JP2019039821A - Heat flow sensor - Google Patents

Heat flow sensor Download PDF

Info

Publication number
JP2019039821A
JP2019039821A JP2017162272A JP2017162272A JP2019039821A JP 2019039821 A JP2019039821 A JP 2019039821A JP 2017162272 A JP2017162272 A JP 2017162272A JP 2017162272 A JP2017162272 A JP 2017162272A JP 2019039821 A JP2019039821 A JP 2019039821A
Authority
JP
Japan
Prior art keywords
thermocouple
thin film
flow sensor
heat flow
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017162272A
Other languages
Japanese (ja)
Inventor
塩田 広
Hiroshi Shioda
広 塩田
宜史 池田
Yoshifumi Ikeda
宜史 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products and Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products and Systems Corp filed Critical Toshiba Industrial Products and Systems Corp
Priority to JP2017162272A priority Critical patent/JP2019039821A/en
Publication of JP2019039821A publication Critical patent/JP2019039821A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

To provide a heat flow sensor having a relatively simple configuration capable of achieving at low cost.SOLUTION: The heat flow sensor is for measuring the density of heat flux emitted from the surface of a measuring object 2. The heat flow sensor comprises: a thin film 3 which is formed of a material the thermal resistance of which is well-known, and which is placed on a measuring point on the surface of the measuring object 2; a first thermocouple 4 the junction of which is disposed on one surface of the thin film 3; and a second thermocouple 5 the junction of which is disposed at a position corresponding to the first thermocouple 4 on the other surface of the thin film 3. The density of heat flux is measured on the basis of a temperature difference between both surfaces of the thin film 3 from a difference between the electromotive force of the first thermocouple 4 and the electromotive force of the second thermocouple 5.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、熱流センサに関する。   Embodiments of the present invention relate to a heat flow sensor.

熱流センサとしては、ゼーベック効果を利用して熱流量を測定するようにしたものが知られている(例えば、特許文献1参照)。この熱流センサにおいては、コンスタンタンからなる第1の導体パターンと、コンスタンタン及び銅からなる第2の導体パターンとを交互に連結して、ジグザグ状(蛇行状)の熱電錐パターンを有する形態のフレキシブル配線板を、二段エッチング法により形成する。そして、そのフレキシブル配線板を、樹脂フィルムなどの熱抵抗体に巻回して接着することにより、熱流センサが形成される。   As the heat flow sensor, one that measures the heat flow using the Seebeck effect is known (see, for example, Patent Document 1). In this heat flow sensor, a flexible wiring having a zigzag (meandering) thermoelectric cone pattern in which a first conductor pattern made of constantan and a second conductor pattern made of constantan and copper are alternately connected. The plate is formed by a two-stage etching method. And the heat flow sensor is formed by winding and bonding the flexible wiring board around a thermal resistor such as a resin film.

特開2004−37097号公報JP 2004-37097 A

上記した従来の熱流センサでは、複雑な導体パターンを必要とする等、構成が比較的複雑であって、高価となる傾向にあった。
そこで、比較的簡単な構成で安価に済ませることができる熱流センサを提供する。
The above-mentioned conventional heat flow sensor has a tendency to be relatively complicated and expensive because it requires a complicated conductor pattern.
In view of this, a heat flow sensor is provided that can be made inexpensively with a relatively simple configuration.

実施形態に係る熱流センサは、測定対象物の表面から放出される熱流束密度を測定するためのものであって、熱抵抗が既知の材料からなり前記測定対象物の表面の測定箇所に宛がわれる薄膜と、前記薄膜の一方の面に接合点が配置された第1の熱電対と、前記薄膜の他方の面に前記第1の熱電対と対応した位置に接合点が配置された第2の熱電対とを備え、前記第1の熱電対の起電力と前記第2の熱電対の起電力との差から、前記薄膜の両面の温度差を求めることに基づき測定を行う。   The heat flow sensor according to the embodiment is for measuring the heat flux density emitted from the surface of the measurement object, and is made of a material having a known thermal resistance and is directed to the measurement location on the surface of the measurement object. And a first thermocouple in which a junction point is disposed on one surface of the thin film, and a second in which a junction point is disposed at a position corresponding to the first thermocouple on the other surface of the thin film. The measurement is performed based on obtaining the temperature difference between the two surfaces of the thin film from the difference between the electromotive force of the first thermocouple and the electromotive force of the second thermocouple.

