JP2019032185A - センサ制御支援装置、センサ制御支援方法およびコンピュータプログラム - Google Patents

センサ制御支援装置、センサ制御支援方法およびコンピュータプログラム Download PDF

Info

Publication number
JP2019032185A
JP2019032185A JP2017151911A JP2017151911A JP2019032185A JP 2019032185 A JP2019032185 A JP 2019032185A JP 2017151911 A JP2017151911 A JP 2017151911A JP 2017151911 A JP2017151911 A JP 2017151911A JP 2019032185 A JP2019032185 A JP 2019032185A
Authority
JP
Japan
Prior art keywords
sensor
data
sensors
classification model
sensor control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017151911A
Other languages
English (en)
Other versions
JP6847787B2 (ja
Inventor
明淑 高
Myungsook Ko
明淑 高
亜梨花 福島
Arika Fukushima
亜梨花 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2017151911A priority Critical patent/JP6847787B2/ja
Priority to US15/906,341 priority patent/US11092460B2/en
Publication of JP2019032185A publication Critical patent/JP2019032185A/ja
Application granted granted Critical
Publication of JP6847787B2 publication Critical patent/JP6847787B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D9/00Recording measured values
    • G01D9/005Solid-state data loggers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/88Providing power supply at the sub-station
    • H04Q2209/883Providing power supply at the sub-station where the sensing device enters an active or inactive mode

Abstract

【課題】監視対象に設けられた複数のセンサを制御することで、不要な消費電力を抑制するセンサ制御支援装置を提供する。【解決手段】センサ制御支援装置10は、センサ選択部9と、センサ制御部14とを備える。センサ選択部9は、監視対象に対する複数のセンサの計測データと、監視対象の状態を表す状態データとに基づいて、複数のセンサの中から監視対象の状態予測に使用するセンサを選択する。センサ制御部14は、センサ選択部9の選択結果に基づいて、複数のセンサを制御する。【選択図】図3

