JP2019039301A - Method for preventing increase in dissolved oxygen amount of groundwater - Google Patents

Method for preventing increase in dissolved oxygen amount of groundwater

Info

Publication number
JP2019039301A
JP2019039301A JP2018236804A JP2018236804A JP2019039301A JP 2019039301 A JP2019039301 A JP 2019039301A JP 2018236804 A JP2018236804 A JP 2018236804A JP 2018236804 A JP2018236804 A JP 2018236804A JP 2019039301 A JP2019039301 A JP 2019039301A
Authority
JP
Japan
Prior art keywords
groundwater
dissolved oxygen
preventing
increase
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018236804A
Other languages
Japanese (ja)
Inventor
中原 禎仁
Sadahito Nakahara
禎仁 中原
康弘 日塔
Yasuhiro Nitto
康弘 日塔
利彦 松本
Toshihiko Matsumoto
利彦 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Aqua Solutions Co Ltd
Original Assignee
Wellthy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wellthy Corp filed Critical Wellthy Corp
Priority to JP2018236804A priority Critical patent/JP2019039301A/en
Publication of JP2019039301A publication Critical patent/JP2019039301A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Abstract

To provide a method for preventing an increase in a dissolved oxygen amount in groundwater capable of preventing oxidation of metal ions and propagation of iron bacteria in the groundwater in a well.SOLUTION: Provided is a method for preventing an increase in a dissolved oxygen amount of groundwater W springing in a well 11, wherein a contact preventive 18 for preventing the groundwater W from being brought into contact with an atmosphere A is fed on a water surface S of the groundwater W in a state in which the well 11 is not hermetically sealed.SELECTED DRAWING: Figure 1

Description

本発明は、地下水の溶存酸素量の増加防止方法に関する。   The present invention relates to a method for preventing an increase in dissolved oxygen content of groundwater.

従来、井戸を用いて地下水を汲み上げて、生活用水、工業用水、農業用水など各種の用途に利用している。
土壌中には鉄、マンガン等の金属が存在することから、地下水にはこれら金属がイオンの状態で存在している。金属イオンを含む地下水が大気と接触すると、大気中の酸素が地下水に溶け込み、金属イオンが酸化される。
Conventionally, groundwater is pumped up using wells and used for various purposes such as domestic water, industrial water, and agricultural water.
Since metals such as iron and manganese exist in the soil, these metals exist in an ionic state in the groundwater. When groundwater containing metal ions comes into contact with the atmosphere, oxygen in the atmosphere dissolves in the groundwater and the metal ions are oxidized.

地下水の溶存元素の酸化を防止する方法として、例えば特許文献1には、自噴またはポンプにより汲み上げた地下水を貯蔵する貯水タンクに不活性ガスを供給して、地下水の溶存元素の酸化を防止する方法が開示されている。   As a method for preventing oxidation of dissolved elements in groundwater, for example, Patent Document 1 discloses a method for preventing oxidation of dissolved elements in groundwater by supplying an inert gas to a storage tank that stores groundwater pumped by self-injection or pumping. Is disclosed.

特開2012−122189号公報JP2012-122189A

しかしながら、特許文献1に記載の方法は、井戸から汲み上げられ、貯水タンクに貯蔵された地下水の溶存元素の酸化を防止する方法であり、井戸に湧出する地下水中の金属イオンの酸化を防止するには至っていない。
地下水の溶存酸素量は、井戸内で湧出した直後は低いが、水面と接触している大気中の酸素が地下水に溶解するため次第に増加する。酸素が地下水に溶解すると水面近傍の大気中の酸素濃度は下がるが、地下水の水面水位は変動するため井戸内に新しい空気が流れ込むことで、水面近傍の大気中の酸素濃度が元に戻り、飽和状態になるまで地下水への酸素の溶解が進む。井戸内にて地下水に酸素が溶解すると、地下水中の金属イオンは酸化され、凝集して地下水中で懸濁し、地下水の汲み上げに用いる各種配管やポンプなどに付着してこれらを閉塞させる原因となる。
また、地下水中に酸素が溶解すると鉄バクテリアが繁殖しやすくなる。鉄バクテリアは鉄イオンを体内に取り入れ蓄積させる。この鉄バクテリアが凝集し、あるいは付着することで地下水の汲み上げに用いる各種配管やポンプなどを閉塞させる。
However, the method described in Patent Document 1 is a method of preventing the oxidation of dissolved elements of groundwater pumped from a well and stored in a water storage tank, and prevents the oxidation of metal ions in the groundwater flowing out of the well. Has not reached.
The amount of dissolved oxygen in groundwater is low immediately after springing in the well, but gradually increases because oxygen in the atmosphere in contact with the water surface dissolves in groundwater. When oxygen dissolves in groundwater, the oxygen concentration in the atmosphere near the water surface decreases, but the water level in the groundwater fluctuates, so new air flows into the wells, returning the oxygen concentration in the atmosphere near the water surface to its original value and saturation. Dissolution of oxygen into groundwater proceeds until it reaches a state. When oxygen dissolves in groundwater in the well, metal ions in the groundwater are oxidized, aggregated and suspended in the groundwater, and adhere to various pipes and pumps used to pump up the groundwater, causing them to become clogged. .
In addition, when oxygen dissolves in groundwater, iron bacteria are likely to propagate. Iron bacteria take up and accumulate iron ions in the body. When these iron bacteria aggregate or adhere, various pipes and pumps used for pumping up groundwater are blocked.

