JP2019034269A - Filter medium for filter, and filter medium for laminated filter - Google Patents

Filter medium for filter, and filter medium for laminated filter Download PDF

Info

Publication number
JP2019034269A
JP2019034269A JP2017156772A JP2017156772A JP2019034269A JP 2019034269 A JP2019034269 A JP 2019034269A JP 2017156772 A JP2017156772 A JP 2017156772A JP 2017156772 A JP2017156772 A JP 2017156772A JP 2019034269 A JP2019034269 A JP 2019034269A
Authority
JP
Japan
Prior art keywords
fiber
filter
filter medium
fibers
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017156772A
Other languages
Japanese (ja)
Other versions
JP7081911B2 (en
Inventor
吉田 光男
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2017156772A priority Critical patent/JP7081911B2/en
Publication of JP2019034269A publication Critical patent/JP2019034269A/en
Application granted granted Critical
Publication of JP7081911B2 publication Critical patent/JP7081911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

To provide a filter medium for a liquid filter, and a filter medium for an air filter, which can capture fine particulate matter and processed waste by filtration.SOLUTION: A filter medium for a filter includes non-meltable oriented polyethylene terephthalate fibers, acrylic fibers, fibrillated organic fibers, and hot-melt binder fibers. In a filter medium for a laminated filter, the filter medium for the filter, which serves as a dense layer, is superposed on a coarse layer and integrated with it.SELECTED DRAWING: None

Description

本発明は、液体中に含有される粒子を効率良く除去し、清浄な液体を得るための液体フィルタ用濾材、空気中の粉塵を捕集するエアフィルタ用濾材等のフィルタ用濾材に関するものである。   The present invention relates to a filter material for a filter such as a filter material for a liquid filter for efficiently removing particles contained in the liquid and obtaining a clean liquid, and a filter medium for an air filter for collecting dust in the air. .

液体フィルタ用濾材の構造には大きく分けて2つある。一つは「内部濾過タイプ」であり、これは濾材の内部で固体粒子を捕捉する構造の濾材である。もう一つは「表面濾過タイプ」であり、これは濾材の表面で固体粒子を捕捉する構造の濾材である(例えば、特許文献1参照)。また、これらの濾材は、プリーツ加工を施されて濾材の表面積を増大させてから所定の形状に成形して液体フィルタが作製され、他の部品と組み合わせて濾過機にセットして使用される。   There are roughly two structures of the filter medium for liquid filters. One is an “internal filtration type”, which is a filter medium structured to trap solid particles inside the filter medium. The other is a “surface filtration type”, which is a filter medium having a structure of capturing solid particles on the surface of the filter medium (see, for example, Patent Document 1). These filter media are pleated to increase the surface area of the filter media and then molded into a predetermined shape to produce a liquid filter, which is used in combination with other components in a filter.

従来、放電加工機やIC生産工程で使用されている液体フィルタ用濾材や自動車用エンジンオイル、燃料等各種液体用の液体フィルタ用濾材には、天然パルプと有機繊維の混抄シートにフェノール樹脂等を含浸処理したシート、ポリエステルスパンボンド不織布等が使用されているが、濾過効率が低く、寿命が短い等の欠点があった。また、高性能の濾材としてフッ素樹脂等の多孔質シートがあるが、高価なため、特殊用途に限定され、多量の液体を処理する濾材としては不適当であった。   Conventionally, the filter media for liquid filters used in electrical discharge machines and IC production processes, and the filter media for various types of liquids such as automobile engine oils and fuels are made of natural pulp and organic fiber mixed sheets with phenolic resin. Although impregnated sheets, polyester spunbonded nonwoven fabrics, and the like are used, there are disadvantages such as low filtration efficiency and short life. In addition, a porous sheet such as a fluororesin is available as a high-performance filter medium. However, since it is expensive, it is limited to special applications and is not suitable as a filter medium for treating a large amount of liquid.

これらの問題を解決する濾材の一つとして、1μm以下にフィブリル化された有機繊維5〜40質量%と、繊維径1〜5μmの極細有機繊維5〜60質量%及び繊維径5μm以上の有機繊維20〜70質量%からなり、且つ該繊維径5μm以上の有機繊維の一部又は全部が繊維状有機バインダーであり、濾材密度が0.25〜0.8g/cmである表面濾過タイプの液体濾過用の濾材が開示されている(例えば、特許文献2参照)。この濾材は、フィブリル化された有機繊維が固体粒子の捕集効率を発現し、その他の有機繊維との含有量を限定することで、圧力損失を抑え、多量の液体を効率良く短時間で処理することができる。 As one of the filter media for solving these problems, 5 to 40% by mass of organic fibers fibrillated to 1 μm or less, 5 to 60% by mass of ultrafine organic fibers having a fiber diameter of 1 to 5 μm, and organic fibers having a fiber diameter of 5 μm or more. A surface filtration type liquid comprising 20 to 70% by mass and part or all of the organic fiber having a fiber diameter of 5 μm or more is a fibrous organic binder, and the density of the filter medium is 0.25 to 0.8 g / cm 3. A filter medium for filtration is disclosed (for example, see Patent Document 2). In this filter medium, the fibrillated organic fiber expresses the collection efficiency of solid particles and limits the content with other organic fibers to suppress pressure loss and efficiently process a large amount of liquid in a short time. can do.

特許文献2の濾材は、厚みが非常に薄く、堅くないために、ひだ折り加工ができない問題があったことから、強度や腰(堅さ)を向上させるために、薄くて表面濾過性能に優れた濾材を濾材層とし、液体の透過性が良く、高強度で、ひだ折り加工性のよい支持体層を抄き合わせ、一体化した液体濾過用フィルタ濾材が開示されている(例えば、特許文献3参照)。   The filter medium of Patent Document 2 has a problem that it cannot be fold-folded because the thickness is very thin and not stiff, so it is thin and has excellent surface filtration performance in order to improve strength and waist (stiffness). In addition, a filter medium for liquid filtration is disclosed in which a filter medium is used as a filter medium layer, and a support layer having good liquid permeability, high strength, and good crease workability is combined (for example, patent document) 3).

近年、加工精度が高まることによって加工屑の微細化が進んでおり、清浄な濾過液を確保するためには、濾過精度のより高いフィルタ濾材が求められている。   In recent years, the processing precision has been increased, and the refinement of the processing waste has progressed. In order to ensure a clean filtrate, a filter medium with higher filtration precision is required.

特開2000−70628号公報JP 2000-70628 A 特許第2633355号公報Japanese Patent No. 2633355 特許第3305372号公報Japanese Patent No. 3305372

本発明の課題は、微細な粉塵や加工屑を濾過により捕捉可能な液体フィルタ用濾材やエアフィルタ用濾材を提供することにある。   The subject of this invention is providing the filter medium for liquid filters and the filter medium for air filters which can capture | acquire fine dust and processed waste by filtration.

本発明者は、上記課題を解決するために鋭意検討した結果、
(1)非溶融性の延伸ポリエチレンテレフタレート繊維、アクリル繊維及びフィブリル化した有機繊維並びに熱溶融性のバインダー繊維を含有してなるフィルタ用濾材、
(2)上記(1)に記載のフィルタ用濾材を密層とし、粗層と積層して一体化されてなる積層フィルタ用濾材、
を見出した。
As a result of intensive studies to solve the above problems, the present inventor,
(1) a filter medium for a filter comprising non-meltable stretched polyethylene terephthalate fiber, acrylic fiber, fibrillated organic fiber, and heat-meltable binder fiber,
(2) The filter medium for a filter according to the above (1) is a dense layer, and is laminated and integrated with a coarse layer;
I found.

