JP2019044257A - 成膜マスクの製造方法 - Google Patents

成膜マスクの製造方法 Download PDF

Info

Publication number
JP2019044257A
JP2019044257A JP2018027642A JP2018027642A JP2019044257A JP 2019044257 A JP2019044257 A JP 2019044257A JP 2018027642 A JP2018027642 A JP 2018027642A JP 2018027642 A JP2018027642 A JP 2018027642A JP 2019044257 A JP2019044257 A JP 2019044257A
Authority
JP
Japan
Prior art keywords
region
forming
opening
openings
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018027642A
Other languages
English (en)
Other versions
JP6560385B2 (ja
Inventor
克彦 岸本
Katsuhiko Kishimoto
克彦 岸本
崎尾 進
Susumu Sakio
進 崎尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Display Products Corp
Original Assignee
Sakai Display Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Display Products Corp filed Critical Sakai Display Products Corp
Priority to JP2018027642A priority Critical patent/JP6560385B2/ja
Publication of JP2019044257A publication Critical patent/JP2019044257A/ja
Application granted granted Critical
Publication of JP6560385B2 publication Critical patent/JP6560385B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

【課題】成膜マスクを製造する方法において、マスク基材の内部応力の不均一な分布に起因する開口部の変形を抑制する。【解決手段】マスク基材に開口部を形成する工程は、少なくとも(n/2)番目の列または{(n+1)/2}番目の列を含む、a本の連続した列の開口部を含む第1領域(R1)内の開口部を形成する工程Aと、sa本の連続した列を含む第1間隙領域RS1を介して、第1領域R1と−x方向に隣接し、b本の連続した列の開口部を含む第2領域R2内の開口部を形成する工程Bと、sb本の連続した列を含む第2間隙領域RS2を介して、第1領域R1とx方向に隣接し、c本の連続した列の開口部を含む第3領域R3内の開口部を形成する工程Cとを含み、工程Aの後に、工程Bおよび工程Cを行う。マスク基材は樹脂層10を含み、開口部11は樹脂層にレーザ光L2を照射することによって形成される。【選択図】図3