Description

本発明の実施形態は、センサ制御支援装置、センサ制御支援方法およびコンピュータプログラムに関する。
近年、センサおよび通信技術の発達と共に、IoT(Internet of Things)が爆発的に普及してきている。特に機器の状態監視・制御や異常検知等といった分類目的に応じて、複数のセンサから得た時系列の計測データを分類・活用する試みは多い。
このように取得される時系列の計測データは膨大であり、このような膨大なデータには、分類目的に対して情報重複が存在する場合がある。また、一部のセンサのデータのみで目的となる分類ができる場合に、それ以外のセンサのデータを収集することは、情報過多となる。また、そのようなセンサを稼働させることは、消費電力の増大になる。一方、分類目的に対して必要となるセンサは、監視対象システムの変更やセンサ構成の変更により、変わる可能性もある。
国際公開第2013/069568号 国際公開第2013/187295号
本発明の実施形態は、監視対象に対する複数のセンサの消費電力を抑制することを可能にする、センサ制御支援装置、センサ制御支援方法およびコンピュータプログラムを提供する。
本発明の実施形態としてのセンサ制御支援装置は、センサ選択部と、センサ制御部とを備える。前記センサ選択部は、監視対象に対する複数のセンサの計測データと、前記監視対象の状態を表す状態データとに基づいて、前記複数のセンサの中から前記監視対象の状態予測に使用するセンサを選択する。前記センサ制御部は、前記センサ選択部の選択結果に基づいて、前記複数のセンサを制御する。
第1の実施形態に係るシステムの全体構成図。 1つの監視対象に複数のセンサが取り付けられた例を示す図。 センサ制御支援装置の詳細構成を示すブロック図。 センサ1〜センサnから取得したセンサデータを格納したセンサデータテーブルの例を示す図。 センサデータテーブルの他の例を示す図。 分類ラベルテーブルの例を示す図。 各センサのデータ間特徴量テーブルの例を示す図。 データ間特徴量テーブルの結合処理の例を示す図。 分類モデル構築処理の動作イメージを示す図。 出力情報の例を示す図。 第1の実施形態に係るセンサ制御支援装置の動作のフローチャート。 第2の実施形態に係るセンサ制御支援装置を示すブロック図。 第2の実施形態に係るセンサ制御支援装置の動作のフローチャート。 第3の実施形態に係るセンサ制御支援装置を示すブロック図。 第3の実施形態に係るスペックデータテーブルの例を示す図。 第4の実施形態に係るセンサ制御支援装置のハードウェア構成を示す図。
以下、図面を参照しながら、本発明の実施形態について説明する。
(第1の実施形態)
図1は、本実施形態に係るシステムの全体構成図を示す。本システムは、センサ制御支援装置10と、ゲートウェイ装置20と、入出力装置30と、複数のセンサ1〜nとを備えている。以下、図1および図2を用いて、本システムの概要について説明する。
複数の監視対象1〜n(nは少なくとも2以上)に対して、センサ1〜nが設置されている。ここでは、個々の監視対象に、1つのセンサが設置されている。ただし、図2(A)のように、1つの監視対象に複数のセンサ1〜nが設置されてもよいし、図2(B)のように、監視対象ごとに設置されるセンサの個数が異なってもよい。
各センサは、初期状態として、第1〜第kの条件が成立した場合に計測データ(センサデータ)を検出し、送信するようになっている。第1〜第kの条件は、一例として、一定時間間隔(10分、または1時間ごとなど)の第1〜第kの時点のタイミングの到来を定める。第1の時点が0時、第2の時点が1時、・・・・、第kの時点が23時でもよい。この場合、各センサは、1時間ごとにセンサデータを検出して、送信する。ここではセンサ1〜nがセンサデータを検出および送信するタイミングは同じであるとするが、これに限定されない。
ゲートウェイ装置20は、センサ1〜nで検出されたセンサデータを、有線または無線の通信を介して、受信する。ゲートウェイ装置20は、受信したセンサデータを、センサ制御支援装置10に送信する。ゲートウェイ装置20は、受信したセンサデータを即時に、センサ制御支援装置10に送信してもよいし、受信したセンサデータを一時的に蓄積し、一定の時間毎に、蓄積したセンサデータを送信してもよい。
また、ゲートウェイ装置20は、制御信号により、センサ1〜nを制御可能に構成される。例えば、センサ1〜nのオン・オフを制御可能である。また、通常動作モードと低消費電力モードを切り替え制御してもよい。低消費電力モードの例として、センサから受信するセンサデータの頻度(受信するセンサデータの間隔等)を低減してもよい。
センサ制御支援装置10は、ゲートウェイ装置20から、センサ1〜nのセンサデータを受信する。これによりセンサ制御支援装置10は、各センサのセンサデータを時系列に受信する。時系列に受信されるセンサデータの列を時系列データと呼ぶ。
また、センサ制御支援装置10は、センサ1〜nでセンサデータが検出されたとき(すなわち、第1〜第kの条件が成立したとき)の監視対象の状態を表す状態データを取得する。状態データは、ゲートウェイ装置20から受信してもよいし、入出力装置30から取得してもよいし、あるいは図示しないサーバまたは記憶装置から受信してもよい。入出力装置30は、ユーザ(設計者、現地作業員、保守員等)により操作される端末である。入出力装置30は、入力されるデータまたは情報を表示する。また、入出力装置30は、ユーザからの入力を受け付け、入力された指示またはデータを表す信号を、センサ制御支援装置10に出力する。
状態データは、ユーザ(設計者、現地作業員、保守員等)が監視対象の状態を実際に確認して作成してもよいし、本装置または別のサーバ等の装置が、監視対象のログデータから作成してもよい。状態データは、一例として、監視対象の状態を表す分類ラベルを含む。具体的に、監視対象の状態が正常な場合には、正常クラスを表すラベル、異常な場合には、異常クラスを表すラベルを含む。図1の例のように、n個の監視対象にそれぞれ1台のセンサが設置されている場合は、一例として、n個の1つの監視対象が異常であれば異常クラスのラベルとし、すべての監視対象が正常であれば、正常クラスのラベルとする。以下、状態データを、分類ラベルデータと呼ぶ。
センサ制御支援装置10は、学習モードと、異常検知モードとを備えている。センサ制御支援装置10は、学習モードにおいて、センサ1〜nのセンサデータと、状態データとを用いて、監視対象の状態を予測するための分類モデルを生成する。監視対象の状態とは、一例として、監視対象の異常の有無である。この場合、分類目的は、異常検知である。なお、学習モードで使用するセンサデータは、ユーザが入出力装置30を用いて与えてもよい。
分類モデルは、一例として、少なくとも1つのセンサに対応する少なくとも1つの説明変数と、当該少なくとも1つの説明変数に対する少なくとも1つの係数とから、監視対象の予測状態に対応する目的変数を計算する関数である。説明変数には、対応するセンサのセンサデータから計算される特徴量(一例として、後述するデータ間特徴量がある)が与えられる。
センサ制御支援装置10は、センサ1〜nのうち、生成した分類モデルに含まれる説明変数に対応するセンサを、監視対象の状態予測に使用するセンサとして選択する。選択されたセンサを、選択センサと呼ぶ。それ以外のセンサ、すなわち状態予測で使用しないセンサを、非選択センサとする。
センサ制御支援装置10は、選択センサの情報として、選択センサのセンサIDを表す信号をゲートウェイ装置20に送信する。また、非選択センサの情報として、非選択センサのセンサIDとを表す信号を、ゲートウェイ装置20に送信する。ゲートウェイ装置20と通信は、無線通信でも、有線通信でもかまわない。センサIDは、一例としてセンサ番号であるが、これに限定されない。選択センサの情報に、選択センサのセンサID以外の情報を含めてもよい。例えば、後述するようにセンサのセンシングの条件を含めてもよい。
ゲートウェイ装置20は、選択センサの情報(または非選択センサの情報)に基づいて、センサ1〜nを制御する。具体的に、ゲートウェイ装置20は、選択センサの稼働を維持し、非選択センサの稼働を停止するように、センサ1〜nを制御する。つまり、選択センサのオン(ON)にし、非選択センサの電源をオフ(OFF)にする。非選択センサのメイン回路をOFFにし、ゲートウェイ装置20との通信を行う受信回路等の通信回路の電源はOFFにしなくてもよい。
センサ制御支援装置10は、異常検知モードにおいて、分類モデルと、ゲートウェイ装置20から受信さる選択センサのセンサデータとに基づき、監視対象の状態を予測する。異常が検知された場合には、異常が検知されたことを示す異常検知データを生成して、入出力装置30に出力してもよい。分類モデルを、センサ制御支援装置10とは別の異常検知装置に搭載し、当該異常検知装置で、異常検知モードの動作を実行してもよい。
図1では、入出力装置30とゲートウェイ装置20とが別々の装置であるが、これらが同じ装置であってもよい。
このように、監視対象に対する複数のセンサ1〜nのうち、異常検知に使用する選択センサのみオンにし、非選択センサをオフにすることで、消費電力を低減できる。以下、センサ制御支援装置についてさらに詳細に説明する。
図3は、センサ制御支援装置10の構成を示すブロック図である。
センサ制御支援装置10は、センサ選択部9と、通信部11と、センサ制御部14と、出力情報生成部15と、記憶部16と、記憶部17、記憶部18と、入力インターフェース19とを備える。センサ選択部9は、データ処理部12と、モデル構築部13とを備える。
通信部11は、ゲートウェイ装置20と、有線または無線のネットワークを介して接続されている。通信部11は、ゲートウェイ装置20から、稼働中のセンサで検出された計測データ(センサデータ)を受信する。最初の学習モードでは、センサ1〜nが稼働しており、センサ1〜nからのセンサデータが受信されているとする。通信部11は、受信したセンサデータを記憶部16のセンサデータテーブルに格納する。学習モードで使用するセンサデータは、入出力装置30からユーザが入力して、センサデータテーブルに格納してもよい。各センサは、初期状態として、第1〜第kの条件が成立した場合にセンサデータを検出し、送信する。第1〜第kの条件は、本例では、一定時間間隔の第1〜第kの時点が到来したタイミングの到来とする。第1〜第kの条件の他の例として、特定のイベントが起きたこと(例えば、一定値以上の値が検出された場合、特定のパターンの信号が検出された場合など)でもよい。
ここで、センサは、ある物理量を観測しデジタル信号に変換する機器の総称である。例えば、加速度センサ、磁気センサ、画像センサ、湿度センサ、温度センサ、圧電素子、質量センサ、光センサなどさまざまなセンサがある。熱電発電素子または太陽電池などの電力生成装置も、センサである。この場合、発電量がセンサ値に相当すると考えることができる。