フィルタ用濾材の捕集効率を高める方法としては、非常に細い繊維径のフィブリル化した有機繊維を活用することが有効である。しかし、フィブリル化した有機繊維の繊維径が細いために、湿式法でフィルタ用濾材を製造する場合には、抄紙網から繊維が脱落し易い。また、脱落せずに抄紙網上に残ったフィブリル化した有機繊維を含有するフィルタ用濾材は、密度が過剰に高まることにより、通気性、通液性が低下する傾向にあった。そこで、毛羽立ち易いアクリル繊維を併用することよって、フィブリル化した有機繊維とアクリル繊維がネットワークを形成し、抄紙網からフィブリル化した有機繊維が脱落することを抑制できる。また、延伸ポリエチレンテレフタレート繊維を併用することによって、延伸ポリエチレンテレフタレート繊維がフィブリル化した有機繊維とアクリル繊維によるネットワークの間に存在することにより、三次元のネットワークを形成し、通気性や通液性を高めることができる。さらに、熱溶融性のバインダー繊維を含有することにより、フィルタ用濾材からの繊維脱落を防止すると共に、フィルタ用濾材の強度を高めることが可能となる。   As a method for increasing the collection efficiency of the filter medium for filters, it is effective to use fibrillated organic fibers having a very thin fiber diameter. However, since the fiber diameter of the fibrillated organic fiber is thin, when the filter medium for the filter is produced by a wet method, the fiber is easily dropped from the papermaking net. Further, the filter medium containing fibrillated organic fibers remaining on the papermaking net without falling off tends to decrease the air permeability and liquid permeability due to excessive increase in density. Then, by using together the acrylic fiber which is easy to fluff, it can suppress that the fibrillated organic fiber and acrylic fiber form a network, and the fibrillated organic fiber falls off from the papermaking net. In addition, by using the stretched polyethylene terephthalate fiber together, the stretched polyethylene terephthalate fiber exists between the fibrillated organic fiber and the acrylic fiber network, thereby forming a three-dimensional network and improving air permeability and liquid permeability. Can be increased. Furthermore, by containing a heat-meltable binder fiber, it is possible to prevent the fibers from dropping from the filter medium and to increase the strength of the filter medium.

また、非溶融性の延伸ポリエチレンテレフタレート繊維、アクリル繊維及びフィブリル化した有機繊維並びに熱溶融性のバインダー繊維を含有してなるフィルタ用濾材を密層として、粗層と積層して一体化されてなる積層フィルタ用濾材は、液体の透過性が良く、高強度で、プリーツ加工適性が良好となる。   In addition, the filter medium for filter containing non-melting stretched polyethylene terephthalate fiber, acrylic fiber, fibrillated organic fiber, and heat-meltable binder fiber is used as a dense layer and laminated with a coarse layer. The filter medium for multilayer filters has good liquid permeability, high strength, and good pleating processability.

以下、本発明のフィルタ用濾材について詳説する。本発明のフィルタ用濾材は、非溶融性の延伸ポリエチレンテレフタレート(PET)繊維、アクリル繊維及びフィブリル化した有機繊維並びに熱溶融性のバインダー繊維を含有することを特徴とする。延伸PET繊維とアクリル繊維は、非フィブリル化繊維であり、「ステープル」と呼ばれる短繊維である。また、「熱溶融性」とは、フィルタ用濾材製造時の加熱処理(例えば、乾燥処理、熱カレンダー処理等)によって、熱溶融する性質である。そして、「非溶融性」とは、該加熱処理によって熱溶融しない性質である。   Hereinafter, the filter medium of the present invention will be described in detail. The filter medium of the present invention is characterized by containing non-melting stretched polyethylene terephthalate (PET) fiber, acrylic fiber, fibrillated organic fiber, and heat-melting binder fiber. Stretched PET fibers and acrylic fibers are non-fibrillated fibers and are short fibers called “staples”. “Heat-melting property” refers to a property of heat-melting by heat treatment (for example, drying treatment, heat calender treatment, etc.) at the time of producing filter media for a filter. The “non-melting property” is a property that does not melt by heat treatment.

延伸PET繊維の繊維長は、好ましくは2〜10mmであり、より好ましくは3〜7mmである。繊維長が2mm未満の場合、延伸PET繊維が抄紙網から脱落する場合があり、繊維長が10mmを超えた場合は、地合いが悪化する場合がある。延伸PET繊維の繊度は、好ましくは0.05〜1.0dtexであり、より好ましくは0.1〜0.8dtexである。繊度が0.05dtex未満の場合、抄紙網から離脱する場合があり、繊度が1.0dtexを超えた場合は、ネットワークの空隙が大きくなり、捕集効率が低下する場合がある。   The fiber length of the stretched PET fiber is preferably 2 to 10 mm, more preferably 3 to 7 mm. When the fiber length is less than 2 mm, the stretched PET fiber may fall off from the papermaking net, and when the fiber length exceeds 10 mm, the texture may deteriorate. The fineness of the stretched PET fiber is preferably 0.05 to 1.0 dtex, more preferably 0.1 to 0.8 dtex. When the fineness is less than 0.05 dtex, the paper may be detached from the papermaking net. When the fineness exceeds 1.0 dtex, the voids of the network become large and the collection efficiency may be reduced.

延伸PET繊維の含有量は、フィルタ用濾材に含まれる全繊維に対して、10〜50質量%であることが好ましく、10〜40質量%であることがより好ましく、10〜30質量%であることが更に好ましい。延伸PET繊維の含有量が10質量%未満では、フィルタ用濾材の空隙が不足し、通気抵抗が高まるおそれがある。延伸PET繊維の含有量が50質量%を超えると、バインダー繊維の含有量が相対的に低くなり、強度が不十分となるおそれがある。   The content of the stretched PET fiber is preferably 10 to 50% by mass, more preferably 10 to 40% by mass, and 10 to 30% by mass with respect to the total fibers contained in the filter medium for the filter. More preferably. When the content of the stretched PET fiber is less than 10% by mass, there is a possibility that the filter medium for the filter medium lacks the gap and the ventilation resistance is increased. When the content of the stretched PET fiber exceeds 50% by mass, the content of the binder fiber is relatively low, and the strength may be insufficient.

アクリル繊維の繊維長は、好ましくは2〜10mmであり、より好ましくは3〜7mmである。繊維長が2mm未満の場合、アクリル繊維が抄紙網から脱落する場合があり、繊維長が10mmを超えた場合は、地合いが悪化する場合がある。アクリル繊維の繊度は、好ましくは0.05〜1.0dtexであり、より好ましくは0.1〜0.8dtexである。繊度が0.05dtex未満の場合、抄紙網から離脱する場合があり、繊度が1.0dtexを超えた場合は、ネットワークの空隙が大きくなり、捕集効率が低下する場合があった。   The fiber length of the acrylic fiber is preferably 2 to 10 mm, more preferably 3 to 7 mm. When the fiber length is less than 2 mm, the acrylic fiber may fall off the papermaking net, and when the fiber length exceeds 10 mm, the texture may deteriorate. The fineness of the acrylic fiber is preferably 0.05 to 1.0 dtex, more preferably 0.1 to 0.8 dtex. When the fineness is less than 0.05 dtex, the paper may be separated from the papermaking net. When the fineness exceeds 1.0 dtex, the voids of the network become large and the collection efficiency may be reduced.

アクリル繊維の含有量は、フィルタ用濾材に含まれる全繊維に対して、10〜50質量%であることが好ましく、10〜40質量%であることがより好ましく、10〜30質量%であることが更に好ましい。アクリル繊維の含有量が10質量%未満では、フィブリル化した有機繊維とのネットワークを良好に形成しない場合があり、フィブリル化した有機繊維が抄紙網から脱落するおそれがある。また、アクリル繊維の含有量が50質量%を超えると、バインダー繊維の含有量が相対的に低くなり、強度が不十分となるおそれがある。   The acrylic fiber content is preferably 10 to 50% by mass, more preferably 10 to 40% by mass, and 10 to 30% by mass with respect to the total fibers contained in the filter medium. Is more preferable. When the acrylic fiber content is less than 10% by mass, a network with fibrillated organic fibers may not be formed well, and the fibrillated organic fibers may fall off the papermaking net. Moreover, when content of an acrylic fiber exceeds 50 mass%, content of a binder fiber will become comparatively low and there exists a possibility that intensity | strength may become inadequate.

