JP6831965B1 - Temperature sensor - Google Patents

Temperature sensor Download PDF

Info

Publication number
JP6831965B1
JP6831965B1 JP2020116778A JP2020116778A JP6831965B1 JP 6831965 B1 JP6831965 B1 JP 6831965B1 JP 2020116778 A JP2020116778 A JP 2020116778A JP 2020116778 A JP2020116778 A JP 2020116778A JP 6831965 B1 JP6831965 B1 JP 6831965B1
Authority
JP
Japan
Prior art keywords
temperature
thermocouple
extension
temperature sensor
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020116778A
Other languages
Japanese (ja)
Other versions
JP2022014482A (en
Inventor
晃 黒河
晃 黒河
Original Assignee
株式会社八洲測器
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社八洲測器 filed Critical 株式会社八洲測器
Priority to JP2020116778A priority Critical patent/JP6831965B1/en
Application granted granted Critical
Publication of JP6831965B1 publication Critical patent/JP6831965B1/en
Publication of JP2022014482A publication Critical patent/JP2022014482A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】コストを抑えつつ高い精度での温度計測を可能とする温度センサを提供する。【解決手段】本発明の温度センサ100は、異種の導体で構成され接合点を感温部6とした対をなす熱電対素線を有する熱電対2と、同種の導体で構成され一端部は熱電対素線に対して感温部6が位置する側とは逆側で接続され他端部は計測器50に接続される対をなす延長体素線11を有する延長体3と、熱電対素線と延長体素線11の接続部13に重なる位置に設けられる温度測定体4と、を備え、温度測定体4で測定した接続部13の温度に基づいて感温部6での温度が計測される。【選択図】図1PROBLEM TO BE SOLVED: To provide a temperature sensor capable of measuring a temperature with high accuracy while suppressing a cost. SOLUTION: A temperature sensor 100 of the present invention is composed of a thermocouple 2 having a pair of thermocouple strands having a joint point as a temperature sensitive portion 6 and being composed of different types of conductors, and one end thereof is composed of the same type of conductor. An extension body 3 having a pair of extension wire 11 connected to the thermocouple wire on the opposite side to the side where the temperature sensitive portion 6 is located and the other end connected to the measuring instrument 50, and a thermocouple. A temperature measuring body 4 provided at a position overlapping the connecting portion 13 of the wire and the extension body wire 11, and the temperature of the temperature sensing unit 6 is set based on the temperature of the connecting portion 13 measured by the temperature measuring body 4. It is measured. [Selection diagram] Fig. 1

Description

本発明は、温度センサに関する。 The present invention relates to a temperature sensor.

従来、所定の部位における温度を計測するための温度センサとして熱電対を用いたものが使用されている。例えば半導体デバイスの製造工程で使用される装置(高温チャンバなど)においては、ウエハを適切な温度で加熱することが重要であるため、工程管理上、装置内の所定部位における温度の計測が行われる。このような場合に使用される温度センサとして、特許文献1には、熱電対の感温部をウエハに埋設したウエハ型の温度センサが示されている。このような温度センサは、半導体関連装置の外側に設置される計測器に接続され、この計測器によって温度が計測される。 Conventionally, a thermocouple has been used as a temperature sensor for measuring the temperature at a predetermined part. For example, in an apparatus used in the manufacturing process of a semiconductor device (such as a high temperature chamber), it is important to heat the wafer at an appropriate temperature. Therefore, in terms of process control, the temperature is measured at a predetermined part in the apparatus. .. As a temperature sensor used in such a case, Patent Document 1 discloses a wafer-type temperature sensor in which a temperature-sensitive portion of a thermocouple is embedded in a wafer. Such a temperature sensor is connected to a measuring instrument installed outside the semiconductor-related device, and the temperature is measured by this measuring instrument.

半導体関連装置においては、加熱部分が高温(例えば600℃以上)になるため、温度センサには耐熱性の高いR熱電対が使用される。R熱電対は、+極側の熱電対素線に白金ロジウム合金が使用され、−極側の熱電対素線に白金が使用される。ロジウムや白金は非常に高価であって、測定点数が増えると必要となる熱電対の本数も増えるため、この種の温度センサはコストが嵩むという問題を抱えている。また昨今、ウエハの外径はφ300mm程度のものが主流となっていて、従前に比してウエハサイズは大きくなっており、装置も大型化している。すなわち、温度を測定する部位に対して計測器が離れていくため、必要とする熱電対の長さが長くなって、更なるコスト上昇につながっている。 In semiconductor-related equipment, since the heated portion has a high temperature (for example, 600 ° C. or higher), an R thermocouple having high heat resistance is used for the temperature sensor. In the R thermocouple, a platinum rhodium alloy is used for the thermocouple strand on the + pole side, and platinum is used for the thermocouple strand on the-pole side. Rhodium and platinum are very expensive, and as the number of measurement points increases, the number of thermocouples required also increases, so this type of temperature sensor has a problem of high cost. Further, in recent years, wafers having an outer diameter of about φ300 mm have become the mainstream, the wafer size is larger than before, and the equipment is also larger. That is, since the measuring instrument is separated from the part where the temperature is measured, the length of the required thermocouple becomes long, which leads to a further cost increase.

このような点を考慮して従来は、特許文献2、3に示すように、熱電対と計測器との間を補償導線でつなぐことが一般的である。補償導線は熱電対よりも安価であるため、熱電対のみで構成する場合に比してコストを抑えることができる。 In consideration of such a point, conventionally, as shown in Patent Documents 2 and 3, it is common to connect the thermocouple and the measuring instrument with a compensating lead wire. Since the compensating lead wire is cheaper than the thermocouple, the cost can be reduced as compared with the case where the compensating lead wire is composed of only the thermocouple.