本発明は上記事情に鑑みてなされたもので、井戸内において、地下水中の金属イオンの酸化および鉄バクテリアの繁殖を防止できる地下水の溶存酸素量の増加防止方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the increase prevention method of the dissolved oxygen amount of groundwater which can prevent the oxidation of the metal ion in groundwater and the reproduction of iron bacteria in a well.

本発明は以下の態様を有する。
[1] 井戸に湧出する地下水の溶存酸素量の増加を防止する方法であって、前記井戸が密閉されていない状態で、地下水の水面に、地下水と大気との接触を妨げる接触防止剤を供給する、地下水の溶存酸素量の増加防止方法。
[2] 前記井戸に空気穴が形成された蓋をして、地下水の水面に、地下水と大気との接触を妨げる接触防止剤を供給する、[1]に記載の地下水の溶存酸素量の増加防止方法。
[3] 接触防止剤が不活性ガスまたは油である、[1]または[2]に記載の地下水の溶存酸素量の増加防止方法。
[4] 井戸に気体不透過性の保護管を挿入する、[1]〜[3]のいずれか1つに記載の地下水の溶存酸素量の増加防止方法。
[5] 地下水の水面への接触防止剤の供給が、地下水中への不活性ガスの供給によりなされる、[4]に記載の地下水の溶存酸素量の増加防止方法。
The present invention has the following aspects.
[1] A method for preventing an increase in the amount of dissolved oxygen in groundwater flowing out from a well, wherein a contact inhibitor that prevents contact between the groundwater and the atmosphere is supplied to the surface of the groundwater when the well is not sealed. To prevent the increase of dissolved oxygen in groundwater.
[2] Increasing the dissolved oxygen content of groundwater according to [1], wherein the well is covered with a lid with air holes and a contact inhibitor that prevents contact between the groundwater and the atmosphere is supplied to the surface of the groundwater. Prevention method.
[3] The method for preventing an increase in dissolved oxygen content of groundwater according to [1] or [2], wherein the contact inhibitor is an inert gas or oil.
[4] The method for preventing an increase in the amount of dissolved oxygen in groundwater according to any one of [1] to [3], wherein a gas-impermeable protective tube is inserted into the well.
[5] The method for preventing an increase in dissolved oxygen content of groundwater according to [4], wherein the contact inhibitor is supplied to the surface of the groundwater by supplying an inert gas to the groundwater.

本発明の地下水の溶存酸素量の増加防止方法によれば、井戸内において、地下水中の金属イオンの酸化および鉄バクテリアの繁殖を防止できる。   According to the method for preventing an increase in the dissolved oxygen content of groundwater of the present invention, oxidation of metal ions and propagation of iron bacteria in groundwater can be prevented in a well.

本発明の地下水の溶存酸素量の増加防止方法を実施するための増加防止システムの一実施形態を示す概略図である。It is the schematic which shows one Embodiment of the increase prevention system for implementing the increase prevention method of the dissolved oxygen amount of groundwater of this invention. 本発明の地下水の溶存酸素量の増加防止方法を実施するための増加防止システムの他の実施形態を示す概略図である。It is the schematic which shows other embodiment of the increase prevention system for enforcing the increase prevention method of the dissolved oxygen amount of groundwater of this invention. 本発明の地下水の溶存酸素量の増加防止方法を実施するための増加防止システムの他の実施形態を示す概略図である。It is the schematic which shows other embodiment of the increase prevention system for enforcing the increase prevention method of the dissolved oxygen amount of groundwater of this invention.

以下、図面を参照して本発明を詳しく説明する。
なお、以下の図面においては、各部材を認識可能な大きさとするため、各部材の縮尺を適宜変更している。
また、図2、3において、図1と同じ構成要素には同じ符号を付して、その説明を省略する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
In the following drawings, the scale of each member is appropriately changed to make each member a recognizable size.
2 and 3, the same components as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.

<増加防止システム>
図1は、本発明の地下水の溶存酸素量の増加防止方法を実施するための増加防止システムの一実施形態を示す概略図である。
この例の増加防止システム(地下水の溶存酸素量の増加防止システム)10は、井戸11と、井戸11内に湧出する地下水Wを汲み上げるポンプ12および揚水配管13と、地下水Wの水面Sに接触防止剤18を供給する供給手段14と、地下水WにpH調整剤を添加する添加手段15とを備える。
<Increase prevention system>
FIG. 1 is a schematic view showing an embodiment of an increase prevention system for carrying out the method for preventing an increase in dissolved oxygen content of groundwater according to the present invention.
In this example, the increase prevention system (prevention system for increasing the dissolved oxygen amount of groundwater) 10 prevents contact with the well 11, the pump 12 and the pumping pipe 13 for pumping up the groundwater W springing into the well 11, and the surface S of the groundwater W. The supply means 14 which supplies the agent 18, and the addition means 15 which adds a pH adjuster to the groundwater W are provided.