本発明において、フィブリル化した有機繊維とは、主に繊維軸と平行な方向に非常に細かく分割された部分を有する繊維状で、少なくとも一部の繊維径が1μm以下になっている繊維を指す。本発明においては、長さと巾のアスペクト比が20:1〜100000:1の範囲に分布し、カナダ標準形濾水度が0ml〜500mlの範囲にあることが好ましい。フィブリル化した有機繊維の含有量は、フィルタ用濾材に含まれる全繊維に対して、2〜50質量%であることが好ましく、5〜40質量%であることがより好ましく、5〜30質量%であることが更に好ましい。フィブリル化した有機繊維の含有量が2質量%未満の場合、均一性や捕集効率が向上しない場合がある。また、フィブリル化した有機繊維の含有量が50質量%を超えると、フィルタ用濾材の空隙が不足し、フィルタの寿命が低下する場合がある。   In the present invention, the fibrillated organic fiber refers to a fiber having a fiber shape having a portion finely divided mainly in a direction parallel to the fiber axis, and at least a part of the fiber diameter being 1 μm or less. . In the present invention, it is preferable that the aspect ratio of the length and width is distributed in the range of 20: 1 to 100,000: 1 and the Canadian standard freeness is in the range of 0 ml to 500 ml. The content of the fibrillated organic fiber is preferably 2 to 50% by mass, more preferably 5 to 40% by mass, and more preferably 5 to 30% by mass with respect to the total fibers contained in the filter medium. More preferably. When the content of the fibrillated organic fiber is less than 2% by mass, the uniformity and the collection efficiency may not be improved. On the other hand, if the content of fibrillated organic fibers exceeds 50% by mass, the filter medium may have insufficient voids and the filter life may be reduced.

フィブリル化した有機繊維としては、天然セルロース、リヨセルやレーヨン等の再生セルロース等のセルロース類が好ましく、特に再生セルロースであるリヨセルが好ましい。また、全芳香族ポリアミド等のアラミド繊維、全芳香族ポリエステル等のポリエステル系繊維、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリ−p−フェニレンベンゾビスチアゾール、ポリ−p−フェニレンベンゾビスオキサゾール、ポリテトラフルオロエチレン、アクリル系繊維などからなる耐熱性繊維も耐熱性を更に向上できることから好ましく、これらの中でも特にフィブリル化しやすいパラ型全芳香族ポリアミドなどのアラミド系繊維及びアクリロニトリルとアクリル酸エステルとの共重合物等のアクリル系繊維が好ましい。また、これらは、単独又は2種以上を併用しても構わない。   As the fibrillated organic fiber, celluloses such as natural cellulose, regenerated cellulose such as lyocell and rayon are preferable, and lyocell which is regenerated cellulose is particularly preferable. Also, aramid fibers such as wholly aromatic polyamide, polyester fibers such as wholly aromatic polyester, polyimide, polyamideimide, polyether ether ketone, polyphenylene sulfide, polybenzimidazole, poly-p-phenylenebenzobisthiazole, poly-p -Heat-resistant fibers made of phenylene benzobisoxazole, polytetrafluoroethylene, acrylic fibers, etc. are also preferable because they can further improve heat resistance, and among these, aramid fibers such as para-type wholly aromatic polyamides that are particularly easily fibrillated and acrylonitrile An acrylic fiber such as a copolymer of acrylate and acrylate is preferred. These may be used alone or in combination of two or more.

本発明において、フィブリル化した繊維を得るには、例えば、短繊維を適度な濃度で水などに分散させ、これをリファイナー、ビーター、ミル、摩砕装置、高速の回転刃により剪断力を与える回転刃式ホモジナイザー、高速で回転する円筒形の内刃と固定された外刃との間で剪断力を生じる二重円筒式の高速ホモジナイザー、超音波による衝撃で微細化する超音波破砕器、高圧ホモジナイザーなどに通して、刃の形状、流量、処理回数、処理速度、処理濃度などの条件を調節して微細化処理すれば良い。   In the present invention, in order to obtain fibrillated fibers, for example, short fibers are dispersed in water at an appropriate concentration, and this is rotated by a refiner, a beater, a mill, a grinding device, and a high-speed rotary blade to give a shearing force. Blade-type homogenizer, double-cylindrical high-speed homogenizer that generates a shearing force between a cylindrical inner blade that rotates at high speed and a fixed outer blade, ultrasonic crusher that refines by ultrasonic shock, and high-pressure homogenizer It is sufficient to adjust the conditions such as the blade shape, flow rate, number of treatments, treatment speed, treatment concentration, etc.

本発明において、濾材の均一性、固体粒子の捕捉能、圧力損失等の性能をバランス良く発現させるためには、(A)剪断力を加えて幹部から離脱して繊維径1μm以下のフィブリル化有機繊維、及び、(B)剪断力を加えて、繊維径2μm以上の幹部から、繊維径1μm以下の枝部が発生したフィブリル化有機繊維という、2つのフィブリル化状態の有機繊維であることが好ましい。   In the present invention, in order to express the filter medium uniformity, solid particle capturing ability, pressure loss, etc. in a well-balanced manner, (A) A fibrillated organic material having a fiber diameter of 1 μm or less is separated from the trunk by applying a shearing force. It is preferable that the fiber and (B) a fibrillated organic fiber in which a branching part having a fiber diameter of 1 μm or less is generated from a trunk part having a fiber diameter of 2 μm or more by applying a shearing force is a fibrillated organic fiber. .

本発明のフィルタ用濾材における熱溶融性のバインダー繊維とは、フィルタ用濾材製造時の加熱処理(例えば、乾燥処理、熱カレンダー処理等)によって、熱溶融する性質を持つ繊維である。バインダー繊維としては、芯鞘繊維(コアシェルタイプ)、並列繊維(サイドバイサイドタイプ)、放射状分割繊維などの複合繊維が挙げられる。複合繊維は、皮膜を形成しにくいので、フィルタ用濾材の空間を保持したまま、強度を向上させることができる。例えば、ポリプロピレン繊維、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、ポリプロピレン(芯)とエチレンビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)と酢酸ビニルアルコール(鞘)の組み合わせ、ポリプロピレン(芯)とポリエチレン(鞘)の組み合わせ、高融点ポリエステル(芯)と低融点ポリエステル(鞘)の組み合わせ等が挙げられるが、不織布の強度を高めるという点から、特に、芯鞘型ポリエステル系バインダー繊維を使用することが好ましい。また、ポリエチレン等の低融点樹脂のみで構成される単繊維(全融タイプ)や、熱水可溶性ポリビニルアルコール系繊維のような熱水可溶性バインダー繊維は、加熱工程で皮膜を形成し易いが、特性を阻害しない範囲で使用することができる。   The heat-meltable binder fiber in the filter medium of the present invention is a fiber having a property of being thermally melted by a heat treatment (for example, a drying process, a heat calendar process, etc.) at the time of producing the filter medium for the filter. Examples of the binder fiber include composite fibers such as a core-sheath fiber (core-shell type), a parallel fiber (side-by-side type), and a radial split fiber. Since the composite fiber hardly forms a film, the strength can be improved while maintaining the space of the filter medium for the filter. For example, polypropylene fiber, combination of polypropylene (core) and polyethylene (sheath), combination of polypropylene (core) and ethylene vinyl alcohol (sheath), combination of polypropylene (core) and vinyl acetate alcohol (sheath), polypropylene (core) and A combination of polyethylene (sheath), a combination of high melting point polyester (core) and low melting point polyester (sheath), and the like can be mentioned. From the viewpoint of increasing the strength of the nonwoven fabric, in particular, a core-sheath type polyester binder fiber should be used. Is preferred. In addition, single fibers (fully fused type) composed only of low melting point resins such as polyethylene and hot water soluble binder fibers such as hot water soluble polyvinyl alcohol fibers are easy to form a film in the heating process, Can be used as long as they are not hindered.