ところで熱電対は、異種の導体で構成される対をなす熱電対素線の両端を接合して閉回路とし、接合点での温度差により生じる熱起電力に基づいて温度を計測するものである。具体的には、温度を計測する接合点(感温部)とは逆側の接合点を0℃に保ち、その際に生じる熱起電力を電圧計で測定して、あらかじめ分かっている熱起電力と温度の関係に基づいて感温部での温度を導くのが基本的な計測原理である。しかし、計測時に熱電対の接合点を0℃のまま維持することは困難であるため、特許文献2に記載されているように、一般には補償回路(冷接点補償回路)が設けられた計測器を使用する。このような補償回路付きの計測器によれば、感温部とは逆側の接合点を0℃に保たずとも、感温部の温度を計測器に直接表示させることができる。 By the way, a thermocouple is a closed circuit in which both ends of a pair of thermocouple strands composed of different types of conductors are joined to form a closed circuit, and the temperature is measured based on the thermoelectromotive force generated by the temperature difference at the joining point. .. Specifically, the junction point on the opposite side of the junction point (temperature sensitive part) for measuring the temperature is kept at 0 ° C., and the thermoelectromotive force generated at that time is measured with a voltmeter, and the thermoelectromotive force known in advance is measured. The basic measurement principle is to derive the temperature at the temperature sensitive part based on the relationship between electric force and temperature. However, since it is difficult to maintain the thermocouple junction at 0 ° C. during measurement, a measuring instrument generally provided with a compensation circuit (cold contact compensation circuit) as described in Patent Document 2. To use. According to such a measuring instrument with a compensation circuit, the temperature of the temperature sensing portion can be directly displayed on the measuring instrument without keeping the junction point on the side opposite to the temperature sensing portion at 0 ° C.

図3は、上述した従来技術に基づいて構成されるウエハ型の温度センサ200を示している。温度センサ200は、ウエハ201と、ウエハ201に感温部202が固着された複数の熱電対203と、熱電対203のそれぞれに接続される補償導線204とを備えている。また補償導線204は、補償回路205を備える計測器206に接続して使用される。このような温度センサ200によれば、ウエハ201における感温部202が設けられた部位の温度を計測器206に直接表示することができる。 FIG. 3 shows a wafer-type temperature sensor 200 configured based on the above-mentioned prior art. The temperature sensor 200 includes a wafer 201, a plurality of thermocouples 203 in which a temperature-sensitive portion 202 is fixed to the wafer 201, and a compensating lead wire 204 connected to each of the thermocouples 203. Further, the compensating lead wire 204 is used by connecting to a measuring instrument 206 including a compensating circuit 205. According to such a temperature sensor 200, the temperature of the portion of the wafer 201 where the temperature sensitive portion 202 is provided can be directly displayed on the measuring instrument 206.

特開2013-172050号公報Japanese Unexamined Patent Publication No. 2013-172050 特開平11−351973号公報Japanese Unexamined Patent Publication No. 11-351973 特開2007-329215号公報JP-A-2007-329215

ところで補償導線は、熱電対の種類に対応した専用品が準備されているものの、計測精度は熱電対よりも劣っている。例えばR熱電対のクラス1では温度の許容差は±1℃であるものの、これに対応する補償導線の温度の許容差は±5℃程度ある。従って補償導線を使用する場合は、熱電対による高い計測精度が補償導線によって損なわれることになる。 By the way, although a special product corresponding to the type of thermocouple is prepared for the compensation lead wire, the measurement accuracy is inferior to that of the thermocouple. For example, in class 1 of an R thermocouple, the temperature tolerance is ± 1 ° C., but the temperature tolerance of the corresponding compensating lead wire is about ± 5 ° C. Therefore, when a compensating lead wire is used, the high measurement accuracy of the thermocouple is impaired by the compensating lead wire.

このような従来の問題に鑑み、本発明の温度センサでは、コストを抑えつつ高い精度での温度計測を可能とすることを課題とする。 In view of such conventional problems, it is an object of the temperature sensor of the present invention to enable highly accurate temperature measurement while suppressing the cost.

本発明は、異種の導体で構成され接合点を感温部とした対をなす熱電対素線を有する熱電対と、同種の導体で構成され一端部は前記熱電対素線に対して前記感温部が位置する側とは逆側で接続され他端部は計測器に接続される対をなす延長体素線を有する延長体と、前記熱電対素線と前記延長体素線の接続部に対して当該接続部の表面から裏面に向かう方向からみて重なる位置に設けられる温度測定体と、を備え、前記温度測定体で測定した前記接続部の温度に基づいて前記感温部での温度が計測される温度センサである。 The present invention relates to a thermocouple having a pair of thermocouple strands having a temperature-sensitive portion at a junction, which is composed of different types of conductors, and one end of which is composed of the same type of conductor and has the same feeling as the thermocouple strand. An extension body having a pair of extension element wires connected to the measuring instrument at the other end connected to the side opposite to the side where the temperature part is located, and a connection portion between the thermocouple element wire and the extension body element wire. temperature at the temperature sensing unit based on the temperature from the surface of the connection portion against and a temperature measuring member provided in the direction viewed from a position overlapping towards the rear face, of the connecting portions measured by said temperature measuring body Is a temperature sensor that measures.

このような温度センサは、対をなす前記熱電対素線と前記延長体素線を複数備えるとともに前記接続部を複数備え、複数の前記接続部に跨がって設けられる均熱板を備えることが好ましい。 Such a temperature sensor includes a plurality of the thermocouple strands and the extension strands in a pair, the plurality of connection portions, and a heat equalizing plate provided across the plurality of connection portions. Is preferable.

また前記延長体素線は、銅又は銅を主成分とする合金で形成されていることが好ましい。 Further, the extension wire is preferably formed of copper or an alloy containing copper as a main component.

また前記延長体は、フラットケーブルであって、前記フラットケーブルは、前記延長体素線としての熱電対用導体箔と、前記温度測定体と前記計測器とを接続する温度測定体用導体箔と、当該熱電対用導体箔と当該温度測定体用導体箔とが設けられた絶縁性フィルムと、を含んで構成されることが好ましい。 Further, the extension body is a flat cable, and the flat cable includes a conductor foil for a thermocouple as the wire of the extension body, and a conductor foil for a temperature measuring body that connects the temperature measuring body and the measuring instrument. , The conductor foil for the thermocouple and the insulating film provided with the conductor foil for the temperature measuring body are preferably included.