井戸11は、地面Gから下方に向かって帯水層Xまで掘削された掘削穴Hに挿入された、気体不透過性の保護管16を有する。
保護管16は、土砂崩落などから掘削穴Hを保護するための有底筒状の管である。
保護管16の底部近傍には、掘削穴Hに挿入した際の帯水層Xの位置に、帯水層Xの地下水を保護管16内に取り込む取水口16aが形成されている。この取水口16aには、砂等が保護管16内に侵入するのを防ぐための金網17が取り付けられている。
なお、本発明において「気体不透過性」とは、保護管16から帯水層Xなどの土壌へ気体を透過させないことを意味する。
The well 11 has a gas-impermeable protective tube 16 inserted into a drill hole H drilled downward from the ground G to the aquifer X.
The protective tube 16 is a bottomed tubular tube for protecting the excavation hole H from landslides.
In the vicinity of the bottom of the protective tube 16, a water intake 16 a is formed at the position of the aquifer X when the protective tube 16 is inserted into the excavation hole H to take the groundwater of the aquifer X into the protective tube 16. A wire mesh 17 for preventing sand and the like from entering the protective tube 16 is attached to the intake port 16a.
In the present invention, “gas impermeable” means that gas is not allowed to permeate from the protective tube 16 to the soil such as the aquifer X.

ポンプ12および揚水配管13としては特に制限されず、井戸に用いられる公知のポンプおよび揚水配管を用いることができる。   It does not restrict | limit especially as the pump 12 and the pumping-up piping 13, The well-known pump and pumping-up piping used for a well can be used.

供給手段14は、地下水Wの水面Sに、地下水Wと大気Aとの接触を妨げる接触防止剤18を供給するものである。
供給手段14は、末端が接触防止剤18を貯蔵するタンク(図示略)に接続された供給配管14aを有する。
供給配管14aは、その先端14bが地下水Wの水面Sの上方かつ近傍に位置するように設置される。
The supply means 14 supplies the contact inhibitor 18 that prevents the contact between the groundwater W and the atmosphere A to the water surface S of the groundwater W.
The supply means 14 has a supply pipe 14 a that is connected at its end to a tank (not shown) that stores the contact inhibitor 18.
The supply pipe 14a is installed such that its tip 14b is located above and in the vicinity of the water surface S of the groundwater W.

接触防止剤18としては、窒素、アルゴン等の不活性ガス;食用油等の油などが挙げられる。地下水Wと大気Aとの接触を妨げる効果に優れる点で、不活性ガスが好ましい。また、接触防止剤18として油を用いると、地下水Wを汲み上げる際に油も一緒に汲み上げられる。そのため、汲み上げた地下水Wを各種用水に利用する前に、油を除去する処理が必要となる。よって、地下水Wを汲み上げた後の処理が不要である点においても、不活性ガスが好ましい。
なお、窒素、アルゴン以外の不活性ガスを用いることもできるが、二酸化炭素は地下水Wに溶け込み、金属イオンの酸化を引き起こす。よって、接触防止剤として不活性ガスを用いる場合は、二酸化炭素以外の不活性ガスを用いる。中でも、窒素、アルゴンは安価であり、取り扱いも容易であるため、接触防止剤18として好適である。また、これら不活性ガスは1種を単独で用いてもよいし、2種以上を併用してもよい。
Examples of the contact inhibitor 18 include inert gases such as nitrogen and argon; oils such as edible oils, and the like. An inert gas is preferable in that it is excellent in the effect of preventing the contact between the groundwater W and the atmosphere A. Further, when oil is used as the contact preventing agent 18, the oil is also pumped up when the groundwater W is pumped up. Therefore, before the pumped-up groundwater W is used for various types of water, a process for removing oil is required. Therefore, an inert gas is preferable also in the point that the process after pumping up the ground water W is unnecessary.
In addition, although inert gas other than nitrogen and argon can be used, carbon dioxide dissolves in the ground water W and causes oxidation of metal ions. Therefore, when using an inert gas as a contact inhibitor, an inert gas other than carbon dioxide is used. Among these, nitrogen and argon are suitable as the contact inhibitor 18 because they are inexpensive and easy to handle. Moreover, these inert gases may be used individually by 1 type, and may use 2 or more types together.

添加手段15は、地下水WにpH調整剤を添加するものである。
添加手段15は、末端がpH調整剤を貯蔵するタンク(図示略)に接続された添加配管15aを有する。
添加配管15aは、その先端15bが地下水Wに浸漬するように設置される。
The adding means 15 adds a pH adjuster to the groundwater W.
The addition means 15 has an addition pipe 15a whose end is connected to a tank (not shown) for storing a pH adjusting agent.
The addition pipe 15a is installed such that its tip 15b is immersed in the groundwater W.

pH調整剤としては、地下水WのpHを酸性に調整するものであれば特に制限されないが、例えば硫酸、塩酸などが挙げられる。   The pH adjuster is not particularly limited as long as it adjusts the pH of the groundwater W to be acidic, and examples thereof include sulfuric acid and hydrochloric acid.