第1の実施形態を示すもので、熱流センサの使用時の様子を概略的に示す縦断面図The longitudinal cross-sectional view which shows 1st Embodiment and shows the mode at the time of use of a heat flow sensor roughly 熱流センサの概略構成を示す平面図Plan view showing schematic configuration of heat flow sensor 第1の熱電対と第2の熱電対との接続状態を模式的に示す図The figure which shows typically the connection state of a 1st thermocouple and a 2nd thermocouple. 第2の実施形態を示すもので、熱流センサの概略構成を示す平面図The top view which shows 2nd Embodiment and shows schematic structure of a heat flow sensor

(1)第1の実施形態
図1〜図3を参照して、第1の実施形態について述べる。図1及び図2は、本実施形態に係る熱流センサ1の構成を概略的に示している。図1に示すように、この熱流センサ1は、測定対象物2の表面(図で上面)の測定箇所に宛がわれ、該測定対象物2の測定箇所から放出される熱流束密度q(W/m)、つまり単位時間中に流れる単位面積当たりの熱量を測定するためのものとされている。尚、ここでは、前記測定対象物2として、例えば、変圧器の構成部品としてのコイル等の発熱部品を想定している。
(1) First Embodiment A first embodiment will be described with reference to FIGS. 1 and 2 schematically show a configuration of a heat flow sensor 1 according to the present embodiment. As shown in FIG. 1, the heat flow sensor 1 is assigned to a measurement location on the surface of the measurement object 2 (upper surface in the drawing) and is released from the measurement location of the measurement object 2. / M 2 ), that is, for measuring the amount of heat per unit area flowing during a unit time. Here, the measurement object 2 is assumed to be a heat generating component such as a coil as a component of the transformer, for example.

本実施形態に係る熱流センサ1は、図1及び図2に示すように、熱抵抗が既知の材料からなり測定対象物2の表面の測定箇所に宛がわれる薄膜3と、この薄膜3の一方の面(図で上面)に接合点4aが配置された第1の熱電対4と、前記薄膜3の他方の面(図で下面)の前記第1の熱電対4と対応した位置に接合点5aが配置された第2の熱電対5とを備えている。   As shown in FIGS. 1 and 2, the heat flow sensor 1 according to the present embodiment includes a thin film 3 made of a material having a known thermal resistance and addressed to a measurement location on the surface of the measurement object 2, and one of the thin films 3. The first thermocouple 4 in which the junction point 4a is arranged on the surface (upper surface in the figure), and the junction point at a position corresponding to the first thermocouple 4 on the other surface (lower surface in the figure) of the thin film 3 And a second thermocouple 5 on which 5a is arranged.

前記薄膜3は、この場合、セラミック材料、例えば集成マイカをシート状に成形したマイカフィルムからなり、例えば厚み寸法が0.1〜1mm程度の円形薄板状に構成されている。また、この薄膜3の熱抵抗は、R(m・K/W)とされている。尚、薄膜3の熱抵抗R(m・K/W)は、薄膜3の厚み寸法d(m)÷薄膜3の熱伝導率λ(W/m・K)で求めることができる。 In this case, the thin film 3 is made of a ceramic material, for example, a mica film obtained by forming laminated mica into a sheet shape, and is formed in a circular thin plate shape having a thickness dimension of about 0.1 to 1 mm, for example. The thin film 3 has a thermal resistance of R (m 2 · K / W). The thermal resistance R (m 2 · K / W) of the thin film 3 can be determined by the thickness dimension d (m) of the thin film 3 ÷ the thermal conductivity λ (W / m · K) of the thin film 3.

