JP2019030113A - Disk type coil and rotary electric machine using the same - Google Patents

Disk type coil and rotary electric machine using the same Download PDF

Info

Publication number
JP2019030113A
JP2019030113A JP2017146825A JP2017146825A JP2019030113A JP 2019030113 A JP2019030113 A JP 2019030113A JP 2017146825 A JP2017146825 A JP 2017146825A JP 2017146825 A JP2017146825 A JP 2017146825A JP 2019030113 A JP2019030113 A JP 2019030113A
Authority
JP
Japan
Prior art keywords
conductor
pattern
magnetic flux
flux passage
pattern width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017146825A
Other languages
Japanese (ja)
Inventor
公明 岩谷
Masaaki Iwatani
公明 岩谷
ゆき 懸田
Yuki Kakeda
ゆき 懸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2017146825A priority Critical patent/JP2019030113A/en
Publication of JP2019030113A publication Critical patent/JP2019030113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)

Abstract

To improve motor efficiency of a disk type coil and a rotary electric machine using the same.SOLUTION: In a disk type coil constituted so that a coil of at least one circuit is constituted between a conductor pattern 1 on the front face and a conductor pattern 1 on the rear face of a disk type annular insulated substrate by conducting the conductor patterns 1 formed on the front and rear faces of the annular insulated substrate by through hole connection, a pattern width of one coil is divided into a magnetic flux passage part 2 passing through the inside of a magnetic field and a crossover part 3 outside the magnetic flux passage part 2, a pattern width W2 of the magnetic flux passage part 2 is a pattern width narrower than a pattern width by which at least allowable maximum eddy current loss is generated, and pieces of pattern width W4, W5 of the cross over part 3 become wider than the pattern width W2 of the magnetic flux passage part 2.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁基板上にエッチングやプレス加工で導体パターンを形成したディスク型コイル(平面コイルとも呼ばれる)及びそれを用いた回転電気機械に関するものである。   The present invention relates to a disk-type coil (also referred to as a planar coil) in which a conductor pattern is formed on an insulating substrate by etching or pressing, and a rotary electric machine using the same.

この種のディスク型コイルは、一般にプリント基板の製造技術を応用して形成されるものであり、絶縁基板上に固定される導体パターンは非常に薄いものなので、必然的にコイルに流せる電流量が制限されてしまう。しかも、限られた大きさの絶縁基板上に導体パターンを形成することから配線量に限界がある。このことから、モータ出力を大きくするには、導体パターンのパターン幅並びに導体間隙を均一に設定することにより、パターン密度を高めて導体パターンを流れる電流値を大きくすることが行われる(特許文献1)。   This type of disk-type coil is generally formed by applying printed circuit board manufacturing technology, and the conductor pattern fixed on the insulating substrate is very thin. It will be restricted. Moreover, since the conductor pattern is formed on the insulating substrate having a limited size, the amount of wiring is limited. For this reason, in order to increase the motor output, by setting the pattern width and the conductor gap of the conductor pattern uniformly, the pattern density is increased to increase the current value flowing through the conductor pattern (Patent Document 1). ).

他方、薄板状の金属材をプレス技術等によって打ち抜いた比較的厚みのある導体パターンの場合には、ディスクを積層する際に、磁石間の距離が大きくなって減磁されることから、あまり導体パターンの厚みを大きくし過ぎることも好ましくはない。   On the other hand, in the case of a relatively thick conductor pattern in which a thin plate metal material is punched out by a pressing technique or the like, the distance between the magnets is increased and the demagnetization is reduced when the disks are laminated. It is not preferable to make the thickness of the pattern too large.

このことから、ディスク型コイルにおいて、高出力/高トルクのものにするには、コイル断面積を増やしてその電流容量を高める必要があるが、エッチングまたは印刷方式によるコイルは、メッキを積み上げて銅・導体の肉厚を厚くしようとしても限界があることから、あるいは減磁の観点から厚くし過ぎることが好ましくないことから、パターン幅を広くして導体抵抗を低減せざるを得ない。つまり、パターン幅を大きく設定することにより、導体抵抗を低くして抵抗損失を低減させるようにしている。   For this reason, in order to obtain a high output / high torque disk type coil, it is necessary to increase the current capacity by increasing the coil cross-sectional area. -Even if it is going to increase the thickness of the conductor, there is a limit, or it is not preferable to make it too thick from the viewpoint of demagnetization. Therefore, it is necessary to widen the pattern width to reduce the conductor resistance. That is, by setting the pattern width large, the conductor resistance is lowered to reduce the resistance loss.

特許第469956号公報Japanese Patent No. 469956

ところが、導体パターンのパターン幅を大きく設定すると、磁束を横切る磁束通過部の導体部分に発生する渦電流損は逆に増加し、回転ロスが増加するという結果が得られた。つまり、導体パターンのパターン幅並びに導体間隙を均一に設定することによりパターン密度を高める場合、パターン幅を狭くすると導体抵抗値が大きくなり、その抵抗値を小さくしようとパターン幅を広くすると渦電流損が増大するという二律相反の関係にあり、モータ効率が低下することが判明した。   However, when the pattern width of the conductor pattern was set to be large, the eddy current loss generated in the conductor portion of the magnetic flux passing portion that crossed the magnetic flux increased conversely, and the result that the rotation loss increased was obtained. In other words, when the pattern density is increased by setting the pattern width and conductor gap of the conductor pattern uniformly, the conductor resistance value increases when the pattern width is narrowed, and the eddy current loss increases when the pattern width is widened to reduce the resistance value. It has been found that the motor efficiency decreases due to the contradictory relationship of increasing the motor.

つまり、渦電流の原因は導体パターンのパターン幅に比例して大きくなる為、渦電流の発生による発熱で回転機の出力効率を低下させる。この渦電流を抑制するためには導体パターンのパターン幅を狭くする必要があるが、導体抵抗値が大きくなり電流値に制約を受けるので、出力の大きい回転機を実現することができなくなる。この結果、モータ効率が低下することとなる。   That is, since the cause of the eddy current increases in proportion to the pattern width of the conductor pattern, the output efficiency of the rotating machine is reduced by the heat generated by the generation of the eddy current. In order to suppress this eddy current, it is necessary to reduce the pattern width of the conductor pattern. However, since the conductor resistance value is increased and the current value is restricted, a rotating machine with a large output cannot be realized. As a result, the motor efficiency is reduced.

本発明は、モータ効率を向上させることが可能なディスク型コイル及びそれを用いた回転電気機械を提供することを目的とする。   An object of the present invention is to provide a disk-type coil capable of improving motor efficiency and a rotating electric machine using the same.

かかる目的を達成するため、本発明は、ディスク形の環状絶縁基板の表裏面に形成された導体パターンをスルーホール接続で導通させることにより絶縁基板の表面の導体パターンと裏面の導体パターンとの間で少なくとも1回路のコイルを構成するようにしたディスク型コイルにおいて、コイル1本のパターン幅を磁界中を通過する磁束通過部と磁束通過部の外の渡り線部とに区分し、磁束通過部のパターン幅が許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅であり、渡り線部のパターン幅が磁束通過部のパターン幅よりも広くするようにしている。   In order to achieve such an object, the present invention provides a conductive pattern formed on the front and back surfaces of a disk-shaped annular insulating substrate through a through-hole connection so that the conductive pattern on the surface of the insulating substrate is connected to the conductive pattern on the back surface. In the disk-type coil configured to constitute at least one circuit coil, the pattern width of one coil is divided into a magnetic flux passage portion that passes through the magnetic field and a crossover portion outside the magnetic flux passage portion, and the magnetic flux passage portion The pattern width is narrower than the pattern width where the maximum allowable eddy current loss occurs, and the pattern width of the crossover portion is made wider than the pattern width of the magnetic flux passage portion.

請求項2記載のディスク型コイルは、磁束通過部のパターン幅が0.8mm以内であることを特徴とする。   The disk type coil according to claim 2 is characterized in that the pattern width of the magnetic flux passage portion is within 0.8 mm.

請求項3記載のディスク型コイルは、導体パターンの終端末あるいは始端末を他のディスク型コイルの導体パターンの始端末あるいは終端末と導通させる積層用のスルーホールを備えることを特徴とする。   According to a third aspect of the present invention, there is provided a disk-type coil including a through-hole for stacking that electrically connects a terminal end or a start terminal of a conductor pattern with a start terminal or a terminal end of a conductor pattern of another disk-type coil.

請求項4記載のディスク型コイルは、導体パターンが、重巻で1つのコイルを構成するものである。   According to a fourth aspect of the present invention, there is provided a disk-type coil in which the conductor pattern is composed of multiple windings to form one coil.