<地下水の溶存酸素量の増加防止方法>
このような増加防止システム10を用いた、本発明の第一の態様の地下水の溶存酸素量の増加防止方法では、帯水層Xから湧出し、保護管16の取水口16aから保護管16内に取り込まれた地下水Wの水面Sに供給手段14から接触防止剤18を供給する。接触防止剤18を供給することで地下水Wの水面S近傍の大気Aが追いやられて水面Sに接触防止剤18からなる層が形成され、地下水Wと大気Aとの接触が妨げられる。
接触防止剤18として油を用いる場合、油の供給量は、接触防止剤18からなる層の厚さが5〜300mmとなる量が好ましい。
<Method for preventing increase in dissolved oxygen in groundwater>
In the method for preventing an increase in the dissolved oxygen amount of groundwater according to the first aspect of the present invention using such an increase prevention system 10, the groundwater springs out of the aquifer X and enters the protection pipe 16 from the intake 16 a of the protection pipe 16. The contact preventing agent 18 is supplied from the supply means 14 to the water surface S of the groundwater W taken in. By supplying the contact preventing agent 18, the atmosphere A in the vicinity of the water surface S of the ground water W is driven away, and a layer made of the contact preventing agent 18 is formed on the water surface S, and contact between the ground water W and the air A is prevented.
When oil is used as the contact inhibitor 18, the amount of oil supplied is preferably such that the layer made of the contact inhibitor 18 has a thickness of 5 to 300 mm.

一方、接触防止剤18として不活性ガスを用いる場合、少なくとも地下水Wの水面S近傍の大気が不活性ガスに置換されるまで不活性ガスを供給することが好ましい。
また、例えば図2に示すように、井戸11に空気穴(図示略)が形成された蓋19をして、不活性ガスを供給してもよい。井戸11に蓋19をすれば、井戸11内に枯葉などのゴミが混入するのを抑制できる。
なお、窒素は空気よりも軽いが、地下水Wの水面Sに窒素を供給し続ければ、窒素が地下水Wの水面S近傍に滞留しやすく、地下水Wと大気Aとの接触が妨げられる。
On the other hand, when an inert gas is used as the contact inhibitor 18, it is preferable to supply the inert gas until at least the atmosphere in the vicinity of the water surface S of the groundwater W is replaced with the inert gas.
Further, for example, as shown in FIG. 2, an inert gas may be supplied by providing a lid 19 in which air holes (not shown) are formed in the well 11. If the well 19 is covered with a lid 19, it is possible to suppress the entry of dust such as dead leaves into the well 11.
Although nitrogen is lighter than air, if nitrogen is continuously supplied to the water surface S of the groundwater W, nitrogen tends to stay in the vicinity of the water surface S of the groundwater W, and contact between the groundwater W and the atmosphere A is prevented.

地下水の溶存酸素量の増加防止方法では、添加手段15から地下水WにpH調整剤を添加することが好ましい。地下水WにpH調整剤を添加することで、地下水W中の鉄、マンガン等の金属イオンの酸化がより起こりにくくなる。また、地下水W中の鉄バクテリアを殺菌したり、繁殖を防止したりできる。
金属イオンの酸化防止や、鉄バクテリアの殺菌・繁殖防止の観点では、地下水WのpHは低いほど好ましい。ただし、地下水WのpHが低すぎると、例えば地下水を飲み水として利用するには、地下水のpHを元に戻す処理が必要となり、その処理に手間がかかる。よって、pH調整剤の添加量は、地下水WのpHが5〜6程度になる量が好ましい。地下水WのpHが5〜6であれば、汲み上げられた地下水WのpHを元に戻す処理が不要となるか、処理する場合であっても手間がかかりにくい。
地下水W中へpH調整剤を添加するタイミングは、接触防止剤18の供給と同時でもよいし、接触防止剤18の供給の前または後でもよいが、接触防止剤18の供給と同時または接触防止剤18の供給の前が好ましい。
In the method for preventing an increase in the dissolved oxygen content of the groundwater, it is preferable to add a pH adjuster to the groundwater W from the adding means 15. By adding a pH adjuster to the groundwater W, oxidation of metal ions such as iron and manganese in the groundwater W is less likely to occur. Further, it is possible to sterilize iron bacteria in the groundwater W or prevent propagation.
From the viewpoint of preventing oxidation of metal ions and preventing sterilization / reproduction of iron bacteria, the lower the pH of the groundwater W, the better. However, if the pH of the groundwater W is too low, for example, in order to use the groundwater as drinking water, a process for returning the pH of the groundwater is necessary, which takes time. Therefore, the addition amount of the pH adjuster is preferably such that the pH of the groundwater W is about 5-6. If the pH of groundwater W is 5-6, the process which returns the pH of the groundwater W pumped up becomes unnecessary, or even if it is a case where it is a process, it will not take much time and effort.
The timing of adding the pH adjusting agent into the groundwater W may be simultaneous with the supply of the contact preventive agent 18 or before or after the supply of the contact preventive agent 18, but simultaneously with the supply of the contact preventive agent 18 or the contact prevention. Prior to the supply of agent 18 is preferred.

<作用効果>
以上説明した本発明の第一の態様の地下水の溶存酸素量の増加防止方法によれば、地下水の水面に、地下水と大気との接触を妨げる接触防止剤を供給するので、井戸内において地下水に酸素が溶解するのを抑制でき、地下水の溶存酸素量の増加を防止できる。よって、本発明によれば地下水中の金属イオンの酸化および鉄バクテリアの繁殖を防止でき、その結果、地下水の汲み上げに用いる揚水配管やポンプなどが閉塞するのを抑制できる。
なお、地下水の汲み上げは、本発明の地下水の溶存酸素量の増加防止方法を実施しながら行ってもよいし、本発明の地下水の溶存酸素量の増加防止方法を実施した後に行ってもよい。
<Effect>
According to the above-described method for preventing an increase in the dissolved oxygen amount of groundwater according to the first aspect of the present invention, since the contact inhibitor that prevents the contact between the groundwater and the atmosphere is supplied to the surface of the groundwater, It is possible to suppress the dissolution of oxygen and to prevent an increase in the dissolved oxygen amount of groundwater. Therefore, according to the present invention, it is possible to prevent oxidation of metal ions and propagation of iron bacteria in groundwater, and as a result, it is possible to suppress clogging of pumping pipes and pumps used for pumping up groundwater.
The groundwater pumping may be performed while the method for preventing the increase in dissolved oxygen content of the groundwater of the present invention is performed, or may be performed after the method for preventing the increase of dissolved oxygen content of the groundwater of the present invention is performed.