本実施形態では、監視対象は、空調設備等の設備でもよいし、MFP(Multifunction Peripheral)等の機器でもよいし、その他の物または製品であってもかまわない。また、監視対象は、ヒト、動物または植物などの生体でもよい。さらに、本実施形態では分類目的として、状態が正常か異常かを検知する異常検知を扱うが、他の分類目的でもかまわない。
図4は、センサ1〜センサnから収集したセンサデータを格納したセンサデータテーブルの例を示す。i番目のセンサIDを持つセンサ(センサi)に対して、k個のセンサデータの値が、学習データとして保持されている。学習データの値は、センサデータの値そのものでもよいが、センサデータの値を統計処理した値でもよいし、センサデータの値に基づき算出される値でよい。この場合、このような演算を、通信部11または別の処理部で行ってもよいし、入出力装置30側で行ってもよい。学習データの値を、特徴量と呼んでもよい。
図4のテーブルには、n*k個の要素si,j(iはセンサのID,jは学習データIDを指す)が保持されている。例えば、要素s1,1は、センサID=1および学習データID=1の学習データの値(=0.4)を表す。
各学習データには、学習データIDが対応づけられている。学習データIDは、対応する学習データが検出された時点(すなわち学習データが検出された条件)を識別する。例えばセンサ1〜nのそれぞれの学習データID=1は、第1の時点(すなわち第1の条件)に対応する。
図5は、センサデータテーブルの他の例を示す。この例では、学習データは、時系列の複数の値を保持するベクトル(波形データ)である。このテーブルは、要素si,j,tをn*k*T個、保持する。時刻tは、1以上T以下の値を取り、Tは2以上の正の実数である。例えば、s1,1,1は、センサID=1、学習データID=1、時刻t=1におけるセンサ特徴量(=2.1)を表す。また、s1,1は、センサID=1、学習データID=1の学習データ(t=1,t=2,…,t=T)=(2.1、7.4、9.5、・・・、6.9)を表す。
図4および図5のセンサデータテーブル例において、取得できなかったセンサデータまたは時刻が存在した場合、テーブル内の該当セルに、無効値(“NA”など)を格納すればよい。
通信部11は、予め指定された外部の装置から分類ラベルデータ(状態データ)を受信する。外部の装置は、ゲートウェイ装置20でもよいし、別のサーバでもよい。通信部11は、分類ラベルデータを、記憶部16の分類ラベルテーブルに格納する。分類ラベルデータを、ユーザが入力出力装置30を用いて入力してもよい。
図6に分類ラベルテーブルの例を示す。分類ラベルテーブルは、学習データIDと、分類ラベルとを含む。分類ラベルには、正常クラスを表す”1”のラベルと、異常クラスを表す”0”のラベルとがある。各ラベルには、学習データIDが付与されている。なお、分類ラベルが不明の場合には、該当するセルに、無効値(“NA”など)を格納すればよい。
センサ選択部9におけるデータ処理部12は、モデル構築部13で分類モデルを生成するための前処理を行う。データ処理部12は、センサデータテーブルから、各センサの学習データ1〜kを読み出す。データ処理部12は、センサごとに、学習データ1〜kの任意の2つを組み合わせて複数のデータ組を生成し、各データ組について、特徴量(以下、データ間特徴量)を算出する。そして、生成したデータ間特徴量を、k行k列を持つマトリックスの該当するセルに格納する。これにより、データ間特徴量テーブルを生成する。データ間特徴量テーブルは、センサごとに生成される。
例えば、センサiのj番目の学習データSi,jと、センサiのr番目の学習データSi,rのデータ間特徴量xj,rは、例えば、以下の式で計算される。
Figure 2019032185
式(1)中のDis関数は、2つの学習データ間の距離を計算する関数である。2つの学習データ間で加法、減法、乗法、または除法を行う関数が考えられる。学習データが時系列データの場合は、2つの時系列データの類似度を示す相関係数を計算する関数、または、非線形のゆがみを考慮した時系列データ間の距離関数であるDynamic time warping、または、部分時系列を考慮できる距離関数であるShapletなどが考えられる。
jとrが等しい場合(すなわち、自己同士のデータ間特徴量の場合)は、データ間特徴量xj,rを0にする。また、データ組における少なくとも一方の学習データの値が無効値(NA)である場合、または当該学習データの値が信頼できない場合も、データ間特徴量を0にする。
図7は、各センサのデータ間特徴量テーブルの例を示す。図のS〜Sは、センサ1〜センサnを表す。データ間特徴量は、xj,r(j=1,..,k;r=1,..,k)によって表されている。例えば、x1,2は、学習データ1(学習データID=1の学習データ)と学習データ2(学習データID=2の学習データ)のデータ間特徴量を表す。データ間特徴量の例としては、2つの学習データ間の類似度または差がある。例えばデータ間特徴量が差の場合、x1,2は、学習データ1の値から学習データ2の値を減じた値であり、x2,1は、学習データ2の値から学習データ1の値を減じた値である。
データ処理部12は、記憶部16から分類ラベルデータを取得する。なお、データ処理部12は、分類ラベルが2値化(バイナリ化)されていない場合に、前処理として、2値化の処理を行う。例えば、閾値以上の値を1、閾値未満の値を0に変換することにより、各分類ラベルを、1または0に変換する。
データ処理部12は、センサ1〜nのデータ間特徴量テーブルの結合処理を行う。具体的には、全センサのデータ間特徴量テーブルを行方向に結合することにより、説明変数テーブルを生成する。図7のデータ間特徴量テーブルに結合処理を行った場合、(n*k)列k行の説明変数テーブルが生成される。説明変数テーブルの各列について、列方向に平均0、分散1になるように標準化を行ってもよい。または各行について、行方向に平均0、分散1になるように標準化を行ってもよい。
図8に、データ間特徴量テーブルの結合処理の例を示す。図の上の各センサのデータ間特徴量テーブルを行方向に統合することで、図の下の説明変数テーブルが生成される。
説明変数テーブルにおいて、(センサID、学習データID)=(1、1)の列には、センサ1について、学習データ1と学習データ1間のデータ間特徴量(=0)、学習データ2と学習データ1間のデータ間特徴量、・・・、学習データ3と学習データ1間のデータ間特徴量、学習データkと学習データ1間のデータ間特徴量が格納されている。(センサID、学習データID)=(2、k)の列には、センサ2について、学習データ1と学習データ2間のデータ間特徴量、学習データ2と学習データ2間のデータ間特徴量(=0)、学習データ3と学習データ2間のデータ間特徴量、・・・、学習データkと学習データ2間のデータ間特徴量が格納されている。センサnについての学習データjと学習データrとのデータ間特徴量をxn,j,rと表してもよい。
説明変数テーブルの作成方法は、上記の例に限定されない。他の作成方法の例として、センサごとに、各行の学習データと組み合わせる各列の学習データを、所定のラベル(例えば正常クラスのラベル)をもつ学習データに限定してもよい。これにより、説明変数テーブルのサイズを小さく抑えることができる。なお、分類ラベルとして無効値(“NA”など)が含まれる場合、当該無効値が付与された分類ラベルに対応する学習データを用いて算出されたデータ間特徴量を、データ間特徴量テーブルまたは説明変数テーブルから削除してもよい。
データ処理部12は、分類ラベルデータおよび説明変数テーブルを、センサ選択部9におけるモデル構築部13に提供する。
モデル構築部13は、データ処理部12から受けた説明変数テーブルと分類ラベルデータに基づき、分類モデルを構築する。
以下、モデル構築部13が、分類モデルとして、ロジスティック回帰モデルを生成する例を示す。分類モデルとして、ロジスティック回帰モデル以外のモデル、例えばSVMを生成することも可能である。
ロジスティック回帰モデルは、以下の式に従う回帰モデルである。
Figure 2019032185
logitはロジスティック関数を示す。logit(z)は、0より大きく1より小さい範囲の値域を有する。βは切片を示す。
i,j,rは、i番目のセンサに対応する説明変数であり、より詳細には、i番目のセンサおけるj番目の学習データとr番目の学習データのデータ間特徴量を表す(i番目のセンサのデータ間特徴量テーブルにおいて、j番目の行とr番目の列とが交差するセルのデータ間特徴量に相当)。
βi,j,rは、データ間特徴量xi,j,rに対する係数(回帰係数)である。ここで、1つのセンサiに関する回帰係数をまとめて、β={βi,1,1,βi,1,2,…,βi,k,k}と記述する。また、すべてのセンサについてのβiをまとめて、β={β,β,…,β}と記述する。
zは、回帰係数βi,j,rとデータ間特徴量xi,j,rとを乗算し、加算した値である。例えば、zは、説明変数テーブルにおいて任意の1行における複数のデータ間特徴量xi,j,rを、複数の回帰係数βi,j,rで重み付け合計した値である。変形例としてzの式として、βを含まない式を用いてもよい。
Xは、n個のセンサのj番目の学習データに関するデータ間特徴量xi,j,r(i=1〜n、r=1〜k)を含むベクトルである。ベクトルの要素数は、n*kである。すなわち、Xは、説明変数テーブルの任意の1行に対応する。P(y=1|X)(すなわちlogit(z)の値)は、ベクトルXが与えられた際に分類ラベル(ここでは正常クラスのラベル)が1になる確率を表す。P(y=1|X)は、0より大きく1より小さい値を有する
上述の分類モデルを用いて、監視対象に付与する分類ラベルを決定する場合、一例として閾値を用いる方法がある。下記の例に示すように、関数logit(z)の値(1になる確率)が閾値Cより大きければ、分類ラベルとして1を付与し、閾値C以下であれば、分類ラベルとして0を付与する。閾値Cは、ユーザが入出力装置30からパラメータとして入力してもよい。
Figure 2019032185
式(2)中の回帰係数である、β={β,β,…,β}={β1,1,1,β1,1,2,…,β1,k,k,β2,11,β2,1,2,…,β2,k,k,…,βn,1,1,βn,1,2,…,βn,k,k}と、βとを求める必要がある。j=1〜k、r=1〜kに関して、βi,j,rがすべて0である場合、そのセンサiは用いられない(選択する必要はない)ことを意味する。また、j=sとした場合に、r=1〜kに関して、βi,s,rがすべて0であり、かつ、r=sとした場合に、j=1〜kに関して、βi,j,sがすべて0の場合には、学習データsは必要ない、すなわち、学習データsのIDに対応する条件を選択する必要はないことを意味する。