本発明の温度センサでは、熱電対と計測器とを延長体で接続していて、熱電対の長さを最小限に抑えることができるため、コストを抑えることができる。また熱電対素線と延長体素線との接続部に温度測定体を設けていて、温度測定体で測定した接続部の温度に基づいて感温部の温度を計測することができる。すなわち、感温部の温度計測にあたって補償導線が持つ温度の許容差による影響が排除されるため、高い精度での温度計測が実現できる。 In the temperature sensor of the present invention, the thermocouple and the measuring instrument are connected by an extension body, and the length of the thermocouple can be minimized, so that the cost can be suppressed. Further, a temperature measuring body is provided at the connecting portion between the thermocouple wire and the extension wire, and the temperature of the temperature sensitive portion can be measured based on the temperature of the connecting portion measured by the temperature measuring body. That is, since the influence of the temperature tolerance of the compensating lead wire is eliminated when measuring the temperature of the temperature sensitive portion, it is possible to realize the temperature measurement with high accuracy.

本発明に係る温度センサの第一実施形態を示した模式図である。It is a schematic diagram which showed the 1st Embodiment of the temperature sensor which concerns on this invention. 本発明に係る温度センサの第二実施形態を示した模式図である。It is a schematic diagram which showed the 2nd Embodiment of the temperature sensor which concerns on this invention. 熱電対と計測器とを補償電線で接続した従来からの温度センサの模式図である。It is a schematic diagram of a conventional temperature sensor in which a thermocouple and a measuring instrument are connected by a compensating electric wire.

まず図1を参照しつつ、本発明に係る温度センサの第一実施形態と、この温度センサを接続する計測器の一実施形態について説明する。 First, with reference to FIG. 1, a first embodiment of the temperature sensor according to the present invention and an embodiment of a measuring instrument to which the temperature sensor is connected will be described.

本実施形態の温度センサ100は、半導体関連装置の内部の温度を計測するものである。図示したように温度センサ100は、ウエハ1と、熱電対2と、フラットケーブル3と、温度測定体4と、均熱板5とを備えていて、計測器50に接続して使用される。 The temperature sensor 100 of the present embodiment measures the temperature inside the semiconductor-related device. As shown in the figure, the temperature sensor 100 includes a wafer 1, a thermocouple 2, a flat cable 3, a temperature measuring body 4, and a heat equalizing plate 5, and is used by connecting to the measuring instrument 50.

ウエハ1は、半導体デバイスとして使用される実ウエハと同径のダミーウエハである。図示したようにウエハ1は、円形薄板状をなすものであって、例えばシリコンを素材とする円柱状のインゴットを薄くスライスしたシリコンウエハにより形成されている。なおウエハ1は、シリコンウエハに限定されるものではなく、シリコンカーバイドウエハやサファイアウエハ、化合物半導体ウエハなど、種々の素材により形成される。 The wafer 1 is a dummy wafer having the same diameter as the actual wafer used as a semiconductor device. As shown in the figure, the wafer 1 has a circular thin plate shape, and is formed of, for example, a silicon wafer obtained by thinly slicing a cylindrical ingot made of silicon as a material. The wafer 1 is not limited to a silicon wafer, and is formed of various materials such as a silicon carbide wafer, a sapphire wafer, and a compound semiconductor wafer.

熱電対2は、種類の異なる2本の熱電対素線同士を接合し、接合点を感温部6としたものである。本実施形態の熱電対2は、高温環境下での温度を計測可能なR熱電対であって、+極側の熱電対素線に白金ロジウム合金が使用され、−極側の熱電対素線に白金が使用さる。なお、熱電対2はR熱電対に限られず、使用目的に応じて他の種の熱電対に置き換えられる。 The thermocouple 2 is formed by joining two different types of thermocouple strands to each other and using the joining point as the temperature sensitive portion 6. The thermocouple 2 of the present embodiment is an R thermocouple capable of measuring the temperature in a high temperature environment, and a platinum rhodium alloy is used for the thermocouple wire on the + pole side, and the thermocouple wire on the-pole side. Platinum is used for. The thermocouple 2 is not limited to the R thermocouple, and can be replaced with another type of thermocouple depending on the purpose of use.

本実施形態の温度センサ100は、熱電対2を複数備えていて、それぞれの熱電対2の感温部6は、図示したようにウエハ1に対して分散した状態で取り付けられている。本実施形態の感温部6は、ウエハ1の表面に深さの浅い凹部7を設け、凹部7の内側で接着剤によってウエハ1に固着されている。なお凹部7を設けずに、ウエハ1の表面に感温部6を直接固着してもよい。また感温部6を覆うカバーを準備し、カバーで感温部6を覆った状態でウエハ1に固着させてもよい。 The temperature sensor 100 of the present embodiment includes a plurality of thermocouples 2, and the temperature-sensitive portions 6 of each thermocouple 2 are attached to the wafer 1 in a dispersed state as shown in the drawing. The temperature-sensitive portion 6 of the present embodiment is provided with a recess 7 having a shallow depth on the surface of the wafer 1, and is fixed to the wafer 1 with an adhesive inside the recess 7. The temperature sensitive portion 6 may be directly fixed to the surface of the wafer 1 without providing the recess 7. Further, a cover for covering the temperature sensitive portion 6 may be prepared and fixed to the wafer 1 with the temperature sensitive portion 6 covered with the cover.

