JP2019035512A - Heat source device with electricity generating function - Google Patents

Heat source device with electricity generating function Download PDF

Info

Publication number
JP2019035512A
JP2019035512A JP2017155388A JP2017155388A JP2019035512A JP 2019035512 A JP2019035512 A JP 2019035512A JP 2017155388 A JP2017155388 A JP 2017155388A JP 2017155388 A JP2017155388 A JP 2017155388A JP 2019035512 A JP2019035512 A JP 2019035512A
Authority
JP
Japan
Prior art keywords
hot water
heating
heat
liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017155388A
Other languages
Japanese (ja)
Inventor
和田 達也
Tatsuya Wada
達也 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gastar Co Ltd
Original Assignee
Gastar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gastar Co Ltd filed Critical Gastar Co Ltd
Priority to JP2017155388A priority Critical patent/JP2019035512A/en
Publication of JP2019035512A publication Critical patent/JP2019035512A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

To provide a low-cost heat source device which efficiently generates electricity and utilizes heat.SOLUTION: Hot water in a hot water storage tank 2 is heated with waste heat of an electricity generating device 1 and stored. Heating is performed by thermally connecting a hot water circulation loop passage 131 which guides the hot water of the hot water storage tank 2 out from an upper side of the hot water storage tank 2 and returns the hot water to the hot water storage tank 2 from a lower side of the hot water storage tank 2 through a liquid-water heat exchanger 130 and a heating liquid circulation circuit 5 which circulates a liquid heat medium for heating through a heating device 10a to each other through the liquid-water heat exchanger 130. The hot water circulation loop passage 131 is provided with a bypass passage 135 which returns hot water storage tank-side return hot water, flowing from an outgoing side of the liquid-water heat exchanger 130 to the side of the hot water storage tank 2 to an incoming side of the liquid-water heat exchanger 130 without returning the hot water storage tank-side return hot water to the hot water storage tank 2, and the hot water storage tank-side return hot water is made to flow to the side of the bypass passage 135 without being returned to the side of the hot water storage tank 2 when the temperature of the hot water storage tank-side return hot water is equal to or higher than a bypass-side passage switching temperature, or to flow in a return direction to the side of the hot water storage tank 2 when the temperature of the hot water storage tank-side return hot water is lower than the bypass-side passage switching temperature.SELECTED DRAWING: Figure 3

Description

本発明は、発電装置と貯湯槽とを備えた発電機能付き熱源装置に関するものである。   The present invention relates to a heat source device with a power generation function including a power generation device and a hot water storage tank.

タンク内に湯水を収容する貯湯槽(貯湯タンク)や、その貯湯槽を備えた熱源装置が様々に提案されており(例えば特許文献1、参照)、図7には、貯湯槽を備えた熱源装置の一例が示されている。この熱源装置は、発電装置1と貯湯槽2を有しており、貯湯槽2は例えば貯湯ユニット104内のケース内に配置されている。発電装置1は、例えば固体高分子形燃料電池(PEFC)や固体酸化物形燃料電池(SOFC)等の燃料電池(FC)や、ガスエンジン等により形成されており、燃料電池は、水の電気分解の逆反応で、都市ガス等の燃料から取り出された水素と空気中の酸素とを反応させて発電する。   Various hot water storage tanks (hot water storage tanks) for storing hot water in the tank and heat source devices including the hot water storage tanks have been proposed (see, for example, Patent Document 1). FIG. 7 shows a heat source including a hot water storage tank. An example of an apparatus is shown. The heat source device includes a power generation device 1 and a hot water storage tank 2, and the hot water storage tank 2 is disposed in a case in the hot water storage unit 104, for example. The power generation device 1 is formed by a fuel cell (FC) such as a polymer electrolyte fuel cell (PEFC) or a solid oxide fuel cell (SOFC), a gas engine, or the like. In the reverse reaction of decomposition, power is generated by reacting hydrogen extracted from fuel such as city gas with oxygen in the air.

発電装置1と貯湯槽2とは熱回収用通路3を介して熱的に接続されており、熱回収用通路3は、発電装置1と貯湯槽2との間で液体(ここでは湯水)を図の矢印Aおよび矢印A’に示されるように循環させる。例えば発電装置1内を通る熱回収用通路3には、熱回収用通路3内に液体(例えば水)を循環させる図示されていないポンプが設けられている。そして、該ポンプの駆動により、貯湯槽2内の水を図の矢印A’に示すように熱回収用通路3を通して発電装置1に導入して冷却水とし、この水を発電装置1の発電時に生じる排熱によって加熱した後、図の矢印Aに示すように熱回収用通路3を通し、例えば80℃といった温度の湯として貯湯槽2に貯湯する。なお、熱回収用通路3には、三方弁106を介してバイパス通路107が接続され、発電装置1側から貯湯槽2側へ流れる液体を、必要に応じて貯湯槽2を通さずに発電装置1に戻すことができるように形成されている。   The power generation device 1 and the hot water tank 2 are thermally connected via a heat recovery passage 3, and the heat recovery passage 3 allows liquid (here, hot water) to flow between the power generation device 1 and the hot water storage tank 2. Circulation is performed as shown by arrows A and A ′ in the figure. For example, the heat recovery passage 3 passing through the power generation apparatus 1 is provided with a pump (not shown) that circulates a liquid (for example, water) in the heat recovery passage 3. Then, by driving the pump, the water in the hot water tank 2 is introduced into the power generation device 1 through the heat recovery passage 3 as shown by the arrow A ′ in the figure to be cooling water, and this water is used when the power generation device 1 generates power. After being heated by the generated exhaust heat, it passes through the heat recovery passage 3 as shown by an arrow A in the figure, and is stored in the hot water tank 2 as hot water having a temperature of, for example, 80 ° C. Note that a bypass passage 107 is connected to the heat recovery passage 3 via a three-way valve 106 so that the liquid flowing from the power generation device 1 side to the hot water storage tank 2 side can be passed through the hot water storage tank 2 as necessary. It is formed so that it can be returned to 1.

貯湯槽2には、貯湯槽2内または貯湯槽2の外側壁に、貯湯槽2内の湯の温度を検出する貯湯槽内湯水温検出手段としてのタンクサーミスタ35が、貯湯槽2の上下方向に互いに間隔を介して複数(図7では5個)設けられている。なお、最上位に設けられているタンクサーミスタ35aは、貯湯槽2の上端よりも予め定められた設定長さだけ下側の位置、つまり、例えば貯湯槽2の上端まで湯が満たされた場合よりも20リットル少ない湯量の湯が貯湯槽2内に導入された場合の湯面の位置に設けられている。   In the hot water tank 2, a tank thermistor 35 as hot water temperature detecting means in the hot water tank 2 for detecting the temperature of hot water in the hot water tank 2 is provided in the vertical direction of the hot water tank 2 in the hot water tank 2 or on the outer wall of the hot water tank 2. A plurality (five in FIG. 7) are provided at intervals. The tank thermistor 35a provided at the uppermost position is lower than the upper end of the hot water tank 2 by a predetermined set length, that is, for example, when hot water is filled up to the upper end of the hot water tank 2. In addition, a hot water with a volume of less than 20 liters is provided at the surface of the hot water when the hot water tank 2 is introduced.

貯湯槽2の上部側に接続されている湯の通路109は、貯湯槽2で形成された湯を出湯する(送水する)通路と成しており、湯の通路109には、湯の通路109を通る湯の温度を検出する貯湯槽出湯水温検出手段111と、湯の通路109を通して送水される湯の量を可変するタンク湯水混合器112と、タンク側電磁弁47とが設けられている。タンク側電磁弁47は、湯の通路109を通しての湯の送水の有無を弁の開閉により切り替える例えばパイロット方式の弁である。   The hot water passage 109 connected to the upper side of the hot water storage tank 2 is a passage for discharging (feeding) hot water formed in the hot water storage tank 2, and the hot water passage 109 includes a hot water passage 109. There are provided hot water storage tank hot water temperature detecting means 111 for detecting the temperature of hot water passing through the tank, a tank hot water / water mixer 112 for changing the amount of hot water fed through the hot water passage 109, and a tank side electromagnetic valve 47. The tank-side solenoid valve 47 is, for example, a pilot-type valve that switches the presence / absence of hot water supply through the hot water passage 109 by opening / closing the valve.

また、この熱源装置への給水通路108は給水通路108aと給水通路108bとに分岐され、一方側の給水通路108(108a)が貯湯槽2の下部側に接続されて、他方側の給水通路108(108b)は、湯水合流部110で湯の通路109に合流するように形成されている。給水通路108bには、給水通路108bから湯水合流部110側へ流れる水の量を可変するための水混合器43が設けられている。この熱源装置においては、湯水合流部110で合流される湯と水とを混合するミキシング手段が、水混合器43と前記タンク湯水混合器112とを有して形成されている。給水通路108は上水道に接続される。   Further, the water supply passage 108 to the heat source device is branched into a water supply passage 108a and a water supply passage 108b, one water supply passage 108 (108a) is connected to the lower side of the hot water tank 2, and the other water supply passage 108 is connected. (108b) is formed to join the hot water passage 109 at the hot water / merging section 110. The water supply passage 108b is provided with a water mixer 43 for changing the amount of water flowing from the water supply passage 108b to the hot water merging section 110 side. In this heat source device, mixing means for mixing hot water and water merged at the hot water / merging section 110 is formed having the water mixer 43 and the tank hot / cold water mixer 112. The water supply passage 108 is connected to the water supply.

なお、図7の図中、符号125は入水温度サーミスタ、符号126は発電装置1から貯湯槽2へ導入される湯水温検出用のFC高温サーミスタ、符号127は貯湯槽2から発電装置1側へ導出される湯水温検出用のFC低温サーミスタをそれぞれ示し、符号129は給水流量センサを示している。   In FIG. 7, reference numeral 125 denotes an incoming water temperature thermistor, reference numeral 126 denotes an FC high temperature thermistor for detecting hot water temperature introduced from the power generator 1 to the hot water tank 2, and reference numeral 127 denotes the hot water tank 2 to the power generator 1 side. The derived FC low temperature thermistors for detecting hot and cold water temperature are respectively shown, and reference numeral 129 denotes a feed water flow rate sensor.

湯水合流部110には通路118が連通し、通路118には混合サーミスタ128が設けられており、タンクユニット104は、例えばリモコン装置等を用いて設定される給湯設定温度の湯を、湯の通路109と通路118を通して出湯する機能を有している。通路118には、補助熱源装置としての給湯器116の湯水導入側が、湯水導入通路115を介して接続されており、図7の矢印Bに示されるように貯湯槽2から湯の通路109と通路118を通して送水される(タンクユニット104から送水される)湯は、同図の矢印B”に示されるように、湯水導入通路115を介して給湯器116の給湯回路162に導入される。   A passage 118 communicates with the hot water / merging portion 110, and a mixing thermistor 128 is provided in the passage 118. The tank unit 104 uses hot water at a hot water supply set temperature set by using, for example, a remote control device. 109 and the passage 118 have a function of discharging hot water. A hot water introduction side of a water heater 116 as an auxiliary heat source device is connected to the passage 118 via a hot water introduction passage 115, and a hot water passage 109 and a passage from the hot water tank 2 as shown by an arrow B in FIG. Hot water fed through 118 (water fed from the tank unit 104) is introduced into the hot water supply circuit 162 of the hot water supply 116 through the hot water introduction passage 115 as indicated by an arrow B ″ in FIG.

給湯器116の給湯回路162は、バーナ(給湯バーナ)17の燃焼熱により加熱される給湯熱交換器29を備えており、同図において、給湯熱交換器29は、給湯バーナ17の燃焼ガスの潜熱を回収する潜熱回収用の熱交換器29aと、給湯バーナ17の燃焼ガスの顕熱を吸収するメインの熱交換器29bとを有する。このように潜熱回収用の熱交換器29aを設ける構成とすると、熱効率の高い給湯器116を形成できるために好ましい。   The hot water supply circuit 162 of the hot water heater 116 includes a hot water supply heat exchanger 29 that is heated by the combustion heat of the burner (hot water supply burner) 17, and in the same figure, the hot water supply heat exchanger 29 is the combustion gas of the hot water supply burner 17. It has a latent heat recovery heat exchanger 29a for recovering latent heat, and a main heat exchanger 29b that absorbs sensible heat of the combustion gas of the hot water supply burner 17. Thus, it is preferable to provide the heat exchanger 29a for recovering latent heat because the hot water heater 116 with high thermal efficiency can be formed.

また、同図には図示されていないが、例えば給湯バーナ17をガスバーナにより形成する場合、給湯バーナ17に燃料ガスを供給するガス供給通路が設けられ、ガス供給通路にはガス供給通路を通しての給湯バーナ17への供給の有無を制御するガス開閉弁(ガス電磁弁)とその供給量を調節するためのガス比例弁とが設けられる。また、その他にも給湯バーナ17への空気の給排気を行う燃焼ファン等の適宜の構成要素(図示せず)が設けられ、その構成要素を制御することにより給湯熱交換器29の加熱制御が行われる。   Although not shown in the figure, for example, when the hot water supply burner 17 is formed of a gas burner, a gas supply passage for supplying fuel gas to the hot water supply burner 17 is provided, and the hot water supply through the gas supply passage is provided in the gas supply passage. A gas on-off valve (gas solenoid valve) for controlling the presence or absence of supply to the burner 17 and a gas proportional valve for adjusting the supply amount are provided. In addition, appropriate components (not shown) such as a combustion fan for supplying and exhausting air to and from the hot water supply burner 17 are provided, and the heating control of the hot water supply heat exchanger 29 is controlled by controlling these components. Done.

給湯回路162の入口側の通路には、流量検出センサ73と入水温度センサ(図示せず)が設けられており、給湯熱交換器29の出側の通路には、給湯熱交換器29の出側の温度(出側の通路を通る湯温)を検出する給湯熱交出側温度検出センサ114が設けられ、さらに、その下流側には、給湯回路162を通して給湯される湯の温度(給湯温度)を検出する出湯湯温検出センサ113が設けられている。給湯回路162の出側には給湯通路26が設けられており、流量検出センサ73は、給湯通路26を通して給湯される給湯流量を検出する。なお、前記入水温度センサは給湯器116に導入される湯水温を検出するものであり、場合によっては省略することもできる。   A flow rate detection sensor 73 and an incoming water temperature sensor (not shown) are provided in the passage on the inlet side of the hot water supply circuit 162, and the outlet of the hot water heat exchanger 29 is provided in the passage on the outlet side of the hot water heat exchanger 29. The hot water supply heat exchange side temperature detection sensor 114 for detecting the temperature on the side (hot water temperature passing through the outlet side passage) is provided, and further on the downstream side, the temperature of hot water supplied through the hot water supply circuit 162 (hot water supply temperature) ) Is detected. A hot water supply passage 26 is provided on the outlet side of the hot water supply circuit 162, and the flow rate detection sensor 73 detects the flow rate of hot water supplied through the hot water supply passage 26. In addition, the said incoming water temperature sensor detects the hot water temperature introduced into the water heater 116, and can also be abbreviate | omitted depending on the case.

この熱源装置は、湯の通路109側から給湯器116の給湯回路162に導入される湯を給湯熱交換器29で加熱(追い加熱)して給湯する追い加熱給湯機能と、湯の通路109から給湯回路162に導入される湯を非加熱のまま給湯回路162を通して給湯先に給湯する非追い加熱給湯機能とを有している。給湯器116の給湯回路162を通った湯は、前記追い加熱給湯機能により加熱されながら給湯回路162を通った湯も前記非追い加熱給湯機能により非加熱のまま給湯回路162を通った湯も、給湯通路26を通って一つ以上の給湯先に給湯される。   This heat source device includes a hot water supply function that heats (follows up) hot water introduced into the hot water supply circuit 162 of the hot water supply 116 from the hot water passage 109 side and supplies hot water, and from the hot water passage 109. It has a non-following heating hot water supply function of supplying hot water introduced into the hot water supply circuit 162 to the hot water supply destination through the hot water supply circuit 162 without being heated. The hot water that has passed through the hot water supply circuit 162 of the water heater 116 is either hot water that has passed through the hot water supply circuit 162 while being heated by the follow-up heating hot water supply function, or hot water that has passed through the hot water supply circuit 162 without being heated by the non-following heating hot water supply function. Hot water is supplied to one or more hot water destinations through the hot water supply passage 26.