β={β,β,…,β}とβは、例えば最尤推定法または最小二乗法を用いて求めることができる。この際、過学習等を防止するため、正則化を含む推定手法であり、かつ、変数選択と分類モデル構築とを同時に行うことが可能な推定手法を用いる。具体的には、LassoまたはElastic Netを用いる。LassoはElastic Netの一種であるので、ここではElastic Netを用いる例を示す。
Elastic Netでは、最小二乗法でβとβを求める際に、罰則項λE(β)を用いて、損失関数Jの最小化問題の式(3)を解く。式(3)は凹関数である。罰則項は、式(4)に示される。損失関数Jは、式(5)のように、目的変数の真値yと、βと、βとを持つロジスティック回帰関数により算出された推定値(logitの値)y^との二乗誤差の和である。式(5)は、分類ラベルの値(真値y)と、分類モデルの出力値(logitの値)の差異の定量化値を表し、式(3)は、式(5)に基づく値を最小化する関数の一例である。
Figure 2019032185
λは罰則項の強さを決定するパラメータである。λは任意の方法で決定すればよい。一例として、交差検証法を用いることができる。例えば、説明変数テーブルを行方向(紙面に沿って横方向)に沿って分割して複数の部分テーブルを生成し、複数の部分テーブルから交差検証法により最適なλを決定する。分割数は、一般的には10〜100程度である。例えばk=200とし、10分割により、k=1〜20、21〜40、・・・、191〜200の10個の部分テーブルをそれぞれ得る。2〜10番目の部分テーブルを訓練事例として用いて分類モデル構築を行い、1番目の部分テーブルをテスト事例として利用して、分類モデルの評価(精度の評価等)を行い、所定の基準を満たす(例えば最も識別率の高くなる)λを決定する。これを、各部分テーブルが1回ずつテスト事例として利用されるまで繰り返す。これらの決定したλの中から、最適なλを決定する。例えば最も識別率の高いλを採択する。交差検証法の具体例は一例に過ぎず、他にも様々な具体例が存在する。
αは、式(4)の第一項と第二項の強さを調節するパラメータである。Elastic
Netでは0<α<1の範囲である。なお、Lassoの場合はα=1である。パラメータの値は任意であるが、例えば、α=0.5とする。
なお、Elastic NetまたはLassoを含めた正則化に関しては、Regularization and variable selection via the elastic net[Zou, Hui; Hastie, Trevor 2005]を参照されたい。
このようにして求めた回帰係数βの要素(βi,j,r:i=1〜n,j=1〜k,r=1〜k)には、非ゼロの要素と、0の要素が存在する。
モデル構築部13は、βi=(βi,1,1、βi,1,2、…、βi,k,k)において、少なくとも1つの要素が非ゼロであれば、センサiを選択する。一方、βi,1,1、βi,1,2、…、βi,k,k、のすべてがゼロであれば、センサiを選択しない。
また、非ゼロのβi,j,rに対して、センサiに関する学習データjと学習データrを、代表データとしてそれぞれ選択する。一方、j=sとした場合に、r=1〜kに関して、βi,s,rがすべて0であり、かつ、r=sとした場合に、j=1〜kに関して、βi,j,sがすべて0の場合には、センサiに関して、学習データsは選択しない。
ここでは非ゼロか否かで、センサおよび学習データの選択可否を判断したが、変形例として、閾値より大きいか否かで、選択可否を判断してもよい。
図9は、分類モデル構築処理の動作イメージを示す。図の左側には、学習データID=1〜kに対応する分類ラベルが示されている。この例では、k=1〜pでは、監視対象は正常(分類ラベルが1)であり、k=p+1〜qでは、監視対象は異常(分類ラベルが0)である。これらの分類ラベルの値を真値とみなして、分類モデルの構築(回帰係数の推定)を行う。
図における“logit”のカッコ内に、説明変数テーブルと、ベクトルβ=(β1,1,1、β1,1,2、β1,1,3、・・・、βi,j,r、・・・βn,k,kが示されている。これは、説明変数テーブルの各行の値を格納したベクトル{x1,1,1、x1,1,2、x1,1,3、・・・、xi,j,r、・・・xn,k,k}が、ベクトルβ={β1,1,1、β1,1,2、β1,1,3、・・・、βi,j,r、・・・βn,k,k}と乗算されることを表現している。すなわち、前述した式(2)のzの式を模式的に表現している。
説明変数テーブルの1行目から出ている矢印付きの破線(一番上の破線)で示すように、各センサの学習データ1が取得されたとき、監視対象は正常、すなわち、分類ラベルは1である。同様に、説明変数テーブルのk行目から出ている矢印付きの破線(一番下の破線)で示すように、各センサの学習データkが取得されたときは、監視対象は異常、すなわち、分類ラベルは0である。
βの各要素、すなわち、β1,1,1、β1,1,2、β1,1,3、…,β1,1,kはすべて0になったため、センサ1は選択されない。
βi,j,rは非ゼロであるため、センサiは選択される。センサiの学習データ1〜kのうち、少なくとも学習データjおよび学習データrは、代表データとして選択される。
βn,k,kは0であるが、βの要素{βn,1,1、βn,1,2、βn,1,3、・・・、βn,k,k}のうち、βn,k,k以外の要素の少なくとも1つが非ゼロであれば、センサnは選択される。非ゼロの要素に対応する学習データとペアをなす学習データも、代表データとして選択される。
モデル構築部13は、分類モデルと、選択したセンサのセンサID(選択センサID)と、当該選択したセンサに関する代表データの学習データID(代表データID)とを記憶部18に格納する。非選択センサIDを記憶部18に追加してもよい。分類モデルは、非ゼロである回帰係数を含み、ゼロである回帰係数を含まない。また分類モデルは、式(2)に示した関数の型の情報を含む。記憶部18に格納されたこれらの情報を、モデル関連情報と呼ぶ。
また、モデル構築部13は、選択センサIDおよび代表データIDと、非選択センサIDとを記憶部17に格納する。記憶部17に格納されたこれらの情報を、センサ制御情報と呼ぶ。
出力情報生成部15は、記憶部18に記憶されたモデル関連情報に基づき、ユーザに提示する出力情報を生成する。出力情報生成部15は、生成した出力情報を、入出力装置30に供給する。入出力装置30は、出力情報生成部15から受けた出力情報を、画面に表示する。出力情報の例を図10に示す。一例として出力情報は、選択センサIDと、代表データIDとを含む。出力情報は、これらの情報以外に、非選択センサIDを含んでもよい。また、分類モデルを表すデータ(関数の型と回帰係数の値とを含む)を含んでも良い。また、また、センサごとに代表データの個数を表す情報など、他の関連情報を含んでもよい。
上述した罰則項の式(4)の代わりに、以下の式(6)を用いてもよい。
Figure 2019032185
式(6)は、式(4)の右辺に、1/||Ni||を追加したものである。Niは、センサiに対応し、iの範囲は1〜nである。1/||Ni||は、定数である。Niの値は、センサ毎に、予め与えておく。Niは0より大きい自然数とする。ユーザは、センサ1〜nのうち、優先度の高いセンサ(すなわち選びたいセンサ)ほど、Niの値を大きくする。これにより、選びたいセンサほど、1/||Ni||を含む項の値が小さくなり、罰則項の値が小さくなる。例えば、後述するコスト(設置コスト等)が小さいセンサほど、Niの値を大きくする。
上述した実施形態では、各センサのデータ間特徴量テーブルを結合して説明変数テーブルを生成したが、この処理を省略してもよい。その場合も、上記と同様の処理により、分類モデルを構築できる。
センサ制御部14は、センサ選択部9によるセンサの選択結果に基づいて、センサ1〜nを制御する。より詳細には、センタ制御部14は、記憶部17に記憶されたセンサ制御情報を用いて、センサ1〜nを制御する。センサ1〜nの制御は、ゲートウェイ装置20を介して行うが、センサ制御部14がセンサ1〜nと直接通信可能な場合は、センサ制御部14が直接、センサ1〜nに制御信号を送って、これらのセンサを制御することも可能である。
センサ制御部14は、記憶部17に記憶されているセンサ制御情報(選択センサIDおよび代表データIDと、非選択センサID)を、ゲートウェイ装置20に送信する。ゲートウェイ装置20は、センサ制御部14から受信したセンサ制御情報に含まれる選択センサIDと非選択センサIDとに基づき、センサ1〜nのオン・オフを制御する。例えば選択センサIDが、SとSであり、非選択センサIDが、S、S〜Sn−1であれば、センサ2とセンサnのオンを維持し、センサ1、センサ3〜センサn−1をオフにする。具体的には、ゲートウェイ装置20は、電源オフを指示する制御信号を生成して、生成した制御信号をセンサ1、センサ3〜センサn−1に送信する。センサ1、センサ3〜センサn−1は、この制御信号を受信すると、メイン回路等の回路の電源をオフにする。これにより、消費電力を低減させる。電源をオフにする代わりに、センサを低消費電力モードに遷移させてもよい。低消費電力モードの一例として、センサデータの収集頻度を下げてもよい。あるいは、CPUのクロックを低下させてもよいし、その他の方法を用いてもよい。
また、ゲートウェイ装置20は、選択センサIDが表すセンサに、代表データIDに対応する条件でセンサデータを検出することを指示する制御信号を送信する。制御信号を受信したセンサは、制御信号が示す条件に基づいてセンサデータを検出し、検出したセンサデータをゲートウェイ装置20に送信する。例えば図9の例では、センサ2に関する代表データIDが1、2、6、8、・・・のため、これらに対応する条件が満たされたときにセンサデータを検出し、学習データIDが3、4、5、7等に対応する条件が満たされた場合にはセンサデータの検出を行わない。条件がタイミングを指定する場合は、学習データIDが1、2、6、8、・・・に対応するタイミングでセンサデータを検出し、学習データIDが3、4、5、7等に対応するタイミングではセンサデータを検出しない。もしくは、学習データIDが3、4、5、7等の場合については、これらの対応するタイミングでセンサデータは検出するが、検出したセンサデータを送信しないことも可能である。この場合、送信電力を削減できる。このように、代表データIDに対応する条件が満たされたときにのみセンサデータを検出または送信することで、消費電力を低減できる。なお、センサのオン・オフの制御のみ行い、代表データIDに基づく制御を行わないことも可能である。この場合、異常検知に不要なセンサデータを収集することになるが、動作上問題はない。
