided into multiple processes, the relative position between the thread grooves Mn formed in each is accurately set, so it is possible to obtain the highly accurate multi-threaded internal thread M.

さらに、加工抵抗についてみた場合、2回目の基本加工において、第1刃E11〜E14は、1回目の基本加工で形成されたねじ溝M1〜M4を倣うだけであり、第2刃E21,E23のみが新たな加工を行う。よって、第2刃E21,E23による加工と第1刃E11〜E14による加工とを伴う1回目の基本加工に比べて、2回目の基本加工で生じる加工抵抗はより小さなものとなる。   Furthermore, when considering the machining resistance, in the second basic machining, the first blades E11 to E14 only follow the screw grooves M1 to M4 formed in the first basic machining, and only the second blades E21 and E23. Do new processing. Therefore, compared with the 1st basic processing accompanying processing with the 2nd blade E21 and E23, and processing with the 1st blade E11-E14, processing resistance which arises with the 2nd basic processing becomes smaller.

つまり、2回目の基本加工においては、二つの第2刃E21,E23による加工抵抗の少ない加工が施される際に、四つの第1刃E11〜E14が1回目の基本加工で形成されたねじ溝M1〜M4を夫々倣うから、第2刃E21,E23による加工位置が極めて正確なものとなる。よって、本実施形態のタップ工具Tを用いることで、多条雌ねじMの加工が効率的かつ高精度なものとなる。   That is, in the second basic processing, when processing with small processing resistance by the two second blades E21 and E23 is performed, a screw in which the four first blades E11 to E14 are formed in the first basic processing Since the grooves M1 to M4 are respectively copied, the processing position by the second blades E21 and E23 becomes extremely accurate. Therefore, by using the tap tool T of the present embodiment, machining of the multi-threaded internal thread M becomes efficient and highly accurate.

(第1刃および第2刃の形成態様)
第1刃部E1および第2刃部E2を有するタップ工具Tを構成する場合、夫々の刃部の構成には以下の条件が必要である。例えば図5には、条数Jが8である場合の第1刃部E1および第2刃部E2の構成例を示す。
(Formation mode of the first blade and the second blade)
When constructing the tap tool T having the first blade E1 and the second blade E2, the following conditions are required for the configuration of each blade. For example, FIG. 5 shows a configuration example of the first blade E1 and the second blade E2 in the case where the number of threads J is eight.

第2刃部E2の条数Yは、第2刃部E2による複数回の基本加工によって夫々のねじ溝Mnが重複して仕上げ加工されないために、2以上かつ条数J=8よりも少ない自然数であって条数Jの約数となる。よって、この場合、第2刃部E2の条数Yは2または4である。第2刃部E2を形成する夫々の第2刃E2nは、軸芯Xに対して点対称に配置される。   The number of threads Y of the second blade E2 is a natural number less than 2 and less than the number of threads J = 8 because the respective screw grooves Mn are not finished by being redundantly repeated by multiple basic machining by the second blade E2. And become a divisor of J. Therefore, in this case, the number of threads Y of the second blade E2 is two or four. The respective second blades E2n forming the second blade portion E2 are arranged point-symmetrically with respect to the axis X.

一方、第1刃部E1の形成条件は、全ての第2刃E2nが連続していることと、軸芯Xに対して点対称に配置され得ることである。よって、第1刃部E1の条数Kは、第2刃部E2の条数Yよりも多く条数J=8以下の自然数である。この場合には、第2刃E2nの条数Y=2の場合と条数Y=4の場合とで以下のバリエーションが得られる。   On the other hand, the conditions for forming the first blade E1 are that all the second blades E2n are continuous and that they can be arranged point-symmetrically with respect to the axis X. Therefore, the number of stripes K of the first blade E1 is a natural number that is larger than the number of stripes Y of the second blade E2 and is the number of stripes J = 8 or less. In this case, the following variations can be obtained in the case of the number Y = 2 of the second blades E2 n and in the case of the number Y = 4.

図5にはタップ工具Tの外周面に形成される第1刃E1n(黒丸)と第2刃E2n(白丸)の位置を模式的に示す。このうち図5(a)〜(e)は、第2刃E2nの条数Y=2の場合である。図5(a)(b)は第1刃E1nの条数K=4となる場合であり、図5(c)(d)は条数K=6、図5(e)は条数K=8となる場合である。   FIG. 5 schematically shows the positions of the first blade E1 n (black circle) and the second blade E2 n (white circle) formed on the outer peripheral surface of the tapping tool T. Among these, FIGS. 5 (a) to 5 (e) show the case where the number of threads Y of the second blade E2n is two. FIGS. 5 (a) and 5 (b) show the case where the number of rows K of the first blade E1n = 4, and FIGS. 5 (c) and 5 (d) indicate the number of rows K = 6, and FIG. It is a case of eight.