Description

本発明は、成膜マスクの製造方法に関し、特に、高精細の有機EL(Electro Luminescence)表示装置の量産に好適に用いられる成膜マスクの製造方法に関する。成膜マスクは、薄膜堆積技術(例えば、Physical Vapor Deposition(PVD)、Chemical Vapor Deposition(CVD)等を含む。)において用いられるマスクを指す。以下では、PVDの1種である真空蒸着法を例に説明する。
近年、有機EL表示装置が実用化された。現在量産されている中小型の有機EL表示装置では、有機EL層の形成は、主に真空蒸着法を用いて行われている。有機EL層は、例えば、ホール輸送層、電子輸送層およびこれらの間に配置される有機発光層を含む。ホール輸送層は有機発光層を兼ねることもできる。少なくとも有機発光層と電子輸送層とを含む、有機材料で形成された層を有機EL層ということにする。
有機EL表示装置は、画素ごとに少なくとも1つの有機EL素子(Organic Light Emitting Diode:OLED)と、各OLEDに供給される電流を制御する少なくとも1つのTFT(Thin Film Transistor)とを有する。以下、有機EL表示装置をOLED表示装置と呼ぶことにする。このようにOLEDごとにTFTなどのスイッチング素子を有するOLED表示装置は、アクティブマトリクス型OLED表示装置と呼ばれる。また、TFTおよびOLEDが形成された基板を素子基板ということにする。TFTを含む駆動回路はバックプレーン回路(または、単に「バックプレーン」)と呼ばれ、OLEDはバックプレーン上に形成される。
カラー表示が可能な有機EL表示装置では、例えば、R画素、G画素、B画素によって、1つのカラー表示画素が構成される。カラー表示画素を構成する異なる色の画素は原色画素と呼ばれることもある。本明細書における画素を「ドット」と呼び、カラー表示画素を「ピクセル」と呼ぶこともある。例えば、解像度を表すppi(pixel per inch)は、1インチに含まれる「ピクセル」の数を表す。
なお、3つの異なる色の画素で、1つのカラー表示画素を構成する場合、3つの異なる色の画素の形状や大きさは互いに異なってもよい。例えば、発光効率が低い青の画素を大きく、発光効率が高い緑の画素を小さくしてもよい。あるいは、1つのカラー表示画素を1つの赤画素と、1つの緑画素と、2つの青画素とで構成してもよい。また、画素配列は、ストライプ配列、デルタ配列であってもよく、公知の種々の配列であり得る。
有機EL層は、色ごとに用意された成膜マスクを用いて真空蒸着法で形成される。有機EL層に加えて、有機EL層の上に形成される電極層(例えば陰極層)も成膜マスクを用いて例えばスパッタ法で形成され得る。なお、有機EL層の下に形成される電極層(例えば陽極層)は、有機EL層が現像液に晒されることがないので、フォトリソグラフィプロセスで形成され得る。
従来、成膜マスクとして、金属層(金属板)に所定のパターンで複数の開口部が形成されたメタルマスクが用いられていた(例えば、特許文献1)。OLED表示装置の高精細化に対応するために、メタルマスクよりも高精細なパターンを形成することが可能な、樹脂層と磁性金属層とが積層された積層体を有する成膜マスク(以下、「積層型マスク」と呼ぶ。)が提案されている(例えば、特許文献2、3)。
本明細書において、成膜マスクの開口部(成膜される物質が通過する貫通孔)が形成されている部材をマスク基材という。メタルマスクにおいては、金属層(典型的には磁性金属層)がマスク基材であり、積層型マスクにおいては、樹脂層と磁性金属層との積層体がマスク基材である。また、成膜マスクの部分で、成膜対象である素子基板(例えばバックプレーンが形成された段階のもの)のアクティブ領域(「素子形成領域」または「表示領域」ともいう。)と密着する部分をアクティブ領域形成部ということにする。
特開2006−188748号公報 特開2017−82313号公報 特開2015−10270号公報
メタルマスクおよび積層型マスクのいずれについても、アクティブ領域形成部の平面性を高めるために、マスク基材を架張することが行われている。アクティブ領域形成部の平面性が低いと、すなわちアクティブ領域形成部のマスク基材に弛みがあると、アクティブ領域形成部と素子基板の表面との間に間隙が生じ、所定の形状に成膜できないという問題が生じるからである。
しかしながら、本発明者の検討によると、架張されたマスク基材に開口部を形成すると、開口部を形成することによって生じる、マスク基材内の応力の方向や大きさの分布(単に「応力分布」ということがある。)が変化し、開口部が変形するという問題がある。
マスク基材は架張されている(面内の外側に向く張力を受けている)ので、マスク基材内に応力が発生している。この応力は、マスク基材内の位置の関数である。すなわち、マスク基材内の位置によって、応力の方向や大きさが異なる。マスク基材の応力分布は、マスク基材に開口部を形成するたびに変化する。したがって、最終的に得られる開口部の位置、大きさ、および形状の精度は、開口部を形成する順序にも依存することになる。この問題は、例えば、200ppiを超える高精細の開口パターンを形成する場合に特に顕著になる。
さらに、複数のアクティブ領域に対応する成膜マスク、すなわち、OLED表示装置を多面取りする際のマザー基板に対して用いられる成膜マスクでは、アクティブ領域形成部の位置によって、マスク基材内の応力分布が異なるので、上記と同様の問題が発生する。
実際に成膜マスクを作製し、開口部の位置、大きさ、および形状の設計値からのずれを測定し、そのずれを見込んで開口部を形成することによって、また、この工程を複数回繰り返すことによって、目的の精度を得ることもできるが、精度に限界があるとともに、製造プロセスが煩雑で製造コストの上昇を招く。
本発明は、上記の課題を解決するためになされたものであり、架張されたマスク基材(例えば、樹脂層および/また磁性金属層)を有する成膜マスクを製造する方法において、マスク基材の内部応力の不均一な分布に起因する開口部の変形を抑制することを目的とする。
本発明のある実施形態による、成膜マスクの製造方法は、xy面を規定するように固定された、矩形のマスク基材と、前記マスク基材に設けられた、m行n列に配列された複数の開口部をそれぞれが有するp行q列に配列された複数のアクティブ領域形成部とを有する成膜マスクを製造する方法であって、xy面を規定するように固定された前記マスク基材を用意する工程と、前記マスク基材に、前記複数のアクティブ領域形成部を形成する、開口部形成工程とを包含し、前記開口部形成工程は、少なくとも(n/2)番目の列または{(n+1)/2}番目の列を含む、a本の連続した列の開口部を含む第1領域内の開口部を形成する工程Aと、sa本の連続した列を含む第1間隙領域を介して、前記第1領域と−x方向に隣接し、b本の連続した列の開口部を含む第2領域内の開口部を形成する工程Bと、sb本の連続した列を含む第2間隙領域を介して、前記第1領域とx方向に隣接し、c本の連続した列の開口部を含む第3領域内の開口部を形成する工程Cとを含み、前記工程Aの後に、前記工程Bおよび前記工程Cを行う。
ある実施形態において、前記工程A、前記工程Bおよび前記工程Cの後で、前記第1間隙領域内の開口部を形成する工程Dまたは前記第2間隙領域内の開口部を形成する工程Eを行う。
ある実施形態において、前記第2領域は前記第1領域の−x方向に位置する全領域の中央の列を含み、前記第3領域は前記第1領域のx方向に位置する全領域の中央の列を含む。
ある実施形態において、前記開口部形成工程は、d本の連続した列の開口部を含み、前記第2領域の−x方向に位置する第4領域内の開口部を形成する工程Fと、e本の連続した列の開口部を含み、前記第3領域のx方向に位置する第5領域内の開口部を形成する工程Gとをさらに含み、前記工程A、前記工程Bおよび前記工程Cの後で、前記工程Fまたは前記工程Gを行う。
ある実施形態において、前記工程Fおよび前記工程Gは、前記工程Dおよび前記工程Eの前に行う。
ある実施形態において、前記第4領域は、前記第2領域と直接隣接しない領域であり、前記第5領域は、前記第3領域と直接隣接しない領域である。
ある実施形態において、前記工程Dは、前記第1領域と前記第2領域の間に位置する全領域の中央の列を含む、sa本よりも少ない連続した列の開口部を形成する工程であり、前記工程Eは、前記第1領域と前記第3領域の間に位置する全領域の中央の列を含む、sb本よりも少ない連続した列の開口部を形成する工程である。