本実施形態では、センサ制御部14が自律的にゲートウェイ装置20にセンサ制御情報を通知したが、センサ制御部14が、ユーザからの指示に基づき、センサ制御情報を通知してもよい。この場合、ユーザが、入出力装置30の画面に表示された出力情報に基づき、選択センサIDおよび代表データIDと、非選択センサIDとを特定して、センサ制御情報を、入出力装置30を用いて入力する。入力インターフェース19でこの指示を受信して、センサ制御部14に、入力されたセンサ制御情報を通知する。センサ制御部14は、ゲートウェイ装置20にセンサ制御情報を送信する。
図11は、本実施形態に係るセンサ制御支援装置の動作のフローチャートである。通信部11が、ゲートウェイ装置20または入出力装置30からセンサデータおよび分類ラベルデータ(状態データ)を受信し、受信したセンサデータおよび分類ラベルデータを記憶部16に格納する(A11)。
データ処理部12が、記憶部16から各センサのセンサデータを読み出し、センサ毎に、複数のデータ間特徴量を計算する(A12)。より詳細には、k行k列を有し、センサiのj番目の学習データSi,jとr番目の学習データSi,rとの間のデータ間特徴量を、該当セルに格納したデータ間特徴量テーブル(図7または図8参照)を作成する。全センサのデータ間特徴量テーブルを行方向に結合することにより、説明変数テーブルを作成する(図8参照)。説明変数テーブルに対し、列方向(または行方向)に標準化を行ってもよい。例えば、各列について、列に属するセル群の値が、平均0および分散1になるようにする。
また、データ処理部12は、記憶部16から分類ラベルデータを読み出す。分類ラベルデータに含まれる各分類ラベルがバイナリ化されていない場合は、分類ラベルをバイナリ化する。例えば、閾値以上の値を1、閾値未満の値を0に変換することにより、各分類ラベルを、1または0に変換する。
データ処理部12は、分類ラベルデータと、説明変数テーブルとを、モデル構築部13に提供する。
モデル構築部13が、分類ラベルデータと、説明変数テーブルを用いて、分類モデルを構築する(A13)。つまり、分類モデルに含まれる回帰係数(説明変数)βを算出する。一例として、説明変数テーブルを行方向に沿って分割(例えば10分割)する。分類ラベルデータについても分割(例えば10分割)し、分割された分類ラベルデータを、分割された説明変数テーブルに対応づける。交差検証法を用いて、罰則項のλを決定し、正則化付の誤差関数の最小化問題を解いて、複数の回帰係数を含むベクトルβを算出する。
モデル構築部13は、ベクトルβから非ゼロの回帰係数を選択し、選択した回帰係数に対応するセンサを選択センサ、それ以外のセンサを非選択センサとする(A14)。また、非ゼロの回帰係数の計算に必要とされる学習データ(選択センサに関連する学習データ)を、代表データとする(同A14)。選択センサ、非選択センサ、代表データの決定方法の詳細は、前述した通りである。
モデル構築部13は、選択センサIDおよび代表データIDと、非選択センサIDとを、センサ制御情報として、記憶部17に格納する。また、モデル構築部13は、分類モデル、選択センサID、代表データID等を、モデル関連情報として、記憶部18に格納する。
センサ制御部14は、記憶部17からセンサ制御情報(非選択センサIDと、選択センサIDおよび代表データID)を読み出し、ゲートウェイ装置20に送信する(A15)。非選択センサIDまたは選択センサIDの一方の送信を省略してもよい。このゲートウェイ装置20側で当該一方のIDが示すセンサ以外のセンサを、他方のIDが示すセンサと判断すればよい。
ゲートウェイ装置20は、非選択センサに、電源をオフまたは低消費電力モードにするよう制御信号を送信する。制御信号を受信したセンサは、例えば電源をオフまたは低消費電力モードに遷移する。なお、センサは、電源をオフにした場合でも、その後、ゲートウェイ装置20からのONへの指示信号などを受信できるよう、受信回路等の通信回路については電源を供給しておいてもよい。
また、ゲートウェイ装置20は、選択センサに、代表データIDに対応する条件でのみセンサデータを検出することを指示する制御信号を送信する。制御信号を受信したセンサは、当該制御信号で指示された条件が成立したときのみセンサデータを検出し、検出したセンサデータを本装置10に送信する。
以上、本実施形態によれば、分類目的に応じて監視が必要なセンサのみ稼働させることで、人手でセンサの稼働を設定する手間を削減すると共に、消費電力および通信コストを低減することが可能となる。
(第2の実施形態)
図12は、第2の実施形態に係るセンサ制御支援装置10を示すブロック図である。図3に示した第1の実施形態に係るセンサ制御支援装置に、モデル再構築判定部51が追加されている。モデル再構築判定部51は、分類モデルを再構築するか否かを判断し、再構築することを決定した場合は、モデル構築部13に分類モデルの再構築を指示する。モデル構築部13は、分類モデルを再構築し、記憶部18に記憶されているモデル関連情報、および記憶部17に記憶されているセンサ制御情報を更新する。モデル再構築判定部51は、更新後のセンサ制御情報を送信するように、センサ制御部14に指示する。センサ制御部14は、記憶部17に記憶された更新後のセンサ制御情報を、ゲートウェイ装置20に送信する。
分類モデルを再構築する理由を述べる。最初に分類モデルが構築された後、通信部11で収集されたセンサデータおよび状態データが記憶部16に蓄積されていく。分類モデルの構築後に、監視対象にセンサが新たに設置されたり、設置済みのセンサが除去されたりするなど、センサ構成に変更が生じる場合がある。また、同じセンサを使いつつ、センサの監視対象自体が別の監視対象に変更されたり、監視対象が拡張されたりする場合もある。この場合、同じ分類モデルを使用すると、異常検知の識別率が低下する可能性がある。また、分類モデルに含まれる説明変数に対応するセンサが除去された場合には、必要なセンサデータが収集できず、異常検知を実行できない。したがって、このような場合に、分類モデルを再構築する必要がある。
モデル再構築判定部51が分類モデルを再構築するか否かを判断する例を、以下に説明する。
(分類モデルの再構築判断の第1の例)
第1の例として、モデル再構築判定部51は、記憶部16に記憶されているセンサデータを一定の周期または任意のタイミング(例えばユーザが指示したタイミング)で監視する。最初または前回再構築した分類モデル(既存分類モデル)で使用されているセンサのID(選択センサID)と、その後に収集したセンサデータのセンサIDとを比較することで、センサに変更(追加、除去等)が生じたかを判断する。すなわち、当該既存分類モデルで用いられている説明変数に対応するセンサをオンにし、それ以外のセンサをオフにするセンサ制御を開始した後、センサデータが収集されるセンサに変更が生じたかを判断する。例えば、今回収集されたセンサデータにセンサIDとして“n+1”が検出された場合は、新たなセンサが設置されたと判断する。また、選択センサIDに対応するセンサのセンサIDが検出されなかった場合は、既存のセンサが除去されたと判断する。
センサに変更が生じたことを検出した場合は、モデル再構築判定部51は、分類モデルの再構築を決定する。モデル再構築判定部51は、モデル構築部13に分類モデルの再構築を指示する。ただし、分類モデルの構築に相応のデータ量が必要な場合、必要なデータ量が集まるまでは、モデル構築を行わず、必要なデータ量が蓄積された時点で、モデル構築を指示してもよい。
モデル構築部13は、センサ変更が生じた後に計測されたセンサデータと、当該計測時の監視対象の状態を表す状態データ(分類ラベルデータ)とに基づいて、第1の実施形態と同様にして、分類モデルを構築する。そして、分類モデルに基づき、選択センサIDおよび代表データIDと、非選択センサIDとを特定する。モデル構築部13は、記憶部17に、新たなセンサ制御情報(選択センサID、代表データID、非選択センサID)を追加する。この際、前回のセンサ制御情報は消去されてもよいし、そのまま残しておいても良い。また、モデル構築部13は、記憶部18に、新たなモデル関連情報(分類モデル、選択センサID、代表データID等)を追加する。前回のモデル関連情報は消去されてもよいし、そのまま残しておいても良い。
モデル再構築判定部51は、センサ制御部14に、新たなセンサ制御情報(更新後のセンサ制御情報)の送信を指示する。センサ制御部14は、記憶部17から更新後のセンサ制御情報を読み出して、ゲートウェイ装置20に送信する。ゲートウェイ装置20は、更新後のセンサ制御情報に基づき、各センサを制御する。
(分類モデルの再構築判断の第2の例)
モデル再構築指示をユーザが、入出力装置30を用いて入力し、入力インターフェース19でこれを受信する。入力インターフェース19は、当該指示をモデル再構築判定部51に通知する。モデル再構築判定部51は、当該指示に基づき、モデル再構築を決定する。その後の動作は、第1の例と同じである。ユーザがモデル再構築を判断する理由として、異常検知の識別率が低下した場合や、最初に分類モデルを構築してから所定期間が経過した場合、センサ劣化によりセンサを置換した場合などがある。センサを置換した場合にセンサIDが変更される場合は、上述した第1の例に従って、モデル再構築が行われることもできる。
(分類モデルの再構築判断の第3の例)
最初または前回の分類モデルを構築してから一定期間が経過した場合に、モデル再構築判定部51がモデル再構築を決定する。または、本装置内で分類モデルを用いて異常検知を行っている場合に、異常検知の識別率が低下した場合に、モデル再構築判定部51がモデル再構築を決定する。異常検知の識別率が低下した場合の例として、異常検知の識別率が閾値を下回った場合や、一定期間内に一定回数以上の誤検知が発生した場合などがある。これらの場合、モデル再構築判定部51は、モデル再構築を決定する。その後の動作は、第1の例と同じである。
(分類モデルの再構築判断の第4の例)
分類ラベルの定義が変更された場合に、モデル再構築判定部51がモデル再構築を決定する。例えば、分類ラベルが正常および異常の2つの状態を示す場合から、3つ以上の状態を示す場合に変更されたとする。3つ以上の状態の例として、状態A、状態B、状態Cがあり、分類ラベルがこれらの状態を表すように変更される。一例として、状態Aが“01”、状態Bが“10”、状態Cが“11”によって表される。2つの閾値を用いて3つの区間を生成し、いずれの区間に監視対象の状態値が属するかで、監視対象に分類ラベルを割り当てることができる。
3つ以上の状態を扱う場合、分類モデルとして、多項ロジスティック回帰モデルまたは多クラスSVMを用いることが可能である。これにより3つ以上の状態のいずれの状態に該当するかを判定できる。