なお、同図には図示されていないが、給湯通路26の先端側には給湯栓(シャワーの操作レバー等も含む)が設けられており、この給湯栓を開くことにより、貯湯槽2に蓄えられていた湯が給水圧を受けて湯の通路109を通り、前記の如く、必要に応じて給水通路108bからの水と混合されたり、給湯器116により追い加熱されたり、あるいは水の混合や追い加熱なしにそのまま給湯される。   Although not shown in the drawing, a hot water tap (including a shower operation lever) is provided at the front end side of the hot water passage 26, and the hot water tap is opened to store in the hot water tank 2. The hot water that has been subjected to the water supply pressure passes through the hot water passage 109 and, as described above, is mixed with the water from the water supply passage 108b as necessary, is heated by the hot water heater 116, or is mixed with water. Hot water is supplied without additional heating.

この熱源装置には、図示されていない制御装置が設けられており、制御装置には、タンク湯水混合器112を制御して湯の通路109から湯水合流部110側に流れる湯の流量を制御すると共に、水混合器43を制御して給水通路108bから湯水合流部110側に流れる水の流量を制御し、湯水合流部110で適宜の温度の混合湯水が形成されるようにするミキシング流量制御手段が設けられている。   This heat source device is provided with a control device (not shown). The control device controls the flow rate of hot water flowing from the hot water passage 109 to the hot water / merging portion 110 side by controlling the tank hot water / water mixer 112. In addition, the mixing flow rate control means for controlling the water mixer 43 to control the flow rate of the water flowing from the water supply passage 108b to the hot water / merging portion 110 side so that the mixed hot / cold water at an appropriate temperature is formed in the hot water / merging portion 110. Is provided.

このミキシング流量制御手段は、給湯停止時には例えばタンク側電磁弁47を閉じて湯の通路109から湯水合流部110側に流れる湯(貯湯槽2から出湯される湯)の流量がゼロとなる状態にする。そして、給湯通路26の先端側に設けられている給湯栓が開かれると水の流れが給水流量センサ129により検出されるので、ミキシング流量制御手段は、その検出信号を受けてタンク側電磁弁47を開け、タンク湯水混合器112の制御により、図7の矢印Bに示されるように湯の通路109から湯水合流部110側に流れる湯の流量を調節すると共に、水混合器43の制御により、図7の矢印B’に示されるように給水通路108bから湯水合流部110側に流れる水の流量を調節し、湯水合流部110で形成される混合湯水の温度が例えば給湯設定温度と同程度に設定される混合設定温度になるようにする。   This mixing flow rate control means, for example, closes the tank-side solenoid valve 47 when hot water supply is stopped, so that the flow rate of hot water (hot water discharged from the hot water storage tank 2) flowing from the hot water passage 109 to the hot water joining portion 110 becomes zero. To do. When the hot water tap provided at the front end side of the hot water supply passage 26 is opened, the flow of water is detected by the water supply flow rate sensor 129, so that the mixing flow rate control means receives the detection signal and receives the detection signal. 7, the flow rate of hot water flowing from the hot water passage 109 to the hot water merging section 110 side is adjusted by the control of the tank hot water mixer 112 as shown by the arrow B in FIG. As shown by the arrow B ′ in FIG. 7, the flow rate of the water flowing from the water supply passage 108b toward the hot water / merging portion 110 is adjusted, and the temperature of the mixed hot water formed at the hot water / merging portion 110 is, for example, about the same as the hot water supply set temperature. Set to the set mixing temperature.

なお、貯湯槽2内に貯湯されている湯水には、例えば図8の模式図に示されるような温度の層Wa、Wb、Wcが形成されるものであり、貯湯槽2の上部側の層(高温層)Waには発電装置1の発電時に生じる排熱によって加熱された高温Ta(例えば80℃)の湯が貯湯され、貯湯槽2の下部側の層(低温層)Wcには貯湯槽2内に給水される給水温度と同じ温度Tc(例えば15℃)の水が貯水されており、その間に、温度Taから温度Tcまでの急な温度勾配を持つ層(温度中間層)Wbがある。   Note that the hot water stored in the hot water tank 2 is formed with layers Wa, Wb, and Wc at temperatures as shown in the schematic diagram of FIG. (High temperature layer) Wa stores hot water of high temperature Ta (for example, 80 ° C.) heated by exhaust heat generated during power generation of the power generation device 1, and a lower layer (low temperature layer) Wc of the hot water tank 2 stores a hot water tank. Water having the same temperature Tc (for example, 15 ° C.) as the temperature of the water supplied in 2 is stored, and there is a layer (temperature intermediate layer) Wb having a steep temperature gradient from temperature Ta to temperature Tc. .

例えば図8に示されるように、貯湯槽2内の湯水において、例えば層Waと層Wbとの境界がタンクサーミスタ35aの配設領域よりも下にあり、タンクサーミスタ35aの検出温度が給湯設定温度より例えば5℃高く設定される閾値より高い温度のときには、貯湯槽2から出湯される湯の温度は例えば60℃以上(例えば80℃)といったほぼ一定の値である。   For example, as shown in FIG. 8, in the hot water in the hot water storage tank 2, for example, the boundary between the layer Wa and the layer Wb is below the area where the tank thermistor 35a is disposed, and the detected temperature of the tank thermistor 35a is the hot water supply set temperature. For example, when the temperature is higher than a threshold value set higher by 5 ° C., the temperature of the hot water discharged from the hot water storage tank 2 is a substantially constant value such as 60 ° C. or higher (for example, 80 ° C.).

そこで、前記ミキシング流量制御手段は、混合サーミスタ128の検出温度と混合設定温度との差に基づいて(偏差に応じ)、混合サーミスタ128の検出温度が混合設定温度になるようにタンク湯水混合器112と水混合器43を制御することによって、湯の通路109から湯水合流部110側に流れる湯の流量と給水通路108bから湯水合流部110側に流れる水の流量とを調節する制御を行う。なお、ミキシング流量制御手段は、ミキシング流量制御に際し、フィードフォワード制御を行わずにフィードバック制御のみを行うようにしてもよい。   Therefore, the mixing flow rate control means is configured to change the tank hot water / water mixer 112 so that the detected temperature of the mixed thermistor 128 becomes the mixed set temperature based on the difference between the detected temperature of the mixed thermistor 128 and the mixed set temperature (according to the deviation). And the water mixer 43 are controlled to adjust the flow rate of hot water flowing from the hot water passage 109 to the hot water merging portion 110 side and the flow rate of water flowing from the water supply passage 108b to the hot water merging portion 110 side. Note that the mixing flow rate control means may perform only the feedback control without performing the feedforward control in the mixing flow rate control.

そして、このようなミキシング流量制御手段による制御によって、湯水合流部110で形成される混合湯水の温度が混合設定温度(例えば給湯設定温度と同じ温度またはその近傍温度)とされると、その混合湯水は、図7の矢印B”に示されるように、湯水合流部110から湯水導入通路115を通して給湯器116に導入されるが、このとき、給湯器116において給湯熱交換器29による加熱は行われずに(前記非加熱給湯機能の動作によって)、通路118と給湯通路26を通して給湯先に給湯される。   When the temperature of the mixed hot water formed in the hot water / merging section 110 is set to the mixed set temperature (for example, the same temperature as the hot water set temperature or a temperature close thereto) by the control by the mixing flow rate control means, the mixed hot water As shown by the arrow B ″ in FIG. 7, the hot water is introduced from the hot water / merging section 110 into the hot water heater 116 through the hot water introduction passage 115. At this time, the hot water heater 116 is not heated by the hot water supply heat exchanger 29. In addition, the hot water is supplied to the hot water supply destination through the passage 118 and the hot water supply passage 26 (by the operation of the non-heating hot water supply function).

また、給湯途中でタンクサーミスタ35aの検出温度が前記閾値以下となり、ミキシング流量制御手段による流量制御のみでは、給湯設定温度と同等の温度に設定される混合設定温度の湯を給湯することができなくなる場合には、貯湯槽2から出湯される湯を給湯器116により追い加熱するか、貯湯槽2からは出湯させずに給水源からの水を給湯器116により加熱するかの適宜の制御を行って給湯設定温度の湯を給湯先に供給する。なお、本明細書においては詳細な記載は省略するが、この制御については様々な制御が提案されており、本発明においても適宜適用されるものである。   In addition, the temperature detected by the tank thermistor 35a becomes equal to or lower than the threshold value during hot water supply, and hot water having a mixed set temperature set to a temperature equivalent to the hot water set temperature cannot be supplied only by the flow rate control by the mixing flow control means. In such a case, appropriate control is performed as to whether the hot water discharged from the hot water tank 2 is additionally heated by the hot water heater 116 or whether the water from the water supply source is heated by the hot water heater 116 without being discharged from the hot water tank 2. To supply hot water at the set temperature. In addition, although detailed description is abbreviate | omitted in this specification, various control is proposed about this control, and it is applied suitably also in this invention.

また、熱源装置において、貯湯槽2内の湯をより有効に利用するためには、貯湯槽2を暖房装置と熱的に接続して貯湯槽2内の湯の熱量を暖房用に用いることが考えられ、その構成例が図6に模式的に示されている。同図において、貯湯槽2と湯水循環ループ通路131とが液−水熱交換器130を介して熱的に接続されており、湯水循環ループ通路131は、暖房利用ポンプ140の駆動によって貯湯槽2の上部側から該貯湯槽2の湯水を導出して該湯水を液−水熱交換器130に通した後、貯湯槽2の下部側から該貯湯槽2に戻す役割を果たす。この湯水循環ループ通路131が液−水熱交換器130を介して暖房用液体循環回路5と熱的に接続されており、暖房用液体循環回路5は、液体の暖房用熱媒体を暖房装置10に通して循環させる。   Further, in the heat source device, in order to use the hot water in the hot water tank 2 more effectively, the hot water tank 2 is thermally connected to the heating device and the amount of hot water in the hot water tank 2 is used for heating. An example of such a configuration is schematically shown in FIG. In the figure, a hot water tank 2 and a hot water circulation loop passage 131 are thermally connected via a liquid-water heat exchanger 130, and the hot water circulation loop passage 131 is driven by a heating utilization pump 140. The hot water in the hot water storage tank 2 is led out from the upper side of the hot water and passed through the liquid-water heat exchanger 130 and then returned to the hot water storage tank 2 from the lower side of the hot water storage tank 2. The hot water circulation loop passage 131 is thermally connected to the heating liquid circulation circuit 5 via the liquid-water heat exchanger 130, and the heating liquid circulation circuit 5 converts the liquid heating heat medium into the heating device 10. Circulate through.

この熱源装置においては、湯水循環ループ通路131と液−水熱交換器130とを含む貯湯ユニット104が形成され、貯湯槽2から湯水循環ループ通路131を通して流れる湯水の熱を、暖房用液体循環回路5を通して流れる暖房用熱媒体に液−水熱交換器130を介して伝達することにより、暖房装置10に熱が供給され、暖房装置10を用いた暖房が可能となる。なお、図6において、暖房装置10には、暖房運転機能を備えた給湯器116等の補助熱源装置を熱的に接続してもよい。   In this heat source device, a hot water storage unit 104 including a hot water circulation loop passage 131 and a liquid-water heat exchanger 130 is formed, and the heat of the hot water flowing from the hot water tank 2 through the hot water circulation loop passage 131 is converted into a heating liquid circulation circuit. 5 is transmitted to the heating heat medium flowing through the liquid-water heat exchanger 130, heat is supplied to the heating device 10, and heating using the heating device 10 is possible. In FIG. 6, an auxiliary heat source device such as a water heater 116 having a heating operation function may be thermally connected to the heating device 10.

特開2015−75321号公報JP, 2015-75321, A

ところで、図6に示したような貯湯ユニット104を有する熱源装置において、湯水循環ループ通路131を通って貯湯槽2の下部側に戻される湯水の温度が高いと、貯湯槽2内の湯水温が高くなってしまい、そうなると、貯湯槽2の下部側から発電装置1に供給される水の温度が高くなる。そして、例えばその水の温度が50℃より高くなってしまうと、発電装置1を稼働させることができなくなってしまうことになるため、発電装置1の稼働による電力利用ができなくなってしまうといった問題が生じることになる。   By the way, in the heat source device having the hot water storage unit 104 as shown in FIG. 6, when the temperature of hot water returned to the lower side of the hot water tank 2 through the hot water circulation loop passage 131 is high, the hot water temperature in the hot water tank 2 is increased. If it becomes high and it becomes so, the temperature of the water supplied to the electric power generating apparatus 1 from the lower part side of the hot water tank 2 will become high. And if the temperature of the water becomes higher than 50 degreeC, for example, since it will become impossible to operate the electric power generating apparatus 1, the problem that the electric power utilization by the operation | movement of the electric power generating apparatus 1 becomes impossible becomes impossible. Will occur.

そこで、このような問題が生じないようにするためには、湯水循環ループ通路131を通って貯湯槽2の下部側に戻される湯水の温度が適切な温度まで下がるようにする必要があり、暖房用液体循環回路5を通して流れる暖房用熱媒体に液−水熱交換器130を介して多くの熱を伝達させることが必要となる。しかしながら、そのためには、大きな熱交換容量を有する液−水熱交換器130が必要となり、大きな熱交換容量を有する液−水熱交換器130を設けて貯湯ユニット104を形成すると貯湯ユニット104のコストが高くなり、熱源装置のコストが高くなってしまうといった問題が生じる。   Therefore, in order to prevent such a problem from occurring, it is necessary to reduce the temperature of the hot water returned to the lower side of the hot water tank 2 through the hot water circulation loop passage 131 to an appropriate temperature. It is necessary to transmit a large amount of heat to the heating heat medium flowing through the liquid circulation circuit 5 via the liquid-water heat exchanger 130. However, for that purpose, the liquid-water heat exchanger 130 having a large heat exchange capacity is required. If the liquid-water heat exchanger 130 having a large heat exchange capacity is provided to form the hot water storage unit 104, the cost of the hot water storage unit 104 is increased. And the cost of the heat source device increases.

本発明は、上記課題を解決するためになされたものであり、その目的は、発電装置の排熱により加熱される湯の貯湯槽を暖房装置と熱的に接続することにより発電装置を効率的に稼働させることができ、かつ、貯湯槽を備えた貯湯ユニットのコストも安くできる発電機能付き熱源装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to efficiently connect the hot water storage tank heated by the exhaust heat of the power generation device to the heating device, thereby efficiently generating the power generation device. It is an object of the present invention to provide a heat source device with a power generation function that can be operated at a low cost and can reduce the cost of a hot water storage unit having a hot water storage tank.