ある実施形態において、前記第4領域は、前記第2領域の−x方向に位置する全領域の中央の列を含む、d本よりも少ない連続した列の開口部を含み、前記第5領域は、前記第3領域のx方向に位置する全領域の中央の列を含む、e本よりも少ない連続した列の開口部を含む。
ある実施形態において、前記開口部形成工程は、sc本の連続した列を含む第3間隙領域を介して、前記第2領域と−x方向に隣接し、d本の連続した列の開口部を含む第4領域内の開口部を形成する工程Fと、sd本の連続した列を含む第4間隙領域を介して、前記第3領域とx方向に隣接し、e本の連続した列の開口部を含む第5領域内の開口部を形成する工程Gとをさらに含み、前記工程A、前記工程Bおよび前記工程Cの後で、前記工程Fまたは前記工程Gを行う。
ある実施形態において、前記工程Fおよび前記工程Gは、前記工程Dおよび前記工程Eの前に行う。
ある実施形態において、前記開口部形成工程は、f本の連続した列の開口部を含み、前記第4領域の−x方向に位置する第6領域内の開口部を形成する工程Hおよび/または、g本の連続した列の開口部を含み、前記第5領域のx方向に位置する第7領域内の開口部を形成する工程Iを行う。
ある実施形態において、前記a本、前記b本、前記c本、前記sa本および前記sb本は、それぞれ独立に、100本以上300本以下である。
ある実施形態において、任意の列の全てのアクティブ領域形成部にわたって、前記工程Aの後で、前記工程Bおよび前記工程Cを行う。
ある実施形態において、前記開口部形成工程は、(q/2)番目の列または{(q+1)/2}番目の列に属するアクティブ領域形成部から行われる。
ある実施形態において、前記開口部形成工程は、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行われる。
本発明の他の実施形態による成膜マスクを製造する方法は、xy面を規定するように固定された、矩形のマスク基材と、前記マスク基材に設けられた、m行n列に配列された複数の開口部をそれぞれが有するp行q列に配列された複数のアクティブ領域形成部とを有する成膜マスクを製造する方法であって、xy面を規定するように固定された前記マスク基材を用意する工程と、前記マスク基材に、前記複数のアクティブ領域形成部を形成する、開口部形成工程とを包含し、前記開口部形成工程は、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行われる。
ある実施形態において、前記開口部形成工程は、(q/2)番目の列または{(q+1)/2}番目の列に属するアクティブ領域形成部から行われる。
ある実施形態において、前記マスク基材は、前記複数の開口部を有する樹脂層と、前記複数の開口部を露出する少なくとも1つの貫通孔を有する磁性金属層を含む。少なくとも前記樹脂層は、x方向およびy方向に架張されている。
ある実施形態において、前記マスク基材は、前記複数の開口部を有する磁性金属層を含む。前記磁性金属層は、例えば、y方向にのみ架張されている。
ある実施形態において、前記マスク基材はx方向に長い矩形であって、前記行方向はx方向に平行である。
前記複数の開口部の形状は、例えば、矩形(長方形、正方形を含む)、ひし形、円、楕円など任意であり得る。
本発明の実施形態によると、架張されたマスク基材を有する成膜マスクの製造方法において、マスク基材の内部応力に起因する開口部の変形を抑制することができる。したがって、本発明の実施形態によると、高精細な成膜マスクを高い精度で製造する方法が提供される。
本発明の実施形態による製造方法で好適に製造される成膜マスク100を模式的に示す断面図であり、図2中の1A−1A線に沿った断面を示している。 成膜マスク100を模式的に示す平面図である。 (a)〜(f)は、成膜マスク100の製造工程を示す模式的な断面図である。 本発明の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明の他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による多面取り用の成膜マスク(積層型マスク)の製造方法において、複数のアクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による多面取り用の成膜マスク(積層型マスク)の製造方法において、複数のアクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。 本発明のさらに他の実施形態による多面取り用の成膜マスク(メタルマスク)の製造方法において、複数のアクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。
以下、図面を参照しながら本発明の実施形態を説明する。なお、本発明は以下の実施形態に限定されるものではない。
まず、本発明の実施形態による製造方法で好適に製造される成膜マスクの例を説明する。本発明の実施形態による製造方法は、以下に例示する成膜マスクに限られず、例えば特許文献1から3に記載の架張されたマスク基材に開口部を形成することによって製造される成膜マスクの製造に広く適用される。特許文献1から3の開示内容の全てを参考のために本明細書に援用する。
(成膜マスクの構造)
図1および図2を参照して、本発明の実施形態による製造方法で好適に製造される成膜マスク100の構造を説明する。図1および図2は、それぞれ成膜マスク100を模式的に示す断面図および平面図である。図1は、図2中の1A−1A線に沿った断面を示している。なお、図1および図2は、成膜マスク100の一例を模式的に示しており、各構成要素のサイズ、個数、配置関係、長さの比率などが図示する例に限定されないことはいうまでもない。後述する他の図面でも同様である。
成膜マスク100は、図1および図2に示すように、樹脂層10と、磁性金属層20と、フレーム30とを備える。成膜マスク100を用いて蒸着工程を行う際、成膜マスク100は、磁性金属層20が蒸着源側、樹脂層10が蒸着対象物(バックプレーンが形成された素子基板)側に位置するように配置される。
樹脂層10は、複数の開口部11を含む。複数の開口部11は、素子基板(バックプレーン)上に形成される複数の画素に対応したサイズ、形状および位置に形成されている。図2に示す例では、複数の開口部11は、マトリクス状に配置されている。開口部11のサイズ、形状および位置は、形成する有機EL層の色ごとによって異なり得る。
樹脂層10の材料としては、例えばポリイミドを好適に用いることができる。ポリイミドは、熱膨張係数が小さく、強度、耐薬品性および耐熱性に優れる。樹脂層10の材料として、ポリエチレンテレフタレート(PET)などの他の樹脂材料を用いてもよい。
樹脂層10の厚さは、特に限定されない。ただし、樹脂層10が厚すぎると、蒸着膜の一部が所望の厚さよりも薄く形成されてしまうことがある(「シャドウイング」と呼ばれる)。シャドウイングの発生を抑制する観点からは、樹脂層10の厚さは、25μm以下であることが好ましい。また、樹脂層10自体の強度および洗浄耐性の観点からは、樹脂層10の厚さは3μm以上であることが好ましい。
磁性金属層20は、樹脂層10上に形成されている。磁性金属層20は、後述するように例えばめっき法によって樹脂層10上に形成される。磁性金属層20は樹脂層10に密着している。磁性金属層20は、マスク部20aと、マスク部20aを包囲するように配置された周辺部20bとを有する。マスク部20aは、アクティブ領域形成部の磁性金属層20を指す。
マスク部20aは、樹脂層10の複数の開口部11を露出させる複数の貫通孔(スリット)21を有している。図2に示す例では、列方向に延びる貫通孔21が行方向に複数並んでいる。成膜マスク100の法線方向から見たとき、各貫通孔21は、樹脂層10の各開口部11よりも大きなサイズを有しており、各貫通孔21内に少なくとも1つ(ここでは複数)の開口部11が位置している。なお、本願明細書では、マスク部20aのうち、金属膜が存在している領域20a1を「中実部」と呼び、金属膜が存在していない領域20a2(ここでは貫通孔21)を「非中実部」と呼ぶこともある。
磁性金属層20は、例えば、無電解めっきまたは電解めっきで形成される。ニッケル(Ni)めっき層、ニッケル合金めっき層が好ましい。樹脂層10をポリイミドで形成し、磁性金属層20の熱膨張係数を樹脂層10と整合させることが好ましい。