バインダー繊維の繊維長は1〜12mmが好ましく、3〜10mmがより好ましい。繊維長が1mm未満のバインダー繊維は、抄造工程で抄紙網より脱落しやすくなり、他の繊維との接着点が減少し、強度が低下する場合がある。また、繊維長が12mmを超えると、水分散性が損なわれ、地合いが不均一となり、不織布の強度が低下する場合がある。   The fiber length of the binder fiber is preferably 1 to 12 mm, and more preferably 3 to 10 mm. Binder fibers having a fiber length of less than 1 mm are more likely to fall off the papermaking net in the papermaking process, resulting in a decrease in adhesion points with other fibers and a reduction in strength. On the other hand, when the fiber length exceeds 12 mm, the water dispersibility is impaired, the texture becomes uneven, and the strength of the nonwoven fabric may be lowered.

バインダー繊維の繊維径は3〜20μmであることが好ましく、5〜18μmであることがより好ましい。繊維径が3μm未満では、圧力損失が高まる場合がある。一方、繊維径が20μmを超えると、他の繊維との接着点が少なくなり、強度が低下する場合がある。   The fiber diameter of the binder fiber is preferably 3 to 20 μm, and more preferably 5 to 18 μm. If the fiber diameter is less than 3 μm, pressure loss may increase. On the other hand, when the fiber diameter exceeds 20 μm, the number of points of adhesion with other fibers decreases, and the strength may decrease.

なお、本発明で言う「繊維径」とは、繊維の断面が楕円形や多角形等の場合は、断面積が等しい真円の径に換算した値の繊維径を示すものとする。   In the present invention, the “fiber diameter” refers to a fiber diameter having a value converted to the diameter of a perfect circle having the same cross-sectional area when the cross section of the fiber is an ellipse or a polygon.

バインダー繊維の含有量は、フィルタ用濾材に含まれる全繊維に対して、10〜50質量%であることが好ましく、15〜45質量%であることがより好ましく、20〜40質量%であることが更に好ましい。バインダー繊維の含有量が10質量%未満では、繊維間の接着が不十分となりやすく、強度が不十分となる場合がある。バインダー繊維の含有量が50質量%を超えると、濾過抵抗が高くなり、実用上問題が発生する場合がある。   The content of the binder fiber is preferably 10 to 50% by mass, more preferably 15 to 45% by mass, and more preferably 20 to 40% by mass with respect to the total fibers contained in the filter medium. Is more preferable. If the content of the binder fiber is less than 10% by mass, the adhesion between the fibers tends to be insufficient, and the strength may be insufficient. When the content of the binder fiber exceeds 50% by mass, the filtration resistance is increased, which may cause a practical problem.

本発明のフィルタ用濾材は、必要に応じて、延伸PET繊維、アクリル繊維、フィブリル化した有機繊維及びバインダー繊維以外の繊維を加えても良い。加えても良い繊維は、非熱溶融性の繊維であることが好ましい。具体的には、合成繊維としては、ポリエステル系、ポリオレフィン系、ポリアミド系、ポリアクリル系、ビニロン系、ビニリデン、ポリ塩化ビニル、ポリエステル系、ベンゾエート、ポリクラール(polychlal)、フェノール系などの繊維が挙げられる。天然繊維としては、皮膜の少ない麻パルプ、コットンリンター、リント;再生繊維としては、リヨセル繊維、レーヨン、キュプラ;半合成繊維としては、アセテート、トリアセテート、プロミックス;無機繊維としては、アルミナ繊維、アルミナ・シリカ繊維、ロックウール、ガラス繊維、マイクロガラス繊維、ジルコニア繊維、チタン酸カリウム繊維、アルミナウィスカ、ホウ酸アルミウィスカなどの繊維が挙げられる。上記の繊維の他に、植物繊維として、針葉樹パルプ、広葉樹パルプなどの木材パルプや藁パルプ、竹パルプ、ケナフパルプなどの木本類、草本類を使用することもできる。また、上記の繊維は、通液性、通気性を阻害しない範囲であれば、フィブリル化されていてもなんら差し支えない。更に古紙、損紙などから得られるパルプ繊維等も使用することができる。また、断面形状がT型、Y型、三角等の異形断面を有する繊維も含有できる。   The filter medium for a filter of the present invention may contain fibers other than stretched PET fibers, acrylic fibers, fibrillated organic fibers, and binder fibers as necessary. The fibers that may be added are preferably non-heat-meltable fibers. Specifically, examples of the synthetic fiber include polyester-based, polyolefin-based, polyamide-based, polyacrylic-based, vinylon-based, vinylidene, polyvinyl chloride, polyester-based, benzoate, polychlor, and phenol-based fibers. . Natural fiber includes hemp pulp, cotton linter, lint; regenerated fiber is lyocell fiber, rayon, cupra; semi-synthetic fiber is acetate, triacetate, promix; inorganic fiber is alumina fiber, alumina -Fibers such as silica fiber, rock wool, glass fiber, micro glass fiber, zirconia fiber, potassium titanate fiber, alumina whisker, and aluminum borate whisker. In addition to the above-mentioned fibers, wood fibers such as conifer pulp and hardwood pulp, woods such as bamboo pulp, bamboo pulp, kenaf pulp, and herbs can be used as plant fibers. Moreover, as long as the said fiber is a range which does not inhibit liquid permeability and air permeability, it may be fibrillated at all. Furthermore, pulp fibers obtained from waste paper, waste paper, etc. can also be used. Moreover, the fiber which has irregular cross sections, such as T type, Y type, and a triangle, can also be contained.

本発明のフィルタ用濾材の坪量は特に限定しないが、8〜70g/mであることが好ましく、10〜60g/mがより好ましい。8g/m未満では十分な捕集効率が得られない場合がある。一方、70g/mを超えると、圧力損失が高まり、フィルタの寿命が低下する場合がある。 The basis weight of the filter medium of the present invention is not particularly limited, but is preferably 8~70g / m 2, 10~60g / m 2 is more preferable. If it is less than 8 g / m 2 , sufficient collection efficiency may not be obtained. On the other hand, when it exceeds 70 g / m 2 , the pressure loss increases and the filter life may be reduced.

本発明のフィルタ用濾材をそのまま使用することもできるが、本発明のフィルタ用濾材を密層とし、密層よりも密度の小さい粗層と積層して一体化されてなる積層フィルタ用濾材が、優位に用いることができる。粗層としては、繊維径20μm以下のポリオレフィン系、ポリアミド系、ポリエステル系、アクリル系、ビニロン系、再生繊維系の非バインダー繊維の少なくとも1種類を含むことが好ましい。また、粗層の坪量は30〜70g/mであることが好ましい。さらに、ポリエステル系、ポリオレフィン系、塩化ビニル−酢酸ビニル系、ポリビニルアルコール系等のバインダー繊維の少なくとも1種類を10〜80質量%含有することが好ましく、表面強度が高い粗層が得られる。また、この粗層は、湿式抄紙機で製造することができるが、用途に応じて、ポリエステル、ポリアミド系、ポリオレフィン系、セルロース系等の素材からなる静電紡糸法、スパンボンド、メルトブロー、ニードルパンチ、スパンレース等の方法で製造されたシートを用いることができる。 Although the filter medium for a filter of the present invention can be used as it is, the filter medium for a filter of the present invention is formed as a dense layer, and is laminated and integrated with a coarse layer having a density lower than that of the dense layer. It can be used preferentially. The coarse layer preferably contains at least one kind of polyolefin-based, polyamide-based, polyester-based, acrylic-based, vinylon-based, and regenerated fiber-based non-binder fibers having a fiber diameter of 20 μm or less. Moreover, it is preferable that the basic weight of a coarse layer is 30-70 g / m < 2 >. Furthermore, it is preferable to contain 10 to 80% by mass of at least one binder fiber such as polyester, polyolefin, vinyl chloride-vinyl acetate, and polyvinyl alcohol, and a rough layer having high surface strength can be obtained. This coarse layer can be produced by a wet paper machine, but depending on the application, an electrospinning method comprising a material such as polyester, polyamide, polyolefin, or cellulose, spunbond, melt blow, needle punch A sheet produced by a method such as spunlace can be used.