分類ラベルが変更されたか否かの判断は、分類ラベルデータを解析することで検出してもよい。あるいは、ユーザが入出力装置30から分類ラベル変更によるモデル再構築指示信号を入力し、その信号に基づいて、モデル再構築判定部51がモデル再構築を決定してもよい。モデル構築部13は、状態数に応じた関数を、分類モデル用の関数として用いればよい。
図13は、本実施形態に係るセンサ制御支援装置の動作のフローチャートである。ここでは、上述した第1の例に係る動作を示す。
モデル再構築判定部51は、最初または前回分類モデル(既存分類モデル)を構築した後、記憶部16に記憶されているセンサデータを一定の周期または任意のタイミングで監視する(B11)。
既存分類モデルで使用されるセンサのID(選択センサID)が、その後に収集したセンサデータのセンサIDと一致するかを判断する(B12)。新しいセンサIDが見つかった場合も、もしくは、収集したセンサデータに選択センサIDが見つからなかった場合、モデル再構築判定部51は、分類モデルの再構築を決定する。前者は、一例として、新たなセンサが追加されたことが考えられる。後者は、一例として、既存のセンサが除去された場合が考えられる。
モデル構築部13は、モデル再構築判定部51による分類モデルの再構築の決定に従って、分類モデルを再構築する(B13)。モデル構築部13は、センサ変更が検出された後のセンサデータと、分類ラベルデータとに基づいて、第1の実施形態と同様にして、分類モデルを構築する。ただし、分類モデルの構築には相応のデータ量が必要なため、必要なデータ量が集まるまでは、モデル構築を行わず、必要なデータ量が蓄積された時点でモデル構築を行ってもよい。
モデル構築部13は、再構築後の分類モデルに基づき、第1の実施形態と同様にして、選択センサID、代表データID、非選択センサIDを特定する(B14)。モデル構築部13は、記憶部17のセンサ制御情報(選択センサIDおよび代表データIDと、非選択センサID)を更新し、また、記憶部18のモデル関連情報(分類モデル、選択センサID、代表データID等)を更新する。
センサ制御部14は、更新後のセンサ制御情報を、ゲートウェイ装置20に通知する(B15)。ゲートウェイ装置20は、更新後のセンサ制御情報に基づき、各センサを制御する。
以上、本実施形態によれば、監視用に設置されるセンサが変更された場合に、状態予測に必要な選択センサを再度特定し、特定した選択センサをオンにし、それ以外の非選択センサをオフにすることで、人手でセンサの稼働を設定する手間を削減すると共に、消費電力および通信コストを低減することが可能となる。
(第3の実施形態)
図14は、第3の実施形態に係るセンサ制御支援装置を示すブロック図である。図12に示した第2の実施形態に係るセンサ制御支援装置に、モデル選択部52と、センサのスペックデータを保持する記憶部53とが追加されている。モデル選択部52は、最初または前回構築された分類モデルと、今回再構築された分類モデルとのうちの一方を選択し、選択した方の分類モデルを使用することをモデル構築部13に通知する。モデル構築部13は、最初または前回の分類モデルを引き続き使用することが決定された場合は、記憶部17および記憶部18の情報を更新しない。また、モデル再構築判定部51は、センサ制御部14にセンサ制御情報の送信を指示しない。一方、再構築された分類モデルを使用することが決定された場合は、第2の実施形態で分類モデルが再構築された場合と同様の動作を行う。
モデル選択部52が、モデル選択を行う例を以下に説明する。
(モデル選択の第1の例)
モデル選択部52は、最初または前回構築された分類モデル(既存分類モデル)の識別率と、今回構築した分類モデル(最新分類モデル)の識別率とを比較し、識別率の高い方の分類モデルを選択する。各分類モデルの識別率は、各分類モデルの構築に利用していないセンサデータと状態データとを用いて計算できる。
(モデル選択の第2の例)
モデル選択部52は、既存分類モデルに含まれる説明変数に対応するセンサのコストと、最新分類モデルに含まれる説明変数に対応するセンサのコストとに基づいて、いずれか一方の分類モデルを選択する。各センサのコストは、予め与えられていていてもよいし、各センサのスペックデータを利用して計算してもよい。
図15は、各センサのスペックデータを格納したスペックデータテーブルの例を示す。このテーブルは、各センサについて、下記の項目を含む。
・サンプリング周波数[Hz]
・センサ単価[円]
・連続稼働時間[min]
・データ格納に必要なDB容量[B]
・センサ単体の消費電力量
モデル選択部52は、各分類モデルに含まれる説明変数に対応するセンサ(すなわち、選択センサIDのセンサ)について、スペックデータテーブルから、該当するセンサのスペックデータを特定し、特定したスペックデータから、センサのコストを算出する。コストの指標として、以下の例が考えられる。
・運用コスト[円]
・必要DB容量[B]
・消費電力量[kWh]
運用コストは、一例として、定期点検、交換の費用などを含む。運用コストをある期間(例えば5年など)で総和したトータルコストを算出してもよい。必要DB容量は、センサにより取得されたセンサデータを記憶するための記憶容量である。消費電力量は、選択したセンサの消費電力量である。
モデル選択部52は、既存分類モデルおよび最新分類モデルのそれぞれにおいて、選択センサのコストを合計する。合計コストを比較して、低い方の分類モデルを選択する。別の方法として、これらの分類モデルごとに、コストの最も高いセンサを特定し、特定したセンサが上限を超える場合は、そのセンサを使用する分類モデルを選択しないようにしてもよい。コストを利用した判断を行う限り、ここで述べた以外の方法でモデル選択を行ってもよい。
(モデル選択の第3の例)
各分類モデルの情報を、入出力装置30を介してユーザに提示し、ユーザが選択した方の分類モデルを選択してもよい。この際、センサのスペックデータテーブルまたはセンサのコスト等を、モデル選択のための参考情報として、ユーザに提示してもよい。
既存分類モデルと最新分類モデルの一方を選択するのではなく、両方を選択してもよい。この場合、両方の分類モデルの少なくとも一方で使用されるセンサを選択センサとし、いずれの分類モデルでも使用されないセンサを非選択センサとすればよい。また、異常検知は、2つの分類モデルの検知結果を総合して行う。例えば両方の分類モデルが同じ検知結果を出力した場合は、その検知結果を採用する。異なる検知結果を出力した場合は、閾値C(前述した数3参照)からの距離が小さい方の検知結果を採用してもよい。ここで述べた以外の方法で、異常検知有無を判断してもよい。
(第4の実施形態)
第1〜第3の実施形態に係るセンサ制御支援装置のハードウェア構成について説明する。
図16に、本実施形態に係るセンサ制御支援装置のハードウェア構成を示す。本実施形態に係るセンサ制御支援装置は、コンピュータ装置100により構成される。コンピュータ装置100は、CPU151と、入力インターフェース152と、表示装置153と、通信装置154と、主記憶装置155と、外部記憶装置156とを備え、これらはバス157により相互に接続されている。
CPU(中央演算装置)151は、主記憶装置155上で、コンピュータプログラムであるセンサ制御支援を実行する。センサ制御支援は、センサ制御支援装置の上述の各機能構成を実現するプログラムのことである。CPU151が、センサ制御支援を実行することにより、各機能構成は実現される。
入力インターフェース152は、キーボード、マウス、及びタッチパネルなどの入力装置からの操作信号を、センサ制御支援装置に入力するための回路である。
表示装置153は、センサ制御支援装置から出力されるデータまたは情報を表示する。表示装置153は、例えば、LCD(液晶ディスプレイ)、CRT(ブラウン管)、及びPDP(プラズマディスプレイ)であるが、これに限られない。コンピュータ装置100から出力されたデータまたは情報は、この表示装置153により表示することができる。
通信装置154は、センサ制御支援装置が外部装置と無線または有線で通信するための回路である。計測データは、通信装置154を介して外部装置から入力することができる。外部装置から入力した計測データを、センサデータベースに格納することができる。
主記憶装置155は、センサ制御支援、センサ制御支援の実行に必要なデータ、及びセンサ制御支援の実行により生成されたデータなどを記憶する。センサ制御支援は、主記憶装置155上で展開され、実行される。主記憶装置155は、例えば、RAM、DRAM、SRAMであるが、これに限られない。各実施形態における記憶部16、17、18、53は、主記憶装置155上に構築されてもよい。
外部記憶装置156は、センサ制御支援、センサ制御支援の実行に必要なデータ、及びセンサ制御支援の実行により生成されたデータなどを記憶する。これらのプログラムやデータは、センサ制御支援の実行の際に、主記憶装置155に読み出される。外部記憶装置156は、例えば、ハードディスク、光ディスク、フラッシュメモリ、及び磁気テープであるが、これに限られない。各実施形態における記憶部16、17、18、53は、外部記憶装置156上に構築されてもよい。
なお、センサ制御支援は、コンピュータ装置100に予めインストールされていてもよいし、CD−ROMなどの記憶媒体に記憶されていてもよい。また、センサ制御支援は、インターネット上にアップロードされていてもよい。
なお、コンピュータ装置100は、プロセッサ151、入力インターフェース152、表示装置153、通信装置154、及び主記憶装置155を、それぞれ1つ又は複数備えてもよいし、プリンタやスキャナなどの周辺機器を接続されていてもよい。
また、センサ制御支援装置は、単一のコンピュータ装置100により構成されてもよいし、相互に接続された複数のコンピュータ装置100からなるシステムとして構成されてもよい。
なお、本発明は上記各実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記各実施形態に開示されている複数の構成要素を適宜組み合わせることによって種々の発明を形成できる。また例えば、各実施形態に示される全構成要素からいくつかの構成要素を削除した構成も考えられる。さらに、異なる実施形態に記載した構成要素を適宜組み合わせてもよい。
9:センサ選択部
10:センサ制御支援装置
11:通信部
12:データ処理部
13:モデル構築部
14:センサ制御部
15:出力情報生成部
16、17、18:記憶部
19:入力インターフェース
20:ゲートウェイ装置
30:入出力装置
51:モデル再構築判定部
52:モデル選択部
53:記憶部
100:コンピュータ装置
151:プロセッサ(CPU)
152:入力インターフェース
153:表示装置
154:通信装置
155:主記憶装置
156:外部記憶装置
157:バス