一方、第2刃E2nの条数Y=4の場合、図5(f)(g)に示すように第1刃E1nの条数K=6となる場合と、図5(h)(i)に示すように条数K=8となる場合とがある。   On the other hand, in the case where the number of threads Y of the second blade E2n is four, as shown in FIG. 5 (f) and (g), the number K of threads for the first blade E1n is six and FIG. There are cases where the number of rows K = 8 as shown in FIG.

このような構成であれば、第1回目の基本加工が終了したあとタップ工具Tの位相を(360/条数J)の整数倍だけ変更することで、1回目の基本加工で第1刃E1nによって形成したねじ溝Mnを案内部としながら2回目の基本加工を行うことができる。その場合、1回目の基本加工で第2刃E2nによって仕上げられたねじ溝Mnは、2回目の基本加工で重複加工されることがなく、仕上精度の良い多条雌ねじMを得ることができる。   With such a configuration, after the first basic machining is completed, the phase of the tap tool T is changed by an integral multiple of (360 / row number J) to obtain the first blade E1 n in the first basic machining. The second basic processing can be performed while using the thread groove Mn formed by the above as a guide. In that case, the thread groove Mn finished by the second blade E2n in the first basic processing is not redundantly processed in the second basic processing, and it is possible to obtain the multi-threaded internal thread M having a high finishing accuracy.

尚、上記実施形態に係るタップ工具Tおよび多条雌ねじMの製造方法は、切削加工用のタップ工具Tに関するものに限らず、転造加工用のタップ工具Tとしても適用可能である。   In addition, the manufacturing method of the tap tool T and the multi-strip internal thread M according to the above embodiment is not limited to the one relating to the cutting tool T for cutting, and can be applied as the tapping tool T for roll forming.

本発明は、予め下孔が形成されたワークに対してタップ工具を用いてねじ加工を施し、複数条数を有する多条雌ねじを形成する多条雌ねじの製造方法およびタップ工具に広く適用することができる。   The present invention is widely applied to a method of manufacturing a multi-threaded internal thread forming a multi-threaded internal thread having a plurality of threads by using a tap tool to screw a workpiece having a pre-formed hole in advance and using the tap tool. Can.

E1 第1刃部
E1n 第1刃
E2 第2刃部
E2n 第2刃
En 刃
H 把持部
J 条数
K 条数
M 多条雌ねじ
M0 下孔
Mn ねじ溝
T タップ工具
W ワーク
X 軸芯
Y 条数
E1 1st blade part E1n 1st blade E2 2nd blade part E2n 2nd blade En blade H grip part J number of threads K number of threads M multi-row internal thread M0 pilot hole Mn thread groove T tap tool W work X axis core Y number of threads

Claims (3)