粗層と密層を積層して一体化して得られた本発明の積層フィルタ用濾材は、圧力によってフィルタ用濾材が破れることを防止し、濾過性能に優れ、放電加工機用、エンジンオイル用、燃料用、油水分離用、油圧機器用等の液体フィルタ用濾材として好適に使用できる。この場合、密層を上流側として使用することにより、表層濾過機構を発現させることができる。また、使用する条件又は狙いとする効果によっては、粗層を上流として、内部濾過機構を発現させることもできる。   The filter material for a multilayer filter of the present invention obtained by laminating and integrating a coarse layer and a dense layer prevents the filter medium from being broken by pressure, has excellent filtration performance, for an electric discharge machine, for engine oil, It can be suitably used as a filter material for liquid filters such as for fuel, oil / water separation, and hydraulic equipment. In this case, the surface layer filtration mechanism can be developed by using the dense layer as the upstream side. Also, depending on the conditions used or the intended effect, the internal filtration mechanism can be developed with the coarse layer upstream.

本発明のフィルタ用濾材は、液晶、バイオ、医薬、食品工業のクリーンルームやクリーンベンチ等用のエアフィルタ、空調用エアフィルタ、空気清浄機用エアフィルタ、ガスタービンや蒸気タービンの吸気側に使用される空気又は気体中の粒子捕集に適した産業用エアフィルタ等にも好適に用いることができる。   The filter medium of the present invention is used for an air filter for liquid crystal, bio, pharmaceutical, food industry clean rooms, clean benches, etc., an air filter for air conditioning, an air filter for an air purifier, a gas turbine or a steam turbine. It can also be suitably used for industrial air filters suitable for collecting particles in air or gas.

本発明の積層フィルタ用濾材において、密層の密度は0.1〜0.8g/cmであることが好ましい。密度が0.1g/cm未満の場合、密層中に粒子が詰まりやすくなり、寿命が短くなる場合がある。逆に、0.8g/cmを超えると、濾過抵抗が高くなりすぎる場合がある。粗層の密度は、密層より小さく、且つ0.05〜0.6g/cmであることが好ましい。粗層の密度が0.05g/cm未満であると、積層フィルタ用濾材の強度が不十分になる場合や、プリーツ加工適性が損なわれる場合がある。逆に、0.6g/cmを超えると、濾過抵抗が高くなりすぎる場合がある。また、(積層)フィルタ用濾材全体の密度は0.1〜0.6g/cmであることが好ましい。(積層)フィルタ用濾材全体の密度が0.1g/cm未満では、ピンホール等により信頼性の点で問題がある。 In the filter medium for a multilayer filter of the present invention, the density of the dense layer is preferably 0.1 to 0.8 g / cm 3 . When the density is less than 0.1 g / cm 3 , particles are likely to be clogged in the dense layer, and the lifetime may be shortened. Conversely, if it exceeds 0.8 g / cm 3 , the filtration resistance may become too high. The density of the coarse layer is preferably smaller than the dense layer and 0.05 to 0.6 g / cm 3 . When the density of the coarse layer is less than 0.05 g / cm 3 , the strength of the filter medium for the multilayer filter may be insufficient, or the pleatability may be impaired. Conversely, if it exceeds 0.6 g / cm 3 , the filtration resistance may become too high. Further, the density of the entire (laminated) filter medium is preferably 0.1 to 0.6 g / cm 3 . (Multilayer) If the density of the filter medium as a whole is less than 0.1 g / cm 3 , there is a problem in terms of reliability due to pinholes and the like.

また、本発明の(積層)フィルタ用濾材は、熱可塑性樹脂を含有させると、剛直性が向上し好ましい。熱可塑性樹脂としては、例えば、アクリル系、酢酸ビニル系、エポキシ系、合成ゴム系、ウレタン系、ポリエステル系、塩化ビニリデン系、ポリビニルアルコール系、澱粉、フェノール樹脂などが挙げられ、これらを単独で又は2種類以上で使用できる。   In addition, it is preferable that the filter material for (laminated) filter of the present invention contains a thermoplastic resin because rigidity is improved. Examples of the thermoplastic resin include acrylic, vinyl acetate, epoxy, synthetic rubber, urethane, polyester, vinylidene chloride, polyvinyl alcohol, starch, phenol resin, and the like alone or Can be used in two or more types.

本発明の(積層)フィルタ用濾材に熱可塑性樹脂を含有させる場合に、その含有量は、フィルタ用濾材に対して、0.01〜10質量%であることが好ましい。10質量%を超えると、(積層)フィルタ用濾材の圧力損失が大きくなりすぎる場合がある。また、0.01質量%未満では、熱可塑性樹脂を含有しない(積層)フィルタ用濾材と比較して、剛直性が変わらない場合がある。   When the thermoplastic resin is contained in the (laminated) filter medium of the present invention, the content is preferably 0.01 to 10% by mass with respect to the filter medium. If it exceeds 10% by mass, the pressure loss of the (filtered) filter medium may become too large. If it is less than 0.01% by mass, the rigidity may not be changed as compared with a filter material containing no thermoplastic resin (lamination).

熱可塑性樹脂を積層フィルタ用濾材に含有させる状態は、密層のみ、密層及び粗層の両方、粗層のみのいずれの状態であっても良い。しかし、密層に熱可塑性樹脂を含有させると、密層の空間を塞いでしまい、固体粒子の捕捉能が小さくなり、圧力損失が大きくなることから、粗層のみに含有させることが好ましい。   The state in which the thermoplastic resin is contained in the filter medium for the laminated filter may be only the dense layer, both the dense layer and the coarse layer, or only the coarse layer. However, when the dense layer contains a thermoplastic resin, the space of the dense layer is blocked, the solid particle capturing ability is reduced, and the pressure loss is increased, so that it is preferably contained only in the coarse layer.

熱可塑性樹脂を(積層)フィルタ用濾材に含有させる方法としては、特に限定はしないが、サイズプレス方式、タブサイズプレス方式、スプレー方式、内添方式、グラビア塗工方式などの方法が挙げられる。粗層のみに含有させるためには、スプレー方式、グラビア塗工方式を用いることが好ましい。   The method of incorporating the thermoplastic resin into the (laminated) filter medium is not particularly limited, and examples thereof include a size press method, a tab size press method, a spray method, an internal addition method, and a gravure coating method. In order to make it contain only in a rough layer, it is preferable to use a spray system and a gravure coating system.

本発明の(積層)フィルタ用濾材には、必要に応じて、(積層)フィルタ用濾材の特性を阻害しない範囲で、架橋剤、撥水剤、分散剤、歩留り向上剤、紙力剤、染料などの添加剤を適宜配合させることができる。   In the filter material for (laminated) filter of the present invention, a cross-linking agent, a water repellent, a dispersant, a yield improver, a paper strength agent, and a dye are added to the filter material for the (laminated) filter as needed. Additives such as can be appropriately blended.