前記第1の熱電対4は、図3に示すように、例えば、クロメル(登録商標)からなるプラス極金属線4bと、アルメル(登録商標)からなるマイナス極金属線4cとの先端部同士をろう付けなどにより接合して構成され、その接合点4aが、前記薄膜3の上面の中心部(点P1)に貼付けられている。また、前記第2の熱電対5についても、例えば、同様に、クロメルからなるプラス極金属線5bと、アルメルからなるマイナス極金属線5cとの先端部同士をろう付けなどにより接合して構成され、その接合点5aが、前記薄膜3の下面の中心部(点P2)に貼付けられている。尚、薄膜3の上面の点P1と下面の点P2とは、面方向に見て重なる位置にあるが、図3では、便宜上、点P1と点P2とを若干量ずらして示している。   As shown in FIG. 3, the first thermocouple 4 has, for example, the ends of a positive electrode metal wire 4b made of chromel (registered trademark) and a negative electrode metal wire 4c made of alumel (registered trademark). It is constituted by joining by brazing or the like, and the joining point 4a is attached to the central portion (point P1) of the upper surface of the thin film 3. Similarly, the second thermocouple 5 is also configured by, for example, joining the tip portions of a positive electrode metal wire 5b made of chromel and a negative electrode metal wire 5c made of alumel by brazing or the like. The junction 5a is attached to the center (point P2) of the lower surface of the thin film 3. Note that the point P1 on the upper surface and the point P2 on the lower surface of the thin film 3 overlap each other when viewed in the plane direction, but in FIG. 3, the point P1 and the point P2 are slightly shifted for convenience.

このとき、本実施形態では、前記第1の熱電対4と前記第2の熱電対5とは、互いの起電力が打ち消される方向に直列接続されている。具体的には、図3に示すように、第1の熱電対4のマイナス極金属線4cの基端部と、第2の熱電対5のマイナス極金属線5cの基端部とが電気的に接続されている。そして、第1の熱電対4のプラス極金属線4bの基端部と、第2の熱電対5のプラス極金属線5bの基端部との間に生ずる起電力(電圧)信号ΔVが、出力信号とされ、図示しない信号処理回路に入力される。このとき、第1の熱電対4の起電力V1と、第2の熱電対5の起電力V2との差(V1−V2)が、起電力信号ΔVとして出力される。   At this time, in the present embodiment, the first thermocouple 4 and the second thermocouple 5 are connected in series in a direction in which the mutual electromotive force is canceled. Specifically, as shown in FIG. 3, the base end of the negative electrode metal wire 4c of the first thermocouple 4 and the base end of the negative electrode metal wire 5c of the second thermocouple 5 are electrically connected. It is connected to the. An electromotive force (voltage) signal ΔV generated between the base end of the positive electrode metal wire 4b of the first thermocouple 4 and the base end of the positive electrode metal wire 5b of the second thermocouple 5 is An output signal is input to a signal processing circuit (not shown). At this time, the difference (V1−V2) between the electromotive force V1 of the first thermocouple 4 and the electromotive force V2 of the second thermocouple 5 is output as the electromotive force signal ΔV.

次に、以上のように構成された熱流センサ1の作用・効果について述べる。熱流センサ1は、図1に示すように、測定対象物2の表面の熱流束密度qを測定する箇所に宛がわれる。第1の熱電対4の起電力V1と第2の熱電対5の起電力V2との差ΔVから、薄膜3の両面の温度差ΔQを求めることに基づき、熱流束密度qの測定を行う。ここで、熱流センサ1の薄膜3の上面側の測定点P1の温度をQ1(K)、薄膜3の下面側の測定点P2の温度をQ2(K)とすると、熱流センサ1により、温度差Δθ(=Q1−Q2)を次のように求めることができる。   Next, the operation and effect of the heat flow sensor 1 configured as described above will be described. As shown in FIG. 1, the heat flow sensor 1 is assigned to a location where the heat flux density q on the surface of the measurement object 2 is measured. Based on the difference ΔV between the electromotive force V1 of the first thermocouple 4 and the electromotive force V2 of the second thermocouple 5, the heat flux density q is measured based on obtaining the temperature difference ΔQ on both surfaces of the thin film 3. Here, assuming that the temperature of the measurement point P1 on the upper surface side of the thin film 3 of the heat flow sensor 1 is Q1 (K) and the temperature of the measurement point P2 on the lower surface side of the thin film 3 is Q2 (K), the temperature difference by the heat flow sensor 1 Δθ (= Q1−Q2) can be obtained as follows.