図示したように本実施形態の熱電対2は、ウエハ1の表側において、それぞれの感温部6からハウジング8に向けて、互いに交差しないように配されている。ハウジング8は、それぞれの熱電対2に覆い被さってウエハ1に固着されるものであって、熱電対2に対してウエハ1の外側から力が加わっても、感温部6には力が作用しない(力が作用しにくい)ように機能するものである。ハウジング8は、図示したように一列に並んでいて、複数の熱電対2は、ハウジング8からウエハ1の径方向外側に向けて一列にまとまった状態で引き出されている。 As shown in the figure, the thermocouples 2 of the present embodiment are arranged on the front side of the wafer 1 from the respective temperature sensitive portions 6 toward the housing 8 so as not to intersect each other. The housing 8 covers each thermocouple 2 and is fixed to the wafer 1. Even if a force is applied to the thermocouple 2 from the outside of the wafer 1, the force acts on the temperature sensitive portion 6. It functions so that it does not (force is hard to act). The housings 8 are arranged in a row as shown in the drawing, and the plurality of thermocouples 2 are pulled out from the housing 8 in a row toward the outside in the radial direction of the wafer 1.

ウエハ1の外側に引き出された熱電対2は、フラットケーブル3の一端部に接続される。フラットケーブル3は、図1では途中を省略して示しているが長尺状をなすものであって、その他端部は計測器50に接続される。本実施形態のフラットケーブル3は、いわゆるFPC(Flexible Printed Circuit)やFFC(Flexible Flat Cable)と称されるものであって、絶縁性フィルム9の表面に所定のパターンとなる導体箔10を設けたものである。絶縁性フィルム9は、本実施形態では耐熱を考慮してポリイミド製のものを採用しているが、使用環境がそれ程高温にならない場合は、PET(ポリエチレンテレフタレート)製のものを使用してもよい。また導体箔10は、コストを抑えるために銅又は銅を主成分とする合金により形成することが好ましいが、その他の素材(例えばニッケル)を使用したものでもよい。導体箔10は、絶縁性フィルム9の片面のみに設けてもよいし、両面に設けてもよい。また絶縁性フィルム9と導体箔10を複数重ねて多層構造としてもよい。更にフラットケーブル3は、最外層の導体箔10を覆うカバーレイを備えている。フラットケーブル3に使用するカバーレイに特段制限はなく、印刷カバーレイやフィルムカバーレイなど、種々のものが採用可能である。 The thermocouple 2 pulled out to the outside of the wafer 1 is connected to one end of the flat cable 3. The flat cable 3 has a long shape, although the middle is omitted in FIG. 1, and the other ends are connected to the measuring instrument 50. The flat cable 3 of the present embodiment is a so-called FPC (Flexible Printed Circuit) or FFC (Flexible Flat Cable), and a conductor foil 10 having a predetermined pattern is provided on the surface of the insulating film 9. It is a thing. In this embodiment, the insulating film 9 is made of polyimide in consideration of heat resistance, but if the usage environment is not so high, a PET (polyethylene terephthalate) film may be used. .. Further, the conductor foil 10 is preferably formed of copper or an alloy containing copper as a main component in order to reduce the cost, but other materials (for example, nickel) may be used. The conductor foil 10 may be provided on only one side of the insulating film 9, or may be provided on both sides. Further, a plurality of insulating films 9 and conductor foils 10 may be laminated to form a multilayer structure. Further, the flat cable 3 is provided with a coverlay that covers the outermost conductor foil 10. The coverlay used for the flat cable 3 is not particularly limited, and various types such as a print coverlay and a film coverlay can be adopted.

本実施形態の導体箔10は、熱電対2の熱電対素線と計測器50とを電気的に接続する熱電対用導体箔11と、温度測定体4と計測器50とを電気的に接続する温度測定体用導体箔12とを備えている。本実施形態のフラットケーブル3は、その一端部(熱電対2に近い側の端部)において、熱電対用導体箔11がカバーレイに覆われずに露出する部位(ランドや接続端子)が設けられていて、この部位で熱電対2の熱電対素線を熱電対用導体箔11にはんだ付けして両者を電気的に接続している。ここで、熱電対2の熱電対素線と熱電対用導体箔11が接続される部位を接続部13と称する。本実施形態の接続部13は、フラットケーブル3の短手方向に列をなすように設けられている。図1では接続部13が一列に並んだ状態を示しているが、接続部13の配置はこれに限られるものではない。例えば隣り合う接続部13の位置を長手方向にずらして千鳥配置とし、フラットケーブル3の短手方向に複数列並ぶように構成してもよい。上述した熱電対用導体箔11は、本明細書等の「延長体素線」に相当するものである。 The conductor foil 10 of the present embodiment electrically connects the thermocouple conductor foil 11 that electrically connects the thermocouple wire of the thermocouple 2 and the measuring instrument 50, and the temperature measuring body 4 and the measuring instrument 50. It is provided with a conductor foil 12 for a temperature measuring body. The flat cable 3 of the present embodiment is provided with a portion (land or connection terminal) at one end thereof (the end on the side close to the thermocouple 2) where the conductor foil 11 for the thermocouple is exposed without being covered by the coverlay. At this site, the thermocouple strands of the thermocouple 2 are soldered to the thermocouple conductor foil 11 to electrically connect the two. Here, the portion where the thermocouple wire of the thermocouple 2 and the conductor foil 11 for the thermocouple are connected is referred to as a connecting portion 13. The connecting portions 13 of the present embodiment are provided so as to form a row in the lateral direction of the flat cable 3. Although FIG. 1 shows a state in which the connecting portions 13 are arranged in a row, the arrangement of the connecting portions 13 is not limited to this. For example, the positions of the adjacent connecting portions 13 may be staggered in the longitudinal direction, and a plurality of rows may be arranged in the lateral direction of the flat cable 3. The thermocouple conductor foil 11 described above corresponds to the “extended body wire” described in the present specification and the like.

なお図示は省略するが、計測器50に対して熱電対用導体箔11と温度測定体用導体箔12を電気的に接続するには、フラットケーブル3の他端部に、熱電対用導体箔11と温度測定体用導体箔12がカバーレイに覆われずに露出する部位(接続端子)を設けてもよいし、計測器50に対して電気的に接続されるコネクタを取り付けてもよい。 Although not shown, in order to electrically connect the thermocouple conductor foil 11 and the temperature measuring body conductor foil 12 to the measuring instrument 50, the thermocouple conductor foil is attached to the other end of the flat cable 3. A portion (connection terminal) where the 11 and the conductor foil 12 for the temperature measuring body are exposed without being covered by the coverlay may be provided, or a connector electrically connected to the measuring instrument 50 may be attached.