請求項5記載のディスク型コイルは、導体パターンが、磁束通過部で磁束通過軌跡と直交する径方向へと直線的に延びる磁束通過部導体と、磁束通過部の外の渡り線部導体とで構成され、さらに渡り線部導体は磁束通過軌跡に沿って周方向に配置された渡り線主導体部と、磁束通過部導体と渡り線主導体部とを湾曲した導体で結ぶ渡り線遷移導体部とを備えるものである。   According to a fifth aspect of the present invention, there is provided a disk-type coil comprising: a magnetic flux passage conductor whose conductor pattern linearly extends in a radial direction perpendicular to the magnetic flux passage locus at the magnetic flux passage portion; and a crossover conductor outside the magnetic flux passage portion. The crossover conductor is configured, and the crossover conductor is arranged in the circumferential direction along the magnetic flux passage locus, and the crossover transition conductor that connects the magnetic flux passage conductor and the crossover main conductor with a curved conductor Are provided.

請求項6記載の発明にかかる回転電気機械は、請求項1〜5のいずれか1つに記載のディスク型コイルを電機子としてまたはステータコイルとして備えることを特徴とする。   A rotary electric machine according to a sixth aspect of the invention is characterized in that the disk-type coil according to any one of the first to fifth aspects is provided as an armature or a stator coil.

請求項1記載のディスク型コイルによると、コイル1本のパターン幅を磁界中を通過する磁束通過部と磁束通過部の外の渡り線部とに区分し、磁束通過部のパターン幅を許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅として渦電流の発生を抑制する一方、磁束通過部の外の渡り線を磁束通過部領域のパターン幅よりも広くすることで導体パターン全体の抵抗値を下げる(抵抗の増加を抑える)ようにして、渦電流と導体抵抗値の双方の低減を両立させることでモータ効率を向上させ得る。   According to the disk type coil of the first aspect, the pattern width of one coil is divided into a magnetic flux passage portion that passes through the magnetic field and a crossover portion outside the magnetic flux passage portion, and the pattern width of the magnetic flux passage portion is allowed. While suppressing the generation of eddy currents as a pattern width that is narrower than the pattern width at which the largest eddy current loss occurs, the conductor pattern is made by making the connecting wire outside the magnetic flux passage area wider than the pattern width of the magnetic flux passage area. The motor efficiency can be improved by reducing both the eddy current and the conductor resistance value by reducing the overall resistance value (suppressing the increase in resistance).

また、請求項2記載のディスク型コイルによれば、磁束通過部のパターン幅を0.8mm以内として渦電流の発生を抑制しつつ導体パターン全体の抵抗値を下げながらパターン密度を高めて出力を増加させ得る。   According to the disk type coil of the second aspect, the pattern width of the magnetic flux passage portion is set to within 0.8 mm, the generation of the eddy current is suppressed, the resistance value of the entire conductor pattern is lowered, and the pattern density is increased to output. Can be increased.

また、請求項3記載のディスク型コイルによれば、導体パターンの終端末あるいは始端末を他のディスク型コイルの導体パターンの始端末あるいは終端末と導通させる積層用のスルーホールを介して複数層(複数枚)のディスク間で導体パターンを並列接続することにより全体としての導体抵抗をさらに低くすることができる。また、複数層のディスク間の導体パターンを直列接続することにより、電圧をより高くすることができる。   Further, according to the disk type coil of claim 3, a plurality of layers are formed through the through holes for lamination that make the terminal end or the start terminal of the conductor pattern conductive with the terminal end or the terminal end of the conductor pattern of another disk type coil. The conductor resistance as a whole can be further reduced by connecting conductor patterns in parallel between (a plurality of) disks. Further, the voltage can be further increased by connecting the conductor patterns between the multiple layers of disks in series.

また、請求項4記載のディスク型コイルによれば、導体パターンが、重巻で1つのコイルを構成することによりディスクの表裏の導体パターンを接続するスルーホールが1箇所しか必要とされないので、表裏導体パターン接続用スルーホールで電流の流れが抑制される影響を少なくして電流を流れ易くし、モータ効率をより向上させ得る。しかも、スルーホールの数を圧倒的に少なくできることにより、加工工程数などの大幅削減によりコストダウンを図れる。   Further, according to the disk type coil according to claim 4, since the conductor pattern is composed of multiple windings, only one through hole for connecting the conductor patterns on the front and back of the disk is required. The influence of the current flow being suppressed by the conductor pattern connecting through hole can be reduced to facilitate the current flow, and the motor efficiency can be further improved. In addition, since the number of through holes can be significantly reduced, the cost can be reduced by drastically reducing the number of processing steps.

また、請求項5記載のディスク型コイルによれば、重巻で形成される導体パターンが、磁束通過部で磁束通過軌跡と直交する径方向へと直線的に延びる磁束通過部導体と、磁束通過部の外の渡り線部導体とで構成され、さらに渡り線部導体は磁束通過軌跡に沿って周方向に配置された渡り線主導体部と、磁束通過部導体と渡り線主導体部とを湾曲した導体で結ぶ渡り線遷移導体部とを備えるので、渡り線遷移導体部や一部例えば最内周の渡り線主導体部が磁束通過部にかかっていても、渦電流損の発生の影響を受けにくいと考えられる。つまり、磁束通過軌跡に沿って周方向に配置された渡り線主導体部の両端の円弧状の渡り線遷移導体部は磁束に対して傾きを以て横切るため、発生する渦電流損が小さくなる。したがって、市販の環状の絶縁基板に対して、磁束通過軌跡ぎりぎりまで、あるいは一部重なっても渡り線部を形成するようにして多くの巻数の導体パターンを形成できるので、パターン密度を高めることができ、モータ出力を増大させ得る。   According to the disk type coil of the fifth aspect, the conductor pattern formed by multiple windings includes a magnetic flux passage conductor that linearly extends in the radial direction perpendicular to the magnetic flux passage locus at the magnetic flux passage portion, and the magnetic flux passage. The connecting wire portion conductor is composed of a connecting wire main conductor portion arranged in the circumferential direction along the magnetic flux passage locus, and the magnetic flux passing portion conductor and the connecting wire main conductor portion. Since it has a crossover transition conductor connected by a curved conductor, even if the crossover transition conductor and some of the innermost crossover main conductor are on the magnetic flux passage, the effect of eddy current loss It is thought that it is hard to receive. In other words, the arc-shaped crossover transition conductor portions at both ends of the crossover main conductor portion arranged in the circumferential direction along the magnetic flux passage locus cross with an inclination with respect to the magnetic flux, so that the generated eddy current loss is reduced. Therefore, a conductor pattern having a large number of turns can be formed on a commercially available ring-shaped insulating substrate so as to form a crossover portion even if it overlaps the magnetic flux passing trajectory, or even partially overlaps, thereby increasing the pattern density. Can increase the motor output.

また、請求項6記載の回転電気機械によれば、請求項1から5のいずれかに記載のディスク型コイルを電機子としてあるいはステータコイルとして使用しているので、渦電流損を抑えつつ導体抵抗を低減させることでモータ効率を向上させ得る。   Further, according to the rotary electric machine according to claim 6, since the disk type coil according to any one of claims 1 to 5 is used as an armature or a stator coil, the conductor resistance is suppressed while suppressing eddy current loss. By reducing the motor efficiency, the motor efficiency can be improved.