磁性金属層20の厚さは、特に限定されない。ただし、磁性金属層20が厚すぎると、磁性金属層20が自重で撓んだり、シャドウイングが発生したりするおそれがある。自重による撓みおよびシャドウイングの発生を抑制する観点からは、磁性金属層20の厚さは、100μm以下であることが好ましい。また、磁性金属層20が薄すぎると、後述する蒸着工程における磁気チャックによる吸引力が低下し、成膜マスク100とワークとの間に隙間が生じる原因となることがある。また、破断や変形が生じるおそれがあり、ハンドリングが困難となることもある。そのため、磁性金属層20の厚さは、5μm以上であることが好ましい。
フレーム30は、額縁状であり、磁性金属層20の周辺部20bに固定されている。つまり、磁性金属層20の、フレーム30に重ならない領域がマスク部20aであり、フレーム30に重なる領域が周辺部20bである。フレーム30は、例えば金属材料から形成されている。フレーム30は、線熱膨張係数αMの小さい(具体的には6ppm/℃未満である)磁性金属材料を用いることが好ましい。例えば、Fe−Ni系合金(インバー)、Fe−Ni−Co系合金などを好適に用いることができる。
成膜マスク100では、図1に示すように、磁性金属層20は、全体にわたって樹脂層10に接合されている。樹脂層10および磁性金属層20は、フレーム30から、層面内方向の張力を受けている。後述するように、樹脂層10および磁性金属層20は、架張工程において、架張装置(あるいは溶接機能も備えた架張溶接装置)によって所定の層面内方向に引っ張られた状態でフレーム30に固定される。
(成膜マスクの製造方法)
図3(a)〜(f)を参照しながら、成膜マスク100の製造方法の例を説明する。図3(a)〜(f)は、成膜マスク100の製造工程を示す工程断面図である。
まず、図3(a)に示すように、樹脂材料から形成された樹脂シートを、樹脂層10として用意する。樹脂層10の材料としては、例えばポリイミドを好適に用いることができる。
次に、図3(b)に示すように、樹脂層10上に、レジスト層32でパターンを形成する。レジスト層32は、磁性金属層20の貫通孔21に対応するように形成する。
続いて、図3(c)に示す様に、磁性金属層20を形成する。磁性金属層20は、無電解めっきまたは電解めっきで形成される。めっき工程に先立って、触媒層および/または下地層(シード層)を形成してもよい。
次に、図3(d)に示す様に、レジスト層32を除去することによって、貫通孔21を有する磁性金属層20が得られる。磁性金属層20は、中実部20a1および非中実部20a2を含むマスク部20aと、マスク部20aを包囲するように配置された周辺部20bとを有する。
続いて、図3(e)に示す様に、樹脂層10および磁性金属層20の周辺部20bをフレーム30に固定する。この工程は、樹脂層10および磁性金属層20に、外部から層面内方向の張力を付与した状態で行われる。まず、フレーム30を、架張溶接装置に固定する。次に、樹脂層10および磁性金属層20を、フレーム30上に、磁性金属層20を下にして載置する。続いて、樹脂層10および磁性金属層20の対向する2つの縁部(図中の第1方向Xに直交する縁部)を架張溶接装置の保持部(クランプ)で保持し、第1方向Xに平行に一定の張力を付与する。同時に、第1方向Xに直交する第2方向Yに直交する(つまり第1方向Xに平行な)2つの縁部もクランプで保持し、第2方向Yに平行に一定の張力を付与する。
この状態で、樹脂層10側からレーザ光L1を照射することによって、樹脂層10および磁性金属層20の周辺部20bをフレーム30に溶接する。ここでは、所定の間隔を空けて複数箇所でスポット溶接を行う。スポット溶接の間隔(ピッチ)は適宜選択され得る。溶接には、例えば、YAGレーザを用いることができ、レーザ光L1の波長および1パルスあたりのエネルギーはそれぞれ例えば1064nm、7J/pulseである。勿論、溶接条件は、ここで例示するものに限定されない。
続いて、図3(f)に示すように、樹脂層10に複数の開口部11を形成する。この工程において、複数の開口部11は、樹脂層10における、マスク部20aの非中実部20a2に対応する領域に形成される。開口部11の形成は、例えばレーザ加工によって行うことができる。レーザ加工には、パルスレーザを用いる。ここでは、YAGレーザを用い、波長が355nmのレーザ光L2を樹脂層10の所定の領域に照射する。このとき、レーザ光L2の照射方向が上から下に向かう方向となるように、加工対象物(フレーム30、磁性金属層20および樹脂層10を含む構造体)は上下反転される。レーザ光L2のエネルギー密度は、例えば0.5J/cm2である。レーザ加工は、樹脂層10の表面にレーザ光L2の焦点を合わせて、複数回のショットを行うことによって行われる。ショット数は、樹脂層10の厚さに応じて決定される。ショット周波数は、例えば60Hzに設定される。このようにして、成膜マスク100が得られる。
なお、レーザ加工の条件は、上述したものに限定されず、樹脂層10を加工し得るように適宜選択される。たとえば、ビーム径の大きいレーザ光を用意し、例えば50個×50個、あるいは100個×100個の開口部11に対応する開口を有するフォトマスクを介して、レーザ光を照射することによって、ブロックごとに開口部11を形成してもよい。このとき、開口部11が形成されるマスク基材は、ステッパの様に、不連続に移動させられる。
(成膜マスクの変形例)
図1および図2に示した成膜マスク100では、磁性金属層20の各貫通孔21内に、樹脂層10の複数の開口部11が1列に配置されているが、磁性金属層20の貫通孔21の構成はこれに限定されない。例えば、各貫通孔21内に、樹脂層10の複数の開口部11をマトリクス状に配列してもよい。また、複数の貫通孔21は、列方向に沿って平行に配列されてもよいし、マトリクス状に配列されてもよい。
また、磁性金属層20の各貫通孔21内に、樹脂層10の開口部11が1つだけ配置されるようにしてもよい。磁性金属層20の各貫通孔21内には、少なくとも1つの開口部11が配置されていればよい。
また、磁性金属層20が、貫通孔21を1つだけ有するようにしてもよい。磁性金属層20のマスク部20aには、少なくとも1つの貫通孔21が形成されていればよい。
なお、樹脂層10および磁性金属層20とフレーム30との接合は、溶接に代えて、接着剤を用いてもよい。接着剤としては、紫外線硬化タイプまたは熱硬化タイプを用いることができる。アウトガスが少ない接着剤を用いることが好ましい。
(開口部形成順序)
以下に、図4〜図12を参照して、本発明の実施形態による成膜マスクの製造方法において、アクティブ領域形成部に開口部を形成する順序を説明する。本発明の実施形態による製造方法において、開口部を形成する順序は、架張されたマスク基材(樹脂層および/また磁性金属層)に開口部を形成することによるマスク基材に生成される内部応力(張力)の不均一な分布の程度を小さくすることによって、内部応力の不均一な分布に起因する開口部の変形を抑制する。
従来は、レーザ加工のスループットを向上させるために、マスク基材のアクティブ領域形成部の一端(一点)から順に、連続的に開口部を形成していた。レーザに対するマスク基材の相対位置の移動時間を最小にするためである。マスク基材の応力分布は、マスク基材に開口部を形成するたびに変化する。したがって、一端から他端に向けて連続的に開口部を形成すると、開口部を形成することによる内部応力(張力)の不均一な分布が偏り、開口部の形状のずれが大きくなる。予備的な成膜マスクを作製し、設計値からのずれを測定し、そのずれを見込んで開口部を形成することによって、また、この工程を複数回繰り返すことによって、目的の精度を得ることもできるが、高精細な成膜マスクを作製するためには、繰り返す回数が多くなり、製造コストの上昇を招く。特に、400ppiを超える高精細な成膜マスクを形成することが困難になる。
本発明の実施形態による成膜マスクの製造方法では、レーザ加工のスループットを敢えて犠牲にし、開口部を形成することによるマスク基材に生成される内部応力(張力)の不均一な分布の程度を小さくする。本発明の実施形態による成膜マスクの製造方法は、高精細の成膜マスクの製造に適している。
図4および図5を参照する。図4は、本発明の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。図5は、本発明の他の実施形態による成膜マスク(積層型マスク)の製造方法において、アクティブ領域形成部に開口部を形成する順序を説明するためのマスク基材の模式的な平面図である。