温度測定体4は、接続部13と重なる位置に設けられている。温度測定体4は、接続部13を設けた面(例えばフラットケーブル3の表面)と同じ面(フラットケーブル3の表面)に設けてもよいし、逆側の面(フラットケーブル3の裏面)に設けてもよい。この位置において温度測定体用導体箔12は、カバーレイに覆われずに露出していて、温度測定体4は温度測定体用導体箔12に対してはんだ付け等によって電気的に接続されている。なお温度測定体4は、接続部13とは電気的に絶縁されている。温度測定体4は、接続部13での温度を計測するものである。本実施形態では、温度測定体4として測温抵抗体を使用している。測温抵抗体は、これに電気を流した際の抵抗値が周囲の温度に応じて変化する(温度上昇とともに抵抗値が上昇する)ため、この抵抗値の変化量に基づいて温度を計測することができる。なお、温度測定体4は測温抵抗体に限られず、例えばリニア抵抗器やサーミスタを使用してもよい。 The temperature measuring body 4 is provided at a position overlapping the connecting portion 13. The temperature measuring body 4 may be provided on the same surface (front surface of the flat cable 3) as the surface provided with the connecting portion 13 (for example, the front surface of the flat cable 3), or on the opposite surface (back surface of the flat cable 3). It may be provided. At this position, the conductor foil 12 for the temperature measuring body is exposed without being covered with the coverlay, and the temperature measuring body 4 is electrically connected to the conductor foil 12 for the temperature measuring body by soldering or the like. .. The temperature measuring body 4 is electrically insulated from the connecting portion 13. The temperature measuring body 4 measures the temperature at the connecting portion 13. In this embodiment, a resistance temperature detector is used as the temperature measuring body 4. Since the resistance value when electricity is passed through the resistance temperature detector changes according to the ambient temperature (the resistance value increases as the temperature rises), the temperature is measured based on the amount of change in this resistance value. be able to. The temperature measuring body 4 is not limited to the temperature measuring resistor, and for example, a linear resistor or a thermistor may be used.

均熱板5は、フラットケーブル3の短手方向に沿って延在していて、複数の接続部13に跨がるように(複数の接続部13に重なるように)設けられている。すなわち均熱板5は、上述した温度測定体4とともに接続部13に重なる位置に設けられている。均熱板5は、接続部13を設けた面(又は温度測定体4を設けた面)と同じ面に設けてもよいし、逆側の面に設けてもよい。均熱板5は、熱伝導率が大きな素材で形成されていて、複数の接続部13の温度を均熱化するものである。なお均熱板5は、接続部13及び温度測定体4に対して電気的に絶縁されている。ところで接続部13は、強度が低いために温度変化によって破損するおそれがある。このため均熱板5は、熱伝導率が大きく、また熱膨張率が小さいものを採用することが好ましい。このようなものとして本実施形態では、インバー(アンバーとも称する)を均熱板5として使用している。なお接続部13は、外力によっても破損するおそれがあるが、インバーは合金であって機械的強度が比較的高く、また均熱板5はフラットケーブル3のほぼ全幅に亘って延在していてフラットケーブル3を補強しているため、外力が接続部13に及ぼす影響も減らすことができる。均熱板5は、フラットケーブル3に直接接触させてもよいが、伝導率が大きなシリコーングリース等をこれらの間に介在させることが好ましい。 The heat equalizing plate 5 extends along the lateral direction of the flat cable 3 and is provided so as to straddle the plurality of connecting portions 13 (so as to overlap the plurality of connecting portions 13). That is, the heat soaking plate 5 is provided at a position overlapping the connecting portion 13 together with the temperature measuring body 4 described above. The heat equalizing plate 5 may be provided on the same surface as the surface provided with the connecting portion 13 (or the surface provided with the temperature measuring body 4), or may be provided on the opposite surface. The heat equalizing plate 5 is made of a material having a large thermal conductivity, and is used to equalize the temperature of the plurality of connecting portions 13. The heat soaking plate 5 is electrically insulated from the connecting portion 13 and the temperature measuring body 4. By the way, since the connecting portion 13 has low strength, it may be damaged by a temperature change. Therefore, it is preferable to use a heat soaking plate 5 having a large thermal conductivity and a small coefficient of thermal expansion. As such, in the present embodiment, Invar (also referred to as Amber) is used as the heat equalizing plate 5. Although the connection portion 13 may be damaged by an external force, the Invar is an alloy and has a relatively high mechanical strength, and the heat soaking plate 5 extends over almost the entire width of the flat cable 3. Since the flat cable 3 is reinforced, the influence of the external force on the connection portion 13 can be reduced. The heat equalizing plate 5 may be brought into direct contact with the flat cable 3, but it is preferable to interpose silicone grease or the like having a high conductivity between them.