ところで、汚染された土壌や地下水を浄化する方法としてバイオスパージング法が知られている。バイオスパージング法は、スパージング井戸から送り込まれた気体がスパージング井戸の下端近傍に設けられたスクリーンを透過して汚染された土壌や地下水に拡散することで、汚染原因である揮発性有機化合物(VOC)を液相から気相へ移動させ、気相に移動したVOCのガスをブロワー等で吸引し除去することによって浄化する技術である。なお、スパージング井戸のスクリーンは気体を透過させるものであり、地下水を取り込むための取水口とは異なる。
バイオスパージング法に用いる気体としては、土壌に生息する微生物の種類により選択される。例えば微生物が好気性であれば空気など酸素を含む気体を用い、微生物が嫌気性であれば二酸化炭素などの不活性ガスを用いる。
また、バイオスパージング法では、微生物を活性化させるための栄養剤を汚染された土壌や地下水に供給することもある。
By the way, a biosparging method is known as a method for purifying contaminated soil and groundwater. In the bio sparging method, the gas sent from the sparging well permeates through the screen provided near the lower end of the sparging well and diffuses into the contaminated soil and groundwater. Is removed from the liquid phase to the gas phase, and the VOC gas transferred to the gas phase is sucked and removed by a blower or the like. In addition, the screen of a sparging well is a thing which permeate | transmits gas, and is different from the water intake for taking in groundwater.
The gas used in the biosparging method is selected according to the type of microorganisms that inhabit the soil. For example, if the microorganism is aerobic, a gas containing oxygen such as air is used, and if the microorganism is anaerobic, an inert gas such as carbon dioxide is used.
In the biosparging method, a nutrient for activating microorganisms may be supplied to contaminated soil or groundwater.

しかし、空気や二酸化炭素を地下水へ供給するとこれらが地下水へ溶解し、地下水中の金属イオンを酸化させる。また、栄養剤を地下水へ供給すると鉄バクテリアが繁殖し、金属イオンの酸化が進行する。
そのため、本発明では栄養剤を地下水へ供給することなく、地下水の水面に接触防止剤を供給する。また、接触防止剤として不活性ガスを用いる場合は、二酸化炭素以外の不活性ガスを用いる。
なお、本発明の対象となる地下水は、汲み上げられた後に生活用水、工業用水、農業用水など各種の用途に利用される。よって、井戸を設置する場所は土壌や地下水が汚染されていない場所が好ましい。ここで、「土壌や地下水が汚染されていない」とは、バイオスパージング法による浄化を必要としない程度を意味する。
However, when air or carbon dioxide is supplied to groundwater, they dissolve into groundwater and oxidize metal ions in groundwater. When nutrients are supplied to groundwater, iron bacteria propagate and metal ion oxidation proceeds.
Therefore, in this invention, a contact inhibitor is supplied to the water surface of groundwater, without supplying a nutrient to groundwater. In addition, when an inert gas is used as the contact inhibitor, an inert gas other than carbon dioxide is used.
In addition, the groundwater used as the object of this invention is used for various uses, such as domestic water, industrial water, and agricultural water, after being pumped up. Therefore, the place where the well is installed is preferably a place where soil and groundwater are not contaminated. Here, “soil and groundwater are not polluted” means a degree that does not require purification by the biosparging method.

<他の実施形態>
本発明の地下水の溶存酸素量の増加防止方法は、上述した方法に限定されない。例えば、図1に示す増加防止システム10は、供給配管14aの先端14bが地下水Wの水面Sの上方かつ近傍に位置するように供給配管14aが設置されているが、接触防止剤18が不活性ガスの場合は、図3に示すように供給配管14aの先端14bが地下水Wに浸漬していてもよい。
<Other embodiments>
The method for preventing an increase in the dissolved oxygen amount of groundwater of the present invention is not limited to the method described above. For example, in the increase prevention system 10 shown in FIG. 1, the supply pipe 14a is installed so that the tip 14b of the supply pipe 14a is located above and in the vicinity of the water surface S of the groundwater W, but the contact inhibitor 18 is inactive. In the case of gas, the tip 14b of the supply pipe 14a may be immersed in the groundwater W as shown in FIG.