Claims (10)

  1. 監視対象に対する複数のセンサの計測データと、前記監視対象の状態を表す状態データとに基づいて、前記複数のセンサの中から前記監視対象の状態予測に使用するセンサを選択するセンサ選択部と、
    前記センサ選択部の選択結果に基づいて、前記複数のセンサを制御するセンサ制御部と、
    を備えたセンサ制御支援装置。
  2. 前記センサ制御部は、前記複数のセンサのうち前記選択されたセンサ以外のセンサをオフまたは低消費電力モードにするよう制御する
    請求項1に記載のセンサ制御支援装置。
  3. 前記計測データを収集する通信部を備え、
    前記センサ制御部は、前記低消費電力モードとして、前記選択されたセンサ以外のセンサからの前記計測データの収集頻度を低くする
    請求項2に記載のセンサ制御支援装置。
  4. 前記センサ選択部は、前記計測データと、前記状態データとに基づいて、前記複数のセンサのうち少なくとも1つのセンサに対応する少なくとも1つの説明変数と、前記監視対象の予測状態を表す目的変数とを対応づけた分類モデルを構築し、
    前記センサ選択部は、前記少なくとも1つの説明変数に対応するセンサを、前記状態予測に使用するセンサとする
    請求項1ないし3のいずれか一項に記載のセンサ制御支援装置。
  5. 前記計測データを収集する通信部を備え、
    前記センサ選択部は、前記収集された計測データにおいて、前記複数のセンサと異なるセンサを検出した場合、または前記選択されたセンサを検出しなかった場合、前記分類モデルを再構築し、
    前記センサ選択部は、前記再構築した分類モデルに含まれる説明変数に対応するセンサを、前記状態予測に使用するセンサとする
    請求項4に記載のセンサ制御支援装置。
  6. 前記センサ選択部は、前記分類モデルの識別率と、前記再構築された分類モデルの識別率とを計算し、計算した識別率に基づいて、前記分類モデルと前記再構築された分類モデルとのうちの一方を選択し、
    前記センサ選択部は、前記選択した分類モデルに含まれる前記説明変数に対応するセンサを、前記状態予測に使用するセンサとする
    請求項5に記載のセンサ制御支援装置。
  7. 前記センサ選択部は、前記分類モデルに含まれる前記説明変数に対応するセンサのコストと、前記再構築された分類モデルに含まれる前記説明変数に対応するセンサのコストとに基づいて、前記分類モデルと前記再構築された分類モデルとのうちの一方を選択し、
    前記センサ選択部は、前記選択した分類モデルに含まれる前記説明変数に対応するセンサを、前記状態予測に使用するセンサとする
    請求項5または6に記載のセンサ制御支援装置。
  8. ユーザ指示を受信する入力インターフェースを備え、
    前記センサ選択部は、前記入力インターフェースで受信した前記ユーザ指示に基づき、前記分類モデルと前記再構築された分類モデルとのうちの一方を選択し、
    前記センサ選択部は、前記選択した分類モデルに含まれる前記説明変数に対応するセンサを、前記状態予測に使用するセンサとする
    請求項5ないし7のいずれか一項に記載のセンサ制御支援装置。
  9. 監視対象に対する複数のセンサの計測データと、前記監視対象の状態を表す状態データとに基づいて、前記複数のセンサの中から前記監視対象の状態予測に使用するセンサを選択し、
    前記センサの選択結果に基づいて、前記複数のセンサを制御する
    センサ制御支援方法。
  10. 監視対象に対する複数のセンサの計測データと、前記監視対象の状態を表す状態データとに基づいて、前記複数のセンサの中から前記監視対象の状態予測に使用するセンサを選択するステップと、
    前記センサの選択結果に基づいて、前記複数のセンサを制御するセンサ制御ステップと、
    をコンピュータに実行させるためのコンピュータプログラム。
JP2017151911A 2017-08-04 2017-08-04 情報処理装置、情報処理方法及びコンピュータプログラム Active JP6847787B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017151911A JP6847787B2 (ja) 2017-08-04 2017-08-04 情報処理装置、情報処理方法及びコンピュータプログラム
US15/906,341 US11092460B2 (en) 2017-08-04 2018-02-27 Sensor control support apparatus, sensor control support method and non-transitory computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017151911A JP6847787B2 (ja) 2017-08-04 2017-08-04 情報処理装置、情報処理方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2019032185A true JP2019032185A (ja) 2019-02-28
JP6847787B2 JP6847787B2 (ja) 2021-03-24