本発明は上記目的を達成するために、次の構成をもって課題を解決する手段としている。すなわち、第1の発明は、発電装置と、貯湯槽と、該貯湯槽の下部側から前記発電装置に冷却用の水を供給し該発電装置の排熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入する熱回収用回路と、前記貯湯槽の上部側から該貯湯槽の湯水を導出して該湯水を液−水熱交換器に通した後に前記貯湯槽の下部側から該貯湯槽に戻す湯水循環ループ通路とを有し、液体の暖房用熱媒体を暖房装置に通して循環させる暖房用液体循環回路が前記液−水熱交換器を介して前記湯水循環ループ通路に熱的に接続されており、該湯水循環ループ通路には前記液−水熱交換器の出側から前記貯湯槽側に流れる貯湯槽側戻り湯水を前記貯湯槽には戻さずに前記液−水熱交換器の入側に戻すようにするバイパス通路が設けられ、前記貯湯槽から前記湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる前記暖房用熱媒体に前記液−水熱交換器を介して伝達し該暖房用熱媒体を前記暖房装置に通して暖房運転を行う際に、前記貯湯槽側戻り湯水の温度が予め定められるバイパス側経路切り替え温度以上の時には前記貯湯槽側戻り湯水を前記貯湯槽側には戻さずに前記バイパス通路側に流し、前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満の時には前記貯湯槽側戻り湯水を前記貯湯槽側に戻す方向に流す経路切り替え手段が設けられている構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention provides a power generation device, a hot water storage tank, and hot water heated by exhaust heat of the power generation apparatus by supplying cooling water to the power generation apparatus from the lower side of the hot water storage tank. A heat recovery circuit to be introduced into the hot water tank from the upper side, and the hot water of the hot water tank is led out from the upper side of the hot water tank and the hot water is passed through a liquid-water heat exchanger, and then the lower side of the hot water tank A hot water circulation loop passage for returning the hot water from the hot water storage tank to the hot water storage tank, and a heating liquid circulation circuit for circulating a heating medium for heating the liquid through the heating device via the liquid-water heat exchanger. In the hot water circulation loop passage, the hot water tank side return hot water flowing from the outlet side of the liquid-water heat exchanger to the hot water tank side is returned to the hot water tank without returning to the hot water tank. A bypass passage is provided to return to the inlet side of the water heat exchanger, from the hot water storage tank Heat of hot water flowing through the water circulation loop passage is transmitted to the heating heat medium flowing through the heating liquid circulation circuit via the liquid-water heat exchanger, and the heating heat medium is passed through the heating device to perform heating operation. When performing, when the temperature of the hot water tank-side return hot water is equal to or higher than a predetermined bypass-side path switching temperature, the hot water tank-side return hot water is flowed to the bypass passage side without returning to the hot water tank side, and the hot water storage tank When the temperature of the side return hot water is lower than the bypass side path switching temperature, a path switching means for flowing the hot water tank side return hot water in a direction to return to the hot water tank side is provided as means for solving the problem.

また、第2の発明は、前記第1の発明の構成に加え、バーナ燃焼によって加熱される暖房用熱交換器が暖房用液体循環回路に設けられており、貯湯槽から湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる暖房用熱媒体に液−水熱交換器を介して伝達する熱交換のみでは暖房装置に供給する熱量が足りないときには前記暖房用液体循環回路を通る液体を前記暖房用熱交換器により加熱して前記暖房装置に供給する補助加熱手段を有することを特徴とする。   Further, in the second invention, in addition to the configuration of the first invention, a heating heat exchanger heated by burner combustion is provided in the heating liquid circulation circuit, and flows from the hot water tank through the hot water circulation loop passage. When the amount of heat supplied to the heating device is insufficient by only the heat exchange in which the heat of hot water is transferred to the heating heat medium flowing through the heating liquid circulation circuit via the liquid-water heat exchanger, the heating liquid passes through the heating liquid circulation circuit. Auxiliary heating means is provided for heating the liquid by the heating heat exchanger and supplying the liquid to the heating device.

さらに、第3の発明は、前記第1又は第2の発明の構成に加え、前記発電装置は燃料電池としたことを特徴とする。   Furthermore, the third invention is characterized in that, in addition to the configuration of the first or second invention, the power generation device is a fuel cell.

本発明によれば、貯湯槽の下部側から発電装置に冷却用の水を供給し、発電装置の排熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入するが、貯湯槽に蓄えた熱を以下のようにして暖房に利用できるので、発電装置の稼働時間を長くできる。つまり、本発明では、貯湯槽の上部側から該貯湯槽の湯水を導出して該湯水を液−水熱交換器に通した後に前記貯湯槽の下部側から該貯湯槽に戻す湯水循環ループ通路を設けており、この湯水循環ループ通路を、前記液−水熱交換器を介し、液体の暖房用熱媒体を暖房装置に通して循環させる暖房用液体循環回路に熱的に接続している。   According to the present invention, cooling water is supplied to the power generation device from the lower side of the hot water storage tank, and hot water heated by the exhaust heat of the power generation device is introduced into the hot water storage tank from the upper side of the hot water storage tank. Since the heat stored in the tank can be used for heating as follows, the operation time of the power generation device can be lengthened. In other words, in the present invention, the hot water circulation loop passage for deriving hot water in the hot water tank from the upper side of the hot water tank, passing the hot water through the liquid-water heat exchanger, and returning the hot water from the lower side of the hot water tank to the hot water tank. The hot water circulation loop passage is thermally connected to a heating liquid circulation circuit for circulating a heating medium for heating the liquid through a heating device via the liquid-water heat exchanger.

そして、前記貯湯槽から前記湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる前記暖房用熱媒体に前記液−水熱交換器を介して伝達して加熱し、その暖房用熱媒体を前記暖房装置に通して暖房運転を行うこと(貯湯槽熱利用暖房運転)によって、貯湯槽に蓄えた発電装置の排熱を暖房に利用できる。そのため、発電装置の稼働時間を長くでき、省エネ化を可能とすることができる。   Then, the heat of hot water flowing from the hot water tank through the hot water circulation loop passage is transmitted to the heating heat medium flowing through the heating liquid circulation circuit via the liquid-water heat exchanger and heated, and the heating is performed. By performing the heating operation by passing the heat medium through the heating device (heating operation using hot water storage tank heat), the exhaust heat of the power generation device stored in the hot water storage tank can be used for heating. Therefore, the operation time of the power generation device can be lengthened and energy saving can be achieved.

しかも、本発明によれば、以下の構成により、熱源装置の小型化、低コスト化も可能となり、発電装置の稼働と熱利用が効率的に行える、小型で省エネ化が可能な熱源装置を実現することができる。   In addition, according to the present invention, the heat source device can be reduced in size and cost by the following configuration, and the heat source device capable of efficiently operating the power generation device and using heat can be realized. can do.

つまり、本発明においては、湯水循環ループ通路には前記液−水熱交換器の出側から前記貯湯槽側に流れる貯湯槽側戻り湯水を前記貯湯槽には戻さずに前記液−水熱交換器の入側に戻すようにするバイパス通路が設けられ、経路切り替え手段が、前記貯湯槽熱利用暖房運転時に、前記貯湯槽側戻り湯水の温度が予め定められるバイパス側経路切り替え温度以上の時には前記貯湯槽側戻り湯水を前記貯湯槽側には戻さずに前記バイパス通路側に流すようにする。   In other words, in the present invention, the hot water circulation loop passage is provided with the hot water storage side return hot water flowing from the outlet side of the liquid-water heat exchanger to the hot water tank side without returning to the hot water tank. A bypass passage is provided so as to return to the entry side of the vessel, and the path switching means, when the hot water tank heat utilization heating operation, when the temperature of the hot water tank side return hot water is equal to or higher than a predetermined bypass side path switching temperature, The hot water stored in the hot water tank is returned to the bypass passage without returning to the hot water tank.

そのため、前記貯湯槽側戻り湯水の温度が高い時には、その貯湯槽側戻り温水の熱を液−水熱交換器を介して暖房用熱媒体に伝達しながら、前記バイパス通路と湯水循環ループ通路の一部(バイパス通路との接続部よりも貯湯槽寄りの経路を除く部分)とを通して温度が高めの湯水を循環させる動作を繰り返し行い、液−水熱交換器を介して熱が伝達された(加熱された)暖房用熱媒体により暖房装置の暖房を行うことができ、しかも、前記のように高い温度の湯水を貯湯槽側には送らないので、貯湯槽の下部側の湯水温が上昇することを防ぐことができる。   Therefore, when the temperature of the hot water tank side return hot water is high, the heat of the hot water tank side return hot water is transferred to the heating heat medium via the liquid-water heat exchanger, while the bypass passage and the hot water circulation loop passage are Heat was transferred through the liquid-water heat exchanger by repeating the operation of circulating hot water with a high temperature through part (excluding the part closer to the hot water tank than the connection with the bypass passage) ( The heating device can be heated by the heated heating medium, and the hot water is not sent to the hot water tank as described above, so that the hot water temperature on the lower side of the hot water tank rises. Can be prevented.

そして、液−水熱交換器を介しての暖房用液体循環回路側への熱の供給によって前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満になった時には、前記経路切り替え手段が、前記貯湯槽側戻り湯水を前記貯湯槽側に戻す方向に流すことで、貯湯槽側には温度が低くなった貯湯槽側戻り湯水を供給することができる。そのため、貯湯槽側戻り湯水が低い温度となるまで熱交換可能な大きな熱交換容量を有する液−水熱交換器を設ける必要はなく、小型の液−水熱交換器を用いて熱源装置を形成でき、コストが安く、かつ、前記のように発電装置の排熱利用により貯湯槽に蓄えられる熱を有効利用して発電装置を効率良く長時間稼働させることができる、優れた熱源装置を実現できる。   When the temperature of the hot water tank-side return hot water becomes lower than the bypass-side path switching temperature due to the supply of heat to the heating liquid circulation circuit via the liquid-water heat exchanger, the path switching means By flowing the hot water tank-side return hot water in the direction to return to the hot water tank side, the hot water tank-side return hot water having a low temperature can be supplied to the hot water tank side. Therefore, it is not necessary to provide a liquid-water heat exchanger having a large heat exchange capacity that allows heat exchange until the hot water returning to the hot water tank reaches a low temperature, and a heat source device is formed using a small liquid-water heat exchanger. It is possible to realize an excellent heat source device that can be operated at low cost and that can efficiently operate the power generation device for a long time by effectively using the heat stored in the hot water storage tank by using the exhaust heat of the power generation device as described above. .

また、本発明において、バーナ燃焼によって加熱される暖房用熱交換器が暖房用液体循環回路に設けられており、貯湯槽から湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる暖房用熱媒体に液−水熱交換器を介して伝達する熱交換のみでは暖房装置に供給する熱量が足りないときには前記暖房用液体循環回路を通る液体を前記暖房用熱交換器により加熱して前記暖房装置に供給する補助加熱手段を設けることにより、必要に応じて補助加熱手段により暖房装置を加熱して暖房運転を快適に行うことができる。   In the present invention, a heating heat exchanger heated by burner combustion is provided in the heating liquid circulation circuit, and the heat of hot water flowing from the hot water tank through the hot water circulation loop passage flows through the heating liquid circulation circuit. When the amount of heat supplied to the heating device is insufficient by only the heat exchange transmitted to the heating medium via the liquid-water heat exchanger, the liquid passing through the heating liquid circulation circuit is heated by the heating heat exchanger. By providing the auxiliary heating means to be supplied to the heating device, it is possible to comfortably perform the heating operation by heating the heating device by the auxiliary heating means as required.

さらに、発電装置を燃料電池により形成することにより、燃料電池を用いて効率的な発電を行うことができる発電機能付き熱源装置を提供できる。   Furthermore, by forming the power generation device with a fuel cell, it is possible to provide a heat source device with a power generation function capable of performing efficient power generation using the fuel cell.

本発明に係る発電機能付き熱源装置の一実施例の一部構成を示す模式的なシステム構成図である。It is a typical system block diagram which shows a partial structure of one Example of the heat-source apparatus with a power generation function which concerns on this invention. 実施例の発電機能付き熱源装置において図1に示した部位を除く構成を示す模式的なシステム構成図である。It is a typical system block diagram which shows the structure except the site | part shown in FIG. 1 in the heat source apparatus with an electric power generation function of an Example. 実施例の発電機能付き熱源装置において、貯湯槽熱利用暖房運転中の貯湯槽側戻り湯水の温度が高いときの動作状態例を説明するための模式的なシステム構成図である。It is a typical system block diagram for demonstrating the example of an operation state when the temperature of the hot water storage tank side return hot water in hot water storage tank heat utilization heating operation is high in the heat source apparatus with a power generation function of an Example. 実施例の発電機能付き熱源装置の暖房運転制御構成を示すブロック図である。It is a block diagram which shows the heating operation control structure of the heat-source apparatus with an electric power generation function of an Example. 実施例の発電機能付き熱源装置の暖房時の制御例を示すフローチャートである。It is a flowchart which shows the example of control at the time of the heating of the heat source apparatus with an electric power generation function of an Example. 貯湯槽の熱を効率的に利用するために考えられる発電機能付き熱源装置のシステム構成例を説明するための模式図である。It is a schematic diagram for demonstrating the system structural example of the heat-source apparatus with a power generation function considered in order to utilize the heat | fever of a hot water storage tank efficiently. 従来の発電機能付き熱源装置のシステム構成例を模式的に示す説明図である。It is explanatory drawing which shows typically the system structural example of the conventional heat source apparatus with a power generation function. 貯湯槽と貯湯槽内の温度分布例を模式的に示す説明図である。It is explanatory drawing which shows typically the temperature distribution example in a hot water storage tank and a hot water storage tank.

以下、本発明の実施の形態を図面に基づき説明する。なお、本実施例の説明において、これまでの説明の例と同一構成要素には同一符号を付し、その重複説明は省略または簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are given to the same constituent elements as those in the above-described examples, and the duplicate description is omitted or simplified.

図1、図2には、本発明に係る発電機能付き熱源装置の一実施例のシステム構成が模式的に示されており、図1に示される構成と図2に示される構成を合わせて本実施例の発電機能付き熱源装置が形成されている。なお、図1における(N)の部位と図2における(N)の部位とが連通している。   1 and 2 schematically show a system configuration of an embodiment of a heat source device with a power generation function according to the present invention. The configuration shown in FIG. 1 and the configuration shown in FIG. The heat source device with a power generation function of the embodiment is formed. The part (N) in FIG. 1 communicates with the part (N) in FIG.

これらの図に示されるように、本実施例の熱源装置は、図1に示される構成を有する貯湯ユニット104と発電装置1と、図2に示される構成を有する給湯器116とが接続されて形成されている。また、本実施例では、図6に示した熱源装置と同様に、貯湯槽2に湯水循環ループ通路131が接続されており(図1の斜線部分、参照)、湯水循環ループ通路131には、液−水熱交換器130を介し、暖房用液体循環回路5のうちの低温暖房用液体循環回路部位5aが熱的に接続されている。   As shown in these drawings, the heat source device of the present embodiment is connected to a hot water storage unit 104 having the configuration shown in FIG. 1, the power generator 1, and a water heater 116 having the configuration shown in FIG. 2. Is formed. Further, in this embodiment, similarly to the heat source device shown in FIG. 6, a hot water circulation loop passage 131 is connected to the hot water storage tank 2 (see the shaded portion in FIG. 1). The low-temperature heating liquid circulation circuit portion 5 a in the heating liquid circulation circuit 5 is thermally connected through the liquid-water heat exchanger 130.

また、本実施例では、湯水循環ループ通路131には、バイパス通路135、タンク戻り三方弁136、タンク戻り温度サーミスタ137が設けられている。バイパス通路135は、液−水熱交換器130の出側から貯湯槽2側に流れる貯湯槽側戻り湯水を貯湯槽2には戻さずに液−水熱交換器130の入側に戻すようにする通路であり(図3の矢印Mおよび斜線部分、参照)、本実施例では、このバイパス通路135と、タンク戻り三方弁136、タンク戻り温度サーミスタ137を用いて、後述するような特異的な制御が行われる構成を有している。   In this embodiment, the hot water circulation loop passage 131 is provided with a bypass passage 135, a tank return three-way valve 136, and a tank return temperature thermistor 137. The bypass passage 135 returns the hot water tank side return hot water flowing from the outlet side of the liquid-water heat exchanger 130 to the hot water tank 2 side to the inlet side of the liquid-water heat exchanger 130 without returning to the hot water tank 2. In this embodiment, the bypass passage 135, the tank return three-way valve 136, and the tank return temperature thermistor 137 are used for specific passages as will be described later. The control is performed.