本発明に係るディスク型コイルを重巻コイルに適用した導体パターンの一実施形態を示す正面図である。It is a front view which shows one Embodiment of the conductor pattern which applied the disk type coil which concerns on this invention to the heavy wound coil. 図1の導体パターンで構成される3相ディスク型コイルの一実施形態を示す図で、(A)は表面図、(B)は裏面図、(C)は中央縦断面図である。It is a figure which shows one Embodiment of the three-phase disc type coil comprised by the conductor pattern of FIG. 1, (A) is a front view, (B) is a back view, (C) is a center longitudinal cross-sectional view. 本発明に係るディスク型コイルを波巻コイルに適用した導体パターンの一実施形態を示す正面図である。It is a front view which shows one Embodiment of the conductor pattern which applied the disk type coil which concerns on this invention to the wave winding coil. 図3の導体パターンで構成される3相ディスク型コイルの一実施形態を示す図で、(A)は表面図、(B)は中央縦断面図である。It is a figure which shows one Embodiment of the three-phase disk type | mold coil comprised by the conductor pattern of FIG. 3, (A) is a surface figure, (B) is a center longitudinal cross-sectional view. 本発明に係るディスク型コイルを重巻コイルに適用した導体パターンの他の実施形態を示す正面図である。It is a front view which shows other embodiment of the conductor pattern which applied the disk type coil which concerns on this invention to the heavy wound coil. 本発明に係るディスク型コイルを重巻コイルに適用した導体パターンのさらに他の実施形態を示す正面図である。It is a front view which shows other embodiment of the conductor pattern which applied the disk type coil which concerns on this invention to the heavy wound coil. 本発明に係るディスク型コイルを重巻コイルに適用した導体パターンのさらに他の実施形態を示す正面図である。It is a front view which shows other embodiment of the conductor pattern which applied the disk type coil which concerns on this invention to the heavy wound coil.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。なお、本明細書においては、導体パターンは、コイル1本のパターン幅を磁界中を通過する部分と磁界外とに大きく区分し、対向させて配置されている一対の永久磁石の間のギャップ(磁気的空隙)に配置されている導体領域(トルク発生あるいは発電に寄与する有効コイル領域)を磁界中を通過する磁束通過部と呼び、ギャップの外に配置されて永久磁石と重ならない導体領域(トルク発生あるいは発電に寄与しないコイル端領域)を磁束通過部の外の渡り線部と呼び、さらに渡り線部導体は磁束通過軌跡に沿って周方向に配置された渡り線主導体部と、磁束通過部導体と渡り線主導体部とを湾曲した導体で結ぶ渡り線遷移導体部とに区分して呼ぶ。   Hereinafter, the configuration of the present invention will be described in detail based on embodiments shown in the drawings. In the present specification, the conductor pattern roughly divides the pattern width of one coil into a portion that passes through the magnetic field and the outside of the magnetic field, and a gap between a pair of permanent magnets arranged facing each other ( The conductor area (effective coil area that contributes to torque generation or power generation) arranged in the magnetic gap is called the magnetic flux passage that passes through the magnetic field, and the conductor area that is arranged outside the gap and does not overlap the permanent magnet ( The coil end region that does not contribute to torque generation or power generation) is called a crossover portion outside the magnetic flux passage portion, and the crossover conductor is a crossover main conductor portion arranged in the circumferential direction along the magnetic flux passage locus, and the magnetic flux The crossing conductor and the crossover main conductor are referred to as a crossover transition conductor connecting the curved conductor.

図1に本発明のディスク型コイルを構成する導体パターン・コイルパターンの一実施形態を示す。   FIG. 1 shows an embodiment of a conductor pattern / coil pattern constituting a disk type coil of the present invention.

この実施形態のディスク型コイルは、例えば絶縁性基板の両面にエッチングまたは印刷技術により導体パターンを形成する両面プリント基板である。導体パターン・コイル1は、特定の構造・形状に限定されず、重巻でも、波巻でも実施可能であるが、本実施形態では、重巻によって逆三角形(扇形)のコイルを形成している。勿論、重巻においても、図示していないその他の形状、例えば4角形型や6角形型としても良い。このような重巻であれば、1巻きで絶縁性基板10の表裏の導体パターン1を繋ぐ表裏導体パターン接続用スルーホール6を設けるスルーホールランド8を少なくとも1つしか必要としない。これに対し、波巻きだと、1つのコイル片ごとに表裏導体パターン接続用スルーホール6を設けるスルーホールランド8を少なくとも2つずつ両端に必要とするため、大量の表裏導体パターン接続用スルーホール6が必要となる。即ち、重巻にすると、表裏導体パターン接続用スルーホール6の数を圧倒的に少なくできる。これにより、加工工程数などの大幅削減によりコストダウンを図れる。また、電流が抑制される影響を受け難くすることができる。本発明者等が実験した結果、絶縁性基板10の裏表の導体パターン1を繋ぐスルーホール6がある場合と無い場合とでは、電流を流さない状況では同じ導体抵抗値であっても、電流を流そうとすると、理由は不明であるが、スルーホール6が存在する方が電流が流れ難いという現象を惹起することを知見するに至った。即ち、表裏導体パターン接続用スルーホール6の数を圧倒的に少なくできる重巻の導体パターン1の方が波巻の導体パターン1よりも高出力化に向くことを明らかにした。   The disk-type coil of this embodiment is a double-sided printed board in which a conductor pattern is formed on both sides of an insulating board by etching or printing technology, for example. The conductor pattern / coil 1 is not limited to a specific structure / shape, and can be implemented by double winding or wave winding. In this embodiment, an inverted triangle (fan-shaped) coil is formed by multiple winding. . Of course, even in the case of heavy winding, other shapes not shown, for example, a quadrangular shape or a hexagonal shape may be used. In such a heavy winding, at least one through-hole land 8 is required which is provided with a through-hole 6 for connecting the front and back conductor patterns that connects the front and back conductor patterns 1 of the insulating substrate 10 with one winding. On the other hand, in the case of wave winding, since at least two through-hole lands 8 are provided at both ends for providing the through-holes 6 for connecting the front and back conductor patterns for each coil piece, a large number of through-holes for connecting the front and back conductor patterns 6 is required. That is, when the winding is heavy, the number of through-holes 6 for connecting the front and back conductor patterns can be greatly reduced. As a result, the cost can be reduced by greatly reducing the number of processing steps. Moreover, it can be made difficult to receive the influence by which an electric current is suppressed. As a result of experiments conducted by the present inventors, it was found that there was no through-hole 6 connecting the conductor patterns 1 on the back and front of the insulating substrate 10 and when there was no through-hole 6 even when the current was not passed, When trying to flow, the reason is unknown, but it has been found that the presence of the through-hole 6 causes a phenomenon that current is difficult to flow. That is, it has been clarified that the multi-winding conductor pattern 1 capable of overwhelmingly reducing the number of through-holes 6 for connecting the front and back conductor patterns is higher in output than the wave-winding conductor pattern 1.

図1の導体パターン1は、外側から内側へ渦巻き状に巻き始めて内側で巻き終り、更に絶縁性基板10の裏面側ではその逆に内側から巻き始めて外側で巻き終る、所謂、重ね巻の例を示す。絶縁性基板10の表裏の導体パターン1同士は、最内周の導体の末端に形成されている表裏導体パターン接続用スルーホール6を介して導通され、最小単位の1つのコイルを形成するように形成されている。他方、各導体パターン1の最外周の導体の末端は絶縁性基板10の内周側に引き出されて始端末パターン及び終端末パターンを形成し、その末端には同相接続スルーホール7を穿孔するスルーホールランド9が形成されている。この同相接続スルーホール7を介して同一基板10上の他の同相の導体パターン1と導通されて1つのコイル回路(1相のコイル回路)を形成するように設けられている。さらに、1つのコイル回路の両端のフリーとなっている始端末パターン及び終端末パターンとして利用されるスルーホールランド9並びに同相接続スルーホール7は、複数層(複数枚)のディスク間で導体パターン1を並列接続あるいは直列接続する場合には、積層用のスルーホールランド及びスルーホールとして利用される。   The conductor pattern 1 in FIG. 1 starts to spiral from the outside to the inside and finishes winding on the inside, and on the back side of the insulating substrate 10, on the contrary, starts winding from the inside and finishes winding on the outside. Show. The conductive patterns 1 on the front and back sides of the insulating substrate 10 are electrically connected through the through-holes 6 for connecting the front and back conductor patterns formed at the ends of the innermost conductor so as to form one coil as a minimum unit. Is formed. On the other hand, the end of the outermost conductor of each conductor pattern 1 is drawn to the inner peripheral side of the insulating substrate 10 to form a start terminal pattern and an end terminal pattern, and a through-hole 7 in which an in-phase connection through hole 7 is drilled at the end. A hole land 9 is formed. It is provided so as to be electrically connected to another in-phase conductor pattern 1 on the same substrate 10 through the in-phase connection through hole 7 to form one coil circuit (one-phase coil circuit). Furthermore, the through-hole land 9 and the in-phase connection through-hole 7 that are used as a free end terminal pattern and an end terminal pattern that are free at both ends of one coil circuit are provided in the conductor pattern 1 between a plurality of (multiple) disks. When these are connected in parallel or in series, they are used as through-hole lands and through-holes for stacking.