一般に、成膜マスクは、OLED表示装置を多面取りする際のマザー基板の複数のアクティブ領域に対応して、複数のアクティブ領域形成部AAを有している。複数のアクティブ領域形成部AAは一般にp行q列に配列されている(例えば図10〜図12参照)。図4および図5は、1つのアクティブ領域形成部AAの樹脂層10を示しており、開口部(不図示)を形成する領域(R1、R2、R3等)を示している。なお、図4および図5においては、各領域を見やすくするために、ハッチングの有る領域と無い領域とに分けて示している(図6〜図9において同じ)。積層型マスクのマスク基材は、図1〜図3を参照して説明した様に、樹脂層10と磁性金属層20とを有しているが、複数の開口部11は樹脂層10に形成されるので、以下では磁性金属層20の図示を省略する。
樹脂層10は、図3を参照して説明した様に、架張された状態でフレームに固定されている。ここで、架張された樹脂層10が規定する面をxy面とする。樹脂層10は、x方向に張力Fxで引っ張られ、x方向と直交するy方向に張力Fyで引っ張られている。このように架張された状態で、樹脂層10にm行n列のマトリクス状に複数の開口部を形成する。例えば、m×nは、1440×2880である。なお、表示に用いられる画素以外に、ダミーの画素が設けられることがあり、そのような場合には、mおよび/またはnは奇数になり得る。
以下では、アクティブ領域形成部AAがx方向に長い矩形で、行方向がx方向に平行な例を示すが、これに限られないのは言うまでもない。また、以下の説明において、行と列とは入れ替わってもよいし、x方向と−x方向とが入れ替わってもよいし、y方向と−y方向とが入れ替わってもよい。
本発明の実施形態による製造方法は、アクティブ領域形成部AAを複数の領域に分割し、複数の領域ごとに開口部を形成する。分割された領域内では、開口部を連続して形成してもよいが、複数の領域にわたって連続的に開口部を形成することを避け、不連続に配置された領域に開口部を形成する。このとき、不連続に配置された領域は、例えば、アクティブ領域形成部AAの中心(例えば以下の例ではx方向の中心)に関して線対称な位置にあることが好ましい。また、線対称に配置される領域には、連続して、開口部を形成することが好ましい。開口部を形成することによる応力の不均一な分布は、できるだけ短時間で解消することが好ましいからである。もちろん、線対称に配置される領域の面積は互いに等しいことが好ましい。
図4を参照する。
まず、最初の工程Aでは、少なくとも(n/2)番目の列または{(n+1)/2}番目の列を含む、a本の連続した列の開口部を含む第1領域R1内の開口部を形成する。すなわち、n列の中心の列を含む第1領域R1に開口部を形成する。第1領域R1は、(n/2)番目の列または{(n+1)/2}番目の列に関して線対称な領域であることが好ましい。
続く、工程Bまたは工程Cでは、第1領域R1に直接隣接しない第2領域R2または第3領域R3に開口部を形成する。第2領域R2は、例えば、sa本の連続した列を含む第1間隙領域RS1を間に介して、第1領域R1と−x方向に隣接し、b本の連続した列の開口部を含む。第3領域R3は、例えば、sb本の連続した列を含む第2間隙領域RS2を間に介して、第1領域R1とx方向に隣接し、c本の連続した列の開口部を含む。ここで、b本とc本とは互いに等しいことが好ましく、さらに、sa本とsb本とは互いに等しいことが好ましい。もちろん、列の数(n)は大きいので、b本とc本とが多少違っても、また、sa本とsb本とが多少違っても、応力分布の均衡(線対称性)に与える影響は小さい。b本とc本との差、および、sa本とsb本との差は、それぞれ10%程度以下であることが好ましい。後述する他の領域についても同様である。
この後、第1間隙領域RS1内の開口部を形成する工程Dまたは第2間隙領域RS2内の開口部を形成する工程Eを行う。
このような順序で形成すると、開口部を形成することによる応力分布の変化の不均一性を抑制することができる。
なお、各領域内の開口部は、一筆書きのように、一端から他端に向けて、最短距離で連続的に形成すればよい。各領域の列の数(a本、b本、c本、sa本およびsb本)は、それぞれ独立に、100本以上300本以下であることが好ましい。逆に言うと、各領域の列の数が、100本以上300本以下となるように、領域の数を増やせばよい。列の数が4096本(解像度4K)の場合、15個の領域に分けることによって、開口部を形成することによる応力分布の変化の不均一性を抑制することができる。各領域に含まれる列の数(a本、b本、c本、sa本およびsb本)は概ね等しいことが好ましい。ただし、最初に開口部を形成する中央に位置する第1領域R1の列の数a本は、他よりも小さくてもよい。
例えば、図5に示す様に、7つの領域を形成する場合、第2領域R2が第1領域R1の−x方向に位置する全領域の中央の列を含むように形成し、第3領域R3が第1領域R1のx方向に位置する全領域の中央の列を含むように形成する。ここで、ある領域の中央の列とは、その領域に含まれる列の数をkとし、kが偶数のときには、k/2列目をいい、kが奇数のときは(k+1)/2列目をいう。数える方向は、x方向でも−x方向でもよい。
このように、第1領域R1をアクティブ領域形成部AAの中央に形成し、第2領域R2を第1領域R1の−x方向に残った領域(これから開口部を形成する領域全体)の中央に形成し、第3領域R3を第1領域R1のx方向に残った領域(これから開口部を形成する領域全体)の中央に形成すれば、開口部を形成することによる応力分布の変化の不均一性を効果的に抑制することができる。
この後、d本の連続した列の開口部を含み、第2領域R2と−x方向に隣接する第4領域R4内の開口部を形成する工程Fと、e本の連続した列の開口部を含み、第3領域R3とx方向に隣接する第5領域R5内の開口部を形成する工程Gとをさらに行う。d本およびe本は、a本、b本、c本、sa本およびsb本と概ね等しいことが好ましい。工程Fおよび工程Gは、工程Dおよび工程Eの前に行うことが好ましい。工程Dおよび工程Eを先に行うと、第1領域R1、第2領域R2、第3領域R3、第1間隙領域RS1および第2間隙領域RS2からなる連続した1つの領域に開口部が形成されることになる。これに対し、工程Fおよび工程Gを先に行うと、第1領域R1と、第2領域R2・第4領域R4と、第3領域R3・第5領域R5との3つの不連続な領域に開口部が形成されるので、応力分布の偏りを抑制する効果が大きい。
次に、図6を参照する。
図6は、11個の領域に分割する場合を示している。図6の下に示した(R4)、(RS1)、(RS2)および(R5)は、図5に示した第4領域R4、第1間隙領域RS1、第2間隙領域RS2および第5領域R5に対応する。すなわち、図5を参照して説明した7つの領域に分割する開口部形成工程において、第4領域R4、第1間隙領域RS1、第2間隙領域RS2および第5領域R5をそれぞれ2つの領域にさらに分割することによって、図6に示す様に11個の領域に分割することができる。
図6において、開口部を形成する順序は、例えば、図6中に示した、第1領域R1から第11領域R11まで、数字の昇順に従って形成すればよい。図5を参照して説明した開口部形成工程において、第4領域R4を第2領域R2と直接隣接しない領域として形成することによって、第8領域R8を形成することができる。また、第5領域R5を第3領域R3と直接隣接しない領域とすることによって、第9領域R9を形成することができる。第4領域R4と第8領域R8とに含まれる列の数は概ね等しいことが好ましく、第5領域R5と第9領域R9とに含まれる列の数は概ね等しいことが好ましい。
さらに、第1間隙領域RS1のうち、第1領域R1に直接隣接する領域に開口部を形成することによって第6領域R6を形成する。このとき、第1間隙領域RS1のうち、第6領域R6にならなかった領域が第10領域R10となる。次に、第2間隙領域RS2のうち、第1領域R1に直接隣接する領域に開口部を形成することによって第7領域R7を形成する。このとき、第2間隙領域RS2のうち、第7領域R7にならなかった領域が第11領域R11となる。第6領域R6と第10領域R10とに含まれる列の数は概ね等しいことが好ましく、第7領域R7と第11領域R11とに含まれる列の数は概ね等しいことが好ましい。
次に、図7を参照する。
図7は、15個の領域に分割する場合を示している。図7の下に示した(R4)、(RS1)、(RS2)および(R5)は、図5に示した第4領域R4、第1間隙領域RS1、第2間隙領域RS2および第5領域R5に対応する。すなわち、図5を参照して説明した7つの領域に分割する開口部形成工程において、第4領域R4、第1間隙領域RS1、第2間隙領域RS2および第5領域R5をそれぞれ3つの領域にさらに分割することによって、図7に示す様に15個の領域に分割することができる。
図7において、開口部を形成する順序は、例えば、図7中に示した、第1領域R1から第15領域R15まで、数字の昇順に従って形成すればよい。