なお、図1、図2に示されるように、本実施例において、暖房用液体循環回路5は、給湯器116の外部において、低温暖房用液体循環回路部位5aと高温暖房用液体循環回路部位5bとを有しており、低温暖房用液体循環回路部位5aには低温の熱媒体を供給する暖房装置(低温暖房装置)10aが、高温暖房用液体循環回路部位5bには高温の熱媒体を供給する暖房装置(高温暖房装置)10bが、それぞれ接続されている。本実施例において、低温暖房装置は温水マット(暖房マット)であり、高温暖房装置は浴室乾燥機である。   As shown in FIGS. 1 and 2, in this embodiment, the heating liquid circulation circuit 5 includes a low-temperature heating liquid circulation circuit part 5 a and a high-temperature heating liquid circulation circuit part 5 b outside the water heater 116. And a heating device (low temperature heating device) 10a for supplying a low temperature heating medium to the liquid circulation circuit portion 5a for low temperature heating, and a high temperature heating medium for the liquid circulation circuit portion 5b for high temperature heating. A heating device (high temperature heating device) 10b is connected to each other. In this embodiment, the low-temperature heating device is a hot water mat (heating mat), and the high-temperature heating device is a bathroom dryer.

高温暖房用液体循環回路部位5bは液−水熱交換器130とは直接的には接続されてはいないが、高温暖房用液体循環回路部位5bと低温暖房用液体循環回路部位5aとは液体合流手段15で合流し、給湯器116内の管路89,90,91,92,93,94,95,96,97,98,99と共に、暖房用液体循環回路5を形成している。なお、暖房用液体循環回路5の給湯器116内における構成は、特に限定されるものではなく適宜設定されるものであるが、本実施例では、図2に示すような構成を適用しており、図2において、給湯器116内の暖房用液体循環回路5にはドットが記されている。   Although the liquid circulation circuit part 5b for high temperature heating is not directly connected to the liquid-water heat exchanger 130, the liquid circulation circuit part 5b for high temperature heating and the liquid circulation circuit part 5a for low temperature heating are combined with each other. The heating fluid circulation circuit 5 is formed together with the pipes 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 in the water heater 116. The configuration of the heating liquid circulation circuit 5 in the water heater 116 is not particularly limited and is appropriately set. In this embodiment, the configuration shown in FIG. 2 is applied. 2, dots are marked on the heating liquid circulation circuit 5 in the water heater 116.

また、暖房用液体循環回路5には、給湯器116の器具ケース42の外部および貯湯ユニット104の外部に管路40,41,44,45,59,68が設けられ、貯湯ユニット104内に管路141,144,145,146,147が設けられ、前記の如く低温暖房用液体循環回路部位5aおよび高温暖房用液体循環回路部位5bが形成されており、これらを含む暖房用液体循環回路5において液体の熱媒体(ここでは温水)が適宜の経路で循環されて暖房装置10(10a,10b)に供給され、暖房が行われる。   The heating liquid circulation circuit 5 is provided with conduits 40, 41, 44, 45, 59, 68 outside the appliance case 42 of the water heater 116 and outside the hot water storage unit 104. The paths 141, 144, 145, 146, and 147 are provided, and the low-temperature heating liquid circulation circuit portion 5a and the high-temperature heating liquid circulation circuit portion 5b are formed as described above. In the heating liquid circulation circuit 5 including these, A liquid heat medium (here, hot water) is circulated through an appropriate path and supplied to the heating device 10 (10a, 10b) to perform heating.

なお、管路40は管路97に接続され、管路41,44は液体合流手段15と管路59と介して管路95に接続され、管路45は液体分岐手段39を介して管路90に接続されている。管路40,41には、暖房装置10bの内部通路51が接続され、暖房装置10bには熱動弁12が設けられている。暖房装置10bには予め定められる高温暖房設定温度(例えば80℃)の液体が供給される。管路44,45には、暖房装置10aの内部通路52が接続されている。なお、液体分岐手段39と液体合流手段15には、必要に応じ、同図に示している他にも暖房装置を接続することができる。   The pipe 40 is connected to the pipe 97, the pipes 41 and 44 are connected to the pipe 95 through the liquid merging means 15 and the pipe 59, and the pipe 45 is connected to the pipe 95 through the liquid branching means 39. 90. The pipes 40 and 41 are connected to the internal passage 51 of the heating device 10b, and the heating device 10b is provided with the thermal valve 12. A liquid having a predetermined high-temperature heating set temperature (for example, 80 ° C.) is supplied to the heating device 10b. An internal passage 52 of the heating device 10a is connected to the pipes 44 and 45. In addition to the one shown in the figure, a heating device can be connected to the liquid branching means 39 and the liquid merging means 15 as required.

暖房用液体循環回路5には、給湯器116の器具ケース42内に、該暖房用液体循環回路5に液体(液体の熱媒体)を循環させる液体循環ポンプ6と、該液体循環ポンプ6の駆動により循環する液体を加熱する暖房用熱交換器28(28a,28b)が設けられている。暖房用熱交換器28aの液体導入側には管路95が、液体導出側には管路94がそれぞれ接続されており、暖房用熱交換器28bの液体導入側には管路91が、液体導出側には管路92がそれぞれ接続されている。管路92には、暖房高温サーミスタ33が設けられており、暖房高温サーミスタ33は、暖房用熱交換器28bから出る液体の温度を検出する。   The heating liquid circulation circuit 5 includes a liquid circulation pump 6 that circulates liquid (liquid heat medium) in the heating liquid circulation circuit 5 in the appliance case 42 of the water heater 116, and driving of the liquid circulation pump 6. A heating heat exchanger 28 (28a, 28b) for heating the circulating liquid is provided. A pipe 95 is connected to the liquid introduction side of the heating heat exchanger 28a, and a pipe 94 is connected to the liquid outlet side, and a pipe 91 is connected to the liquid introduction side of the heating heat exchanger 28b. Pipe lines 92 are connected to the outlet side. A heating high temperature thermistor 33 is provided in the pipe line 92, and the heating high temperature thermistor 33 detects the temperature of the liquid coming out of the heating heat exchanger 28b.

また、管路91は、前記液体循環ポンプ6の吐出側に、管路90と共に接続されており、管路91には、暖房用熱交換器28bに導入される液体の温度を検出する暖房低温サーミスタ36が設けられている。また、液体循環ポンプ6の吸入口側には前記管路93が接続されており、管路93と管路94との間にはシスターン装置100が設けられている。シスターン装置100のタンク容量は、例えば約1〜1.8リットルであり、シスターン装置100は、大気導入通路53を介して大気開放と成している。   The pipe 91 is connected to the discharge side of the liquid circulation pump 6 together with the pipe 90, and the pipe 91 is connected to the heating low temperature for detecting the temperature of the liquid introduced into the heating heat exchanger 28b. A thermistor 36 is provided. Further, the pipe 93 is connected to the suction port side of the liquid circulation pump 6, and a cistern apparatus 100 is provided between the pipe 93 and the pipe 94. The tank capacity of the cistern apparatus 100 is, for example, about 1 to 1.8 liters, and the cistern apparatus 100 is open to the atmosphere via the atmosphere introduction passage 53.

暖房用熱交換器28(28a,28b)は、それぞれ、燃焼室24内に設けられており、燃焼室24には、暖房用熱交換器28と共に、暖房用熱交換器28を加熱するバーナ(暖房用バーナ)16が設けられ、バーナ16の下部側には燃焼給排気用の燃焼ファン18が設けられている。また、給湯器116は、給湯機能と風呂の追い焚き機能と暖房機能とを備えており、燃焼室24と連通して燃焼室25が設けられ、燃焼室25内には、バーナ(給湯バーナ)17と、バーナ17により加熱される給湯熱交換器29(29a,29b)が設けられ、バーナ17の燃焼の給排気を行なう燃焼ファン19が設けられている。   Heating heat exchangers 28 (28a, 28b) are respectively provided in the combustion chamber 24. In the combustion chamber 24, together with the heating heat exchanger 28, a burner that heats the heating heat exchanger 28 ( A heating burner 16 is provided, and a combustion fan 18 for combustion supply and exhaust is provided on the lower side of the burner 16. Further, the water heater 116 has a hot water supply function, a bath reheating function, and a heating function, and is provided with a combustion chamber 25 in communication with the combustion chamber 24, and a burner (hot water supply burner) is provided in the combustion chamber 25. 17 and a hot water supply heat exchanger 29 (29a, 29b) heated by the burner 17, and a combustion fan 19 for supplying and exhausting combustion of the burner 17 are provided.

バーナ16,17には、それぞれのバーナ16,17に燃料を供給するガス管31,32が接続されている。これらのガス管31,32は、ガス管30から分岐形成されており、ガス管30には、ガス開閉弁80が介設されている。また、ガス管31には、ガス比例弁86とガス開閉弁81,82が、ガス管32には、ガス比例弁87とガス開閉弁83,84,85がそれぞれ介設されている。これらの弁80〜87はいずれも電磁弁により形成されており、ガス開閉弁80〜85は、対応するバーナ16,17への燃料供給・停止を制御し、ガス比例弁86,87は、対応するバーナ16,17への供給燃料量を弁開度でもって制御する。なお、バーナ16,17の燃焼制御は、図示されていない燃焼制御手段によって、適宜の制御方法により制御される。   Gas pipes 31 and 32 for supplying fuel to the burners 16 and 17 are connected to the burners 16 and 17. These gas pipes 31 and 32 are branched from the gas pipe 30, and a gas on / off valve 80 is interposed in the gas pipe 30. The gas pipe 31 is provided with a gas proportional valve 86 and gas on-off valves 81 and 82, and the gas pipe 32 is provided with a gas proportional valve 87 and gas on-off valves 83, 84 and 85, respectively. These valves 80 to 87 are all formed by electromagnetic valves, the gas on / off valves 80 to 85 control the fuel supply / stop to the corresponding burners 16 and 17, and the gas proportional valves 86 and 87 correspond to each other. The amount of fuel supplied to the burners 16 and 17 is controlled by the valve opening. The combustion control of the burners 16 and 17 is controlled by an appropriate control method by a combustion control means (not shown).

前記給湯熱交換器29aの入口側には給水導入通路88が設けられている。この給水導入通路88は、接続通路57と補給水電磁弁46を介して、前記シスターン装置100に接続され、前記暖房用液体循環回路5に接続されている。給水導入通路88の入口側には、給水導入通路88を流れる湯水の量を検出する流量センサ73と入水温度を検出する入水温度センサ74が設けられている。また、熱交換器29bの出口側には給湯通路26が設けられており、給湯通路26の先端側は、適宜の給湯先に導かれている。給湯通路26には、分岐通路70と湯水経路切替弁58を介して前記給水導入通路88が接続されており、給湯通路26には、分岐通路70の分岐部よりも下流側に出湯湯温検出センサ113が設けられ、熱交換器29側に給湯熱交出側温度検出センサ114が設けられている。   A water supply introduction passage 88 is provided on the inlet side of the hot water supply heat exchanger 29a. The water supply introduction passage 88 is connected to the cistern device 100 via the connection passage 57 and the makeup water electromagnetic valve 46 and is connected to the heating liquid circulation circuit 5. On the inlet side of the water supply introduction passage 88, a flow rate sensor 73 for detecting the amount of hot water flowing through the water supply introduction passage 88 and a water entrance temperature sensor 74 for detecting the water entrance temperature are provided. Further, a hot water supply passage 26 is provided on the outlet side of the heat exchanger 29b, and the front end side of the hot water supply passage 26 is led to an appropriate hot water supply destination. The hot water supply passage 26 is connected to the water supply introduction passage 88 through a branch passage 70 and a hot water passage switching valve 58, and the hot water supply passage 26 detects the hot water temperature downstream of the branch portion of the branch passage 70. The sensor 113 is provided, and the hot water supply heat exchange side temperature detection sensor 114 is provided on the heat exchanger 29 side.

風呂の追い焚き機能のために、浴槽(図示せず)に接続された往管14と戻り管165を有する追い焚き循環通路13が設けられており、この追い焚き循環通路13は、熱交換手段としての液−水熱交換器7を介して、前記暖房用液体循環回路5と熱的に接続されている。なお、暖房用液体循環回路5の液−水熱交換器7を形成する管路89には、液−水熱交換器7の入口に流量制御弁38が設けられている。追い焚き循環通路13には、浴槽湯水を循環させる浴槽湯水循環ポンプ20が設けられ、液−水熱交換器7は、浴槽湯水循環ポンプ20の駆動によって追い焚き循環路13を循環する浴槽湯水を加熱する風呂熱交換器と成している。   For the reheating function of the bath, a recirculation circulation passage 13 having an outgoing pipe 14 and a return pipe 165 connected to a bathtub (not shown) is provided. Is connected to the heating liquid circulation circuit 5 through a liquid-water heat exchanger 7. A flow rate control valve 38 is provided at the inlet of the liquid-water heat exchanger 7 in the pipe line 89 forming the liquid-water heat exchanger 7 of the heating liquid circulation circuit 5. The recirculation circulation passage 13 is provided with a bathtub hot water circulation pump 20 that circulates bathtub hot water. The liquid-water heat exchanger 7 drives the hot water circulating in the recirculation circulation path 13 by driving the bathtub hot water circulation pump 20. It consists of a heated bath heat exchanger.

また、追い焚き循環通路13には、浴槽湯水の温度を検出する浴槽湯水温検出手段としての風呂温度センサ21と、浴槽湯水の水位を検出する水位センサ22と、追い焚き循環路13の水流を検知する風呂水流スイッチ34とが介設されている。浴槽湯水循環ポンプ20の吸入口側に、戻り管165の一端側が接続され、戻り管165の他端側が浴槽に連通接続されている。浴槽湯水循環ポンプ20の吐出口側には、往管14の一端側が接続され、往管14の他端側は前記浴槽に連通接続されている。   The recirculation circulation passage 13 is supplied with a bath temperature sensor 21 as a bath water temperature detecting means for detecting the temperature of the bathtub hot water, a water level sensor 22 for detecting the water level of the bath water, and the water flow in the recirculation circuit 13. A bath water flow switch 34 to be detected is interposed. One end side of the return pipe 165 is connected to the suction port side of the bathtub hot water circulation pump 20, and the other end side of the return pipe 165 is connected to the bathtub. One end side of the outgoing pipe 14 is connected to the discharge port side of the bathtub hot water circulation pump 20, and the other end side of the outgoing pipe 14 is connected to the bathtub.

前記給湯通路26には、分岐通路70の形成部および出湯湯温検出センサ113の配設部よりも下流側に、管路54を介して注湯水ユニット55が接続されている。注湯水ユニット55には風呂用注湯導入通路23の一端側が接続され、風呂用注湯導入通路23の他端側は、前記浴槽湯水循環ポンプ20に接続されている。注湯水ユニット55には、湯張り電磁弁148、湯張り水量センサ49、逆止弁50a,50bが設けられている。なお、熱交換器29から給湯通路26と管路54、注湯水ユニット55、風呂用注湯導入通路23、浴槽湯水循環ポンプ20、液−水熱交換器7、往管14を順に通って浴槽に至るまでの通路によって、湯張りや注水を行うための湯張り注水通路が構成されている。また、図2の、図中、符号48は能力切り替え熱動弁、符号75、77は、ドレン排出通路を示し、符号76は、ドレンを中和する中和手段を示す。   A pouring water unit 55 is connected to the hot water supply passage 26 via a pipe 54 on the downstream side of the formation portion of the branch passage 70 and the arrangement portion of the hot water temperature detection sensor 113. One end side of the bath pouring introduction passage 23 is connected to the pouring water unit 55, and the other end side of the bath pouring introduction passage 23 is connected to the bathtub hot water circulation pump 20. The hot water unit 55 is provided with a hot water solenoid valve 148, a hot water sensor 49, and check valves 50a and 50b. In addition, the hot water supply passage 26 and the pipe 54, the pouring water unit 55, the bath pouring introduction passage 23, the bath hot water circulation pump 20, the liquid-water heat exchanger 7, and the outgoing pipe 14 are sequentially passed from the heat exchanger 29 to the bathtub. The hot water filling passage for performing hot water filling and water pouring is constituted by the passage leading up to. In FIG. 2, reference numeral 48 denotes a capacity switching thermal valve, reference numerals 75 and 77 denote drain discharge passages, and reference numeral 76 denotes a neutralizing means for neutralizing the drain.