図3に示す増加防止システム10を用いた、本発明の第二の態様の地下水の溶存酸素量の増加防止方法では、帯水層Xから湧出し、保護管16の取水口16aから保護管16内に取り込まれた地下水W中へ供給手段14から接触防止剤18を供給する(ストリッピング)。このときに用いる接触防止剤18は不活性ガスである。不活性ガスを地下水W中へ供給することで、地下水W中に溶解していた酸素が脱気されるとともに、地下水Wの水面Sに不活性ガスからなる層が形成され、地下水Wと大気Aとの接触が妨げられる。   In the method for preventing an increase in the dissolved oxygen amount of groundwater according to the second aspect of the present invention using the increase prevention system 10 shown in FIG. 3, the protection pipe 16 is discharged from the aquifer X and is taken from the intake 16 a of the protection pipe 16. The contact preventing agent 18 is supplied from the supply means 14 into the groundwater W taken in (stripping). The contact inhibitor 18 used at this time is an inert gas. By supplying the inert gas into the groundwater W, oxygen dissolved in the groundwater W is degassed, and a layer made of inert gas is formed on the water surface S of the groundwater W. Contact with is prevented.

本発明の第二の態様の地下水の溶存酸素量の増加防止方法によれば、井戸内において地下水に酸素が溶解するのを抑制でき、地下水の溶存酸素量の増加を防止できる。しかも、地下水中に既に溶解している酸素も脱気できるので、地下水の溶存酸素量をより低減できる。また、井戸内の地下水が酸素以外の気体(例えばアンモニアガスやVOCなど)を溶解している場合、地下水中に不活性ガスを供給すれば、酸素に加えて酸素以外の気体も脱気されるので、地下水から除去できる。
なお、本発明の第二の態様の地下水の溶存酸素量の増加防止方法では、井戸に気体不透過性の保護管を挿入しているので、不活性ガスが保護管を透過して帯水層へ拡散しにくい。
According to the method for preventing an increase in the dissolved oxygen content of groundwater according to the second aspect of the present invention, it is possible to suppress the dissolution of oxygen in the groundwater in the well and to prevent an increase in the dissolved oxygen content of the groundwater. In addition, since the oxygen already dissolved in the groundwater can be degassed, the amount of dissolved oxygen in the groundwater can be further reduced. In addition, when the groundwater in the well dissolves a gas other than oxygen (for example, ammonia gas or VOC), if an inert gas is supplied to the groundwater, a gas other than oxygen is degassed in addition to oxygen. So it can be removed from groundwater.
In the method for preventing an increase in the dissolved oxygen content of groundwater according to the second aspect of the present invention, since a gas-impermeable protective tube is inserted into the well, the inert gas permeates the protective tube and becomes an aquifer. Difficult to diffuse into.

また、図1〜3に示す増加防止システム10では、添加配管15aの先端15bが地下水Wに浸漬しているが、接触防止剤18が不活性ガスの場合は、添加配管15aの先端15bが地下水Wの水面Sの上方に位置するように添加配管15aを設置してもよい。   Moreover, in the increase prevention system 10 shown in FIGS. 1-3, although the front-end | tip 15b of the addition piping 15a is immersed in the groundwater W, when the contact inhibitor 18 is an inert gas, the front-end | tip 15b of the addition piping 15a is groundwater. You may install the addition piping 15a so that it may be located above the water surface S of W.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.

「実施例1」
地面から下方に向かって直径約150mm、深さ30mまで掘削し、得られた掘削穴に有底筒状であり、気体不透過性の保護管を挿入し、図1に示すような井戸11を設置した。井戸の設置には、土壌や地下水が汚染されていない場所を選んだ。保護管16としては、掘削穴Hに挿入した際の帯水層Xの位置に取水口16aが形成され、この取水口16aに金網17が取り付けられているものを用いた。
図1に示すように、保護管16内にポンプ12および揚水配管13を配置し、地下水Wの汲み上げを可能とした。また、供給配管14aの先端14bが地下水Wの水面Sの上方かつ近傍に位置するように供給手段14を設置した。
帯水層Xから湧出し、保護管16の取水口16aから保護管16内に取り込まれた地下水Wの水面Sに、供給手段14から接触防止剤18として食用油を3L供給し、水面Sに食用油からなる層(厚さ170mm)を形成した状態で、地下水Wを汲み上げた。溶存酸素計を用いて汲み上げた地下水Wの溶存酸素量を測定した。結果を表1に示す。
"Example 1"
Drilling downward from the ground to a diameter of about 150 mm and a depth of 30 m, a bottomed cylindrical shape is inserted into the obtained drilling hole, a gas-impermeable protective tube is inserted, and a well 11 as shown in FIG. installed. For the installation of the well, we chose a place where the soil and groundwater were not contaminated. As the protective pipe 16, a water intake 16a is formed at the position of the aquifer X when inserted into the excavation hole H, and a metal mesh 17 is attached to the water intake 16a.
As shown in FIG. 1, the pump 12 and the pumping pipe 13 are arranged in the protective pipe 16, and the groundwater W can be pumped up. Moreover, the supply means 14 was installed so that the front-end | tip 14b of the supply piping 14a might be located above the water surface S of the groundwater W, and its vicinity.
3 L of edible oil is supplied as a contact inhibitor 18 from the supply means 14 to the surface S of the groundwater W that is springed out from the aquifer X and taken into the protection tube 16 from the intake port 16a of the protection tube 16. Groundwater W was pumped up in a state where a layer (thickness: 170 mm) made of edible oil was formed. The dissolved oxygen amount of the groundwater W pumped up using the dissolved oxygen meter was measured. The results are shown in Table 1.