Family

ID=65230335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017151911A Active JP6847787B2 (ja) 2017-08-04 2017-08-04 情報処理装置、情報処理方法及びコンピュータプログラム

Country Status (2)

Country Link
US (1) US11092460B2 (ja)
JP (1) JP6847787B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6727478B1 (ja) * 2019-03-28 2020-07-22 三菱電機株式会社 学習装置、学習方法及びプログラム
WO2020184561A1 (ja) * 2019-03-13 2020-09-17 日本電信電話株式会社 データ予測装置、データ予測方法、及びデータ予測プログラム
WO2020184560A1 (ja) * 2019-03-13 2020-09-17 日本電信電話株式会社 データ予測装置、データ予測方法、及びデータ予測プログラム
WO2022158069A1 (ja) * 2021-01-25 2022-07-28 コニカミノルタ株式会社 通信システムおよびデータ入力制御プログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3068163B1 (fr) * 2017-06-23 2019-12-20 Diehl Metering Sas Procede et systeme de collecte de donnees fournies par des capteurs
JP6939664B2 (ja) * 2018-03-14 2021-09-22 オムロン株式会社 センサ管理装置、センサ情報同期方法、制御プログラム、及び記録媒体
US20200120162A1 (en) * 2018-10-12 2020-04-16 Vixtera, Inc. Apparatus and methods for declarative control and query of devices connected to a computer network
WO2020202594A1 (en) * 2019-04-04 2020-10-08 Nec Corporation Learning system, method and program
US11763198B2 (en) * 2019-10-08 2023-09-19 Nec Corporation Sensor contribution ranking
JP7476713B2 (ja) * 2020-08-04 2024-05-01 横河電機株式会社 データ管理システム、データ管理方法、および、データ管理プログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090480A1 (ja) * 2005-02-23 2006-08-31 Hitachi, Ltd. センサネット管理方式
JP2006279927A (ja) * 2005-03-01 2006-10-12 Omron Corp 監視制御装置、監視システム、監視方法、プログラムおよび記録媒体
JP2012137934A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム並びに企業資産管理・設備資産管理システム
US20160048399A1 (en) * 2014-08-15 2016-02-18 At&T Intellectual Property I, L.P. Orchestrated sensor set
JP2016163242A (ja) * 2015-03-04 2016-09-05 株式会社日立製作所 データ収集システム、データ収集方法、サーバ及びゲートウェイ
JP2017130041A (ja) * 2016-01-20 2017-07-27 富士通株式会社 情報処理装置、制御方法及び制御プログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040198386A1 (en) * 2002-01-16 2004-10-07 Dupray Dennis J. Applications for a wireless location gateway
JP3643573B2 (ja) * 2002-06-05 2005-04-27 安西メディカル株式会社 放射線照射同期信号生成装置
US20050172311A1 (en) * 2004-01-31 2005-08-04 Nokia Corporation Terminal and associated method and computer program product for monitoring at least one activity of a user
KR20060096909A (ko) 2005-03-01 2006-09-13 오무론 가부시키가이샤 모니터링 제어 장치, 모니터링 시스템, 모니터링 방법,무선 통신 장치 및 무선 통신 시스템
WO2011036809A1 (ja) 2009-09-28 2011-03-31 株式会社 東芝 異常判定システムおよびその方法
CN103930912A (zh) 2011-11-08 2014-07-16 国际商业机器公司 时序数据分析方法、系统和计算机程序
JPWO2013187295A1 (ja) 2012-06-13 2016-02-04 ソニー株式会社 情報処理装置、情報処理方法、およびプログラム
US9800646B1 (en) * 2014-05-13 2017-10-24 Senseware, Inc. Modification of a sensor data management system to enable sensors as a service
US9410979B2 (en) * 2014-09-23 2016-08-09 Fitbit, Inc. Hybrid angular motion sensors
JP5849167B1 (ja) 2015-04-09 2016-01-27 株式会社日立パワーソリューションズ 異常検知方法およびその装置
JP5946572B1 (ja) 2015-08-05 2016-07-06 株式会社日立パワーソリューションズ 異常予兆診断システム及び異常予兆診断方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006090480A1 (ja) * 2005-02-23 2006-08-31 Hitachi, Ltd. センサネット管理方式
JP2006279927A (ja) * 2005-03-01 2006-10-12 Omron Corp 監視制御装置、監視システム、監視方法、プログラムおよび記録媒体
JP2012137934A (ja) * 2010-12-27 2012-07-19 Hitachi Ltd 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム並びに企業資産管理・設備資産管理システム
US20160048399A1 (en) * 2014-08-15 2016-02-18 At&T Intellectual Property I, L.P. Orchestrated sensor set
JP2016163242A (ja) * 2015-03-04 2016-09-05 株式会社日立製作所 データ収集システム、データ収集方法、サーバ及びゲートウェイ
JP2017130041A (ja) * 2016-01-20 2017-07-27 富士通株式会社 情報処理装置、制御方法及び制御プログラム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020184561A1 (ja) * 2019-03-13 2020-09-17 日本電信電話株式会社 データ予測装置、データ予測方法、及びデータ予測プログラム
WO2020184560A1 (ja) * 2019-03-13 2020-09-17 日本電信電話株式会社 データ予測装置、データ予測方法、及びデータ予測プログラム
JP6727478B1 (ja) * 2019-03-28 2020-07-22 三菱電機株式会社 学習装置、学習方法及びプログラム
WO2020194716A1 (ja) * 2019-03-28 2020-10-01 三菱電機株式会社 信号選択装置、学習装置、信号選択方法及びプログラム
US11367020B2 (en) 2019-03-28 2022-06-21 Mitsubishi Electric Corporation Signal selection device, learning device, and signal selection method and program
WO2022158069A1 (ja) * 2021-01-25 2022-07-28 コニカミノルタ株式会社 通信システムおよびデータ入力制御プログラム
JPWO2022158069A1 (ja) * 2021-01-25 2022-07-28
JP7294551B2 (ja) 2021-01-25 2023-06-20 コニカミノルタ株式会社 通信システム、データ入力制御プログラム、および制御部

Also Published As

Publication number Publication date
US20190041235A1 (en) 2019-02-07
US11092460B2 (en) 2021-08-17
JP6847787B2 (ja) 2021-03-24

Similar Documents

Publication Publication Date Title
JP6847787B2 (ja) 情報処理装置、情報処理方法及びコンピュータプログラム
JP6616791B2 (ja) 情報処理装置、情報処理方法およびコンピュータプログラム
US20070260563A1 (en) Method to continuously diagnose and model changes of real-valued streaming variables
US11093314B2 (en) Time-sequential data diagnosis device, additional learning method, and recording medium
Lin et al. A collaborative learning framework for estimating many individualized regression models in a heterogeneous population
JP6216294B2 (ja) 重回帰分析装置および重回帰分析方法
JP2019159604A (ja) 異常検知装置、異常検知方法及び異常検知プログラム
US20130282295A1 (en) System and method for classifying respiratory and overall health status of an animal
US20190026632A1 (en) Information processing device, information processing method, and recording medium
EP4160339A1 (en) Abnormality/irregularity cause identifying apparatus, abnormality/irregularity cause identifying method, and abnormality/irregularity cause identifying program
EP4160342A1 (en) Abnormal modulation cause identification device, abnormal modulation cause identification method, and abnormal modulation cause identification program
EP3904987B1 (en) Control support apparatus, control support method, control support program, computer readable medium with control support program recorded thereon and control system
KR102075743B1 (ko) 신체 성장 예측 모델링 장치 및 방법
CN115879607A (zh) 一种电能表状态预测方法、系统、设备和存储介质
CN109410502A (zh) 火灾预警方法及装置
EP4160341A1 (en) Abnormal modulation cause identifying device, abnormal modulation cause identifying method, and abnormal modulation cause identifying program
US20130281871A1 (en) System and method for classifying the respiratory health status of an animal
Lytras et al. FluHMM: a simple and flexible Bayesian algorithm for sentinel influenza surveillance and outbreak detection
CN112015615A (zh) 存储介质、作业功率评估方法和作业功率评估设备
CN115394442A (zh) 一种发育评估方法、装置、设备及介质
JP7396133B2 (ja) パラメータ調整装置、推論装置、パラメータ調整方法、及びパラメータ調整プログラム
Hodapp Unsupervised learning for computational phenotyping
CN113593694A (zh) 一种重症患者预后的预测方法
JP6753442B2 (ja) モデル生成装置、モデル生成方法、及びプログラム
Cho et al. Online monitoring and diagnosis of batch processes: empirical model-based framework and a case study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R151 Written notification of patent or utility model registration

Ref document number: 6847787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151