この熱源装置において、暖房装置10の暖房運転を行うときには、給湯器116内の暖房用バーナ16の燃焼熱量を用いて暖房を行うバーナ燃焼熱利用暖房運転と、貯湯槽2内に貯湯されている熱を利用して暖房を行う貯湯槽熱利用暖房運転のいずれかが選択的に行われる。なお、いずれの運転により暖房を行うかについては後述する。   In this heat source device, when performing the heating operation of the heating device 10, the heating operation using the burner combustion heat that performs heating using the amount of combustion heat of the heating burner 16 in the water heater 116, and hot water is stored in the hot water storage tank 2. Any one of hot water storage heating use heating operations for heating using heat is selectively performed. In addition, which operation performs heating will be described later.

バーナ燃焼熱利用暖房運転を行う時は、必要に応じ、バーナ16によって暖房用熱交換器28を加熱し、液体循環ポンプ6を駆動させることにより、暖房用液体循環回路5の熱媒体を図2の矢印A〜Gに示すように循環させる。そして、管路95から暖房用熱交換器28aに導入されて暖房用熱交換器28aで加熱された熱媒体が、シスターン装置100を通り、管路93を通って液体循環ポンプ6に導入される。   When performing the heating operation using the burner combustion heat, if necessary, the heating heat exchanger 28 is heated by the burner 16 and the liquid circulation pump 6 is driven, whereby the heat medium of the heating liquid circulation circuit 5 is changed to that shown in FIG. Circulate as indicated by arrows A to G. Then, the heat medium introduced into the heating heat exchanger 28a from the pipe 95 and heated by the heating heat exchanger 28a is introduced into the liquid circulation pump 6 through the cistern apparatus 100 and through the pipe 93. .

液体分岐手段37の熱動弁39が開いている状態(暖房装置10aの運転時)においては、熱媒体は液体循環ポンプ6の吐出側から管路90側と管路91側とにそれぞれ流れ、管路90側に流れた熱媒体は、管路90を通って給湯器116の外部の管路45から暖房装置10aに導入されることになり、暖房装置10aが設けられている低温暖房用液体循環回路5aと管路59を順に通って給湯器116内に戻り、管路95に導入される。   In a state where the thermal valve 39 of the liquid branching means 37 is open (during operation of the heating device 10a), the heat medium flows from the discharge side of the liquid circulation pump 6 to the pipe line 90 side and the pipe line 91 side, The heat medium that has flowed to the pipe line 90 side is introduced into the heating device 10a from the pipe line 45 outside the water heater 116 through the pipe line 90, and the low-temperature heating liquid in which the heating device 10a is provided. The water passes through the circulation circuit 5 a and the pipeline 59 in order, returns to the hot water heater 116, and is introduced into the pipeline 95.

なお、低温暖房用液体循環回路5aには、貯湯ユニット104内において、暖房用の熱媒体を液−水熱交換器130を通さずに給湯器116側に戻すための暖房用バイパス管路141が設けられている。そして、図1、図2の矢印Kに示されるようにして貯湯ユニット104内の管路144に導入された暖房用の熱媒体が流れる経路が、暖房三方弁143の切り替えにより、管路145を通って液−水熱交換器130側に向かう経路と暖房用バイパス管路141を通る経路とのいずれかに選択的に切り替えられる。   In the low-temperature heating liquid circulation circuit 5a, a heating bypass pipe 141 for returning the heating heat medium to the hot water heater 116 side without passing through the liquid-water heat exchanger 130 in the hot water storage unit 104 is provided. Is provided. 1 and FIG. 2, the path through which the heating heat medium introduced into the pipe 144 in the hot water storage unit 104 flows through the pipe 145 by switching the heating three-way valve 143. It is selectively switched to either a path passing through the liquid-water heat exchanger 130 or a path passing through the heating bypass line 141.

バーナ燃焼熱利用暖房運転時には、暖房装置10aを通った後に貯湯ユニット104内の管路144に導入された暖房用の熱媒体の経路は、暖房用バイパス管路141を通る経路とされ(ショートカットされ)、図1の矢印K、K”Kの順に通る経路を順に通って(矢印K’に示すような、管路145、液−水熱交換器130、管路147を通る経路は通らずに)管路68を通り、液体合流手段15に戻される。 During the heating operation using the burner combustion heat, the path of the heating heat medium introduced into the pipe line 144 in the hot water storage unit 104 after passing through the heating device 10a is a path passing through the heating bypass pipe line 141 (shortcut). ) Through the path passing in the order of arrows K and K ″ K 0 in FIG. 1 (the path passing through the pipe 145, the liquid-water heat exchanger 130, and the pipe 147 as shown by the arrow K ′ does not pass). To the liquid confluence means 15 through the pipe 68.

また、前記の如く液体循環ポンプ6の吐出側から管路91側に導入された熱媒体は、管路91を通って暖房用熱交換器28bに導入され、暖房用熱交換器28bよりさらに加熱されて高温(例えば80℃程度)とされた後、管路92に導入される。そして、管路92を通った熱媒体は、暖房装置10bの熱動弁12が開いている状態においては、管路97側と管路89側とにそれぞれ流れ、管路89側(液−水熱交換器7側)に流れた熱媒体は、管路96を通り、管路95に戻る。   Further, as described above, the heat medium introduced from the discharge side of the liquid circulation pump 6 to the pipe 91 side is introduced into the heating heat exchanger 28b through the pipe 91, and is further heated by the heating heat exchanger 28b. After being heated to a high temperature (for example, about 80 ° C.), the pipe 92 is introduced. And the heat medium which passed through the pipe line 92 flows to the pipe line 97 side and the pipe line 89 side, respectively, in the state where the heat valve 12 of the heating device 10b is open, and the pipe line 89 side (liquid-water). The heat medium flowing to the heat exchanger 7 side passes through the pipe line 96 and returns to the pipe line 95.

管路97側に流れた熱媒体は、高温暖房用液体循環回路部位5bを通って液体合流手段15に導入される。つまり、管路40を通って暖房装置10bに導入され、暖房装置10b内の管路51を通った後に管路41を通り、液体合流手段15を介して管路95に戻る。   The heat medium that has flowed to the pipe 97 side is introduced into the liquid merging means 15 through the high-temperature heating liquid circulation circuit portion 5b. That is, it is introduced into the heating device 10 b through the conduit 40, passes through the conduit 51 in the heating device 10 b, passes through the conduit 41, and returns to the conduit 95 through the liquid merging means 15.

なお、熱動弁12,39が閉じている場合には、その熱動弁12,39に接続されている暖房装置10側への液体の流れ(管路90,45等を通しての暖房装置10aへの流れや管路97,40等を通しての暖房装置10bへの流れ)は停止される。   When the thermal valves 12 and 39 are closed, the flow of liquid toward the heating device 10 connected to the thermal valves 12 and 39 (to the heating device 10a through the pipes 90 and 45, etc.). And the flow to the heating device 10b through the pipes 97, 40, etc. are stopped.

また、本実施例において、給湯器116は、熱源装置に接続されたリモコン装置からの浴槽湯水の追い焚き指令を受けて、浴槽湯水循環ポンプ20を駆動させ、暖房用液体循環回路5内の熱媒体を液−水熱交換器7に通しながら循環させ、浴槽湯水循環ポンプ20を駆動させて追い焚き循環通路13内に浴槽湯水を循環させる。この浴槽湯水と暖房用液体循環回路5を通る液体とを液−水熱交換器7を介して熱交換することにより浴槽内の湯水の追い焚き動作を行うことができる。   In the present embodiment, the water heater 116 receives a bath hot water refilling command from the remote control device connected to the heat source device, drives the bath hot water circulation pump 20, and heats in the heating liquid circulation circuit 5. The medium is circulated while passing through the liquid-water heat exchanger 7, and the bathtub hot water circulation pump 20 is driven to circulate the bathtub hot water in the recirculation circulation path 13. By exchanging heat between the hot water in the bathtub and the liquid passing through the heating liquid circulation circuit 5 via the liquid-water heat exchanger 7, the reheating operation of the hot water in the bathtub can be performed.

この追い焚き動作中には、高温暖房サーミスタ33の温度が設定温度(例えば80℃)となるようにバーナ16の燃焼を行いながら、風呂温度センサ21の検出温度が風呂設定温度となるまで、暖房用液体循環回路5内の液体と追い焚き循環通路13内の浴槽湯水とをそれぞれ循環させる。なお、風呂温度センサ21の検出温度が風呂設定温度となったら、バーナ16の燃焼を停止し、液体循環ポンプ6と浴槽湯水循環ポンプ20は、予め定められたポストポンプ時間経過後に停止する。   During this reheating operation, the burner 16 is burned so that the temperature of the high temperature heating thermistor 33 becomes a set temperature (for example, 80 ° C.), and the heating is performed until the temperature detected by the bath temperature sensor 21 becomes the bath set temperature. The liquid in the liquid circulation circuit 5 and the bath water in the recirculation circulation passage 13 are circulated. When the temperature detected by the bath temperature sensor 21 reaches the bath set temperature, combustion of the burner 16 is stopped, and the liquid circulation pump 6 and the bathtub hot water circulation pump 20 are stopped after a predetermined post pump time has elapsed.

さらに、浴槽への湯張り(自動湯張り動作)を行うときには、バーナ17の燃焼によって熱交換器29を通る水を加熱し、前記湯張り注水通路を通して湯を浴槽に注ぐ。そして、この自動湯張り後、例えば4時間といった保温動作時間中には、風呂温度センサ21の検出温度を取り込み、その検出温度が予め設定される風呂設定温度より予め定められている許容範囲を超えて低下したときには、前記の追い焚き動作を例えば3分間行い、風呂温度センサ21の検出温度が前記風呂設定温度となるようにする保温モードの機能の動作が行われる。   Furthermore, when performing hot water filling (automatic hot water filling operation) to the bathtub, the water passing through the heat exchanger 29 is heated by the combustion of the burner 17, and hot water is poured into the bathtub through the hot water filling water passage. Then, after this automatic hot water filling, for example, during the heat retention operation time of 4 hours, the detected temperature of the bath temperature sensor 21 is taken, and the detected temperature exceeds the predetermined allowable range from the preset bath set temperature. When the temperature drops, the reheating operation is performed for 3 minutes, for example, and the operation of the function of the heat retention mode is performed so that the detected temperature of the bath temperature sensor 21 becomes the bath set temperature.

ところで、本実施例の熱源装置は、前記のようなバーナ燃焼熱利用暖房運転の機能の他に、貯湯槽2内の湯の保有熱量を利用して暖房装置10aの暖房を行う貯湯槽熱利用(蓄熱利用)暖房運転の機能を有している。なお、この貯湯槽熱利用暖房運転は、高温暖房用液体循環回路部位5bを通しての高温暖房運転(ここでは暖房装置10bの運転)が行われずに低温暖房用液体循環回路部位5aを通しての低温暖房運転(ここでは暖房装置10aの運転)のみが行われるときにのみ、適用されるものである。   By the way, the heat source device of the present embodiment uses hot water in the hot water tank that heats the heating device 10a by using the amount of heat stored in the hot water tank 2 in addition to the function of the heating operation using the burner combustion heat as described above. (Use of heat storage) Has the function of heating operation. Note that this hot water tank heat-utilizing heating operation is not performed by the high-temperature heating operation through the high-temperature heating liquid circulation circuit portion 5b (here, the operation of the heating device 10b), and the low-temperature heating operation through the low-temperature heating liquid circulation circuit portion 5a. This is applied only when only (the operation of the heating device 10a here) is performed.

この貯湯槽熱利用暖房運転は、貯湯槽2に貯湯されている湯水の熱を利用して暖房装置10の暖房運転を行うものであり、本実施例では、その動作モードの1つとして、貯湯ユニット104内の暖房利用ポンプ140の駆動により、貯湯槽2の上部側から、図1の矢印Jに示されるように湯水を湯水循環ループ通路131を通して流し、その湯水の熱を、液−水熱交換器130を介し、暖房用液体循環回路5を通して流れる暖房用熱媒体(温水)に伝達して加熱し、この加熱によって温められた暖房用熱媒体を暖房装置10aに通して暖房装置10aの暖房を行う第1の動作モードを有している。なお、この第1の動作モードにおいて、液−水熱交換器130を通った湯水は貯湯槽2に戻される。   This hot water tank heat-utilizing heating operation is to perform the heating operation of the heating device 10 using the heat of hot water stored in the hot water tank 2, and in this embodiment, as one of its operation modes, hot water storage As the heating utilization pump 140 in the unit 104 is driven, hot water flows from the upper side of the hot water tank 2 through the hot water circulation loop passage 131 as shown by an arrow J in FIG. The heat is transferred to the heating medium (warm water) flowing through the heating liquid circulation circuit 5 through the exchanger 130 and heated, and the heating medium heated by this heating is passed through the heating apparatus 10a to heat the heating apparatus 10a. The first operation mode is performed. In this first operation mode, the hot water that has passed through the liquid-water heat exchanger 130 is returned to the hot water tank 2.

また、本実施例では、貯湯槽熱利用暖房運転の別の動作モードとして、液−水熱交換器130を通った湯水を貯湯槽2側に戻さずに、バイパス通路135を通して液−水熱交換器130の入側に戻し、液−水熱交換器130に再び通すといったことを繰り返しながら、暖房用液体循環回路5を通して流れる暖房用熱媒体(温水)に伝達して加熱し、この加熱によって温められた暖房用熱媒体を暖房装置10aに通して暖房装置10aの暖房を行う第2の動作モードを有している。   Further, in this embodiment, as another operation mode of the hot water tank heat-utilizing heating operation, the hot water passing through the liquid-water heat exchanger 130 is not returned to the hot water tank 2 side, and the liquid-water heat exchange is performed through the bypass passage 135. Returning to the inlet side of the heater 130 and passing through the liquid-water heat exchanger 130 again, the heater 130 is heated by being transferred to the heating heat medium (warm water) flowing through the heating liquid circulation circuit 5 and heated by this heating. It has the 2nd operation mode which passes the heating medium for heating which passed through heating device 10a, and heats heating device 10a.

これらの動作モードの切り替えについては、後述するが、第1の動作モードは、タンク戻り温度サーミスタ137の検出温度が予め定められるバイパス側経路切り替え温度未満の時に行われるものであり、第2の動作モードは、タンク戻り温度サーミスタ137の検出温度が前記バイパス側経路切り替え温度以上の時に行われるものである。   Although switching of these operation modes will be described later, the first operation mode is performed when the detected temperature of the tank return temperature thermistor 137 is lower than a predetermined bypass side path switching temperature, and the second operation mode is performed. The mode is performed when the temperature detected by the tank return temperature thermistor 137 is equal to or higher than the bypass side path switching temperature.

なお、図1または図2において、符号150,151は逆止弁、152〜155はバルブ、161は排水電磁弁、163は減圧弁、156は圧力逃がし弁、157はオーバーフロー通路、158,159,160はフィルタ、183は排水バルブ、184は排水通路、185,186はサーミスタをそれぞれ示している。   1 or 2, reference numerals 150 and 151 are check valves, 152 to 155 are valves, 161 is a drain electromagnetic valve, 163 is a pressure reducing valve, 156 is a pressure relief valve, 157 is an overflow passage, 158, 159, Reference numeral 160 is a filter, 183 is a drain valve, 184 is a drain passage, and 185 and 186 are thermistors.

図4には、本実施例の熱源装置における暖房運転のための制御構成が示されている。本実施例において、貯湯ユニット104の制御装置60が、タンク湯水熱利用暖房運転制御手段61、補助熱源装置連絡通信手段62、暖房三方弁切り替え手段63、ポンプ駆動制御手段64、経路切り替え手段65を有して形成されており、リモコン装置66と給湯器116(補助熱源装置)の制御装置67に信号接続されている。   FIG. 4 shows a control configuration for heating operation in the heat source apparatus of the present embodiment. In this embodiment, the controller 60 of the hot water storage unit 104 includes a tank hot / cold water heating / heating control means 61, an auxiliary heat source device communication / communication means 62, a heating three-way valve switching means 63, a pump drive control means 64, and a path switching means 65. The remote control device 66 and the control device 67 of the hot water heater 116 (auxiliary heat source device) are signal-connected.