計測器50は、熱電対2の熱電対素線とつながる熱電対用導体箔11と接続されている。上述したように熱電対2は、種類の異なる熱電対素線同士を接合したものであるため、電気的に閉回路にした場合に熱電対2の長さ方向において温度差(温度勾配)があると、熱起電力が生じる。本実施形態の計測器50は、熱電対用導体箔11を介して熱電対2の熱起電力を計測する電圧計の機能を有する。また計測器50は、温度測定体4と接続された温度測定体用導体箔12に接続されている。上述したように温度測定体4は、電気を流した際の抵抗値が周囲の温度に応じて変化するものである。計測器50は、この抵抗値を計測する機能も有する。また詳細については後述するが、計測器50は、熱電対用導体箔11で計測された電圧から感温部6と接続部13との温度差を導く機能、温度測定体用導体箔12で計測される抵抗値に基づいて温度測定体4での温度を導く機能の他、これらの温度に基づいて感温部6の温度を算出してそれを表示する機能も有する。なお本実施形態の計測器50は、図3に示した補償回路205を備える計測器206とは異なり、補償回路205に相当するものは省かれている。 The measuring instrument 50 is connected to a thermocouple conductor foil 11 that is connected to the thermocouple strand of the thermocouple 2. As described above, since the thermocouple 2 is formed by joining different types of thermocouple strands, there is a temperature difference (temperature gradient) in the length direction of the thermocouple 2 when the circuit is electrically closed. , A thermoelectromotive force is generated. The measuring instrument 50 of the present embodiment has a function of a voltmeter that measures the thermoelectromotive force of the thermocouple 2 via the thermocouple conductor foil 11. Further, the measuring instrument 50 is connected to the conductor foil 12 for the temperature measuring body connected to the temperature measuring body 4. As described above, in the temperature measuring body 4, the resistance value when electricity is passed changes according to the ambient temperature. The measuring instrument 50 also has a function of measuring this resistance value. Although details will be described later, the measuring instrument 50 has a function of deriving a temperature difference between the temperature sensing portion 6 and the connecting portion 13 from the voltage measured by the thermocouple conductor foil 11, and is measured by the temperature measuring body conductor foil 12. In addition to the function of deriving the temperature of the temperature measuring body 4 based on the resistance value to be measured, it also has a function of calculating the temperature of the temperature sensing unit 6 based on these temperatures and displaying it. Note that the measuring instrument 50 of the present embodiment is different from the measuring instrument 206 including the compensation circuit 205 shown in FIG. 3, and the measuring instrument 50 corresponding to the compensation circuit 205 is omitted.

このような温度センサ100を用いて半導体関連装置の内部温度を計測するにあたっては、ウエハ1を半導体関連装置の内部に設置し、また温度センサ100を計測器50に接続する。熱電対2の熱電対素線は種類の異なる2本の導体であるため、この状態において感温部6と接続部13との間に温度差(温度勾配)があると熱起電力が生じる。一方、2本の熱電対素線のそれぞれが接続される2つの熱電対用導体箔11は、同種の導体であるために熱起電力は生じない。すなわち、熱電対用導体箔11に接続された計測器50で計測される電圧は、感温部6と接続部13との温度差に基づく熱起電力であるため、計測した電圧に基づいて感温部6と接続部13との温度差を導くことができる。また計測器50は、温度測定体用導体箔12にも接続されているため、上述したように温度測定体4に電気を流した際の抵抗値を計測し、その抵抗値に基づいて温度測定体4が設けられている接続部13の温度を導くことができる。すなわち、接続部13の温度に感温部6と接続部13との温度差を加算することによって感温部6の温度が算出され、計測器50に感温部6の温度を表示させることができる。 When measuring the internal temperature of the semiconductor-related device using such a temperature sensor 100, the wafer 1 is installed inside the semiconductor-related device, and the temperature sensor 100 is connected to the measuring instrument 50. Since the thermocouple strands of the thermocouple 2 are two conductors of different types, a thermoelectromotive force is generated if there is a temperature difference (temperature gradient) between the temperature sensitive portion 6 and the connecting portion 13 in this state. On the other hand, since the two thermocouple conductor foils 11 to which the two thermocouple strands are connected are the same type of conductor, no thermoelectromotive force is generated. That is, since the voltage measured by the measuring instrument 50 connected to the thermocouple conductor foil 11 is the thermoelectromotive force based on the temperature difference between the temperature sensitive portion 6 and the connecting portion 13, it is felt based on the measured voltage. The temperature difference between the hot portion 6 and the connecting portion 13 can be derived. Further, since the measuring instrument 50 is also connected to the conductor foil 12 for the temperature measuring body, the resistance value when electricity is passed through the temperature measuring body 4 is measured as described above, and the temperature is measured based on the resistance value. The temperature of the connecting portion 13 provided with the body 4 can be derived. That is, the temperature of the temperature sensitive unit 6 is calculated by adding the temperature difference between the temperature sensitive unit 6 and the connection unit 13 to the temperature of the connection unit 13, and the measuring instrument 50 can display the temperature of the temperature sensitive unit 6. it can.

このように本実施形態の温度センサ100によれば、計測器50が半導体関連装置から離れた場所に設置される場合でも、フラットケーブル3の長さを長くして、高価な熱電対2の長さは最小限にすることができるため、コストを抑制することができる。また図3に示すような従来の温度センサ200が備える補償導線204は不用であって、補償導線204が持つ温度の許容差による影響が排除されるため、感温部6の温度を高い精度で計測することができる。 As described above, according to the temperature sensor 100 of the present embodiment, even when the measuring instrument 50 is installed at a place away from the semiconductor-related device, the length of the flat cable 3 is increased and the length of the expensive thermocouple 2 is increased. Since the size can be minimized, the cost can be suppressed. Further, the compensating lead wire 204 provided in the conventional temperature sensor 200 as shown in FIG. 3 is unnecessary, and the influence of the temperature tolerance of the compensating lead wire 204 is eliminated, so that the temperature of the temperature sensing unit 6 can be measured with high accuracy. Can be measured.

次に本発明に係る温度センサの第二実施形態について、図2を参照しながら説明する。なお本実施形態の温度センサ110において、上述した温度センサ100と共通する機能を有する部分については、図面に同一の符号を付して詳細な説明は省略する。 Next, a second embodiment of the temperature sensor according to the present invention will be described with reference to FIG. In the temperature sensor 110 of the present embodiment, the parts having the same functions as the temperature sensor 100 described above are designated by the same reference numerals in the drawings, and detailed description thereof will be omitted.

温度センサ110は、熱電対2と、フラットケーブル3と、温度測定体4と、均熱板5と、保護管14を備えていて、計測器50に接続して使用される。 The temperature sensor 110 includes a thermocouple 2, a flat cable 3, a temperature measuring body 4, a heat equalizing plate 5, and a protective tube 14, and is used by being connected to the measuring instrument 50.