本発明のフィルタ用濾材は湿式法で製造することが好ましい。湿式法では、長網、円網、傾斜ワイヤー等の抄紙網が単独で設置されている抄紙機、これらの抄紙網の中から選択される同種又は異種の2機以上がオンラインで設置されている複合式(コンビネーション)抄紙機などにより、フィルタ用濾材を製造することができる。抄紙網で製造された湿紙(ウェブ)は、ドライヤーで乾燥される。乾燥させた後、場合によって、熱可塑性樹脂を含有させ、ドライヤーで乾燥させても良い。ドライヤーとしては、エアドライヤー、ヤンキードライヤー、シリンダードライヤー、サクションドラム式ドライヤー、赤外方式ドライヤー等を使用することができる。また、乾式法で製造した粗層を用いる場合は、抄紙機で製造した密層と乾式法で製造した粗層とを抄紙機で積層しても良いし、別途カレンダー装置、熱カレンダー装置、貼り合わせ装置等の加工機を用いて積層しても良い。   The filter medium for a filter of the present invention is preferably produced by a wet method. In the wet method, paper machines such as long nets, circular nets, and inclined wires are installed alone, and two or more of the same or different types selected from these paper nets are installed online. Filter media can be manufactured by a composite paper machine. The wet paper (web) manufactured by the papermaking net is dried with a dryer. After drying, a thermoplastic resin may be contained in some cases and dried with a dryer. As the dryer, an air dryer, a Yankee dryer, a cylinder dryer, a suction drum dryer, an infrared dryer, or the like can be used. In addition, when using a coarse layer produced by a dry method, a dense layer produced by a paper machine and a coarse layer produced by a dry method may be laminated by a paper machine, or a separate calender device, thermal calender device, pasting device may be used. You may laminate | stack using processing machines, such as a matching apparatus.

以下、実施例を挙げて本発明を具体的に説明するが、本発明は本実施例に限定されるものではない。なお、実施例中における部や百分率は断りのない限り、すべて質量によるものである。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the examples. In the examples, all parts and percentages are by mass unless otherwise specified.

<PET繊維1>
繊度0.1dtex、繊維長3mmの延伸PET繊維をPET繊維1とした。
<PET fiber 1>
A drawn PET fiber having a fineness of 0.1 dtex and a fiber length of 3 mm was designated as PET fiber 1.

<PET繊維2>
繊度0.4dtex、繊維長5mmの延伸PET繊維をPET繊維2とした。
<PET fiber 2>
The drawn PET fiber having a fineness of 0.4 dtex and a fiber length of 5 mm was designated as PET fiber 2.

<PET繊維3>
繊度0.6dtex、繊維長5mmの延伸PET繊維をPET繊維3とした。
<PET fiber 3>
A drawn PET fiber having a fineness of 0.6 dtex and a fiber length of 5 mm was designated as PET fiber 3.

<PET繊維4>
繊度1.7dtex、繊維長5mmの延伸PET繊維をPET繊維4とした。
<PET fiber 4>
A drawn PET fiber having a fineness of 1.7 dtex and a fiber length of 5 mm was designated as PET fiber 4.

<アクリル繊維1>
繊度0.1dtex、繊維長3mmのアクリル繊維をアクリル繊維1とした。
<Acrylic fiber 1>
The acrylic fiber 1 was an acrylic fiber having a fineness of 0.1 dtex and a fiber length of 3 mm.

<アクリル繊維2>
繊度0.4dtex、繊維長5mmのアクリル繊維をアクリル繊維2とした。
<Acrylic fiber 2>
The acrylic fiber 2 was an acrylic fiber having a fineness of 0.4 dtex and a fiber length of 5 mm.

<アクリル繊維3>
繊度0.6dtex、繊維長5mmのアクリル繊維をアクリル繊維3とした。
<Acrylic fiber 3>
The acrylic fiber 3 was an acrylic fiber having a fineness of 0.6 dtex and a fiber length of 5 mm.

<バインダー繊維>
繊維径1.7dtex、繊維長5mmの、芯部がPET(融点253℃)、鞘部がポリエチレンテレフタレート−イソフタレート共重合体(軟化点75℃)のポリエステル系芯鞘型熱融着繊維をバインダー繊維とした。
<Binder fiber>
A polyester core-sheath type heat-sealable fiber having a fiber diameter of 1.7 dtex, a fiber length of 5 mm, a core part of PET (melting point 253 ° C.), and a sheath part of a polyethylene terephthalate-isophthalate copolymer (softening point 75 ° C.) as a binder Made of fiber.

<FB繊維1>
フィブリル化していないリヨセル単繊維(1.7dtex×4mm、コートルズ社製)を、ダブルディスクリファイナーを用いて60回繰り返し処理して得た、フィブリル化リヨセル繊維をFB繊維1とした。
<FB fiber 1>
A fibrillated lyocell fiber obtained by repeatedly treating a non-fibrillated lyocell single fiber (1.7 dtex × 4 mm, manufactured by Coatles Co., Ltd.) 60 times using a double disc refiner was designated as FB fiber 1.

<FB繊維2>
繊維径10μm、繊維長3mmのパラ系全芳香族ポリアミド繊維を、ダブルディスクリファイナーを用いて60回処理して得た、フィブリル化パラ系全芳香族ポリアミド繊維をFB繊維2とした。
<FB fiber 2>
A fibrillated para-type wholly aromatic polyamide fiber obtained by treating a para-type wholly aromatic polyamide fiber having a fiber diameter of 10 μm and a fiber length of 3 mm with a double disc refiner 60 times was designated as FB fiber 2.

(実施例1〜15及び比較例1〜4)
2mの分散タンクに水を投入後、表1に示す比率で配合し、分散濃度0.2質量%で5分間分散して、アジテーターによる撹拌のもと、均一な抄造用スラリー(0.2%濃度)を調製した。この抄造用スラリーを円網抄紙機による湿式法を用いて抄き上げ、130℃のシリンダードライヤーによって、バインダー繊維を接着させて不織布強度を発現させ、坪量20g/mのフィルタ用濾材を作製した。
(Examples 1-15 and Comparative Examples 1-4)
Water is added to a 2 m 3 dispersion tank and then blended in the proportions shown in Table 1, dispersed at a dispersion concentration of 0.2% by mass for 5 minutes, and stirred uniformly with an agitator. % Concentration) was prepared. This slurry for paper making is made up by a wet method using a circular paper machine, and binder fibers are bonded by a cylinder dryer at 130 ° C. to develop non-woven fabric strength, and a filter medium for filter having a basis weight of 20 g / m 3 is produced. did.

(実施例16及び17)
2mの分散タンクに水を投入後、密層、粗層別々に表2に示す比率で配合し、分散濃度0.2質量%で5分間分散して、アジテーターによる撹拌のもと、均一な抄造用スラリー(0.2%濃度)を調製した。傾斜/円網複合式抄紙機を用いて、粗層を傾斜ワイヤー上で乾燥質量40g/mになるようにウェブを形成し、密層を円網ワイヤー上で乾燥質量20g/mになるようにウェブを形成して、両ウェブを乾燥させる前に積層させた後に、表面温度130℃のシリンダードライヤーでタッチロールを400N/cmの圧力で加圧しながら乾燥及び一体化し、実施例16及び17の積層フィルタ用濾材を得た。
(Examples 16 and 17)
After pouring water into a 2 m 3 dispersion tank, the dense layer and the coarse layer are mixed separately in the ratios shown in Table 2, dispersed for 5 minutes at a dispersion concentration of 0.2% by mass, and uniform with stirring by an agitator. A papermaking slurry (0.2% concentration) was prepared. Using an inclined / circular mesh paper machine, a web is formed so that the coarse layer has a dry mass of 40 g / m 2 on the inclined wire, and the dense layer has a dry mass of 20 g / m 2 on the circular wire. After the webs were formed and laminated before drying, the touch roll was dried and integrated with a cylinder dryer having a surface temperature of 130 ° C. at a pressure of 400 N / cm 2 , and Example 16 and 17 filter media for multilayer filters were obtained.