導体パターン1は、磁束通過部で磁束通過軌跡と直交する径方向へと直線的に延びる磁束通過部2と、磁束通過部2の外の渡り線部3とに大きく分けて構成され、さらに渡り線部3は磁束通過軌跡12に沿って周方向に配置された渡り線主導体部5と、磁束通過部2と渡り線主導体部5とを湾曲した導体で結ぶ渡り線遷移導体部4とで構成される。この導体パターン1は、コイル1本のパターン幅を磁界中を通過する部分と磁界外とに大きく区分され、磁束と直角に配置されている直線的な磁束通過部2のパターン幅W2は渦電流の発生が少なくとも許容範囲に収まる程度に狭く、磁束通過軌跡12と平行にあるいは磁束と斜交する磁束通過部2の外の渡り線部3のパターン幅W4,W5は磁束通過部2のそれよりも広くして回路全体の導体抵抗を下げ得るように形成されている。尚、湾曲した導体から成る渡り線遷移導体部4は磁束通過部(直線部)2ほど磁束を直角に横切らないので、渦電流損が発生する割合が磁束通過部2よりも小さい。しかも、パターン幅W4が広がることで導体抵抗が下がる。したがって、渦電流のある程度の抑制と導体抵抗低減が同時に解決できる。しかも、渡り線部3の導体断面積を大きくすることで、導体パターン1の冷却効果も向上する。尚、図中の符号13はシャフトを貫通させるセンターホールである。   The conductor pattern 1 is roughly divided into a magnetic flux passage portion 2 that linearly extends in the radial direction perpendicular to the magnetic flux passage locus at the magnetic flux passage portion, and a connecting wire portion 3 outside the magnetic flux passage portion 2. The wire portion 3 includes a crossover main conductor portion 5 disposed in the circumferential direction along the magnetic flux passage locus 12, and a crossover transition conductor portion 4 that connects the magnetic flux passage portion 2 and the crossover main conductor portion 5 with a curved conductor. Consists of. The conductor pattern 1 has a pattern width W2 of a linear magnetic flux passage portion 2 that is arranged at right angles to the magnetic flux, and the pattern width W2 of the linear magnetic flux passage portion 2 arranged at right angles to the magnetic flux. The pattern widths W4 and W5 of the crossover portion 3 outside the magnetic flux passage portion 2 parallel to the magnetic flux passage locus 12 or obliquely intersecting with the magnetic flux are smaller than those of the magnetic flux passage portion 2 so as to be at least within an allowable range. It is formed so that the conductor resistance of the entire circuit can be lowered. Note that the connecting wire transition conductor portion 4 made of a curved conductor does not cross the magnetic flux at a right angle as much as the magnetic flux passage portion (straight portion) 2, so that the rate of occurrence of eddy current loss is smaller than that of the magnetic flux passage portion 2. In addition, the conductor resistance decreases as the pattern width W4 increases. Therefore, a certain degree of suppression of eddy current and reduction of conductor resistance can be solved simultaneously. Moreover, the cooling effect of the conductor pattern 1 is also improved by increasing the conductor cross-sectional area of the crossover part 3. Note that reference numeral 13 in the figure denotes a center hole that penetrates the shaft.

本発明者等の実験によれば、磁束を横切る磁束通過部2には渦電流が発生し、その大きさはパターン幅W2を広くするほどに増加することが明らかとなった。そこで、磁束通過部2におけるパターン幅W2は、少なくとも許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅、好ましくは渦電流が十分に抑制されるパターン幅にすることが望まれる。例えば、パターン厚み200μmのエッチングによる導体パターン1の場合には、パターン幅W2が1mmを超えると許容される最大の渦電流損を超える渦電流が発生することから、1mmを超えないパターン幅W2であることが好ましい。その反面、パターン幅W2を狭くして行くと、導体断面積が小さくなって導体抵抗が増大して行く。したがって、磁束通過部2のパターン幅W2は、渦電流が抑制されるパターン幅で尚且つ導体抵抗の増大が許容される限り小さくできる断面積が確保できるパターン幅に形成することが必要である。このことから、渦電流の発生を抑えるためには、磁束通過部2のパターン幅W2は、少なくとも許容される最大の渦電流損に抑えることができるパターン幅、例えば1mm以下、好ましくは0.8mm以内にすることである。ここで、パターン幅W2の最小幅は、現在のエッチング加工技術では0.2mmが限界とされていることから、このパターン幅を最小値としているが、これに特にかぎられるものではなく、0.2mm以下のパターンでも形成できる加工技術が開発された際にはそれによって形成できる最小幅を採用しても良いことは言うまでもない。そこで、磁束通過部2のパターン幅W2は、導体厚み(導電材厚み)に関係なく例えば0.2mm〜1mm、好ましくは0.2mm〜0.8mm、より好ましくは0.4mm〜0.8mmの範囲内で形成するようにしている。例えば、エッチング(厚み200μm)によって形成される導体パターン1の場合には0.6−0.8mm、薄板状の金属材をプレス技術等によって打ち抜いた比較的厚みのある導体パターン1の場合には幅を狭くして(幅0.2mmに近づける)断面積を維持することが好ましい。導体パターン1の厚みが増すと、ディスク型コイルを積層する際に導体パターン1の厚みが増して磁石間の距離が大きくなり、減磁されることから、あまり導体パターン1の厚みを大きくし過ぎることも得策ではない。つまり、上述の「磁束通過部2のパターン幅W2は、導体厚み(同電材厚み)に関係なく」とは、基板銅厚は自ずと限界があることから、導体パターン1の銅厚(導電材厚み)は考慮するまでもなくという程度の意味である。   According to experiments by the present inventors, it has been clarified that an eddy current is generated in the magnetic flux passage portion 2 crossing the magnetic flux, and the magnitude thereof increases as the pattern width W2 is increased. Therefore, it is desired that the pattern width W2 in the magnetic flux passage portion 2 is at least a pattern width that is narrower than the pattern width at which the maximum allowable eddy current loss occurs, preferably a pattern width that sufficiently suppresses the eddy current. . For example, in the case of the conductor pattern 1 by etching with a pattern thickness of 200 μm, an eddy current exceeding the maximum allowable eddy current loss occurs when the pattern width W2 exceeds 1 mm, so that the pattern width W2 does not exceed 1 mm. Preferably there is. On the other hand, when the pattern width W2 is reduced, the conductor cross-sectional area is reduced and the conductor resistance is increased. Therefore, it is necessary to form the pattern width W2 of the magnetic flux passage portion 2 to a pattern width that can secure a cross-sectional area that can be reduced as long as the eddy current is suppressed and an increase in the conductor resistance is allowed. From this, in order to suppress the generation of eddy currents, the pattern width W2 of the magnetic flux passage portion 2 is at least a pattern width that can be suppressed to the maximum allowable eddy current loss, for example, 1 mm or less, preferably 0.8 mm. Is to be within. Here, the minimum width of the pattern width W2 is limited to 0.2 mm in the current etching processing technique. Therefore, this pattern width is set to the minimum value, but is not limited to this. Needless to say, when a processing technique capable of forming a pattern of 2 mm or less is developed, a minimum width that can be formed by the processing technique may be adopted. Therefore, the pattern width W2 of the magnetic flux passing portion 2 is, for example, 0.2 mm to 1 mm, preferably 0.2 mm to 0.8 mm, more preferably 0.4 mm to 0.8 mm, regardless of the conductor thickness (conductive material thickness). It is made to form within the range. For example, in the case of the conductive pattern 1 formed by etching (thickness 200 μm), 0.6-0.8 mm, and in the case of the relatively thick conductive pattern 1 obtained by punching a thin plate-like metal material by a pressing technique or the like. It is preferable to maintain the cross-sectional area by reducing the width (approaching a width of 0.2 mm). When the thickness of the conductor pattern 1 is increased, the thickness of the conductor pattern 1 is increased when the disk-type coil is laminated, the distance between the magnets is increased, and demagnetization is performed, so that the thickness of the conductor pattern 1 is excessively increased. That is not a good idea. In other words, the above-mentioned “the pattern width W2 of the magnetic flux passage portion 2 is independent of the conductor thickness (the same electrical material thickness)” naturally has a limit on the copper thickness of the substrate. ) Means no need to consider.