条数Jの雌ねじを形成する際に、
予め下孔が形成されたワークに、
前記条数Jの1より大きくJより小さい自然数である約数Yの分のねじ溝を加工するY条の刃を備え、前記Y条の刃が軸芯に対して点対称となるよう形成されたタップ工具を挿入し、
前記タップ工具と前記ワークとを前記軸芯の周りに相対回転させつつ前記軸芯に沿って相対移動させ、前記Y条の前記雌ねじを前記ワークに形成する基本加工を、前記タップ工具と前記ワークとを前記軸芯の回りに(360/J)度の倍数分だけ相対回転させて、前記刃を前記下孔のうち前記雌ねじの形成が終了していない部位に位置取りさせつつ(J/Y)回行う多条雌ねじの製造方法。
When forming an internal thread with a thread number J,
For workpieces with pre-formed holes,
The Y-row blade is formed to process a thread groove of a submultiple Y which is a natural number greater than 1 and less than J of the number J, and the Y-row blade is formed to be point symmetrical with respect to the axis Insert the tap tool,
The tap tool and the work are fundamentally processed to relatively move the tap tool and the work along the axis while relatively rotating the tap tool and the work around the axis to form the female thread of the Y-strip on the work. Are relatively rotated by a multiple of (360 / J) degrees around the axis, and the blade is positioned at a portion of the pilot hole where the formation of the female screw is not completed (J / Y Method of multi-threaded internal thread).
前記タップ工具が、
前記タップ工具を把持する把持部と、
前記把持部に隣接する領域に、前記Y条の前記刃を第2刃として設けた第2刃部と、
前記第2刃部に対して前記把持部とは反対側に隣接する領域に、前記第2刃の外径寸法よりも小さな外径寸法を有し、前記第2刃に連続する刃筋を有するものを含めて前記第2刃の数よりも多く前記条数J以下の自然数である条数Kを有し、前記軸芯に対して点対称に配置された第1刃を設けた第1刃部と、を備えている請求項1に記載の多条雌ねじの製造方法。
The tap tool is
A gripping portion for gripping the tap tool;
A second blade portion provided with the blade of the Y strip as a second blade in a region adjacent to the grip portion;
The outer diameter dimension smaller than the outer diameter dimension of the second blade is provided in a region adjacent to the second blade portion on the opposite side to the grip portion, and has a blade streak continuous with the second blade. A first blade provided with a first blade which is a natural number more than the number of the second blades and not more than the number of the second blades and which is smaller than the number of the second blades and which is disposed point-symmetrically with respect to the axis The method for manufacturing a multi-threaded internal thread according to claim 1, comprising:
条数Jの多条雌ねじを形成すべく刃部と把持部とを備え、
前記刃部が、
前記条数Jの1より大きくJより小さい自然数である約数Yの分のねじ溝を加工するY条の第2刃を、軸芯に対して点対称となる状態で、前記把持部と隣接する領域に設けた第2刃部と、
前記第2刃部に対して前記把持部とは反対側に隣接する領域に、前記第2刃の外径寸法よりも小さな外径寸法を有し、前記第2刃に連続する刃筋を有するものを含めて前記第2刃の数よりも多く前記条数J以下の自然数である条数Kを有し、前記軸芯に対して点対称に配置された第1刃を設けた第1刃部と、を備えているタップ工具。
It has a blade and a grip to form a multi-row female screw with J number of threads,
The blade portion is
The second blade of Y strip for processing a thread groove of a submultiple Y which is a natural number greater than 1 and less than J of the number J is adjacent to the gripping portion in a state of point symmetry with respect to the axial center A second blade provided in the
The outer diameter dimension smaller than the outer diameter dimension of the second blade is provided in a region adjacent to the second blade portion on the opposite side to the grip portion, and has a blade streak continuous with the second blade. A first blade provided with a first blade which is a natural number more than the number of the second blades and not more than the number of the second blades and which is smaller than the number of the second blades and which is disposed point-symmetrically with respect to the axis A tap tool equipped with a part.
JP2017173742A 2017-09-11 2017-09-11 Manufacturing method of multi-threaded female thread and tap tool Active JP6941294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017173742A JP6941294B2 (en) 2017-09-11 2017-09-11 Manufacturing method of multi-threaded female thread and tap tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017173742A JP6941294B2 (en) 2017-09-11 2017-09-11 Manufacturing method of multi-threaded female thread and tap tool

Publications (2)

Publication Number Publication Date
JP2019048352A true JP2019048352A (en) 2019-03-28
JP6941294B2 JP6941294B2 (en) 2021-09-29

Family

ID=65904769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017173742A Active JP6941294B2 (en) 2017-09-11 2017-09-11 Manufacturing method of multi-threaded female thread and tap tool

Country Status (1)

Country Link
JP (1) JP6941294B2 (en)

Also Published As

Publication number Publication date
JP6941294B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP6247807B2 (en) Cutting tool and cutting apparatus equipped with this cutting tool
JP2010064209A (en) Roughing helical broach
US20130259585A1 (en) Milling cutter
JP2014200912A (en) Tool and method for cutting thread production
JP2015504787A (en) Tools that produce or finish threadlessly on workpieces, especially cold forming taps or thread forming taps
CN100566902C (en) High-speed forming tap
WO2017163576A1 (en) Method for reusing end mill
JP5825072B2 (en) Grooving method
JP4787533B2 (en) Tap
JP2777100B2 (en) Raised tap with internal finishing blade
CN109689261B (en) Thread forming tool
JP2019048352A (en) Method of manufacturing multi-thread female screw and tap tool
JP5241196B2 (en) Thick tap for processing large diameter female thread
JP5031874B2 (en) Rotary dresser
US20150336192A1 (en) Helical broach
JP6979793B2 (en) How to finish a multi-thread grinding worm with a finishing roll
US20160001384A1 (en) Helical broach
JP2015024471A (en) Processing tool and processing method for nut for ball screw
JP7167818B2 (en) brooch
JP3978148B2 (en) Broach for helical internal gear machining
JP2019018251A (en) Hob cutter
US20190283158A1 (en) Thread former and method for producing a thread
JP7174686B2 (en) Thread former with flared ridges
JP6419274B1 (en) Increased machine tap
CN114769747B (en) Internal thread processing machine tool, internal thread and internal thread cutter processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210819

R150 Certificate of patent or registration of utility model

Ref document number: 6941294

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150