即ち、第1の熱電対4には、薄膜3の上面の測定点P1の温度Q1に応じた起電力V1が発生し、第2の熱電対5には、薄膜3の下面の測定点P2の温度Q2に応じた起電力V2が発生する。起電力V1と起電力V2との差ΔVが、薄膜3の両面の測定点P1、P2の温度差Δθに相当する値となる。熱流センサ1のセンサ出力として、薄膜3の両面の温度差Δθに応じた起電力信号ΔVが出力され、その電圧値ΔVから、熱流束密度qが容易に換算される。この場合、熱流束密度q(W/m)が、温度差Δθ(K)÷薄膜3の熱抵抗R(m・K/W)で求められる。 That is, an electromotive force V1 corresponding to the temperature Q1 at the measurement point P1 on the upper surface of the thin film 3 is generated in the first thermocouple 4, and the measurement point P2 on the lower surface of the thin film 3 is generated in the second thermocouple 5. An electromotive force V2 corresponding to the temperature Q2 is generated. The difference ΔV between the electromotive force V1 and the electromotive force V2 is a value corresponding to the temperature difference Δθ between the measurement points P1 and P2 on both surfaces of the thin film 3. As the sensor output of the heat flow sensor 1, an electromotive force signal ΔV corresponding to the temperature difference Δθ between both surfaces of the thin film 3 is output, and the heat flux density q is easily converted from the voltage value ΔV. In this case, the heat flux density q (W / m 2 ) is obtained by the temperature difference Δθ (K) ÷ the thermal resistance R (m 2 · K / W) of the thin film 3.

このように本実施形態では、センサ出力として熱電対4、5を用いるので、薄膜3の両面の温度差Δθに応じた電圧信号ΔVが出力され、その電圧値ΔVから、熱流束密度qに容易に換算できるようになり、ひいては、熱流束密度qのいわゆる直読みも可能となる。そして、本実施形態では、薄膜2の両面に2つの熱電対4、5を設ける構成なので、樹脂フィルムに2種類の金属で蛇行状のパターンを設けるようなものと比べて、簡単な構成で、安価に済ませることができる。   As described above, in this embodiment, since the thermocouples 4 and 5 are used as sensor outputs, the voltage signal ΔV corresponding to the temperature difference Δθ between both surfaces of the thin film 3 is output, and the heat flux density q can be easily obtained from the voltage value ΔV. Thus, so-called direct reading of the heat flux density q is also possible. And in this embodiment, since it is the structure which provides the two thermocouples 4 and 5 on both surfaces of the thin film 2, compared with what provides a meandering pattern with two types of metals on a resin film, It can be done inexpensively.

特に本実施形態では、第1の熱電対4と第2の熱電対5とを、互いの起電力が打ち消される方向に直列接続する構成とした。これにより、第1の熱電対4と第2の熱電対5との間の起電力の差ΔVに応じた電圧信号を、単一の出力信号として得ることができる。第1の熱電対4の信号と第2の熱電対5の信号とを別々に扱う場合と比較して、誤差をより少なくしながら、精度の高い測定を行うことができる。   In particular, in the present embodiment, the first thermocouple 4 and the second thermocouple 5 are connected in series in a direction in which the mutual electromotive force is canceled. Thereby, a voltage signal corresponding to the electromotive force difference ΔV between the first thermocouple 4 and the second thermocouple 5 can be obtained as a single output signal. Compared with the case where the signal of the first thermocouple 4 and the signal of the second thermocouple 5 are handled separately, highly accurate measurement can be performed while reducing errors.

更に、本実施形態では、薄膜3に、セラミック材料としてのマイカフィルムを採用した。ここで、薄膜3の材料としては、電気絶縁シートを用いることができ、好ましい特性として、耐熱性が高い、ある程度の熱抵抗Rを有する(熱伝導率λが比較的小さい)、温度の変動による電気的特性の変化が少ない等が求められる。薄膜3にマイカフィルムを採用したことにより、上記のような、求められる特性に優れたものとなり、高温の領域においての使用にも適したものとなる。   Furthermore, in the present embodiment, a mica film as a ceramic material is employed for the thin film 3. Here, as the material of the thin film 3, an electrical insulating sheet can be used, and preferable characteristics include high heat resistance, a certain degree of thermal resistance R (relatively low thermal conductivity λ), and due to temperature fluctuations. Less change in electrical characteristics is required. By adopting a mica film for the thin film 3, it is excellent in the required characteristics as described above, and is suitable for use in a high temperature region.

(2)第2の実施形態、その他の実施形態
次に、図4を参照して、第2の実施形態について述べる。図4は、第2の実施形態に係る熱流センサ11の構成を概略的に示しており、この熱流センサ11が、上記第1の実施形態の熱流センサ1と異なるところは、次の点にある。即ち、熱流センサ11は、測定対象物の表面の測定箇所に宛がわれる薄膜12の一方の面(表面)に、第1の熱電対13を備えると共に、薄膜12の他方の面(裏面)に前記第1の熱電対13に対応して第2の熱電対14を備えて構成される。このとき、第1の熱電対13及び第2の熱電対14は、薄膜12の両面に複数組が設けられている。
(2) Second Embodiment and Other Embodiments Next, a second embodiment will be described with reference to FIG. FIG. 4 schematically shows the configuration of the heat flow sensor 11 according to the second embodiment, and this heat flow sensor 11 is different from the heat flow sensor 1 of the first embodiment in the following points. . That is, the heat flow sensor 11 includes the first thermocouple 13 on one surface (front surface) of the thin film 12 addressed to the measurement location on the surface of the measurement object, and the other surface (back surface) of the thin film 12. A second thermocouple 14 is provided corresponding to the first thermocouple 13. At this time, a plurality of sets of the first thermocouple 13 and the second thermocouple 14 are provided on both surfaces of the thin film 12.

前記薄膜12は、熱抵抗が既知の絶縁材料からなり、矩形薄板状に構成されている。本実施形態では、薄膜12の材料として、耐熱性の高い高分子フィルムが採用され、具体的には、ポリイミドフィルム、例えば東レ・デュポン株式会社製の「カプトン(登録商標)」が用いられる。また、薄膜12の厚み寸法dとしては、10μm〜数十μmのものが用いられている。前記第1の熱電対13及び第2の熱電対14は、例えば上記第1の実施形態の第1、第2の熱電対4、5と同様に、クロメルとアルメルとの組合せからなり、それら金属線が接合点13a及び14aで接合されている。   The thin film 12 is made of an insulating material having a known thermal resistance, and is formed in a rectangular thin plate shape. In the present embodiment, a polymer film having high heat resistance is employed as the material of the thin film 12, and specifically, a polyimide film such as “Kapton (registered trademark)” manufactured by Toray DuPont Co., Ltd. is used. Further, the thickness d of the thin film 12 is 10 μm to several tens of μm. The first thermocouple 13 and the second thermocouple 14 are, for example, a combination of chromel and alumel, as in the first and second thermocouples 4 and 5 of the first embodiment, and these metals. Lines are joined at joints 13a and 14a.

本実施形態では、薄膜12の表面側に、例えば縦横共に3列に並ぶように9箇所の測定点P11〜P19が設定され、9個の第1の熱電対13が、各接合点13aがそれら測定点P11〜P19に接着されるように設けられる。また同様に、9個の第2の熱電対14が、薄膜12の裏面側のそれら9箇所の測定点P11〜P19に対応した測定点に、各接合点13aが接着されるように設けられる。これにて、第1の熱電対13及び第2の熱電対14が、薄膜12の両面側に9組設けられている。   In the present embodiment, nine measurement points P11 to P19 are set on the surface side of the thin film 12 so as to be arranged in, for example, three rows both vertically and horizontally, and the nine first thermocouples 13 are connected to the respective junction points 13a. It is provided so as to be adhered to the measurement points P11 to P19. Similarly, nine second thermocouples 14 are provided so that each junction 13a is adhered to measurement points corresponding to these nine measurement points P11 to P19 on the back surface side of the thin film 12. Thus, nine sets of the first thermocouple 13 and the second thermocouple 14 are provided on both sides of the thin film 12.

このような第2の実施形態によれば、上記第1の実施形態と同様に、簡単な構成で、安価に済ませながら、測定精度の高い熱流センサ11を得ることができる。そして、第1の熱電対13及び第2の熱電対14は、薄膜12の両面に複数組設けたことによって、測定対象物の薄膜12が宛がわれた広い領域における、熱流束密度の分布を求めることが可能となる。更に本実施形態では、薄膜12の材料として、耐熱性に優れたポリイミドフィルムを採用したことによって、高分子フィルムのフレキシブル性を利用して、測定対象物が曲面である場合においても、曲面に沿って宛がって熱流束を測定することができる。薄膜12を安価に済ませることができることは勿論である。   According to the second embodiment, the heat flow sensor 11 with high measurement accuracy can be obtained with a simple configuration and at a low cost, as in the first embodiment. A plurality of first thermocouples 13 and second thermocouples 14 are provided on both surfaces of the thin film 12, so that the heat flux density distribution in a wide region to which the thin film 12 of the measurement object is addressed can be obtained. It can be obtained. Furthermore, in this embodiment, by adopting a polyimide film having excellent heat resistance as the material of the thin film 12, even when the object to be measured is a curved surface using the flexibility of the polymer film, the thin film 12 follows the curved surface. The heat flux can be measured. Of course, the thin film 12 can be made inexpensively.

尚、上記した第1の実施形態では、薄膜3に、セラミック材料としてマイカフィルムを採用したが、窒化ケイ素等を材料とするシート状成形品等を採用することもできる。また、薄膜を高分子フィルムから構成する場合においても、耐熱性が良く電気的特性の安定した各種の材料を採用することができる。薄膜の厚み寸法としては、数μm〜1mm程度のものを採用することができる。更には、熱電対を構成する2種の金属線の材質、組合せについても、例えばマイナス極金属線にコンスタンタンを用いるなど、様々な変更が可能である。   In the first embodiment described above, a mica film is used as the ceramic material for the thin film 3, but a sheet-like molded product made of silicon nitride or the like can also be used. Even when the thin film is made of a polymer film, various materials having good heat resistance and stable electrical characteristics can be employed. As the thickness dimension of the thin film, a thickness of about several μm to 1 mm can be adopted. Furthermore, the material and the combination of the two types of metal wires constituting the thermocouple can be variously changed, for example, using constantan for the negative electrode metal wire.

その他、熱流センサは、変圧器の構成部品の熱流束の測定に限らず、各種の測定対象物に適用できることは勿論である。以上説明した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, the heat flow sensor is not limited to the measurement of the heat flux of the components of the transformer, but can be applied to various measurement objects. The embodiment described above is presented as an example, and is not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1、11は熱流センサ、2は測定対象物、3、12は薄膜、4、13は第1の熱電対、5、14は第2の熱電対、4a、5a、13a、14aは接合点を示す。   In the drawings, 1 and 11 are heat flow sensors, 2 is an object to be measured, 3 and 12 are thin films, 4 and 13 are first thermocouples, 5 and 14 are second thermocouples, 4a, 5a, 13a and 14a are Indicates the junction point.

Claims (5)

測定対象物の表面から放出される熱流束密度を測定するための熱流センサであって、
熱抵抗が既知の材料からなり前記測定対象物の表面の測定箇所に宛がわれる薄膜と、
前記薄膜の一方の面に接合点が配置された第1の熱電対と、
前記薄膜の他方の面に前記第1の熱電対と対応した位置に接合点が配置された第2の熱電対とを備え、
前記第1の熱電対の起電力と前記第2の熱電対の起電力との差から、前記薄膜の両面の温度差を求めることに基づき測定を行う熱流センサ。
A heat flow sensor for measuring a heat flux density emitted from a surface of a measurement object,
A thin film made of a material having a known thermal resistance and addressed to a measurement location on the surface of the measurement object;
A first thermocouple having a junction disposed on one side of the thin film;
A second thermocouple having a junction point disposed at a position corresponding to the first thermocouple on the other surface of the thin film;
A heat flow sensor that performs measurement based on obtaining a temperature difference between both surfaces of the thin film from a difference between an electromotive force of the first thermocouple and an electromotive force of the second thermocouple.
前記第1の熱電対と前記第2の熱電対とは、互いの起電力が打ち消される方向に直列接続されている請求項1記載の熱流センサ。   The heat flow sensor according to claim 1, wherein the first thermocouple and the second thermocouple are connected in series in a direction in which mutual electromotive force is canceled. 前記第1の熱電対及び第2の熱電対は、前記薄膜の両面に複数組設けられている請求項1又は2記載の熱流センサ。   The heat flow sensor according to claim 1 or 2, wherein a plurality of sets of the first thermocouple and the second thermocouple are provided on both surfaces of the thin film. 前記薄膜は、セラミック材料からなる請求項1から3のいずれか一項に記載の熱流センサ。   The heat flow sensor according to any one of claims 1 to 3, wherein the thin film is made of a ceramic material. 前記薄膜は、高分子フィルムからなる請求項1から3のいずれか一項に記載の熱流センサ。   The heat flow sensor according to any one of claims 1 to 3, wherein the thin film is made of a polymer film.
JP2017162272A 2017-08-25 2017-08-25 Heat flow sensor Pending JP2019039821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017162272A JP2019039821A (en) 2017-08-25 2017-08-25 Heat flow sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017162272A JP2019039821A (en) 2017-08-25 2017-08-25 Heat flow sensor

Publications (1)

Publication Number Publication Date
JP2019039821A true JP2019039821A (en) 2019-03-14

Family

ID=65726389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017162272A Pending JP2019039821A (en) 2017-08-25 2017-08-25 Heat flow sensor

Country Status (1)

Country Link
JP (1) JP2019039821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117451217A (en) * 2023-12-25 2024-01-26 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117451217A (en) * 2023-12-25 2024-01-26 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation
CN117451217B (en) * 2023-12-25 2024-03-12 中国空气动力研究与发展中心计算空气动力研究所 Aerospace heat flow sensor and heat flow correction method based on double temperature difference compensation

Similar Documents

Publication Publication Date Title
JP6350746B2 (en) Deep thermometer
JP2006078478A (en) Film temperature sensor and substrate for temperature measurement
JP2011522261A (en) High vibration resistance temperature sensor
JP6451484B2 (en) Heat flux sensor manufacturing method and heat flow generator used therefor
JP6398807B2 (en) Temperature difference measuring device
US10564046B2 (en) Internal temperature measuring apparatus and temperature difference measuring module
JP2016085136A (en) Internal temperature measurement device
JP2019039821A (en) Heat flow sensor
Herin et al. Measurements on the thermoelectric properties of thin layers of two metals in electrical contact. Application for designing new heat-flow sensors
JP4982766B2 (en) Sensor for thermoelectric property measurement
JP4749794B2 (en) Temperature measuring method and apparatus
JP6755034B1 (en) Temperature sensor unit and internal thermometer
CN108293276B (en) Heating plate, method and apparatus for manufacturing the same, and apparatus for manufacturing heat flux sensor using the same
JP6351914B1 (en) Temperature measuring device
JP2007178218A (en) Thermal resistance measuring instrument
JP4820124B2 (en) Temperature distribution measuring device
JP2019066286A (en) Heat flux meter
CN104089707A (en) Thermopile sensor
JP6428398B2 (en) Internal temperature measuring device and thermal resistance measuring device
JP2018141664A (en) Flow sensor
JP2019016758A (en) Circuit board
JP6831965B1 (en) Temperature sensor
EP3534125B1 (en) Electric device comprising a printed circuit board and method for determining local temperatures at different measurement points of the printed circuit board
JP2006053075A (en) Temperature measuring device and substrate for temperature measurement
JP6428397B2 (en) Internal temperature measuring device and temperature difference measuring module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210511