リモコン装置66は、例えば利用者宅のリビング等、室内の適宜の場所に設置されており、例えば利用者による暖房装置10aや暖房装置10bの運転の開始や停止、給湯設定温度の設定や風呂の追い焚き温度の設定等、適宜の操作がリモコン装置66の操作を用いて行われるものである。   The remote control device 66 is installed at an appropriate place in a room such as a living room of a user's house. For example, the user starts or stops the operation of the heating device 10a or the heating device 10b, sets a hot water supply set temperature, or takes a bath. Appropriate operations such as setting the reheating temperature are performed using the operation of the remote control device 66.

リモコン装置66の操作により暖房装置10aの運転開始の操作が行われると、温水マット暖房開始信号がタンク湯水利用暖房運転制御手段61と給湯器116の制御装置67に加えられ、給湯器116の制御装置67は、給湯器116内に設けられている湯水循環ポンプ6を適宜のタイミングで駆動させる。   When the operation start of the heating device 10a is performed by operating the remote control device 66, a hot water mat heating start signal is added to the tank hot water use heating operation control means 61 and the control device 67 of the water heater 116, and the control of the water heater 116 is performed. The device 67 drives the hot water circulation pump 6 provided in the water heater 116 at an appropriate timing.

タンク湯水熱利用暖房運転制御手段61は、温水マット暖房開始信号が加えられたときに、暖房装置10bの稼動が行われているかどうかを確認し(例えば補助熱源装置連絡通信手段62を介して給湯器116の制御装置67との通信により確認し)、高温暖房装置10bの稼動が行われていないときには、タンクサーミスタ35aの検出温度を取り込み、その検出温度が予め定められる暖房利用基準温度(例えば60℃)以上の時には貯湯槽2に貯湯されている湯水の熱を利用して暖房装置(ここでは低温暖房装置10a)の暖房運転を行うようにするものである。なお、前記の如く、タンクサーミスタ35aの検出温度が60℃以上の場合、貯湯槽2には例えば80℃程度の湯が貯湯されていることになる。   When the hot water mat heating start signal is applied, the tank hot water heat utilization heating operation control means 61 confirms whether or not the heating device 10b is operating (for example, hot water supply via the auxiliary heat source device communication communication means 62). When the operation of the high-temperature heating device 10b is not performed, the detected temperature of the tank thermistor 35a is taken in and the detected temperature is determined in advance as a heating use reference temperature (for example, 60). When the temperature is equal to or higher than [° C.], the heating operation of the heating device (here, the low-temperature heating device 10a) is performed using the heat of the hot water stored in the hot water tank 2. As described above, when the detected temperature of the tank thermistor 35a is 60 ° C. or higher, hot water of about 80 ° C. is stored in the hot water storage tank 2, for example.

タンク湯水熱利用暖房運転制御手段61は、貯湯槽2に貯湯されている湯水の熱を利用して暖房装置10の暖房運転を行うと決定すると(貯湯槽熱利用暖房運転の実行を決定すると)、この決定信号を暖房三方弁切り替え手段63とポンプ駆動制御手段64に加える。なお、タンク湯水熱利用暖房運転制御手段61は、暖房装置10bの稼動が行われていると判断したときには、貯湯槽熱利用暖房運転は実行しない。   When the tank hot water heat utilization heating operation control means 61 determines that the heating operation of the heating device 10 is performed using the heat of the hot water stored in the hot water tank 2 (when execution of the hot water tank heat utilization heating operation is determined). The determination signal is applied to the heating three-way valve switching means 63 and the pump drive control means 64. In addition, when the tank hot water heat utilization heating operation control means 61 judges that operation of the heating apparatus 10b is performed, the hot water tank heat utilization heating operation is not performed.

暖房三方弁切り替え手段63は、タンク湯水熱利用暖房運転制御手段61から貯湯槽熱利用暖房運転の決定信号が加えられると、暖房三方弁143を液−水熱交換器130側とする。そうすると、給湯器116内の液体循環ポンプ6(図2、参照)の駆動により、液体の熱媒体(ここでは温水)が暖房用液体循環回路部位5aを通り、図1の矢印K、K’、Kに示す順に(貯湯ユニット104内においては,管路144,145、液−水熱交換器130、管路146,147を順に通って)流れる。 The heating three-way valve switching unit 63 sets the heating three-way valve 143 to the liquid-water heat exchanger 130 side when the determination signal for the hot water tank heat use heating operation is applied from the tank hot / cold water use heating operation control unit 61. Then, by driving the liquid circulation pump 6 (see FIG. 2) in the water heater 116, the liquid heat medium (hot water here) passes through the heating liquid circulation circuit portion 5a, and the arrows K, K ′, It flows in the order indicated by K 0 (in the hot water storage unit 104, the pipes 144 and 145, the liquid-water heat exchanger 130, and the pipes 146 and 147 pass in this order).

一方、ポンプ駆動制御手段64は、タンク湯水熱利用暖房運転制御手段61から貯湯槽熱利用暖房運転の決定信号が加えられると、暖房利用ポンプ140を駆動させる。そうすると、貯湯槽2の上部側から、図1の矢印Jに示されるように、前記暖房利用基準温度以上の温度の湯水が湯水循環ループ通路131を通して流れ、その湯水の熱が、暖房用液体循環回路5を通して図1の矢印K、K’、Kの順で流れる暖房用熱媒体(温水)に液−水熱交換器130を介して伝達されて暖房用熱媒体が加熱され、温められた暖房用熱媒体が暖房装置10aに通されて暖房運転(貯湯槽湯水熱利用暖房運転)が行われる。 On the other hand, the pump drive control means 64 will drive the heating utilization pump 140, if the determination signal of hot water tank heat utilization heating operation is added from the tank hot-water heat utilization heating operation control means 61. FIG. Then, from the upper side of the hot water tank 2, as shown by an arrow J in FIG. 1, hot water having a temperature equal to or higher than the heating use reference temperature flows through the hot water circulation loop passage 131, and the heat of the hot water is circulated in the heating liquid circulation. 1 is transmitted to the heating medium (warm water) flowing in the order of arrows K, K ′, and K 0 in FIG. 1 through the circuit 5 through the liquid-water heat exchanger 130 to heat and warm the heating medium. The heating medium is passed through the heating device 10a to perform the heating operation (heating operation using hot water from the hot water tank).

経路切り替え手段65は、貯湯槽湯水熱利用の暖房運転時に、タンク戻り温度サーミスタ137により検出される貯湯槽側戻り湯水の温度を取り込み、この温度が予め定められるバイパス側経路切り替え温度(例えば40℃)以上の時には、前記貯湯槽側戻り湯水を貯湯槽2側には戻さずにバイパス通路135側に流し(タンク戻り三方弁136をバイパス通路135側に切り替え)、前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満の時には前記貯湯槽側戻り湯水を貯湯槽2側に戻す方向に流すようにする(タンク戻り三方弁136を貯湯槽2側に切り替える)。   The path switching means 65 takes in the temperature of the hot water tank-side return hot water detected by the tank return temperature thermistor 137 during the heating operation using hot water from the hot water tank, and this temperature is determined in advance by a bypass-side path switching temperature (for example, 40 ° C.). ) At the above time, the hot water tank side return hot water is not returned to the hot water tank 2 side, but flows to the bypass passage 135 side (the tank return three-way valve 136 is switched to the bypass passage 135 side). When the temperature is lower than the bypass side path switching temperature, the hot water tank side return hot water is caused to flow in a direction to return to the hot water tank 2 side (the tank return three-way valve 136 is switched to the hot water tank 2 side).

つまり、このような経路切り替え手段65の制御により、前記の如く、貯湯槽湯水熱利用の暖房運転時に、タンク戻り温度サーミスタ137により検出される貯湯槽側戻り湯水の温度がバイパス側経路切り替え温度(例えば40℃)以上の時には、前記貯湯槽側戻り湯水を貯湯槽2側には戻さずにバイパス通路135側に流し(タンク戻り三方弁136をバイパス通路135側に切り替え)て、湯水を図3の矢印Mに示すように流す(図3の斜線部分も、参照)。また、前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満の時、あるいはバイパス側経路切り替え温度未満に低下したときには、(タンク戻り三方弁136を貯湯槽2側に切り替える)制御が適宜行われ、前記貯湯槽側戻り湯水を貯湯槽2側に戻す方向に流す(図1の矢印Jの経路で流す)ようにする。   That is, by the control of the path switching means 65, the temperature of the hot water tank side return hot water detected by the tank return temperature thermistor 137 during the heating operation using the hot water of the hot water tank is changed to the bypass side path switching temperature ( For example, when the temperature is higher than 40 ° C., the hot water stored in the hot water tank is returned to the bypass passage 135 without returning to the hot water tank 2 (the tank return three-way valve 136 is switched to the bypass passage 135). (See also the shaded area in FIG. 3). Further, when the temperature of the hot water tank side return hot water is lower than the bypass side path switching temperature or when the temperature falls below the bypass side path switching temperature, control (switching the tank return three-way valve 136 to the hot water tank 2 side) is appropriately performed. The hot water tank side return hot water is made to flow in a direction to return to the hot water tank 2 side (flow along the path of arrow J in FIG. 1).

例えば、貯湯槽2内の湯の温度が80℃であって、この湯が湯水循環ループ通路131を通って液−水熱交換器130に導入され、液−水熱交換器130を通ることにより暖房用液体循環回路5の暖房用液体循環回路部位5aを通る熱媒体(ここでは湯水)に熱を伝達することにより、液−水熱交換器130を通った後の湯水温は約73℃になったとする。そうすると、タンク戻り温度サーミスタ137の検出温度が例えば約73℃となり、前記バイパス側経路切り替え温度(例えば40℃)より高いので、この時点で経路切り替え手段65がタンク戻り三方弁136をバイパス通路135側に切り替え、約73℃の湯が貯湯槽2には戻らないようにする。   For example, when the temperature of hot water in the hot water tank 2 is 80 ° C., the hot water is introduced into the liquid-water heat exchanger 130 through the hot water circulation loop passage 131 and passes through the liquid-water heat exchanger 130. By transferring heat to the heat medium (here, hot water) passing through the heating liquid circulation circuit portion 5a of the heating liquid circulation circuit 5, the hot water temperature after passing through the liquid-water heat exchanger 130 is about 73 ° C. Suppose that Then, the detected temperature of the tank return temperature thermistor 137 becomes, for example, about 73 ° C., which is higher than the bypass side path switching temperature (for example, 40 ° C.), and at this time, the path switching means 65 connects the tank return three-way valve 136 to the bypass path 135 side. The hot water at about 73 ° C. is not returned to the hot water tank 2.

そうすると、約73℃の湯は、図3に示されるようにバイパス通路135を通って循環して液−水熱交換器130に導入され、液−水熱交換器130を通って暖房用液体循環回路5の暖房用液体循環回路部位5aを通る熱媒体に熱を伝達することにより、液−水熱交換器130を通った後の湯水温は例えば約66℃になる。そうすると、タンク戻り温度サーミスタ137の検出温度は約66℃であって前記バイパス側経路切り替え温度(例えば40℃)以上であるので、タンク戻り三方弁136はバイパス通路135側のままとされ、約66℃の湯が貯湯槽2には戻らずに循環することになり、約66℃の湯が液−水熱交換器130に導入されることになる。   Then, hot water of about 73 ° C. is circulated through the bypass passage 135 and introduced into the liquid-water heat exchanger 130 as shown in FIG. 3, and the heating-liquid circulation is performed through the liquid-water heat exchanger 130. By transferring heat to the heat medium passing through the heating liquid circulation circuit portion 5a of the circuit 5, the hot water temperature after passing through the liquid-water heat exchanger 130 becomes, for example, about 66 ° C. Then, since the detection temperature of the tank return temperature thermistor 137 is about 66 ° C. and is equal to or higher than the bypass side path switching temperature (for example, 40 ° C.), the tank return three-way valve 136 remains on the bypass passage 135 side. The hot water of 0 ° C. is circulated without returning to the hot water storage tank 2, and hot water of about 66 ° C. is introduced into the liquid-water heat exchanger 130.

さらに、約66℃の湯が液−水熱交換器130に導入され、液−水熱交換器130を通って暖房用液体循環回路5の暖房用液体循環回路部位5aを通る熱媒体に熱を伝達することにより、液−水熱交換器130を通った後の湯水温は例えば約60℃になる。ここで、タンク戻り温度サーミスタ137の検出温度は約60℃であってバイパス側経路切り替え温度(例えば40℃)以上であるので、タンク戻り三方弁136はバイパス通路135側のままとされ、約60℃の湯が貯湯槽2には戻らずに循環することになるが、タンク戻り温度サーミスタ137の検出温度は約60℃になったら、本実施例では、経路切り替え手段65がポンプ駆動制御手段65に指令を加え、暖房利用ポンプ140の回転数を下げる。   Further, hot water of about 66 ° C. is introduced into the liquid-water heat exchanger 130, and heat is passed through the liquid-water heat exchanger 130 to the heat medium passing through the heating liquid circulation circuit portion 5 a of the heating liquid circulation circuit 5. By transmitting, the hot water temperature after passing through the liquid-water heat exchanger 130 becomes, for example, about 60 ° C. Here, since the detection temperature of the tank return temperature thermistor 137 is about 60 ° C. and is equal to or higher than the bypass side path switching temperature (for example, 40 ° C.), the tank return three-way valve 136 is left on the bypass passage 135 side and about 60 ° C. Although the hot water of 0 ° C. circulates without returning to the hot water storage tank 2, when the detected temperature of the tank return temperature thermistor 137 reaches about 60 ° C., in this embodiment, the path switching means 65 is replaced by the pump drive control means 65. Is added to lower the rotation speed of the heating-use pump 140.

そうすると、バイパス通路135と湯水循環ループ通路131の一部(バイパス通路135との接続部よりも貯湯槽2寄りであって、バイパス通路135との接続部から貯湯槽2との接続部までの経路を除く部分)とを通って、図3の斜線に示す経路を循環する湯水(貯湯槽2には戻らず、貯湯槽2からの湯も導出されずに循環する湯水)の流量が小さくなる。   Then, a part of the bypass passage 135 and the hot water circulation loop passage 131 (path closer to the hot water storage tank 2 than the connection portion with the bypass passage 135 and from the connection portion with the bypass passage 135 to the connection portion with the hot water tank 2. 3), the flow rate of hot water (circulating hot water that does not return to the hot water storage tank 2 and does not lead to hot water from the hot water storage tank 2) is reduced.

そうすると、約60℃の湯が液−水熱交換器130に導入されて、液−水熱交換器130を約60℃の湯水がゆっくり通り、その湯水の熱が暖房用液体循環回路5の暖房用液体循環回路部位5aを通る熱媒体にゆっくりと伝達され、液−水熱交換器130から出る湯水温は40℃未満になる。そして、このタイミングで、タンク戻り温度サーミスタ137の検出温度が前記バイパス側経路切り替え温度である40℃より低く(40℃未満と)なるので、経路切り替え手段65がタンク戻り三方弁136を貯湯槽2側に切り替える。そうすると、40℃未満の温度の湯水が貯湯槽2の下部側に流れる。   Then, about 60 ° C. hot water is introduced into the liquid-water heat exchanger 130, and about 60 ° C. hot water passes slowly through the liquid-water heat exchanger 130, and the heat of the hot water is heated in the heating liquid circulation circuit 5. The temperature of the hot water discharged from the liquid-water heat exchanger 130 is less than 40 ° C. by being slowly transmitted to the heat medium passing through the liquid circulation circuit portion 5a. At this timing, the detected temperature of the tank return temperature thermistor 137 becomes lower than 40 ° C., which is the bypass side path switching temperature (below 40 ° C.), so the path switching means 65 sets the tank return three-way valve 136 to the hot water tank 2. Switch to the side. Then, hot water having a temperature lower than 40 ° C. flows to the lower side of the hot water tank 2.