「実施例2」
実施例1と同様にして井戸11を設置し、保護管16内にポンプ12および揚水配管13を配置し、地下水Wの汲み上げを可能とした。また、供給配管14aの先端14bが地下水Wの水面Sの上方かつ近傍に位置するように供給手段14を設置した。
帯水層Xから湧出し、保護管16の取水口16aから保護管16内に取り込まれた地下水Wの水面Sに、供給手段14から接触防止剤18として窒素を供給しながら、地下水Wを汲み上げた。窒素の供給量は5L/分とした。溶存酸素計を用いて汲み上げた地下水Wの溶存酸素量を測定した。結果を表1に示す。
"Example 2"
In the same manner as in Example 1, the well 11 was installed, the pump 12 and the pumping pipe 13 were arranged in the protective pipe 16, and the groundwater W could be pumped up. Moreover, the supply means 14 was installed so that the front-end | tip 14b of the supply piping 14a might be located above the water surface S of the groundwater W, and its vicinity.
The groundwater W is pumped up while supplying nitrogen as the contact inhibitor 18 from the supply means 14 to the water surface S of the groundwater W that has come out of the aquifer X and is taken into the protection tube 16 from the intake port 16a of the protection tube 16. It was. The supply amount of nitrogen was 5 L / min. The dissolved oxygen amount of the groundwater W pumped up using the dissolved oxygen meter was measured. The results are shown in Table 1.

「実施例3」
実施例1と同様にして井戸11を設置した。
図3に示すように、保護管16内にポンプ12および揚水配管13を配置し、地下水Wの汲み上げを可能とした。また、供給配管14aの先端14bが保護管16の底部近傍に到達するように供給手段14を設置した。
帯水層Xから湧出し、保護管16の取水口16aから保護管16内に取り込まれた地下水W中に、供給手段14から接触防止剤18として窒素を供給しながら、地下水Wを汲み上げた。窒素の供給量は5L/分とした。溶存酸素計を用いて汲み上げた地下水Wの溶存酸素量を測定した。結果を表1に示す。
"Example 3"
The well 11 was installed in the same manner as in Example 1.
As shown in FIG. 3, the pump 12 and the pumping pipe 13 are arranged in the protective pipe 16, and the groundwater W can be pumped up. Further, the supply means 14 was installed so that the tip 14 b of the supply pipe 14 a reached the vicinity of the bottom of the protective pipe 16.
The groundwater W was pumped up while supplying nitrogen as the contact inhibitor 18 from the supply means 14 into the groundwater W that came out of the aquifer X and was taken into the protection tube 16 from the intake port 16a of the protection tube 16. The supply amount of nitrogen was 5 L / min. The dissolved oxygen amount of the groundwater W pumped up using the dissolved oxygen meter was measured. The results are shown in Table 1.

「比較例1」
地下水の水面に食用油を供給しなかった以外は実施例1と同様にして地下水を汲み上げた。溶存酸素計を用いて汲み上げた地下水Wの溶存酸素量を測定した。結果を表1に示す。
"Comparative Example 1"
Groundwater was pumped in the same manner as in Example 1 except that edible oil was not supplied to the surface of the groundwater. The dissolved oxygen amount of the groundwater W pumped up using the dissolved oxygen meter was measured. The results are shown in Table 1.

Figure 2019039301
Figure 2019039301

表1の結果から明らかなように、各実施例で汲み上げた地下水の溶存酸素量は、比較例1で汲み上げた地下水の溶存酸素量よりもはるかに低いものであった。よって、各実施例では、比較例1に比べて地下水中の金属イオンの酸化および鉄バクテリアの繁殖を防止できるといえる。   As is clear from the results in Table 1, the dissolved oxygen content of the groundwater pumped in each example was much lower than the dissolved oxygen content of the groundwater pumped in Comparative Example 1. Therefore, in each Example, compared with Comparative Example 1, it can be said that oxidation of metal ions in groundwater and reproduction of iron bacteria can be prevented.

10 増加防止システム
11 井戸
12 ポンプ
13 揚水配管
14 供給手段
14a 供給配管
14b 先端
15 添加手段
15a 添加配管
15b 先端
16 保護管
16a 取水口
17 金網
18 接触防止剤
19 蓋
A 大気
G 地面
H 掘削穴
X 帯水層
S 水面
W 地下水
DESCRIPTION OF SYMBOLS 10 Increase prevention system 11 Well 12 Pump 13 Pumping pipe 14 Supply means 14a Supply pipe 14b Tip 15 Addition means 15a Addition pipe 15b Tip 16 Protective pipe 16a Water intake 17 Wire mesh 18 Contact preventive agent 19 Lid A Atmosphere G Ground H Drilling hole X belt Water layer S Water surface W Groundwater

Claims (5)