図5を参照して説明した開口部形成工程において、工程Dを、第1領域R1と第2領域R2の間に位置する全領域の中央の列を含む、sa本よりも少ない連続した列の開口部を形成する工程とし、工程Eを、第1領域R1と第3領域R3の間に位置する全領域の中央の列を含む、sb本よりも少ない連続した列の開口部を形成する工程とする。このとき、工程Dにおいて、図5における第1間隙領域RS1に含まれる列の数を概ね3等分するように開口部を形成し(図7中の第4領域R4)、工程Eにおいて、図5における第2間隙領域RS2に含まれる列の数を概ね3等分するように開口部を形成する(図7中の第5領域R5)。
次に、図5を参照して説明した開口部形成工程において、第4領域R4を、第2領域R2の−x方向に位置する全領域の中央の列を含む、d本よりも少ない連続した列の開口部を含む領域とし、第5領域R5を、第3領域R3のx方向に位置する全領域の中央の列を含む、e本よりも少ない連続した列の開口部を含む領域とする。このとき、図5における第4領域R4に含まれる列の数を概ね3等分するように開口部を形成し(図7中の第6領域R6)、図5における第5領域R5に含まれる列の数を概ね3等分するように開口部を形成する(図7中の第7領域R7)。
次に、図8および図9を参照して、開口部を形成する順序の他の例を説明する。図6および図7を参照して説明した例では、第1領域R1をアクティブ領域形成部AAの中央に形成した後、第2領域R2を第1領域R1の−x方向に残った領域(これから開口部を形成する領域全体)の中央に形成し、第3領域R3を第1領域R1のx方向に残った領域(これから開口部を形成する領域全体)の中央に形成した。その後、図7に示した例では、さらに残った領域の中央に第4領域R4および第5領域R5を形成した。これに対し、図8および図9では、第1領域R1をアクティブ領域形成部AAの中央に形成した後、第1領域R1からある本数分(間隙領域)を空けて、−x方向に第2領域R2を形成し、x方向に第3領域R3を形成する。さらにその後、第2領域R2からある本数分(間隙領域)を空けて、−x方向に第4領域R4を形成し、第3領域R3からある本数分(間隙領域)を空けて、x方向に第5領域R5を形成する。このように、中央からx方向および−x方向に交互にある本数分(間隙領域)を空けて、開口部を形成するようにしてもよい。
図8は、図6と同様に、11個の領域に分割する場合を示しており、図9は、図7と同様に15個の領域に分割する例を示している。
まず、図5を参照して説明したのと同じ順序で、第1領域R1、第2領域R2および第3領域R3を形成する。すなわち、工程A、工程Bおよび工程Cを行う。このときに形成される第1間隙領域RS1および第2間隙領域RS2に含まれる列の数が、図5の場合と異なる。
その後、sc本の連続した列を含む第3間隙領域RS3を介して、第2領域R2と−x方向に隣接し、d本の連続した列の開口部を含む第4領域R4内の開口部を形成する工程Fと、sd本の連続した列を含む第4間隙領域RS4を介して、第3領域R3とx方向に隣接し、e本の連続した列の開口部を含む第5領域R5内の開口部を形成する工程Gとをさらに行う。
その後、f本の連続した列の開口部を含み、第4領域R4の−x方向に位置する第6領域R6内の開口部を形成する工程Hおよび/または、g本の連続した列の開口部を含み、第5領域R5のx方向に位置する第7領域R7内の開口部を形成する工程Iを行う。
ここで、第4領域R4に直接隣接するように第6領域R6を形成し、第5領域R5に直接隣接するように第7領域R7を形成することによって、図8に示す、第1領域R1〜第7領域R7が得られる。第7領域R7まで開口部を形成した後、第1間隙領域RS1および第2間隙領域RS2に開口部を形成し、その後で、第3間隙領域RS3および第4間隙領域RS4に開口部を形成することが好ましい。開口部が形成された領域がなるべく分散されるように形成される方が、応力分布の変化の不均一性を抑制する効果が高いからである。
一方、第5間隙領域RS5を介して、第4領域R4に隣接するように第6領域R6を形成し、第6間隙領域RS6を介して、第5領域R5に隣接するように第7領域R7を形成し、第6領域R6に直接隣接するように第8領域R8を形成し、第7領域R7に直接隣接するように第9領域R9を形成することによって、図9に示す、第1領域R1〜第9領域R9が得られる。第9領域R9まで開口部を形成した後、第1間隙領域RS1および第2間隙領域RS2に開口部を形成し、その後で、第5間隙領域RS5および第6間隙領域RS6に開口部を形成し、最後に、第3間隙領域RS3および第4間隙領域RS4に開口部を形成することが好ましい。開口部が形成された領域がなるべく分散されるように形成される方が、応力分布の変化の不均一性を抑制する効果が高いからである。
OLED表示装置を多面取りする際のマザー基板に対して用いられる成膜マスクでは、アクティブ領域形成部の位置によって、マスク基材内の応力分布が異なるので、上記と同様の問題が発生する。そこで、図10〜図12を参照して、複数のアクティブ領域形成部AAに開口部を形成する順序について説明する。
図10に示すマザー基板用の成膜マスク200は、p行q列に配列された複数のアクティブ領域形成部AAを有している。pおよびqは、例えば40〜100程度である。
図10に矢印で示す様に、任意の列の全てのアクティブ領域形成部AAにわたって、上記の工程Aの後で、工程Bおよび工程C等を行う。すなわち、各アクティブ領域形成部AAについて開口部を形成する工程をすべて行うのではなく、アクティブ領域形成部AAの列ごとに、開口部形成工程を上記の順序で行う。このように行うことによって、y方向における移動距離を短くすることができるとともに、y方向における応力分布の変化を抑制することができる。
なお、アクティブ領域形成部AAの列を選択する順序は、上述の開口部を形成する列を選択する順序と同様にすることが好ましい。すなわち、上記のn列に代えてq列とすればよい。具体的には、開口部形成工程を(q/2)番目の列または{(q+1)/2}番目の列に属するアクティブ領域形成部AAから行えばよい。あるいは、行と列とを入れ替えて、行方向に沿って開口部を形成する場合には、開口部形成工程を(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行ってもよい。
なお、アクティブ領域形成部AAごとに、開口部形成工程を行う場合には、上述の順序に従ってアクティブ領域形成部AAの列を選択し、各列について、図11に示す様に、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行ってもよい。
上記では、積層型マスクを例に、開口部を形成する順序を説明したが、本発明の実施形態は、メタルマスクにも適用できる。
図12に示す成膜マスク300は、インバーで形成された金属層50を有している。金属層50は、短冊状の金属層50Sを複数配列し、周辺をインバーで形成されたフレーム(不図示)に固定されている。短冊状のインバーが量産されており、マザー基板に対応できる大きさの一枚の板を入手するのは困難である。インバーで形成されたマスク基材には、短冊の長手方向に沿って(ここではy方向に沿って)架張されている(x方向には架張されていない)。
このような場合には、架張方向(y方向)における応力分布の偏りを低減させる必要がある。したがって、開口部を形成する順序は、図12に示す様に、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行うことが好ましい。各アクティブ領域形成部においても同様で、上述の説明の行と列とを入れ替えて、(m/2)番目の行または{(m+1)/2}番目の行から行うことが好ましい。
なお、アクティブ領域形成部AAを選択する順序を上述のようにすれば、各アクティブ領域形成部AAにおける開口部を形成する順序に拘わらず、応力分布の不均性に起因する開口部の変形をある程度抑制する効果を得ることができる。
本発明の実施形態は、有機ELデバイスの製造に用いられる成膜マスクの製造に好適に用いられる。
10 樹脂層
11 開口部
20 磁性金属層
20a マスク部
20a1 中実部
20a2 非中実部
20b 周辺部
21 貫通孔(スリット)
100 成膜マスク
AA :アクティブ領域形成部
L1、L2 :レーザ光
R1 :第1領域
R2 :第2領域
R3 :第3領域
R4 :第4領域
R5 :第5領域
R6 :第6領域
R7 :第7領域
RS1 :第1間隙領域
RS2 :第2間隙領域
RS3 :第3間隙領域
RS4 :第4間隙領域