このようにすると、貯湯槽2側に流れていく40℃未満の温度の湯水はゆっくりと貯湯槽2に導入されるので、貯湯槽2の温度成層が崩れない。また、このように貯湯槽2側に湯水を導入すると同時に、貯湯槽2の上部側からは再び80℃の湯が液−水熱交換器130側に流れていき(図1の矢印J、参照)、前記動作が繰り返されることになるが、そうすると、液−水熱交換器130の出口温度が40℃未満の温度から約73℃に変わったことをタンク戻り温度サーミスタ137の検出温度で検知してバイパス弁135をバイパス通路135側に切り替える動作が行われることになる。   If it does in this way, since the hot water of the temperature below 40 degreeC which flows into the hot water tank 2 side will be slowly introduce | transduced into the hot water tank 2, the temperature stratification of the hot water tank 2 will not collapse. In addition, at the same time as hot water is introduced into the hot water tank 2 in this way, 80 ° C. hot water flows again from the upper side of the hot water tank 2 to the liquid-water heat exchanger 130 side (see arrow J in FIG. 1). ), The above operation is repeated. Then, it is detected at the detection temperature of the tank return temperature thermistor 137 that the outlet temperature of the liquid-water heat exchanger 130 has changed from a temperature below 40 ° C. to about 73 ° C. Thus, the operation of switching the bypass valve 135 to the bypass passage 135 side is performed.

ただし、仮にそのときの湯水循環ループ通路131を通る湯水の流量が多いと(つまり、一気に流れていくと)、バイパス弁135の切り替え指令から切り替え実行までの遅れ時間によって、高温の湯が貯湯槽2の下部側に流れてしまう、といったおそれがある。   However, if the flow rate of hot water passing through the hot water circulation loop passage 131 at that time is large (that is, if it flows all at once), hot water is stored in the hot water storage tank due to the delay time from the switching command of the bypass valve 135 to the switching execution. 2 may flow to the lower side.

それに対し、前記のように、液−水熱交換器130の入口では60℃となったら、暖房用ポンプ140の回転数を落として湯水循環ループ通路131を通る湯水流量を小さくした状態でバイパス弁135を切り替えれば、湯水循環ループ通路131を通る流量が少ないので、バイパス弁35の切り替えタイミングを適切にでき、高温の湯が貯湯槽の下部側に流れてしまうことを防ぐことができる。   On the other hand, as described above, when the temperature reaches 60 ° C. at the inlet of the liquid-water heat exchanger 130, the bypass valve is set in a state where the number of revolutions of the heating pump 140 is reduced and the hot water flow rate through the hot water circulation loop passage 131 is reduced. If 135 is switched, since the flow rate through the hot water circulation loop passage 131 is small, the switching timing of the bypass valve 35 can be made appropriate, and hot water can be prevented from flowing to the lower side of the hot water tank.

本実施例では、以上のような制御により、温度が高めの貯湯槽側戻り温水を貯湯槽2に戻すことなく,その温度が高い貯湯槽側戻り温水の熱を液−水熱交換器130を介し、暖房用液体循環回路5aを通る暖房用熱媒体(本実施例においては温水)に伝達しながら、湯水を湯水循環ループ通路131に循環させる動作を繰り返し行うことができ、暖房装置10aの暖房を行うことができる。そして、前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満になった時に前記貯湯槽側戻り湯水を貯湯槽2側に戻す方向に流すことで、貯湯槽2側には温度が低い貯湯槽側戻り湯水を供給することができる。   In the present embodiment, the above-described control does not return the hot water tank side return hot water having a high temperature to the hot water tank 2, and the liquid-water heat exchanger 130 converts the heat of the hot water tank side return hot water having a high temperature. Thus, the operation of circulating hot water through the hot water circulation loop passage 131 can be repeatedly performed while being transmitted to the heating heat medium (hot water in the present embodiment) passing through the heating liquid circulation circuit 5a. It can be performed. And when the temperature of the hot water tank side return hot water becomes lower than the bypass side path switching temperature, the temperature of the hot water tank 2 is low by flowing the hot water tank side return hot water back to the hot water tank 2 side. Hot water can be supplied from the hot water tank side.

なお、タンク湯水熱利用暖房運転制御手段61は、タンクサーミスタ35aの検出温度が前記暖房利用基準温度未満の時や暖房利用基準温度以上から暖房利用基準温度未満になった時には、タンクサーミスタ35aの検出温度が前記暖房利用基準温度未満であり、貯湯槽熱利用暖房運転を行わないという(貯湯槽熱利用暖房運転無しの)信号を、補助熱源装置連絡通信手段62と暖房三方弁切り替え手段65に加える。   The tank hot water / heat utilization heating operation control means 61 detects the tank thermistor 35a when the detected temperature of the tank thermistor 35a is lower than the heating utilization reference temperature or when the temperature is higher than the heating utilization reference temperature and lower than the heating utilization reference temperature. A signal indicating that the temperature is lower than the heating use reference temperature and the hot water storage tank heat utilization heating operation is not performed (no hot water tank heat utilization heating operation is performed) is applied to the auxiliary heat source device communication communication means 62 and the heating three-way valve switching means 65. .

暖房三方弁切り替え手段63は、貯湯槽熱利用暖房運転無しの信号がタンク湯水熱利用暖房運転制御手段61から加えられると、暖房三方弁143を暖房経路バイパス通路141側に切り替えて、暖房用液体循環回路5を流れる液体(湯水)が矢印K、K”、Kの順で暖房経路バイパス通路141を通って流れるようにする。 The heating three-way valve switching means 63 switches the heating three-way valve 143 to the heating path bypass passage 141 side when a signal indicating that the hot water tank heat utilization heating operation is not applied is supplied from the tank hot water heat utilization heating operation control means 61. The liquid (hot water) flowing through the circulation circuit 5 is caused to flow through the heating path bypass passage 141 in the order of arrows K, K ″, K 0 .

また、補助熱源装置連絡通信手段62は、貯湯槽熱利用暖房運転無しの信号がタンク湯水熱利用暖房運転制御手段61から加えられると、この信号を、リモコン装置66を介して(あるいは直接)給湯器116の制御装置67に加える。   When the auxiliary heat source device communication communication means 62 receives a signal indicating that there is no hot water tank heat utilization heating operation from the tank hot water heat utilization heating operation control means 61, the auxiliary heat source apparatus communication communication means 62 supplies this signal via the remote control device 66 (or directly). To the control device 67 of the device 116.

給湯器116の制御装置67は、暖房開始信号が給湯器116の制御装置67に加えられると前記の如く給湯器116内の液体循環ポンプ6を駆動させるが、それに加えて補助熱源装置連絡通信手段62から貯湯槽熱利用暖房運転無しの信号が加えられたときには、図示されていない燃焼制御手段により暖房用のバーナ16の燃焼を制御し、前記のようにして、暖房用液体循環回路5を通る熱媒体を加熱し、その熱により暖房運転(バーナ燃焼熱利用暖房運転)を行う。   When the heating start signal is applied to the controller 67 of the water heater 116, the controller 67 of the water heater 116 drives the liquid circulation pump 6 in the water heater 116 as described above. In addition to this, the auxiliary heat source device communication communication means. When a signal indicating no hot water tank heating operation is added from 62, combustion of the heating burner 16 is controlled by a combustion control means (not shown), and the heating liquid circulation circuit 5 is passed through as described above. The heat medium is heated, and heating operation (heating operation using burner combustion heat) is performed by the heat.

このように、給湯器116は、貯湯槽2から湯水循環ループ通路131を通して流れる湯水の熱を、暖房用液体循環回路5を通して流れる暖房用熱媒体に液−水熱交換器130を介して伝達する熱交換のみでは暖房装置10aに供給する熱量が足りないときには、制御装置67の制御によって、暖房用液体循環回路5を通る熱媒体を暖房用熱交換器により加熱して暖房装置10aに供給する補助加熱手段としても機能する。   In this way, the water heater 116 transmits the heat of hot water flowing from the hot water tank 2 through the hot water circulation loop passage 131 to the heating heat medium flowing through the heating liquid circulation circuit 5 via the liquid-water heat exchanger 130. When the amount of heat supplied to the heating device 10a is insufficient by only heat exchange, the control unit 67 controls the heating medium passing through the heating liquid circulation circuit 5 to be heated by the heating heat exchanger and supplied to the heating device 10a. It also functions as a heating means.

本実施例では、以上のような構成により、発電装置1の排熱を有効利用して暖房装置10aの加熱を行え、かつ、その熱交換のために用いられる液−水熱交換器130を小型の液−水熱交換器130とすることができるので、快適な暖房が行える小型でコストが安い熱源装置を提供できる。そして、発電装置1の排熱を暖房に有効利用することができ、特に冬に需要が多くなる電力を長時間の発電装置1の稼働によって多く形成できることができる、省エネ効率の高い優れた熱源装置を実現できる。しかも、本実施例では、発電装置1の排熱利用では暖房が十分に行えない場合には給湯器116による加熱により暖房を行うことができ、臨機応変に暖房に用いられる熱源を切り替えて快適な暖房が行える。   In the present embodiment, with the above-described configuration, the heating device 10a can be heated by effectively using the exhaust heat of the power generation device 1, and the liquid-water heat exchanger 130 used for the heat exchange can be reduced in size. Therefore, it is possible to provide a small-sized and low-cost heat source device that can perform comfortable heating. And it is possible to effectively use the exhaust heat of the power generation device 1 for heating, and in particular, an excellent heat source device with high energy saving efficiency that can generate a lot of electric power that is in demand in winter by operating the power generation device 1 for a long time. Can be realized. In addition, in the present embodiment, when the exhaust heat of the power generation apparatus 1 cannot be sufficiently heated, the heating by the water heater 116 can be performed, and the heat source used for the heating can be changed as needed to be comfortable. Heating is possible.

図5には、このような暖房運転についての作動フローがフローチャートにより示されている。同図に示されるように、ステップS1で、リモコン装置66の操作によって暖房運転がオンされると、ステップS2で、給湯器116内の液体循環ポンプ6の駆動が行われ(暖房用ポンプがオンされ)、ステップS3で、貯湯槽2内の蓄熱があるかどうかの判断が行われる。この判断は、例えばタンクサーミスタ35aの検出温度が60℃以上かどうかにより行われ、60℃以上であって貯湯槽2内に蓄熱があると判断された場合はステップS4に進み、60℃未満の時には貯湯槽2内に蓄熱がないと判断され、ステップS12に進む。なお、ステップS12の動作については後述する。   FIG. 5 is a flowchart showing an operation flow for such a heating operation. As shown in the figure, when the heating operation is turned on by operating the remote control device 66 in step S1, the liquid circulation pump 6 in the water heater 116 is driven in step S2 (the heating pump is turned on). In step S3, it is determined whether or not there is heat storage in the hot water tank 2. This determination is made based on, for example, whether or not the detected temperature of the tank thermistor 35a is 60 ° C. or higher. If it is determined that there is heat storage in the hot water tank 2 when the temperature is 60 ° C. or higher, the process proceeds to step S4. Sometimes it is determined that there is no heat storage in the hot water tank 2, and the process proceeds to step S12. The operation in step S12 will be described later.

ステップS4に進んだ場合、蓄熱利用暖房運転(貯湯槽2に貯湯されている湯水の熱を利用しての貯湯槽熱利用暖房運転)が開始される。つまり、蓄熱利用ポンプ(暖房用利用ポンプ140)がオンされるとともに、暖房切替弁(暖房三方弁143)が液−水熱交換器130側にされ(つまり、貯湯槽2の蓄熱利用側とされ)、タンク戻り三方弁136が貯湯槽2(タンク)側とされ、貯湯槽熱利用暖房運転が行われる。その後、随時、ステップS5で、貯湯槽2内の蓄熱があるかどうかの判断が行われ、タンクサーミスタ35aの検出温度が60℃未満となって貯湯槽2内に蓄熱がないと判断されたときにはステップS12に進む。一方、ステップS5で、貯湯槽2内の蓄熱があるかどうかの判断が行われた際、タンクサーミスタ35aの検出温度が60℃以上で貯湯槽2内に蓄熱があると判断されたときにはステップS6に進む。   When it progresses to step S4, the heat storage utilization heating operation (The hot water storage tank heat utilization heating operation using the heat of the hot water stored in the hot water tank 2) is started. That is, the heat storage use pump (heating use pump 140) is turned on, and the heating switching valve (heating three-way valve 143) is set to the liquid-water heat exchanger 130 side (that is, the heat storage use side of the hot water tank 2). ), The tank return three-way valve 136 is set to the hot water tank 2 (tank) side, and the hot water tank heat utilization heating operation is performed. Thereafter, at any time, in step S5, it is determined whether there is heat storage in the hot water tank 2, and when it is determined that the detected temperature of the tank thermistor 35a is less than 60 ° C. and there is no heat storage in the hot water tank 2. Proceed to step S12. On the other hand, when it is determined in step S5 whether or not there is heat storage in the hot water tank 2, if it is determined that the detected temperature of the tank thermistor 35a is 60 ° C. or higher and there is heat storage in the hot water tank 2, step S6. Proceed to

ステップS6では、タンク戻り温サーミスタ137(サーミスタTH)の検出温度が40℃以上かどうかが判断され、40℃以上の時にはステップS7で、経路切り替え手段65によりタンク戻り三方弁136がバイパス通路135側とされる。この状態で、ステップS8では、タンク戻り温サーミスタ137の検出温度が40℃以上かどうかが判断され、40℃以上の時にはそのままで、40℃未満となったら、ステップS9で、経路切り替え手段65によりタンク戻り三方弁136が貯湯槽2側とされる。このような動作により、前記の如く、タンク戻り温サーミスタ137の温度に基づき、湯水循環ループ通路131内を循環する湯水の経路が適宜切り替えられる。   In step S6, it is determined whether or not the detected temperature of the tank return temperature thermistor 137 (thermistor TH) is 40 ° C. or higher. If it is 40 ° C. or higher, the tank return three-way valve 136 is connected to the bypass passage 135 side by the path switching means 65 in step S7. It is said. In this state, in step S8, it is determined whether or not the detected temperature of the tank return temperature thermistor 137 is 40 ° C. or higher. If the temperature is 40 ° C. or higher, the temperature is kept below 40 ° C. The tank return three-way valve 136 is on the hot water tank 2 side. By such an operation, as described above, the hot water path circulating in the hot water circulation loop path 131 is appropriately switched based on the temperature of the tank return temperature thermistor 137.

また、ステップS10で、暖房戻り温度(タンク戻り温度サーミスタ137の検出温度)がタンク上部温度(タンクサーミスタ35aの検出温度)よりも高くなったとき(例えば貯湯槽2内の高温の湯を給湯により使い切ってしまった場合等)には、ステップS11で、蓄熱利用暖房運転を停止し、暖房利用ポンプ140をオフとし、ステップS12に進む。   In step S10, when the heating return temperature (detected temperature of the tank return temperature thermistor 137) becomes higher than the tank upper temperature (detected temperature of the tank thermistor 35a) (for example, hot water in the hot water tank 2 is replaced by hot water supply). If it has been used up), in step S11, the heat storage use heating operation is stopped, the heating use pump 140 is turned off, and the process proceeds to step S12.

ステップS12では、給湯器116の暖房用バーナの燃焼熱を利用した暖房(バーナ燃焼熱利用暖房運転)が行われる。つまり、給湯器116内において暖房燃焼運転が開始され、その暖房運転が継続される。なお、この際、暖房切替弁(暖房三方弁)143が燃焼熱利用側とされる。そして、ステップS13で、リモコン装置66によって暖房運転がオフとされたときには、ステップS14で暖房運転がオフとされ、暖房用のバーナ16の燃焼が停止され、湯水循環ポンプ6(暖房用ポンプ)も停止され、暖房切替弁143は燃焼熱利用側のままとされる。   In step S12, heating using the combustion heat of the heating burner of the water heater 116 (burner combustion heat utilization heating operation) is performed. That is, the heating combustion operation is started in the water heater 116, and the heating operation is continued. At this time, the heating switching valve (heating three-way valve) 143 is set to the combustion heat utilization side. When the heating operation is turned off by the remote control device 66 in step S13, the heating operation is turned off in step S14, the combustion of the heating burner 16 is stopped, and the hot water circulation pump 6 (heating pump) is also turned on. The heating switching valve 143 is left on the combustion heat utilization side.