井戸に湧出する地下水の溶存酸素量の増加を防止する方法であって、
前記井戸が密閉されていない状態で、地下水の水面に、地下水と大気との接触を妨げる接触防止剤を供給する、地下水の溶存酸素量の増加防止方法。
A method for preventing an increase in the amount of dissolved oxygen in groundwater flowing out from a well,
A method for preventing an increase in the amount of dissolved oxygen in groundwater, wherein a contact inhibitor that prevents contact between the groundwater and the atmosphere is supplied to the surface of the groundwater in a state where the well is not sealed.
前記井戸に空気穴が形成された蓋をして、地下水の水面に、地下水と大気との接触を妨げる接触防止剤を供給する、請求項1に記載の地下水の溶存酸素量の増加防止方法。   The method for preventing an increase in the amount of dissolved oxygen in groundwater according to claim 1, wherein the well is covered with an air hole and a contact inhibitor that prevents contact between the groundwater and the atmosphere is supplied to the surface of the groundwater. 接触防止剤が不活性ガスまたは油である、請求項1または2に記載の地下水の溶存酸素量の増加防止方法。   The method for preventing an increase in dissolved oxygen content of groundwater according to claim 1 or 2, wherein the contact inhibitor is an inert gas or oil. 井戸に気体不透過性の保護管を挿入する、請求項1〜3のいずれか一項に記載の地下水の溶存酸素量の増加防止方法。   The method for preventing an increase in dissolved oxygen content of groundwater according to any one of claims 1 to 3, wherein a gas-impermeable protective tube is inserted into the well. 地下水の水面への接触防止剤の供給が、地下水中への不活性ガスの供給によりなされる、請求項4に記載の地下水の溶存酸素量の増加防止方法。   The method for preventing an increase in the amount of dissolved oxygen in groundwater according to claim 4, wherein the contact inhibitor is supplied to the surface of the groundwater by supplying an inert gas to the groundwater.
JP2018236804A 2018-12-18 2018-12-18 Method for preventing increase in dissolved oxygen amount of groundwater Pending JP2019039301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018236804A JP2019039301A (en) 2018-12-18 2018-12-18 Method for preventing increase in dissolved oxygen amount of groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018236804A JP2019039301A (en) 2018-12-18 2018-12-18 Method for preventing increase in dissolved oxygen amount of groundwater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014241133A Division JP6504799B2 (en) 2014-11-28 2014-11-28 Method for preventing increase of dissolved oxygen in groundwater

Publications (1)

Publication Number Publication Date
JP2019039301A true JP2019039301A (en) 2019-03-14

Family

ID=65725480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018236804A Pending JP2019039301A (en) 2018-12-18 2018-12-18 Method for preventing increase in dissolved oxygen amount of groundwater

Country Status (1)

Country Link
JP (1) JP2019039301A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104714A (en) * 2004-10-01 2006-04-20 Kajima Corp Method and device for preventing blocking of underground water pumping facility, and blocking preventive underground water pumping facility
JP2009121062A (en) * 2007-11-12 2009-06-04 Ohbayashi Corp Well, method for preventing oxidization of groundwater in well, construction method for emergency well, and emergency well constructed by the construction method
JP2010189881A (en) * 2009-02-17 2010-09-02 Seiko Epson Corp Ground water oxidation preventing device and ground water oxidation preventing method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2012122189A (en) * 2010-12-05 2012-06-28 Yukio Nakajima Inert gas filled and sealed water storage tank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006104714A (en) * 2004-10-01 2006-04-20 Kajima Corp Method and device for preventing blocking of underground water pumping facility, and blocking preventive underground water pumping facility
JP2009121062A (en) * 2007-11-12 2009-06-04 Ohbayashi Corp Well, method for preventing oxidization of groundwater in well, construction method for emergency well, and emergency well constructed by the construction method
JP2010189881A (en) * 2009-02-17 2010-09-02 Seiko Epson Corp Ground water oxidation preventing device and ground water oxidation preventing method
JP2011189242A (en) * 2010-03-12 2011-09-29 Miura Co Ltd Water treatment system
JP2012122189A (en) * 2010-12-05 2012-06-28 Yukio Nakajima Inert gas filled and sealed water storage tank

Similar Documents

Publication Publication Date Title
JPH05501520A (en) How to remove halogenated contaminants in groundwater
CN101898854B (en) Method and device for treatment of high-sulfur content and low-permeability oil reservoir produced wastewater
CN102774965A (en) In-situ repair system for treating pollution of underground water
JP2007260610A (en) Cleaning method of contaminated soil
CN103755064A (en) Treatment method of high-salt content and refractory oil exploitation wastewater
JP6504799B2 (en) Method for preventing increase of dissolved oxygen in groundwater
JP5023850B2 (en) Method for purifying contaminated soil and groundwater
JP2019039301A (en) Method for preventing increase in dissolved oxygen amount of groundwater
JP4556471B2 (en) Purification method for contaminated soil
JP6508684B2 (en) Algal growth control device and method
JP3930785B2 (en) Contaminated strata purification method and polluted strata purification system used therefor
JP4055076B2 (en) Contaminated soil purification equipment
US8574441B2 (en) Process for removing oxidants from water injected into a subsurface aquifer to prevent mobilization of trace metals
JP2005305282A (en) Soil cleaning method
JP2020084552A (en) Pumping system, method for supplying groundwater, and method for suppressing increase of dissolved oxygen concentration in groundwater
US20070272623A1 (en) Multi-zone ground water and soil treatment
JP2006305489A (en) Sludge floating depressant
JP2006026574A (en) Rust prevention method for pumped well water by improvement of water quality
JP2019070297A (en) Recharge system and recharge method
JP2005074297A (en) Cleaning method for hardly-gas/water-permeable contaminated soil and system
JP2005279392A (en) Method for cleaning polluted soil and ground water
JP6639947B2 (en) Aquifer purification method
JP6968023B2 (en) In-situ purification method and in-situ purification device for contaminated soil or water
JP2007260611A (en) Method of cleaning contaminated soil
JP2020105855A (en) Method for preventing increase in dissolved oxygen concentration in underground water and pumping system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310