(実施例18)
2mの分散タンクに水を投入後、密層を表2に示す比率で配合し、分散濃度0.2質量%で5分間分散して、アジテーターによる撹拌のもと、均一な抄造用スラリー(0.2%濃度)を調製した。円網抄紙機を用いて、乾燥質量20g/mになるようにウェブを形成し、表面温度130℃のシリンダードライヤーでタッチロールを400N/cmの圧力で加圧しながら乾燥して密層を得た。密層と、粗層としてスパンボンド法で作製したPET不織布(繊維径15μm、坪量が40g/m)とをエンボス加工により積層一体化し、実施例18の積層フィルタ濾材を得た。
(Example 18)
After pouring water into a 2 m 3 dispersion tank, the dense layer is blended at the ratio shown in Table 2, dispersed at a dispersion concentration of 0.2% by mass for 5 minutes, and stirred uniformly with an agitator to make a uniform papermaking slurry ( 0.2% concentration) was prepared. Using a circular paper machine, a web is formed so as to have a dry mass of 20 g / m 2 , and a dense layer is formed by pressing the touch roll at a pressure of 400 N / cm 2 with a cylinder dryer having a surface temperature of 130 ° C. Obtained. A dense layer and a PET non-woven fabric (fiber diameter 15 μm, basis weight 40 g / m 2 ) prepared by a spunbond method as a coarse layer were laminated and integrated by embossing to obtain a laminated filter medium of Example 18.

実施例及び比較例で得られたフィルタ用濾材及び積層フィルタ用濾材に対して以下の評価を行い、結果を表1、表2に示した。   The following evaluations were performed on the filter media and the filter media obtained in Examples and Comparative Examples, and the results are shown in Tables 1 and 2.

<評価>
実施例及び比較例で得られたフィルタ用濾材及び積層フィルタ用濾材について、下記の評価を行い、圧力損失、粒子捕集効率、強度の評価結果を表1及び表2に示した。
<Evaluation>
The filter media obtained in Examples and Comparative Examples and the filter media for multilayer filters were subjected to the following evaluation, and the evaluation results of pressure loss, particle collection efficiency, and strength are shown in Tables 1 and 2.

Figure 2019034269
Figure 2019034269

Figure 2019034269
Figure 2019034269

[圧力損失](単位:Pa)
JIS B9908に準じて、面風速5.3cm/秒の条件で測定した。圧力損失は低いほど好ましく、150Pa未満であれば「◎」、150Pa以上200Pa未満であれば「○」、200Pa以上250Pa未満であれば「△」、250Pa以上を「×」とした。
[Pressure loss] (Unit: Pa)
According to JIS B9908, it measured on the conditions of the surface wind speed of 5.3 cm / sec. The pressure loss is preferably as low as possible. “◎” is less than 150 Pa, “◯” is 150 Pa or more and less than 200 Pa, “Δ” is 200 Pa or more and less than 250 Pa, and “X” is 250 Pa or more.

[捕集効率](単位:%)
JIS B9908に準じて、面風速5.3cm/秒の条件で測定した。測定対象粒子は、大気塵を使用して、粒子径0.25〜0.35μmの粒子についての捕集効率をパーティクルカウンター(商品名「KC−11」、リオン社製)を使用して測定し、下記数式1より、捕集効率を算出した。
[Collection efficiency] (Unit:%)
According to JIS B9908, it measured on the conditions of the surface wind speed of 5.3 cm / sec. Particles to be measured are measured using air dust and the collection efficiency of particles having a particle diameter of 0.25 to 0.35 μm using a particle counter (trade name “KC-11”, manufactured by Rion Co., Ltd.). From the following formula 1, the collection efficiency was calculated.

η=(1−C2/C1)×100 (数式1)
η:捕集効率(%)
C1:濾材上流側の粒子濃度
C2:濾材下流側の粒子濃度
η = (1−C2 / C1) × 100 (Equation 1)
η: Collection efficiency (%)
C1: Particle concentration upstream of the filter medium C2: Particle concentration downstream of the filter medium

捕集効率は高いほど好ましく、50%以上であれば「◎」、40%以上50%未満であれば「○」、30%以上40%未満であれば「△」、30%未満であれば「×」とした。   The higher the collection efficiency, the better. "◎" if 50% or more, "○" if 40% or more and less than 50%, "△" if 30% or more and less than 40%, if less than 30%. It was set as “x”.

[強度]
実施例及び比較例のフィルタ用濾材及び積層フィルタ用濾材を、50mm幅の短冊状に切り揃えた。試験片を卓上型材料試験機(商品名:STA−1150、(株)オリエンテック製)に据え付けた40mmφの固定枠に装着し、先端に丸み(曲率1.6)をつけた直径1.0mmの金属針((株)オリエンテック製)を試料面に対して直角に50mm/分の一定速度で貫通するまで降ろした。この時の最大荷重(g)を計測し、これを突刺強度とした。1試料について5ヶ所以上突刺強度を測定し、全測定値の中で最も小さい突刺強度について、100g以上であれば「◎◎」、50g以上100g未満であれば「◎」、40g以上50g未満であれば「○」、30g以上40g未満であれば「△」、30g未満であれば「×」で表した。
[Strength]
The filter media for filters and the filter media for multilayer filters of Examples and Comparative Examples were cut into a strip shape having a width of 50 mm. The test piece was mounted on a 40 mmφ fixed frame installed on a tabletop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.), and the tip was rounded (curvature: 1.6) with a diameter of 1.0 mm. The metal needle (manufactured by Orientec Co., Ltd.) was lowered at a constant speed of 50 mm / min. The maximum load (g) at this time was measured and used as the puncture strength. Measure the puncture strength at 5 or more locations for one sample, and the minimum puncture strength among all the measured values is “◎◎” if it is 100 g or more, “◎” if it is 50 g or more and less than 100 g, and 40 g or more and less than 50 g. If it is, it is represented by “◯”, if it is 30 g or more and less than 40 g, “Δ”, if it is less than 30 g, it is represented by “x”.

[プリーツ加工適性]
積層フィルタ用濾材をマシンの流れ方向(MD)30cm、横方向20cmに裁断し、流れ方向を横切るように5cm毎に山折、谷折を繰り返し、畳んだ濾材の上に、直径5cm、長さ30cm、重さ3kgの円柱状金属ロールをゆっくり転がして折り目をつけ蛇腹状とする。折り目が明確で歪みがなく、折り目を押しても変形しなければ良好とする。プリーツ加工適性は、実施例16〜18で得られた積層フィルタ用濾材について評価した。
[Applicability to pleating]
The filter medium for laminated filter is cut into a machine flow direction (MD) 30 cm and a horizontal direction 20 cm, and a mountain fold and a valley fold are repeated every 5 cm so as to cross the flow direction. On the folded filter medium, the diameter is 5 cm and the length is 30 cm. Then, a cylindrical metal roll having a weight of 3 kg is slowly rolled to make a crease and a bellows shape. The crease is clear and has no distortion, and if the crease is not deformed even if it is pushed, it is considered good. The pleatability was evaluated for the filter media for laminated filters obtained in Examples 16-18.

実施例1〜15と比較例1〜4との比較から、実施例1〜15で得られたフィルタ用濾材は、非溶融性の延伸ポリエチレンテレフタレート繊維、アクリル繊維及びフィブリル化した有機繊維並びに熱溶融性のバインダー繊維を含有しているため、均一性に優れ、捕集効率、圧力損失のバランスが良好であり、強度も良好な結果が得られた。   From the comparison between Examples 1 to 15 and Comparative Examples 1 to 4, the filter media obtained in Examples 1 to 15 were non-melted stretched polyethylene terephthalate fiber, acrylic fiber, fibrillated organic fiber, and hot melt. Since the binder fiber is contained, the results are excellent in uniformity, good balance between collection efficiency and pressure loss, and good strength.

これに対し、比較例1で得られたフィルタ用濾材では、フィブリル化した有機繊維を含有していないため、捕集効率が低い結果となった。また、比較例2で得られたフィルタ用濾材は、延伸PET繊維を含有していないため、圧力損失が実施例よりも大きい結果となった。さらに、比較例3で得られたフィルタ用濾材は、アクリル繊維を含有していないため、フィブリル化した有機繊維の抄紙網からの離脱が多く、捕集効率が低い結果となった。また、比較例4で得られたフィルタ用濾材は、熱溶融性のバインダー繊維を含有していないため、強度が低い結果となった。   On the other hand, the filter medium obtained in Comparative Example 1 did not contain fibrillated organic fibers, which resulted in low collection efficiency. Moreover, since the filter medium for filters obtained in Comparative Example 2 did not contain stretched PET fibers, the pressure loss was larger than that of the Examples. Furthermore, since the filter medium for filter obtained in Comparative Example 3 did not contain acrylic fibers, the fibrillated organic fibers were often detached from the papermaking net, resulting in low collection efficiency. Moreover, since the filter material for filters obtained in Comparative Example 4 did not contain hot-melt binder fibers, the results were low in strength.