なお、本発明は、前記実施例に限定されるものでなく、適宜設定されるものである。例えば、本発明の熱源装置のシステム構成の詳細は必ずしも図1〜図3に示される構成とは限らず、適宜設定されるものである。例えば、暖房用液体循環回路5を循環させる液体の熱媒体は必ずしも温水とするとは限らず、不凍液等の他の液体により形成することもできる。   In addition, this invention is not limited to the said Example, It sets suitably. For example, the details of the system configuration of the heat source device of the present invention are not necessarily limited to the configurations shown in FIGS. 1 to 3 and are set as appropriate. For example, the liquid heat medium circulating in the heating liquid circulation circuit 5 is not necessarily hot water, but may be formed of other liquids such as antifreeze liquid.

また、給湯側のシステム構成は、図1〜図3に示される構成とは限らず、適宜形成されるものである。   Moreover, the system configuration on the hot water supply side is not limited to the configuration shown in FIGS.

さらに、前記実施例では、タンクサーミスタ35aの検出温度が前記暖房利用基準温度未満の時や暖房利用基準温度以上から暖房利用基準温度未満になった時には、貯湯槽熱利用暖房運転を行わずに、給湯器116側のバーナ燃焼により暖房用液体循環回路5aを通る温水を加熱する運転に切り替えるようにしたが、例えばタンクサーミスタ35aの検出温度を取り込み、その検出温度が前記暖房利用基準温度(例えば60℃)未満であっても、その温度と暖房利用基準温度との温度差が予め定められる許容範囲内(例えば10℃以下)である場合(例えばタンクサーミスタ35aの検出温度が55℃のような場合)には、貯湯槽熱利用暖房運転を行いつつ、貯湯槽2から液−水熱交換器130側に送られる湯水の熱量では足りない分を給湯器116側のバーナ燃焼により補うようにしてもよい。   Furthermore, in the said Example, when the detection temperature of the tank thermistor 35a is less than the said heating utilization reference temperature, or when it becomes less than the heating utilization reference temperature from the heating utilization reference temperature, it does not perform hot water tank heat utilization heating operation, The operation is switched to the operation of heating the hot water passing through the heating liquid circulation circuit 5a by burner combustion on the water heater 116 side. For example, the detected temperature of the tank thermistor 35a is taken in, and the detected temperature is the heating utilization reference temperature (for example, 60 If the temperature difference between the temperature and the heating utilization reference temperature is within a predetermined allowable range (for example, 10 ° C. or less) (for example, the detected temperature of the tank thermistor 35a is 55 ° C.) ), The amount of hot water sent from the hot water tank 2 to the liquid-water heat exchanger 130 side is not enough to supply hot water while performing the hot water heating operation. It may be compensated by the burner combustion of 116 side.

この場合、暖房三方弁143を暖房経路バイパス通路141側に切り替えることはせずに、暖房用液体循環回路5を流れる液体(湯水)が図1の矢印K、K’Kの順に流れるようにし、液−水熱交換器130で加熱して給湯器116に戻ってきた熱媒体(例えば温水)をさらに給湯器116内の暖房用熱交換器28で加熱して暖房装置10aに供給する。 In this case, the heating three-way valve 143 is not switched to the heating path bypass passage 141 side, but the liquid (hot water) flowing through the heating liquid circulation circuit 5 flows in the order of arrows K and K′K 0 in FIG. The heat medium (for example, hot water) heated by the liquid-water heat exchanger 130 and returned to the water heater 116 is further heated by the heating heat exchanger 28 in the water heater 116 and supplied to the heating device 10a.

さらに、前記実施例では、暖房装置(高温暖房装置)10bの運転と暖房装置(低温暖房装置)10aの運転とが同時に行われる場合には、貯湯槽熱利用暖房運転は行わないようにしたが、例えば暖房装置10bの運転中に給湯器116側から暖房装置10aに供給する熱量を小さくできる構成や、暖房装置10aには給湯器116側からは熱量を供給しないようにできる構成を給湯器116に設ければ、暖房装置10bの運転と暖房装置10aの運転とが同時に行われる場合にも、適宜、暖房装置10aの貯湯槽熱利用暖房運転を行うようにしてもよい。   Furthermore, in the said Example, when the driving | operation of the heating apparatus (high temperature heating apparatus) 10b and the driving | operation of the heating apparatus (low temperature heating apparatus) 10a were performed simultaneously, it was made not to perform hot water storage tank heat utilization heating operation. For example, a configuration in which the amount of heat supplied to the heating device 10a from the hot water heater 116 side during the operation of the heating device 10b can be reduced, or a configuration in which the amount of heat is not supplied from the hot water heater 116 side to the heating device 10a. In the case where the operation of the heating device 10b and the operation of the heating device 10a are performed at the same time, the heating operation using the hot water in the hot water tank of the heating device 10a may be appropriately performed.

この場合も、暖房装置10aへの供給熱量を全て貯湯槽熱利用暖房運転により得られるようにしてもよいし、暖房装置10aへの供給熱量の一部を貯湯槽熱利用暖房運転により得て不足分を給湯器116側から供給するようにしてもよい。   Also in this case, all of the amount of heat supplied to the heating device 10a may be obtained by the heating operation using hot water storage tank heat, or a part of the amount of heat supplied to the heating device 10a is obtained by the heating operation using hot water storage tank heat and insufficient. You may make it supply a part from the water heater 116 side.

さらに、前記実施例では、タンク戻り温度サーミスタ137の検出温度が約60℃になったら暖房利用ポンプ140の回転数を下げるようにしたが、このような制御は行わなくても構わない。ただし、このような制御を行った方が前記実施例のような効果を得られるため、好ましい。   Further, in the above-described embodiment, when the temperature detected by the tank return temperature thermistor 137 reaches about 60 ° C., the rotation speed of the heating pump 140 is decreased. However, such control may not be performed. However, it is preferable to perform such control because the effect as in the above-described embodiment can be obtained.

さらに、本発明の熱源装置により加熱される暖房装置10は特に限定されるものではなく適宜設定されるものであり、温水マット等の暖房マットのように、低温の液体の熱媒体を供給することにより暖房する装置(例えば温水ルームヒータ等)が低温暖房用液体循環回路部位5aに接続されて湯水循環ループ通路131に熱的に接続される。   Further, the heating device 10 heated by the heat source device of the present invention is not particularly limited and is appropriately set, and supplies a low-temperature liquid heat medium like a heating mat such as a hot water mat. A device for heating (for example, a hot water room heater) is connected to the low-temperature heating liquid circulation circuit portion 5a and thermally connected to the hot water circulation loop passage 131.

さらに、暖房用液体循環回路5aにおいて、暖房三方弁143と暖房用バイパス管路141は省略することもできる。ただし、その場合、暖房用液体循環回路5aを通る液体が必ず液−水熱交換器130を通って循環することになるため、貯湯槽2の蓄熱利用ができない時には液−水熱交換器130を通ることにより熱が無駄に放熱されてしまうことになることになる。そのため、前記実施例のように、暖房三方弁143とその制御のための暖房三方弁46、暖房用バイパス管路141を設けることが好ましい。   Furthermore, in the heating liquid circulation circuit 5a, the heating three-way valve 143 and the heating bypass line 141 can be omitted. However, in that case, since the liquid passing through the heating liquid circulation circuit 5a always circulates through the liquid-water heat exchanger 130, when the heat storage in the hot water tank 2 cannot be used, the liquid-water heat exchanger 130 is used. If it passes, heat will be dissipated wastefully. Therefore, it is preferable to provide the heating three-way valve 143, the heating three-way valve 46 for controlling the same, and the heating bypass pipe 141 as in the above embodiment.

さらに、発電装置1はガスエンジンによっても形成することができる。   Furthermore, the power generator 1 can also be formed by a gas engine.

本発明の発電機能付き熱源装置は、発電と熱利用を効率的に行える低コストの熱源装置にできるので、例えば家庭用の熱源装置として利用できる。   Since the heat source device with a power generation function of the present invention can be a low-cost heat source device that can efficiently generate power and use heat, it can be used as a heat source device for home use, for example.

1 発電装置
2 貯湯槽
3 熱回収用通路
5 暖房用液体循環回路
5a 低温暖房用液体循環回路部位
5b 高温暖房用液体循環回路部位
10,10a,10b 暖房装置
35 タンクサーミスタ
60 制御装置
61 タンク湯水熱利用暖房運転制御手段
62 補助熱源装置連絡通信手段
63 暖房三方弁切り替え手段
64 ポンプ駆動制御手段
65 経路切り替え手段
66 リモコン装置
104 貯湯ユニット
116 給湯器
130 液−水熱交換器
131 湯水循環ループ通路
135 バイパス通路
136 タンク戻り三方弁
137 タンク戻り温度サーミスタ
140 暖房利用ポンプ
DESCRIPTION OF SYMBOLS 1 Power generator 2 Hot water storage tank 3 Heat recovery passage 5 Heating liquid circulation circuit 5a Low temperature heating liquid circulation circuit part 5b High temperature heating liquid circulation circuit part 10, 10a, 10b Heating apparatus 35 Tank thermistor 60 Controller 61 Tank hot water heat Heating operation control means 62 Auxiliary heat source device communication means 63 Heating three-way valve switching means 64 Pump drive control means 65 Path switching means 66 Remote control device 104 Hot water storage unit 116 Hot water heater 130 Liquid-water heat exchanger 131 Hot water circulation loop passage 135 Bypass Passage 136 Tank return three-way valve 137 Tank return temperature thermistor 140 Heating pump

Claims (3)

発電装置と、貯湯槽と、該貯湯槽の下部側から前記発電装置に冷却用の水を供給し該発電装置の排熱により加熱された湯を前記貯湯槽の上部側から該貯湯槽に導入する熱回収用回路と、前記貯湯槽の上部側から該貯湯槽の湯水を導出して該湯水を液−水熱交換器に通した後に前記貯湯槽の下部側から該貯湯槽に戻す湯水循環ループ通路とを有し、液体の暖房用熱媒体を暖房装置に通して循環させる暖房用液体循環回路が前記液−水熱交換器を介して前記湯水循環ループ通路に熱的に接続されており、該湯水循環ループ通路には前記液−水熱交換器の出側から前記貯湯槽側に流れる貯湯槽側戻り湯水を前記貯湯槽には戻さずに前記液−水熱交換器の入側に戻すようにするバイパス通路が設けられ、前記貯湯槽から前記湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる前記暖房用熱媒体に前記液−水熱交換器を介して伝達し該暖房用熱媒体を前記暖房装置に通して暖房運転を行う際に、前記貯湯槽側戻り湯水の温度が予め定められるバイパス側経路切り替え温度以上の時には前記貯湯槽側戻り湯水を前記貯湯槽側には戻さずに前記バイパス通路側に流し、前記貯湯槽側戻り湯水の温度が前記バイパス側経路切り替え温度未満の時には前記貯湯槽側戻り湯水を前記貯湯槽側に戻す方向に流す経路切り替え手段が設けられていることを特徴とする発電機能付き熱源装置。   A power generator, a hot water tank, and cooling water is supplied to the power generator from the lower side of the hot water tank, and hot water heated by the exhaust heat of the power generator is introduced into the hot water tank from the upper side of the hot water tank. A circuit for recovering heat, and hot water circulation for returning hot water in the hot water tank from the upper side of the hot water tank and returning the hot water to the hot water tank from the lower side of the hot water tank after passing the hot water through a liquid-water heat exchanger And a heating liquid circulation circuit that circulates a heating medium for liquid heating through the heating device and is thermally connected to the hot water circulation loop passage through the liquid-water heat exchanger. In the hot water circulation loop passage, the hot water tank-side return hot water flowing from the outlet side of the liquid-water heat exchanger to the hot water tank side is not returned to the hot water tank, but is returned to the inlet side of the liquid-water heat exchanger. A bypass passage is provided to return the water from the hot water tank through the hot water circulation loop passage. When the flowing hot water is transmitted to the heating heat medium flowing through the heating liquid circulation circuit via the liquid-water heat exchanger and the heating heat medium is passed through the heating device to perform the heating operation, When the temperature of the hot water tank side return hot water is equal to or higher than a predetermined bypass side path switching temperature, the hot water tank side return hot water is not returned to the hot water tank side but flows to the bypass passage side, and the hot water tank side return hot water is returned. A heat source device with a power generation function, characterized in that path switching means is provided for flowing the hot water tank side return hot water back to the hot water tank side when the temperature is lower than the bypass side path switching temperature. バーナ燃焼によって加熱される暖房用熱交換器が暖房用液体循環回路に設けられており、貯湯槽から湯水循環ループ通路を通して流れる湯水の熱を前記暖房用液体循環回路を通して流れる暖房用熱媒体に液−水熱交換器を介して伝達する熱交換のみでは暖房装置に供給する熱量が足りないときには前記暖房用液体循環回路を通る液体を前記暖房用熱交換器により加熱して前記暖房装置に供給する補助加熱手段を有することを特徴とする請求項1記載の発電機能付き熱源装置。   A heating heat exchanger heated by burner combustion is provided in the heating liquid circulation circuit, and the heat of hot water flowing from the hot water tank through the hot water circulation loop passage is transferred to the heating heat medium flowing through the heating liquid circulation circuit. -When the amount of heat supplied to the heating device is insufficient only by heat exchange transmitted through the water heat exchanger, the liquid passing through the heating liquid circulation circuit is heated by the heating heat exchanger and supplied to the heating device. The heat source device with a power generation function according to claim 1, further comprising auxiliary heating means. 発電装置は燃料電池としたことを特徴とする請求項1または請求項2記載の発電機能付き熱源装置。   3. The heat source device with a power generation function according to claim 1, wherein the power generation device is a fuel cell.
JP2017155388A 2017-08-10 2017-08-10 Heat source device with electricity generating function Pending JP2019035512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017155388A JP2019035512A (en) 2017-08-10 2017-08-10 Heat source device with electricity generating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017155388A JP2019035512A (en) 2017-08-10 2017-08-10 Heat source device with electricity generating function

Publications (1)

Publication Number Publication Date
JP2019035512A true JP2019035512A (en) 2019-03-07

Family

ID=65637358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155388A Pending JP2019035512A (en) 2017-08-10 2017-08-10 Heat source device with electricity generating function

Country Status (1)

Country Link
JP (1) JP2019035512A (en)

Similar Documents

Publication Publication Date Title
JP5613039B2 (en) Heat source equipment
JP6055356B2 (en) Heat source equipment
JP2001248906A (en) Exhaust heat recovering hot water supply system
JP5887038B2 (en) Heat source equipment
JP2018173228A (en) Heat source device
JP6209117B2 (en) Heat source equipment
JP2012052752A (en) Heat source device
JP2019035512A (en) Heat source device with electricity generating function
JP6088771B2 (en) Heat source equipment
JP6147541B2 (en) Heat source equipment
JP5567947B2 (en) Heat source equipment
JP6143092B2 (en) Hot water storage system
JP2005009747A (en) Hot water storage type hot-water supply device
JP6403631B2 (en) Hot water storage unit
JP6403630B2 (en) Hot water storage unit
JP5671304B2 (en) Heat source equipment
JP6396833B2 (en) Heat source system
JP6125877B2 (en) Heat source equipment
JP6191352B2 (en) Hot water storage system
JP6843679B2 (en) Heat source device
JP2008292028A (en) Heat supply device
JP6320117B2 (en) Heat source equipment
JP2017040379A (en) Heat source device
JP2017026232A (en) Hot water supply system
JP2008281335A (en) Hot water storage type water heater