他方、渡り線部3の渡り線主導体部5のパターン幅W5並びに渡り線遷移導体部4のパターン幅W4は、磁束通過部2のパターン幅W2よりも広く形成されており、好ましくは磁束通過部2のパターン幅W2の1.2倍以上に形成されている。これにより、磁束通過部2における渦電流の発生を抑えつつ導体パターン1の全体としての導体抵抗の低減を図ることができる。ここで、渡り線部3のパターン幅W4,W5は、少なくとも磁束通過部2のパターン幅W2の1.2倍以上であれば、パターン全体の抵抗値を下げる効果が得られ、出力増加が期待できる。その反面、渡り線部3のパターン幅W4,W5を磁束通過部2のパターン幅W2の1.2倍未満であると、パターン全体の抵抗値を下げる効果が薄れるので、出力増加が期待できない。他方、渡り線部3のパターン幅W4,W5は、広がるほどに電気抵抗を下げうるので好ましいが、同時に同じ基板サイズであれば形成できる導体パターンのコイル巻数を減らすことに繋がるので、磁束通過部2のパターン幅W2の3〜4倍までとすることが好ましい。即ち、磁束通過部のパターン幅の1.2倍〜3倍若しくは4倍の範囲内で渡り線部3のパターン幅W5を広くすれば、導体パターン全体の導体抵抗値を下げながら、コイル巻数を稼ぐことができる。この場合、導体パターンの全体の電気抵抗値を下げながら多くの巻数の導体パターンを形成できるので、パターン密度を高めることができ、モータ出力を増大させ得る。また、環状絶縁基板のサイズを市販の規格品よりも大きくすれば、磁束通過部2のパターン幅W2の3〜4倍を超えることも可能であり、磁束通過部2のパターン幅W2のを超えても、パターン全体の抵抗値を下げる効果は得られる。しかしながら、規格外の環状絶縁基板を採用することはコスト高となると共にモータも大型化してしまう問題が伴う。また、市販の環状絶縁基板の大きさは決まっていることから、磁束通過部2の外の渡り線部3のパターン幅W4,W5を磁束通過部2のパターン幅W2の3〜4倍を超える広さにしながら同時に巻数を増やそうとすると絶縁基板上に収まり決らないし、収まるように巻数を減らすと出力が減る。このことから、渡り線部の渡り線主導体部5のパターン幅W5は、磁束通過部のパターン幅W2が0.2〜0.4mmのときには、W2×1.2〜4倍の範囲内であることが好ましく、パターン幅W2が0.5〜0.8mmのときには、W2×1.2〜3倍の範囲内であることが好ましい。   On the other hand, the pattern width W5 of the crossover main conductor portion 5 of the crossover portion 3 and the pattern width W4 of the crossover transition conductor portion 4 are formed wider than the pattern width W2 of the magnetic flux passage portion 2, and preferably pass through the magnetic flux. The pattern width W2 is 1.2 times or more of the pattern width W2. Thereby, the conductor resistance of the conductor pattern 1 as a whole can be reduced while suppressing the generation of eddy currents in the magnetic flux passage portion 2. Here, if the pattern widths W4 and W5 of the crossover part 3 are at least 1.2 times the pattern width W2 of the magnetic flux passage part 2, an effect of lowering the resistance value of the entire pattern can be obtained, and an increase in output is expected. it can. On the other hand, if the pattern widths W4 and W5 of the crossover portion 3 are less than 1.2 times the pattern width W2 of the magnetic flux passage portion 2, the effect of lowering the resistance value of the entire pattern is diminished, so an increase in output cannot be expected. On the other hand, the pattern widths W4 and W5 of the crossover portion 3 are preferable because the electrical resistance can be lowered as the width increases, but at the same time, the same substrate size leads to a reduction in the number of coil turns of the conductor pattern that can be formed. The pattern width W2 is preferably 3 to 4 times the pattern width W2. That is, if the pattern width W5 of the crossover part 3 is increased within the range of 1.2 to 3 times or 4 times the pattern width of the magnetic flux passage part, the number of coil turns can be reduced while lowering the conductor resistance value of the entire conductor pattern. You can earn. In this case, since the conductor pattern having a large number of turns can be formed while lowering the overall electric resistance value of the conductor pattern, the pattern density can be increased and the motor output can be increased. Further, if the size of the annular insulating substrate is made larger than that of a commercially available standard product, it is possible to exceed 3 to 4 times the pattern width W2 of the magnetic flux passage part 2, exceeding the pattern width W2 of the magnetic flux passage part 2. However, the effect of lowering the resistance value of the entire pattern can be obtained. However, adopting a non-standard annular insulating substrate is accompanied by a problem that the cost is increased and the motor is increased in size. In addition, since the size of the commercially available annular insulating substrate is determined, the pattern widths W4 and W5 of the crossover part 3 outside the magnetic flux passage part 2 exceed the pattern width W2 of the magnetic flux passage part 2 by 3 to 4 times. If you try to increase the number of turns at the same time while making it wider, it will not fit on the insulating substrate, and if you reduce the number of turns to fit it, the output will decrease. From this, the pattern width W5 of the crossover main conductor portion 5 of the crossover portion is within the range of W2 × 1.2 to 4 times when the pattern width W2 of the magnetic flux passage portion is 0.2 to 0.4 mm. Preferably, when the pattern width W2 is 0.5 to 0.8 mm, it is preferably within a range of W2 × 1.2 to 3 times.

ここで、図1に示す本実施形態の導体パターン1は、磁束通過軌跡12(永久磁石11と重なる領域)の外に渡り線部3の渡り線主導体部5並びに渡り線遷移導体部4が形成されているが、これに特に限られるものではなく、場合によっては、渡り線部3の一部例えば図2に示すように外径側の渡り線主導体部5の最内周部分並びに渡り線遷移導体部4の一部に磁束通過軌跡12が重なるように導体パターン1を形成しても良い。渡り線部3は磁束を直角に切らないので、発生する電流損も小さくなる。特に、磁束通過部2との境界にある両端の渡り線遷移導体部4は円弧状であり磁束に対して傾きを以て横切るため、発生する渦電流損も小さくなる。したがって、渡り線主導体部5の一部例えば最内周部分が磁束通過軌跡12にかかっていても、渦電流損の発生の影響を受けにくいと考えられる。しかも、絶縁基板10のサイズを変更せずに巻数を増やして出力を増加させることができる。   Here, the conductor pattern 1 of the present embodiment shown in FIG. 1 has the connecting wire main conductor portion 5 and the connecting wire transition conductor portion 4 of the connecting wire portion 3 outside the magnetic flux passing locus 12 (region overlapping the permanent magnet 11). Although it is formed, it is not particularly limited to this, and depending on the case, a part of the crossover part 3, for example, the innermost peripheral part of the crossover main conductor part 5 on the outer diameter side as well as the crossover as shown in FIG. The conductor pattern 1 may be formed so that the magnetic flux passage locus 12 overlaps a part of the line transition conductor portion 4. Since the crossover portion 3 does not cut the magnetic flux at a right angle, the generated current loss is also reduced. In particular, since the crossover transition conductor portions 4 at both ends at the boundary with the magnetic flux passage portion 2 are arc-shaped and cross with an inclination with respect to the magnetic flux, the generated eddy current loss is also reduced. Therefore, even if a part of the crossover main conductor portion 5, for example, the innermost peripheral portion is on the magnetic flux passage locus 12, it is considered that it is not easily affected by the occurrence of eddy current loss. Moreover, the output can be increased by increasing the number of turns without changing the size of the insulating substrate 10.

上述の実施形態にかかる導体パターン1によれば、コイル1本のパターン幅を磁界中を通過する磁束通過部2と磁束通過部2の外の渡り線部3とに区分し、磁束通過部2のパターン幅W2を少なくとも許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅として渦電流の発生を抑制すると共に、渡り線部3のパターン幅W4,W5を磁束通過部2のパターン幅W2よりも広くして回路全体としての導体抵抗を下げるようにしているので、モータ効率を向上させることができる。加えて、複数層・複数枚のディスク型コイルの導体パターン1を並列接続することで、あるいは同一基板の他のコイルの導体パターン1を並列接続することでさらに導体抵抗を低下させてモータ効率を向上させることができる。   According to the conductor pattern 1 according to the above-described embodiment, the pattern width of one coil is divided into the magnetic flux passage portion 2 that passes through the magnetic field and the connecting wire portion 3 outside the magnetic flux passage portion 2. The pattern width W2 is set to be narrower than the pattern width where at least the maximum allowable eddy current loss is generated, and the generation of eddy currents is suppressed. Since the conductor resistance of the entire circuit is lowered by making it wider than the pattern width W2, the motor efficiency can be improved. In addition, by connecting conductor patterns 1 of a plurality of layers and a plurality of disk-type coils in parallel, or by connecting conductor patterns 1 of other coils on the same substrate in parallel, the conductor resistance is further reduced to improve motor efficiency. Can be improved.

さらに、図2に本発明のディスク型コイルを3相導体パターンに適用した一実施形態を示す。このディスク型コイル14は、絶縁基板10,導体パターン1,表裏導体パターン接続用スルーホール6,同相接続スルーホール7を有し、内周縁側に配置された表裏導体パターン接続用スルーホール6並びに同相接続スルーホール7を介して絶縁基板1の表面並びに裏面に形成された導体パターン1を電気的に接続して絶縁基板の円周方向に1巡りすることで1つのコイル回路を形成するようにして3相10磁極の導体パターンが形成されている。即ち、絶縁基板10の表面並びに裏面の同じ位置に互いに逆向きに形成された渦巻き状の導体パターン1同士を表裏導体パターン接続用スルーホール6を介して導通することにより、最小単位の1つのコイルを形成するように形成されている。そして、各最小単位のコイルを形成する導体パターン1の同相接続スルーホール7を介して同一基板上の他の同相の導体パターン1と導通されて1つのコイル回路(1相のコイル回路)を形成するようにして3回路のコイルが形成されている。勿論、導体パターン1は上述の3相・3回路に限られず、1単位若しくは2単位(2回路)、あるいは4単位(4回路)以上でも可能である。   FIG. 2 shows an embodiment in which the disk type coil of the present invention is applied to a three-phase conductor pattern. The disk-type coil 14 has an insulating substrate 10, a conductor pattern 1, front and back conductor pattern connection through holes 6, and in-phase connection through holes 7. The front and back conductor pattern connection through holes 6 arranged on the inner peripheral side and the in-phase The conductor pattern 1 formed on the front surface and the back surface of the insulating substrate 1 is electrically connected through the connection through hole 7 so that one coil circuit is formed by making a round in the circumferential direction of the insulating substrate. A three-phase, ten-pole magnetic conductor pattern is formed. That is, by connecting the spiral conductor patterns 1 formed in opposite directions at the same positions on the front and back surfaces of the insulating substrate 10 through the through-holes 6 for connecting the front and back conductor patterns, one coil of the smallest unit is provided. Is formed. And it is electrically connected to another in-phase conductor pattern 1 on the same substrate through the in-phase connection through hole 7 of the conductor pattern 1 forming each minimum unit coil to form one coil circuit (one-phase coil circuit). Thus, a three-circuit coil is formed. Of course, the conductor pattern 1 is not limited to the above-described three-phase / three circuits, and may be one unit, two units (two circuits), or four units (four circuits) or more.

ここで、1つのコイル回路の両端のフリーとなっている同相接続スルーホール7は、始端末パターン及び終端末パターンとして、あるいは複数層(複数枚)のディスク型コイル14の間で導体パターン1を並列接続あるいは直列接続する場合の積層用のスルーホールとして利用される。尚、本実施形態では、3組(U,V,Wの3相)の導体パターン1を形成しているが、これに特に限らなければならない理由はない。直流回転電気のための単相の導体パターン1として構成することも可能である。しかしながら、インバータ技術が進んでいる現状では、敢えて単相モータとして造る意義も少ない。3相でコイルをつくると、ディスク1枚でも回路を作れるし、交流モータもできる。さらに、複数枚のディスク型コイル14を重ねることで出力を大きくできる。   Here, the in-phase connection through-holes 7 which are free at both ends of one coil circuit are used to form the conductor pattern 1 as a start terminal pattern and an end terminal pattern, or between a plurality of layers (a plurality of) disk-type coils 14. Used as a through hole for stacking when connected in parallel or in series. In the present embodiment, three sets (U, V, W of three phases) of conductive patterns 1 are formed, but there is no reason to be particularly limited to this. It is also possible to configure as a single-phase conductor pattern 1 for direct current rotary electricity. However, in the current situation where the inverter technology is advancing, there is little significance to make it as a single-phase motor. If you make a coil with three phases, you can make a circuit with a single disk, and you can also make an AC motor. Furthermore, the output can be increased by overlapping a plurality of disk-type coils 14.

また、絶縁基板10は、中央部にセンターホール(軸孔)13が穿孔された円環状のディスクから成り、例えば絶縁性の合成樹脂材あるいは紙によって構成されている。この絶縁基板10の材質並びに導体パターン1の製作方法については特定の材質・手法に限定されるものではなく、適宜材質・手法が選定される。例えば、絶縁基板10は、硬質性,フレキシブル性のいずれをも選択することができる。一般に、絶縁基板10は、紙フェノール、ガラス・エポキシに大別され、さらには紙とガラス基材とを混合したコンポジット基板、セラミック基板などが使われることもある。そして、導体パターン1は、絶縁基板10の両面に貼付した銅系,アルミニウム系等の箔を例えばフォトリソ法によるエッチングで部分的に溶解腐食させて所要のパターンに形成されたり、パターンメッキ転写法による導電性微細パターン形成技術や導体導電性塗料による印刷若しくは3Dプリンターでの成形あるいは薄板状の金属材をプレス技術等によって所要のパターンに打ち抜いたものを絶縁基板10の表裏面に貼着することなどにより形成されている。因みに、導体パターン1は、エッチングによれば200μm程度のパターン厚みで、転写法によれば500μm程度のパターン厚みで形成できる。本実施形態における絶縁基板10は、ガラス・エポキシ基板(FR−4)を基材として、これに銅箔を表裏両面に貼付したものが使用され、エッチングで加工されている。   The insulating substrate 10 is formed of an annular disk having a center hole (shaft hole) 13 perforated at the center, and is made of, for example, an insulating synthetic resin material or paper. The material of the insulating substrate 10 and the method of manufacturing the conductor pattern 1 are not limited to a specific material / method, and the material / method is appropriately selected. For example, the insulating substrate 10 can be selected to be either hard or flexible. In general, the insulating substrate 10 is roughly classified into paper phenol and glass / epoxy, and a composite substrate, a ceramic substrate, or the like in which paper and a glass substrate are mixed may be used. The conductor pattern 1 is formed into a required pattern by partially dissolving and corroding a copper-based or aluminum-based foil attached on both surfaces of the insulating substrate 10 by, for example, etching by a photolithography method, or by a pattern plating transfer method. Conductive fine pattern formation technology, printing with conductive conductive paint, molding with a 3D printer, or stamping a thin metal plate into a required pattern by pressing technology etc. It is formed by. Incidentally, the conductor pattern 1 can be formed with a pattern thickness of about 200 μm by etching, and with a pattern thickness of about 500 μm by the transfer method. The insulating substrate 10 in this embodiment uses a glass / epoxy substrate (FR-4) as a base material, and has a copper foil affixed to both the front and back surfaces, and is processed by etching.

渦巻き状に巻かれた各導体パターン1は、例えば本実施形態の場合、磁束通過部2のパターン幅W2が0.6mm、渡り線主導体部5のパターン幅W5が1.0mm、渡り線遷移導体部4のパターン幅W4が0.6mmから1.0mmへと漸次広がりながら湾曲する導体で形成され、パターン厚みは200μmである。また、スルーホールランド部分8,9は、スルーホール6,7を穿孔する機械加工上の要請から求められるパターン幅で形成されている。   For example, in the case of this embodiment, each of the conductor patterns 1 wound in a spiral shape has a pattern width W2 of the magnetic flux passage portion 2 of 0.6 mm, a pattern width W5 of the crossover main conductor portion 5 of 1.0 mm, and a crossover transition. The pattern width W4 of the conductor portion 4 is formed of a conductor that curves while gradually expanding from 0.6 mm to 1.0 mm, and the pattern thickness is 200 μm. Further, the through-hole land portions 8 and 9 are formed with a pattern width required from a machining requirement for drilling the through-holes 6 and 7.

以上のように構成されたディスク型コイル14の場合、磁束通過部2の導体に発生する渦電流が抑制され、尚且つ渡り線部3のパターン幅W4,W5が広がって導体抵抗が低減されていることから、導体パターン1としての全体の導体抵抗が低減したことで、最適なコイル巻数が得られると共に抵抗値(R)、渦電流(A)を低減して、誘導機効率の改善ができる。   In the case of the disk type coil 14 configured as described above, the eddy current generated in the conductor of the magnetic flux passage portion 2 is suppressed, and the pattern widths W4 and W5 of the crossover portion 3 are widened to reduce the conductor resistance. Therefore, since the overall conductor resistance as the conductor pattern 1 is reduced, the optimum number of coil turns can be obtained, and the resistance value (R) and eddy current (A) can be reduced to improve the induction machine efficiency. .

しかして、上述の実施形態にかかるディスク型コイルを電機子としてまたはステータコイルとして組み込んだ回転電気機械によれば、渦電流の発生を抑制すると共にコイル回路全体としての導体抵抗を下げることができ、モータ効率を向上させることができる。   Thus, according to the rotating electrical machine in which the disk-type coil according to the above-described embodiment is incorporated as an armature or a stator coil, it is possible to suppress the generation of eddy currents and reduce the conductor resistance of the entire coil circuit. The motor efficiency can be improved.

なお、上述の実施形態は本発明の好適な実施の一例ではあるがこれに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば図1〜図2に示す各実施形態では、主に重巻の導体パターン1でコイルを形成した例を挙げて本発明を説明しているが、これに特に限定されるものではなく、様々な導体パターン1、例えば図3及び図4に示されるような波巻状の導体パターン1’に適用することも可能である。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in each of the embodiments shown in FIGS. 1 to 2, the present invention has been described with reference to an example in which a coil is mainly formed with a heavy conductor pattern 1. It is also possible to apply to a simple conductor pattern 1, for example, a corrugated conductor pattern 1 ′ as shown in FIGS.

波巻コイルの場合、絶縁基板10の表面と裏面との間で交互に波形に折返して1つのコイルを構成するように形成されている。つまり、図3に示す導体パターン1’をコイル半部として表裏で1/2ピッチ分ずらして形成したものを両端の表裏導体パターン接続用スルーホール6’,6”で順次導通させたものを1単位として、例えば図4に示すように、環状絶縁基板に対して3単位が位相して形成されることにより、3相10磁極の導体パターンが形成されている。   In the case of the wave winding coil, it is formed so as to constitute one coil by alternately folding back into a waveform between the front surface and the back surface of the insulating substrate 10. That is, a conductor pattern 1 'shown in FIG. 3 formed as a half coil portion and shifted by 1/2 pitch on the front and back sides is sequentially connected through the front and back conductor pattern connecting through holes 6', 6 ". As a unit, for example, as shown in FIG. 4, a three-phase, ten-pole magnetic conductor pattern is formed by forming three units in phase with respect to the annular insulating substrate.

この導体パターン1’においても、磁束通過軌跡12と直交する径方向へと直線的に延びる磁束通過部2と、磁束通過部2の外の渡り線部3とで構成され、さらに渡り線部3は磁束通過軌跡12に対して傾斜しながら周方向に延ばされた渡り線主導体部5と、磁束通過部2と渡り線主導体部5とを湾曲した導体で結ぶ渡り線遷移導体部4とを備え、磁束通過部2のパターン幅W2が少なくとも許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅とされると共に、渡り線部3のパターン幅W4,W5が磁束通過部2のパターン幅W2よりも広くなるように形成されている。   This conductor pattern 1 ′ also includes a magnetic flux passage portion 2 that linearly extends in a radial direction orthogonal to the magnetic flux passage locus 12, and a jumper wire portion 3 outside the magnetic flux passage portion 2. Is a connecting wire transition conductor portion 4 connecting the connecting wire main conductor portion 5 extending in the circumferential direction while being inclined with respect to the magnetic flux passage locus 12 and the magnetic flux passing portion 2 and the connecting wire main conductor portion 5 with a curved conductor. And the pattern width W2 of the magnetic flux passage portion 2 is set to be narrower than the pattern width at which the maximum allowable eddy current loss occurs, and the pattern widths W4 and W5 of the crossover portion 3 pass the magnetic flux. The portion 2 is formed to be wider than the pattern width W2.

例えば、本実施形態の場合、磁束通過部2のパターン幅W2が0.6mmで、渡り線部3の渡り線主導体部5のパターン幅W5が磁束通過部2のパターン幅W2よりも広く1.0mmに設定されると共に、渡り線遷移導体部4のパターン幅W4が0.6mm〜1.0mmの範囲で漸次広がるように設けられている。この波巻のディスク型コイルにおいても、重巻のディスク型コイルと同様に、磁束通過部2における渦電流の発生を抑えつつ導体パターン1の全体としての導体抵抗の低減を図ることができ、モータ効率を向上させ得た。尚、図4中の符号15は絶縁基板のフランジ部分、16,17,18,19は各導体パターン1’がスルーホール接続されて3回路のコイルが形成された末端のフランジ部分15に引き出された始端末パターン及び終端末パターンを形成するランドであり、それぞれコイルパターン巻始め右回りランド、コイルパターン巻始め左回りランド、コイルパターン巻終り右回りランド、コイルパターン巻終り右回りランドを示す。また、符号20は各ランドの引き出し部分である。   For example, in this embodiment, the pattern width W2 of the magnetic flux passage portion 2 is 0.6 mm, and the pattern width W5 of the crossover main conductor portion 5 of the crossover portion 3 is 1 wider than the pattern width W2 of the magnetic flux passage portion 2. Is set such that the pattern width W4 of the crossover transition conductor portion 4 gradually widens in the range of 0.6 mm to 1.0 mm. Also in this wave-winding disk-type coil, like the heavy-winding disk-type coil, it is possible to reduce the conductor resistance of the conductor pattern 1 as a whole while suppressing the generation of eddy currents in the magnetic flux passage portion 2, and the motor. Efficiency could be improved. In FIG. 4, reference numeral 15 denotes a flange portion of the insulating substrate, and 16, 17, 18, and 19 are drawn out to a flange portion 15 at the end where three conductor coils are formed by connecting each conductor pattern 1 '. These are lands that form a start terminal pattern and an end terminal pattern, which respectively indicate a coil pattern winding start clockwise land, a coil pattern winding start counterclockwise land, a coil pattern winding end clockwise clockwise land, and a coil pattern winding end clockwise clockwise land. Reference numeral 20 denotes a drawing portion of each land.

また、重巻の導体パターン1においても、図1に示す実施形態の巻き方に限定されるものではなく、様々な巻き方が採用できる。例えば、図5に示すように、絶縁性基板の外周縁側寄りの位置(以下、基板外周側と呼ぶ)を起点にして外側から内側へ渦巻き状に巻いて最内周の導体の末端に形成されている表裏導体パターン接続用スルーホール6を介して裏面の導体パターン1に導通され、更に絶縁性基板10の裏面側ではその逆に内側から外側へ渦巻き状に巻いて絶縁性基板の内周縁側寄りの位置(以下、基板内周側と呼ぶ)に形成された最外周の導体の末端の同相接続スルーホール7を穿孔するスルーホールランド9で巻き終る、所謂、基板外周側巻始め、基板内周側巻き終わりのシングル重ね巻としても良い。また、図6に示すように両端のスルーホールランド8,9部分を除いて導体パターンの巻始めから巻き終わりに掛けて終始連続的にスリットを線幅中央に入れて磁石N極からS極に跨がらせる重ね巻としても良い。さらには、図7に示すように、2本の導体パターンを並列に形成した重ね巻とし、同相接続スルーホール7の配線により直列又は並列接続を可能とするようにしても良い。図7の実施形態の場合、基板内周側から巻始め、基板内周側で巻き終わる重ね巻としているが、これに特に限られるものではなく、例えば基板外周側から巻始め、基板内周側で巻き終わることも、さらには基板外周側から巻始めて基板外周側で巻き終わる重ね巻としても良い。尚、図5〜図7に示す実施形態の導体パターン1については、図1の導体パターンと同じ構成のものについては同じ符号を付し、その詳細な説明を省略している。   Also, the heavyly wound conductor pattern 1 is not limited to the winding method of the embodiment shown in FIG. 1, and various winding methods can be adopted. For example, as shown in FIG. 5, it is formed at the end of the innermost conductor by spirally winding from the outside to the inside starting from a position near the outer peripheral side of the insulating substrate (hereinafter referred to as the outer peripheral side of the substrate). The conductive pattern 1 is electrically connected to the conductive pattern 1 on the back surface through the through-holes 6 for connecting the front and back conductive patterns, and on the reverse side of the insulating substrate 10, the inner peripheral side of the insulating substrate is conversely wound from the inside to the outside. The winding ends at a through-hole land 9 that perforates the in-phase connection through-hole 7 at the end of the outermost conductor formed at a position closer to the substrate (hereinafter referred to as the substrate inner peripheral side). It is good also as a single overlap winding at the end of the circumference side winding. Further, as shown in FIG. 6, a slit is continuously inserted in the center of the line width from the beginning to the end of winding of the conductor pattern except for the through-hole lands 8 and 9 at both ends, and from the magnet N pole to the S pole. It is good also as a layered roll to straddle. Furthermore, as shown in FIG. 7, a lap winding in which two conductor patterns are formed in parallel may be used so that series or parallel connection is possible by wiring of the in-phase connection through hole 7. In the case of the embodiment in FIG. 7, the winding is started from the inner peripheral side of the substrate and is finished to be wound on the inner peripheral side of the substrate, but is not particularly limited to this. It is also possible to start winding from the outer peripheral side of the substrate and to start winding from the outer peripheral side of the substrate and to finish winding on the outer peripheral side of the substrate. In addition, about the conductor pattern 1 of embodiment shown in FIGS. 5-7, the same code | symbol is attached | subjected about the thing of the same structure as the conductor pattern of FIG. 1, and the detailed description is abbreviate | omitted.

1 導体パターン
2 磁束通過部
3 渡り線部
4 渡り線遷移導体部
5 渡り線主導体部
10 絶縁基板
12 磁束通過軌跡
W2 磁束通過部のパターン幅
W4 渡り線遷移導体部のパターン幅
W5 渡り線主導体部のパターン幅
DESCRIPTION OF SYMBOLS 1 Conductor pattern 2 Magnetic flux passage part 3 Crossover part 4 Crossover transition conductor part
5 Crossover main conductor
DESCRIPTION OF SYMBOLS 10 Insulation board | substrate 12 Magnetic flux passage locus W2 Pattern width of a magnetic flux passage part W4 Pattern width of a crossover transition conductor part W5 Pattern width of a crossover main conductor part

Claims (6)

ディスク形の環状絶縁基板の表裏面に形成された導体パターンをスルーホール接続で導通させることにより前記環状絶縁基板の表面の前記導体パターンと裏面の前記導体パターンとの間で少なくとも1回路のコイルを構成するようにしたディスク型コイルにおいて、 前記コイル1本のパターン幅を磁界中を通過する磁束通過部と磁束通過部の外の渡り線部とに区分し、
前記磁束通過部のパターン幅が少なくとも許容される最大の渦電流損が発生するパターン幅よりも狭いパターン幅であり、
前記渡り線部のパターン幅が前記磁束通過部のパターン幅よりも広い
ことを特徴とするディスク型コイル。
By making a conductor pattern formed on the front and back surfaces of the disk-shaped annular insulating substrate conductive through through-hole connection, a coil of at least one circuit is formed between the conductor pattern on the front surface of the annular insulating substrate and the conductor pattern on the rear surface. In the disk-type coil configured to be configured, the pattern width of one coil is divided into a magnetic flux passage portion that passes through the magnetic field and a crossover portion outside the magnetic flux passage portion,
The pattern width of the magnetic flux passage part is a pattern width that is narrower than the pattern width at which the maximum allowable eddy current loss occurs,
The disk-type coil, wherein a pattern width of the crossover portion is wider than a pattern width of the magnetic flux passage portion.
前記磁束通過部のパターン幅が0.8mm以内であることを特徴とする請求項1記載のディスク型コイル。 2. The disk type coil according to claim 1, wherein a pattern width of the magnetic flux passing portion is within 0.8 mm. 前記導体パターンの終端末あるいは始端末を他のディスク型コイルの導体パターンの始端末あるいは終端末と導通させる積層用のスルーホールを備えることを特徴とする請求項1または2記載のディスク型コイル。 3. The disk type coil according to claim 1, further comprising a through hole for stacking that makes the terminal end or start terminal of the conductor pattern conductive with the start terminal or end terminal of the conductor pattern of another disk type coil. 前記導体パターンは、重巻で1つのコイルを構成するものである請求項1から3のいずれか1つに記載のディスク型コイル。 The disk-type coil according to any one of claims 1 to 3, wherein the conductor pattern forms one coil with multiple windings. 前記導体パターンは、前記磁束通過部で磁束通過軌跡と直交する径方向へと直線的に延びる磁束通過部と、前記磁束通過部の外の渡り線部とで構成され、さらに前記渡り線部は前記磁束通過軌跡に沿って周方向に配置された渡り線主導体部と、前記磁束通過部と前記渡り線主導体部とを湾曲した導体で結ぶ渡り線遷移導体部とを備えるものである請求項4記載のディスク型コイル。 The conductor pattern includes a magnetic flux passage portion linearly extending in a radial direction perpendicular to the magnetic flux passage locus at the magnetic flux passage portion, and a crossover portion outside the magnetic flux passage portion, and the crossover portion is A crossover main conductor portion disposed in a circumferential direction along the magnetic flux passage locus, and a crossover transition conductor portion connecting the magnetic flux passage portion and the crossover main conductor portion with a curved conductor. Item 5. The disk type coil according to Item 4. 請求項1〜5のいずれか1つに記載のディスク型コイルを電機子としてまたはステータコイルとして備えることを特徴とする回転電気機械。 A rotating electric machine comprising the disk type coil according to any one of claims 1 to 5 as an armature or a stator coil.
JP2017146825A 2017-07-28 2017-07-28 Disk type coil and rotary electric machine using the same Pending JP2019030113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017146825A JP2019030113A (en) 2017-07-28 2017-07-28 Disk type coil and rotary electric machine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146825A JP2019030113A (en) 2017-07-28 2017-07-28 Disk type coil and rotary electric machine using the same

Publications (1)

Publication Number Publication Date
JP2019030113A true JP2019030113A (en) 2019-02-21

Family

ID=65478898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146825A Pending JP2019030113A (en) 2017-07-28 2017-07-28 Disk type coil and rotary electric machine using the same

Country Status (1)

Country Link
JP (1) JP2019030113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011449A (en) * 2019-04-02 2019-07-12 上海大学 A kind of very thin disc type winding
CN110581630A (en) * 2019-06-29 2019-12-17 天津大学 Method for designing PCB (printed circuit board) disc type motor winding with unequal-width conductors

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031150U (en) * 1983-08-06 1985-03-02 アルプス電気株式会社 coil parts
JPS60111352U (en) * 1983-12-28 1985-07-27 ソニー株式会社 printed coil
JPS6260441A (en) * 1985-09-11 1987-03-17 Asahi Chem Ind Co Ltd Both sides-thick film fine coil for small-sized motor
JPH10201157A (en) * 1997-01-14 1998-07-31 Sony Corp Motor coil and motor
JPH11146590A (en) * 1997-11-10 1999-05-28 Asahi Chem Ind Co Ltd Motor coil unit with detecting coil
WO2004047252A1 (en) * 2002-11-18 2004-06-03 Seiko Epson Corporation Stator of brushless motor, brushless motor having same, and coil structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031150U (en) * 1983-08-06 1985-03-02 アルプス電気株式会社 coil parts
JPS60111352U (en) * 1983-12-28 1985-07-27 ソニー株式会社 printed coil
JPS6260441A (en) * 1985-09-11 1987-03-17 Asahi Chem Ind Co Ltd Both sides-thick film fine coil for small-sized motor
JPH10201157A (en) * 1997-01-14 1998-07-31 Sony Corp Motor coil and motor
JPH11146590A (en) * 1997-11-10 1999-05-28 Asahi Chem Ind Co Ltd Motor coil unit with detecting coil
WO2004047252A1 (en) * 2002-11-18 2004-06-03 Seiko Epson Corporation Stator of brushless motor, brushless motor having same, and coil structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011449A (en) * 2019-04-02 2019-07-12 上海大学 A kind of very thin disc type winding
CN110581630A (en) * 2019-06-29 2019-12-17 天津大学 Method for designing PCB (printed circuit board) disc type motor winding with unequal-width conductors

Similar Documents

Publication Publication Date Title
JP5221966B2 (en) Coil assembly for rotating electrical machine, stator for rotating electrical machine, and rotating electrical machine
JP4699569B1 (en) Coil device
US8471669B2 (en) Disc-type coil
JP4900132B2 (en) Rotor and rotating electric machine
JP7257602B2 (en) coil
US11605993B2 (en) Rotary motors incorporating flexible printed circuit boards
JP5811567B2 (en) Rotor and permanent magnet motor
WO2014134192A1 (en) Methods and apparatus for optimizing electrical interconnects on laminated composite assemblies
JP2014507102A (en) Laminate type winding
US20200091805A1 (en) Dynamo-electric machine with reduced cogging torque
JP2019030113A (en) Disk type coil and rotary electric machine using the same
CN108496293B (en) Electrical sheet with printed connecting sheet
JP4940187B2 (en) Coil device
WO2020026792A1 (en) Motor
JP2020171096A (en) Stator
JP4860667B2 (en) Disc type coil
JP2016129447A (en) Rotary electric machine
JP2019129563A (en) Axial gap type transverse flux rotary electric machine
JP5245348B2 (en) Rotor structure of rotary motor
JP4627853B2 (en) Reluctance motor
JP2011193627A (en) Rotor core and rotary electric machine
WO2021095343A1 (en) Motor
JP6148068B2 (en) Generator
WO2023228518A1 (en) Axial gap motor
JP2024024492A (en) motor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181218