Claims (18)

  1. xy面を規定するように固定された、矩形のマスク基材と、前記マスク基材に設けられた、m行n列に配列された複数の開口部をそれぞれが有するp行q列に配列された複数のアクティブ領域形成部とを有する成膜マスクを製造する方法であって、
    xy面を規定するように固定された前記マスク基材を用意する工程と、
    前記マスク基材に、前記複数のアクティブ領域形成部を形成する、開口部形成工程と
    を包含し、
    前記マスク基材は、樹脂層を含み、前記開口部形成工程は、前記樹脂層にレーザ光を照射することによって前記複数の開口部を形成する工程を包含し、
    前記開口部形成工程は、少なくとも(n/2)番目の列または{(n+1)/2}番目の列を含む、a本の連続した列の開口部を含む第1領域内の開口部を形成する工程Aと、
    sa本の連続した列を含む第1間隙領域を介して、前記第1領域と−x方向に隣接し、b本の連続した列の開口部を含む第2領域内の開口部を形成する工程Bと、
    sb本の連続した列を含む第2間隙領域を介して、前記第1領域とx方向に隣接し、c本の連続した列の開口部を含む第3領域内の開口部を形成する工程Cとを含み、
    前記工程Aの後に、前記工程Bおよび前記工程Cを行う、製造方法。
  2. 前記工程A、前記工程Bおよび前記工程Cの後で、前記第1間隙領域内の開口部を形成する工程Dまたは前記第2間隙領域内の開口部を形成する工程Eを行う、請求項1に記載の製造方法。
  3. 前記第2領域は前記第1領域の−x方向に位置する全領域の中央の列を含み、前記第3領域は前記第1領域のx方向に位置する全領域の中央の列を含む、請求項2に記載の製造方法。
  4. 前記開口部形成工程は、
    d本の連続した列の開口部を含み、前記第2領域の−x方向に位置する第4領域内の開口部を形成する工程Fと、
    e本の連続した列の開口部を含み、前記第3領域のx方向に位置する第5領域内の開口部を形成する工程Gとをさらに含み、
    前記工程A、前記工程Bおよび前記工程Cの後で、前記工程Fまたは前記工程Gを行う、請求項3に記載の製造方法。
  5. 前記工程Fおよび前記工程Gは、前記工程Dおよび前記工程Eの前に行う、請求項4に記載の製造方法。
  6. 前記第4領域は、前記第2領域と直接隣接しない領域であり、前記第5領域は、前記第3領域と直接隣接しない領域である、請求項4または5に記載の製造方法。
  7. 前記工程Dは、前記第1領域と前記第2領域の間に位置する全領域の中央の列を含む、sa本よりも少ない連続した列の開口部を形成する工程であり、前記工程Eは、前記第1領域と前記第3領域の間に位置する全領域の中央の列を含む、sb本よりも少ない連続した列の開口部を形成する工程である、請求項2から6のいずれかに記載の製造方法。
  8. 前記第4領域は、前記第2領域の−x方向に位置する全領域の中央の列を含む、d本よりも少ない連続した列の開口部を含み、
    前記第5領域は、前記第3領域のx方向に位置する全領域の中央の列を含む、e本よりも少ない連続した列の開口部を含む、請求項2から7のいずれかに記載の製造方法。
  9. 前記開口部形成工程は、
    sc本の連続した列を含む第3間隙領域を介して、前記第2領域と−x方向に隣接し、d本の連続した列の開口部を含む第4領域内の開口部を形成する工程Fと、
    sd本の連続した列を含む第4間隙領域を介して、前記第3領域とx方向に隣接し、e本の連続した列の開口部を含む第5領域内の開口部を形成する工程Gとをさらに含み、
    前記工程A、前記工程Bおよび前記工程Cの後で、前記工程Fまたは前記工程Gを行う、請求項1または2に記載の製造方法。
  10. 前記工程Fおよび前記工程Gは、前記工程Dおよび前記工程Eの前に行う、請求項2を引用する請求項9に記載の製造方法。
  11. 前記開口部形成工程は、
    f本の連続した列の開口部を含み、前記第4領域の−x方向に位置する第6領域内の開口部を形成する工程Hおよび/または、g本の連続した列の開口部を含み、前記第5領域のx方向に位置する第7領域内の開口部を形成する工程Iを行う、請求項9または10に記載の製造方法。
  12. 前記a本、前記b本、前記c本、前記sa本および前記sb本は、それぞれ独立に、100本以上300本以下である、請求項1から11のいずれかに記載の製造方法。
  13. 任意の列の全てのアクティブ領域形成部にわたって、前記工程Aの後で、前記工程Bおよび前記工程Cを行う、請求項1から12のいずれかに記載の製造方法。
  14. 前記開口部形成工程は、(q/2)番目の列または{(q+1)/2}番目の列に属するアクティブ領域形成部から行われる、請求項1から13のいずれかに記載の製造方法。
  15. 前記開口部形成工程は、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行われる、請求項1から14のいずれかに記載の製造方法。
  16. xy面を規定するように固定された、矩形のマスク基材と、前記マスク基材に設けられた、m行n列に配列された複数の開口部をそれぞれが有するp行q列に配列された複数のアクティブ領域形成部とを有する成膜マスクを製造する方法であって、
    xy面を規定するように固定された前記マスク基材を用意する工程と、
    前記マスク基材に、前記複数のアクティブ領域形成部を形成する、開口部形成工程と
    を包含し、
    前記マスク基材は、樹脂層を含み、前記開口部形成工程は、前記樹脂層にレーザ光を照射することによって前記複数の開口部を形成する工程を包含し、
    前記開口部形成工程は、(p/2)番目の行または{(p+1)/2}番目の行に属するアクティブ領域形成部から行われる、製造方法。
  17. 前記開口部形成工程は、(q/2)番目の列または{(q+1)/2}番目の列に属するアクティブ領域形成部から行われる、請求項16に記載の製造方法。
  18. 前記マスク基材は、前記樹脂層に形成される前記複数の開口部を露出する少なくとも1つの貫通孔を有する磁性金属層を含む、請求項1から17のいずれかに記載の製造方法。