実施例16及び実施例17は、密層と粗層を積層して一体化した積層フィルタ用濾材であり、各々の密層は実施例1及び実施例7のフィルタ用濾材と同繊維配合である。実施例16及び17の積層フィルタ用濾材は、圧力損失、捕集効率、強度共に良好であった。また、実施例16及び実施例17の積層フィルタ用濾材は、密層と粗層を一体化しているため、プリーツ加工適性テストでは、折り目が明確で歪みがなく、折り目を押しても変形せず、プリーツ加工適性が優れていた。実施例18は、密層が実施例1のフィルタ用濾材と同繊維配合であり、粗層としてスパンボンド法で作製したPET不織布(繊維径15μm、坪量が40g/m)をエンボス加工により密層と積層一体化した積層フィルタ用濾材であり、圧力損失、捕集効率、強度、プリーツ加工適性共に良好であった。 Example 16 and Example 17 are filter media for laminated filters in which a dense layer and a coarse layer are laminated and integrated, and each dense layer has the same fiber composition as the filter media of Example 1 and Example 7. . The filter media for laminated filters of Examples 16 and 17 were good in pressure loss, collection efficiency, and strength. In addition, since the filter media for the laminated filter of Example 16 and Example 17 are formed by integrating the dense layer and the coarse layer, in the pleating suitability test, the crease is clear and has no distortion, and it does not deform even when the crease is pushed, Excellent suitability for pleating. In Example 18, the dense layer has the same fiber composition as the filter medium of Example 1, and a PET nonwoven fabric (fiber diameter 15 μm, basis weight 40 g / m 2 ) prepared by the spunbond method as a rough layer is embossed. It was a filter material for laminated filters laminated and integrated with a dense layer, and had good pressure loss, collection efficiency, strength, and suitability for pleating.

本発明の(積層)フィルタ用濾材は、金属の型彫、切断加工などに使用されている放電加工機の加工液中に含まれる加工屑や、IC生産における基板のウエハの切断、研磨、エッチングなどの工程で使用される超純水中に含まれる加工屑を効率良く除去し清浄な液体を得るための液体フィルタ、自動車用エンジンオイル、燃料等用の液体フィルタ等に好適に用いることができる。また、空気中の粉塵を捕集するエアフィルタにも好適に使用することができる。   The filter material for the (laminated) filter of the present invention is used for cutting, polishing, and etching of processing waste contained in the machining fluid of an electric discharge machine used for metal engraving and cutting, and wafers of substrates in IC production. It can be suitably used for a liquid filter for efficiently removing processing waste contained in ultrapure water used in the process, etc., and obtaining a clean liquid, a liquid filter for automobile engine oil, a fuel, etc. . Moreover, it can be used suitably also for the air filter which collects the dust in the air.

Claims (2)

非溶融性の延伸ポリエチレンテレフタレート繊維、アクリル繊維及びフィブリル化した有機繊維並びに熱溶融性のバインダー繊維を含有してなるフィルタ用濾材。   A filter medium comprising a non-melting drawn polyethylene terephthalate fiber, an acrylic fiber, a fibrillated organic fiber, and a heat-melting binder fiber. 請求項1に記載のフィルタ用濾材を密層とし、粗層と積層して一体化されてなる積層フィルタ用濾材。   A filter material for a multilayer filter obtained by forming the filter medium according to claim 1 as a dense layer and laminating and integrating with a coarse layer.
JP2017156772A 2017-08-15 2017-08-15 Filter material for laminated filter Active JP7081911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017156772A JP7081911B2 (en) 2017-08-15 2017-08-15 Filter material for laminated filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017156772A JP7081911B2 (en) 2017-08-15 2017-08-15 Filter material for laminated filter

Publications (2)

Publication Number Publication Date
JP2019034269A true JP2019034269A (en) 2019-03-07
JP7081911B2 JP7081911B2 (en) 2022-06-07

Family

ID=65636424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017156772A Active JP7081911B2 (en) 2017-08-15 2017-08-15 Filter material for laminated filter

Country Status (1)

Country Link
JP (1) JP7081911B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022088556A1 (en) * 2020-10-27 2022-05-05 Diamondtrap Ltd Oy A filter construct and an air cleaner device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193316A (en) * 1990-11-28 1992-07-13 Mitsubishi Paper Mills Ltd Filter material
JP2007113135A (en) * 2005-10-19 2007-05-10 Daifuku Paper Mfg Co Ltd Filter paper for liquid filtration and method for producing the filter paper for liquid filtration
JP2008086953A (en) * 2006-10-04 2008-04-17 Hokuetsu Paper Mills Ltd Filter medium for air filter and air filter with filter medium
JP2016137459A (en) * 2015-01-28 2016-08-04 三菱製紙株式会社 Nonwoven fabric for filter, and filter medium for filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470302B (en) 2009-07-08 2015-03-11 Jnc株式会社 Air filter material using multilayer electret nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04193316A (en) * 1990-11-28 1992-07-13 Mitsubishi Paper Mills Ltd Filter material
JP2007113135A (en) * 2005-10-19 2007-05-10 Daifuku Paper Mfg Co Ltd Filter paper for liquid filtration and method for producing the filter paper for liquid filtration
JP2008086953A (en) * 2006-10-04 2008-04-17 Hokuetsu Paper Mills Ltd Filter medium for air filter and air filter with filter medium
JP2016137459A (en) * 2015-01-28 2016-08-04 三菱製紙株式会社 Nonwoven fabric for filter, and filter medium for filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022088556A1 (en) * 2020-10-27 2022-05-05 Diamondtrap Ltd Oy A filter construct and an air cleaner device

Also Published As

Publication number Publication date
JP7081911B2 (en) 2022-06-07

Similar Documents

Publication Publication Date Title
US20220072462A1 (en) Filter media comprising a pre-filter layer
JP5096726B2 (en) Composite filter media
WO2015115418A1 (en) Multilayer filtration material for filter, method for manufacturing same, and air filter
JP2015504355A (en) Filter material
JP4086729B2 (en) Filter media and filter media for liquid filtration
KR20160046797A (en) Filter Medium
JP5599071B2 (en) Filter media
JP2007113135A (en) Filter paper for liquid filtration and method for producing the filter paper for liquid filtration
JP2006061789A (en) Filter medium for liquid filtering
JP2013052324A (en) Composite filter medium and method for manufacturing the same
JP7081911B2 (en) Filter material for laminated filter
JP6152332B2 (en) Non-woven fabric for preventing fold contact
JP5599072B2 (en) Filter media
JP2016137459A (en) Nonwoven fabric for filter, and filter medium for filter
JP2014073432A (en) Filter medium
JP5759435B2 (en) Filter media
JP2007083184A (en) Filter medium and filter medium for filtration of liquid
JP2006055735A (en) Filter material for liquid filtration
JP2005058832A (en) Filter medium for filtering liquid
JPH09841A (en) Filter material and filter for filtering liquid
JP2023094688A (en) Filter medium for liquid filter
JP2014061502A (en) Nonwoven fabric for filter and filtering medium for filter
JP6152328B2 (en) Method for producing pleat adhesion preventing nonwoven fabric and pleat adhesion preventing nonwoven fabric
JP2022055118A (en) Non-woven fabric for filter and filter medium for filter
JP2023132659A (en) Filter medium for liquid filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220105

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220114

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220526

R150 Certificate of patent or registration of utility model

Ref document number: 7081911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150