温度センサ110は、図示したように複数の熱電対2を備えていて、感温部6の位置を長手方向に段階的に変えて配置している。また保護管14は、本実施形態では石英ガラスを使用していて、熱電対2を全体に亘って覆っている。 As shown in the figure, the temperature sensor 110 includes a plurality of thermocouples 2, and the temperature sensing portions 6 are arranged in a stepwise manner in the longitudinal direction. Further, the protective tube 14 uses quartz glass in the present embodiment and covers the thermocouple 2 as a whole.

このように構成される温度センサ110によれば、上述した温度センサ100と同様に、コストを抑えつつ高い精度で温度計測を行うことができる。また保護管14を石英ガラスとしているため、その耐熱性によって、例えば高温炉の温度を計測することが可能である。また感温部6は、長手方向に段階的に位置を変えて配置されているため、高温炉の温度分布を計測することができる。 According to the temperature sensor 110 configured in this way, it is possible to measure the temperature with high accuracy while suppressing the cost, similarly to the temperature sensor 100 described above. Further, since the protective tube 14 is made of quartz glass, it is possible to measure the temperature of a high temperature furnace, for example, by its heat resistance. Further, since the temperature sensing portion 6 is arranged in a stepwise position in the longitudinal direction, the temperature distribution of the high temperature furnace can be measured.

以上、本発明の一実施形態について説明したが、本発明はかかる特定の実施形態に限定されるものではなく、上記の説明で特に限定しない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更が可能である。また、上記の実施形態における効果は、本発明から生じる効果を例示したに過ぎず、本発明による効果が上記の効果に限定されることを意味するものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to such a specific embodiment, and unless otherwise specified in the above description, the gist of the present invention described in the claims. Various modifications and changes are possible within the range of. In addition, the effects in the above embodiments merely exemplify the effects arising from the present invention, and do not mean that the effects according to the present invention are limited to the above effects.

例えば上記の実施形態におけるフラットケーブル3は、所定数の単線(リード線)に置き換えてもよいし、所定の導電パターンを備えるリジッド基板を使用してもよい。 For example, the flat cable 3 in the above embodiment may be replaced with a predetermined number of single wires (lead wires), or a rigid substrate having a predetermined conductive pattern may be used.

またフラットケーブル3は、所定のパターンを備えるセラミック基板に置き換えてもよい。セラミック基板は高い耐熱性を有していて、高温となる部位の温度を測定する場合でもその部位に近づけることができるため、熱電対2の長さを短くしてコストを抑制することができる。 Further, the flat cable 3 may be replaced with a ceramic substrate having a predetermined pattern. Since the ceramic substrate has high heat resistance and can be brought close to the portion even when measuring the temperature of the portion where the temperature becomes high, the length of the thermocouple 2 can be shortened and the cost can be suppressed.

なお、上記の実施形態のように熱電対2を複数設ける場合は、複数の接続部13に跨がるようにして均熱板5を配置することによって、1つの温度測定体4であっても、これらの接続部13の温度をまとめて計測することができるという利点があるが、例えば接続部13が1つの場合や、配線の都合で接続部13同士を離して配置しなければならない場合等は、均熱板5を廃止して接続部13と温度測定体4とを一対一の関係で設けてもよい。 When a plurality of thermocouples 2 are provided as in the above embodiment, the heat equalizing plate 5 is arranged so as to straddle the plurality of connecting portions 13, so that even one temperature measuring body 4 can be provided. There is an advantage that the temperature of these connection portions 13 can be measured collectively, but for example, when there is only one connection portion 13, or when the connection portions 13 must be arranged apart from each other due to wiring reasons, etc. May eliminate the heat equalizing plate 5 and provide the connection portion 13 and the temperature measuring body 4 in a one-to-one relationship.

1:ウエハ
2:熱電対
3:フラットケーブル(延長体)
4:温度測定体
5:均熱板
6:感温部
7:凹部
8:ハウジング
9:絶縁性フィルム
10:導体箔
11:熱電対用導体箔(延長体素線)
12:温度測定体用導体箔
13:接続部
14:保護管
50:計測器
100、110:温度センサ
1: Wafer 2: Thermocouple 3: Flat cable (extension)
4: Temperature measuring body 5: Heat equalizing plate 6: Temperature sensitive part 7: Recessed part 8: Housing 9: Insulating film 10: Conductor foil 11: Conductor foil for thermocouple (extension body wire)
12: Conductor foil for temperature measuring body 13: Connection part 14: Protective tube 50: Measuring instrument 100, 110: Temperature sensor

Claims (4)

異種の導体で構成され接合点を感温部とした対をなす熱電対素線を有する熱電対と、
同種の導体で構成され一端部は前記熱電対素線に対して前記感温部が位置する側とは逆側で接続され他端部は計測器に接続される対をなす延長体素線を有する延長体と、
前記熱電対素線と前記延長体素線の接続部に対して当該接続部の表面から裏面に向かう方向からみて重なる位置に設けられる温度測定体と、を備え、
前記温度測定体で測定した前記接続部の温度に基づいて前記感温部での温度が計測される温度センサ。
A thermocouple composed of different types of conductors and having a pair of thermocouple strands with the junction as the temperature sensitive part,
A pair of extension wires that are made of the same type of conductor, one end connected to the thermocouple wire on the opposite side to the side where the temperature sensitive part is located, and the other end connected to the measuring instrument. With an extension body
And a temperature measuring member provided in the direction viewed from a position overlapping toward the rear surface from the surface of the connection portion for the connection of the extension member wire and the thermocouple element,
A temperature sensor that measures the temperature at the temperature sensitive portion based on the temperature at the connection portion measured by the temperature measuring body.
対をなす前記熱電対素線と前記延長体素線を複数備えるとともに前記接続部を複数備え、
複数の前記接続部に跨がって設けられる均熱板を備える請求項1に記載の温度センサ。
A plurality of the thermocouple strands and the extension strands forming a pair are provided, and a plurality of the connection portions are provided.
The temperature sensor according to claim 1, further comprising a heat equalizing plate provided across the plurality of the connecting portions.
前記延長体素線は、銅又は銅を主成分とする合金で形成されている請求項1又は2に記載の温度センサ。 The temperature sensor according to claim 1 or 2, wherein the extension wire is formed of copper or an alloy containing copper as a main component. 前記延長体は、フラットケーブルであって、
前記フラットケーブルは、前記延長体素線としての熱電対用導体箔と、前記温度測定体と前記計測器とを接続する温度測定体用導体箔と、当該熱電対用導体箔と当該温度測定体用導体箔とが設けられた絶縁性フィルムと、を含んで構成される請求項1〜3の何れか一項に記載の温度センサ。
The extension body is a flat cable and
The flat cable includes a conductor foil for a thermocouple as an extension wire, a conductor foil for a temperature measuring body that connects the temperature measuring body and the measuring instrument, a conductor foil for the thermocouple and the temperature measuring body. The temperature sensor according to any one of claims 1 to 3, further comprising an insulating film provided with a conductor foil for use.
JP2020116778A 2020-07-07 2020-07-07 Temperature sensor Active JP6831965B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020116778A JP6831965B1 (en) 2020-07-07 2020-07-07 Temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020116778A JP6831965B1 (en) 2020-07-07 2020-07-07 Temperature sensor

Publications (2)

Publication Number Publication Date
JP6831965B1 true JP6831965B1 (en) 2021-02-24
JP2022014482A JP2022014482A (en) 2022-01-20

Family

ID=74661630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020116778A Active JP6831965B1 (en) 2020-07-07 2020-07-07 Temperature sensor

Country Status (1)

Country Link
JP (1) JP6831965B1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137340U (en) * 1980-04-02 1980-09-30
US4718777A (en) * 1986-02-28 1988-01-12 John Fluke Mfg. Co., Inc. Isothermal block for temperature measurement system using a thermocouple
JPH04165643A (en) * 1990-10-30 1992-06-11 Tokyo Electron Sagami Ltd Temperature measurement
JPH07286909A (en) * 1994-04-15 1995-10-31 Toshiba Corp Thermocouple reference block
JPH08219898A (en) * 1995-02-13 1996-08-30 Mitsubishi Materials Corp Thermoelectric sensor module
JP2000241257A (en) * 1999-02-24 2000-09-08 Hayashi Denko Kk Temperature sensor for insulating substrate
JP2003086649A (en) * 2001-09-07 2003-03-20 Anritsu Keiki Kk Wafer with temperature sensor
JP2003177065A (en) * 2001-12-11 2003-06-27 Yamatake Corp Temperature measuring apparatus
JP2005315783A (en) * 2004-04-30 2005-11-10 Anritsu Keiki Kk Printed circuit board for cold junction
JP2010190735A (en) * 2009-02-18 2010-09-02 Geomatec Co Ltd Temperature measuring element and temperature measuring instrument

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55137340U (en) * 1980-04-02 1980-09-30
US4718777A (en) * 1986-02-28 1988-01-12 John Fluke Mfg. Co., Inc. Isothermal block for temperature measurement system using a thermocouple
JPH04165643A (en) * 1990-10-30 1992-06-11 Tokyo Electron Sagami Ltd Temperature measurement
JPH07286909A (en) * 1994-04-15 1995-10-31 Toshiba Corp Thermocouple reference block
JPH08219898A (en) * 1995-02-13 1996-08-30 Mitsubishi Materials Corp Thermoelectric sensor module
JP2000241257A (en) * 1999-02-24 2000-09-08 Hayashi Denko Kk Temperature sensor for insulating substrate
JP2003086649A (en) * 2001-09-07 2003-03-20 Anritsu Keiki Kk Wafer with temperature sensor
JP2003177065A (en) * 2001-12-11 2003-06-27 Yamatake Corp Temperature measuring apparatus
JP2005315783A (en) * 2004-04-30 2005-11-10 Anritsu Keiki Kk Printed circuit board for cold junction
JP2010190735A (en) * 2009-02-18 2010-09-02 Geomatec Co Ltd Temperature measuring element and temperature measuring instrument

Also Published As

Publication number Publication date
JP2022014482A (en) 2022-01-20

Similar Documents

Publication Publication Date Title
US7175343B2 (en) Multi-element thermocouple
JP2513531B2 (en) Isothermal terminal block
US6158885A (en) Thermocouple-to-extension wire ambient temperature error correction device
JP6831965B1 (en) Temperature sensor
US20070023414A1 (en) Heatable infrared sensor and infrared thermometer comprising such an infrared sensor
JP6351914B1 (en) Temperature measuring device
US10809136B2 (en) Thin film sensor element for a resistance thermometer
WO1999008494A1 (en) Temperature measuring type outside connecting mechanism for printed wiring board
JP2004219123A (en) Temperature measuring probe
CN112504495A (en) Thermocouple and electronic equipment
JPH05346352A (en) Low temperature junction compensation device for thermocouple
RU2404413C2 (en) Resistance thermometre
US1327800A (en) Compensating-pyrometer system and apparatus
JP7385909B2 (en) Temperature measuring device and temperature recording device
EP3534125B1 (en) Electric device comprising a printed circuit board and method for determining local temperatures at different measurement points of the printed circuit board
JP2000055743A (en) Multi-point mean temp. measuring apparatus
JP3008239B2 (en) Reference junction compensator for thermocouple thermometer
JP7341595B2 (en) flow sensor
JP7304328B2 (en) temperature sensor and heater
JP5458935B2 (en) Air flow measurement device
JP7321524B2 (en) Reference Junction Compensator and Temperature Measuring Device
KR102119757B1 (en) Multi-layered resistive-thermocouple type temperature measuring wafer sensor and method for fabricating the same
JP2005315783A (en) Printed circuit board for cold junction
JP2020060464A (en) Infrared sensor and manufacturing method thereof
TW202207754A (en) Modular heater assembly with interchangeable auxiliary sensing junctions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200903

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200903

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210112

R150 Certificate of patent or registration of utility model

Ref document number: 6831965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250