JP2018027642A 2018-02-20 2018-02-20 成膜マスクの製造方法 Expired - Fee Related JP6560385B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018027642A JP6560385B2 (ja) 2018-02-20 2018-02-20 成膜マスクの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018027642A JP6560385B2 (ja) 2018-02-20 2018-02-20 成膜マスクの製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017564944A Division JP6300257B1 (ja) 2017-08-31 2017-08-31 成膜マスクの製造方法

Publications (2)

Publication Number Publication Date
JP2019044257A true JP2019044257A (ja) 2019-03-22
JP6560385B2 JP6560385B2 (ja) 2019-08-14

Family

ID=65814711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018027642A Expired - Fee Related JP6560385B2 (ja) 2018-02-20 2018-02-20 成膜マスクの製造方法

Country Status (1)

Country Link
JP (1) JP6560385B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501425A (zh) * 2020-11-27 2021-03-16 山东大学 一种具有反高斯分布冲击波强度的激光表面强化方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501425A (zh) * 2020-11-27 2021-03-16 山东大学 一种具有反高斯分布冲击波强度的激光表面强化方法

Also Published As

Publication number Publication date
JP6560385B2 (ja) 2019-08-14

Similar Documents

Publication Publication Date Title
JP6300257B1 (ja) 成膜マスクの製造方法
JP6510139B2 (ja) 蒸着マスク、蒸着マスクの製造方法および有機半導体素子の製造方法
JP6510126B2 (ja) 蒸着マスクの製造方法、蒸着マスク、および有機半導体素子の製造方法
JP6535434B2 (ja) 単位マスクストリップおよびこれを用いた有機発光表示装置の製造方法
US8852346B2 (en) Mask frame assembly for thin layer deposition and organic light emitting display device
JP2017166029A (ja) 蒸着マスクおよび蒸着マスク中間体
US20130137334A1 (en) Film formation apparatus, film formation method, and mask unit to be used for them
JP2002235165A (ja) マスク
JP2015028204A (ja) 蒸着マスクの製造方法、金属フレーム付き蒸着マスクの製造方法、及び有機半導体素子の製造方法
JP2020531679A (ja) マスクストリップ及びその製造方法、マスクプレート
JP4609187B2 (ja) 多面付けメタルマスクの製造方法
JP2004055231A (ja) 有機el素子製造に用いる真空蒸着用多面付けメタルマスク
JP6560385B2 (ja) 成膜マスクの製造方法
JP2002371349A (ja) 蒸着用マスク
JP6748794B1 (ja) 成膜マスクの製造方法
KR20120065230A (ko) 증착 마스크 및 그것을 사용한 유기 el 표시 패널의 제조방법
JP6347112B2 (ja) 蒸着マスク、蒸着マスク準備体、蒸着マスクの製造方法、パターンの製造方法、フレーム付き蒸着マスク、及び有機半導体素子の製造方法
US20220307121A1 (en) Mask assembly and manufacturing method thereof
WO2022034634A1 (ja) 成膜マスクの製造方法
JP2017066440A (ja) 基板付蒸着マスクの製造方法、蒸着マスクの製造方法および基板付蒸着マスク

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190718

R150 Certificate of patent or registration of utility model

Ref document number: 6560385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees