WO2021095343A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2021095343A1
WO2021095343A1 PCT/JP2020/034409 JP2020034409W WO2021095343A1 WO 2021095343 A1 WO2021095343 A1 WO 2021095343A1 JP 2020034409 W JP2020034409 W JP 2020034409W WO 2021095343 A1 WO2021095343 A1 WO 2021095343A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
coil
stator core
stator coil
motor
Prior art date
Application number
PCT/JP2020/034409
Other languages
French (fr)
Japanese (ja)
Inventor
菱田 光起
元輝 近藤
祐一 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021555916A priority Critical patent/JPWO2021095343A1/ja
Publication of WO2021095343A1 publication Critical patent/WO2021095343A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the present invention relates to a motor.
  • the present invention particularly relates to the configuration of the stator coil of the motor.
  • the dead space in the slot becomes smaller.
  • the dead space constitutes a part of the flow path of the refrigerant, and reducing the dead space in the slot is equivalent to narrowing the flow path of the refrigerant, and reduces the flow rate of the refrigerant.
  • the cooling effect of the refrigerant does not work effectively.
  • the temperature rise due to the heat generated by the stator coil or the stator core becomes excessive, which leads to a decrease in the efficiency of the motor.
  • the efficiency of the motor is the ratio of the mechanical output from the motor to the input power to the motor expressed as a percentage (percentage, unit symbol [%]).
  • the space factor is the ratio of the conductor portion such as the conducting wire to the accommodating cross-sectional area of the winding accommodating portion such as a slot or an insulator. If the cross section of the conducting wire or the like is circular, a dead space is generated between the adjacent circular circles, so that there is a limit to increasing the space factor.
  • the thickness of the insulating coating of the conducting wire is also a factor that lowers the space factor. Incidentally, when the thickness of the insulating coating of the conducting wire is constant, the smaller the diameter of the conducting wire, the higher the thickness of the insulating coating or the ratio of the area occupied by the insulating coating.
  • the stator coil is excited by receiving an alternating current supplied from the outside.
  • the magnetic flux generated in the stator including the stator coil is an alternating magnetic flux.
  • the alternating magnetic flux mainly uses the stator core and the rotor core as magnetic paths.
  • a part of the alternating magnetic flux becomes a leakage magnetic flux and interlinks parts other than the stator core and the rotor core. It has been conventionally known that one of the places where the leakage magnetic flux is large is the tooth tip side of the stator core.
  • the conductor cross section is a circular conductor, the conductor area where the leakage magnetic flux is linked is limited. Therefore, the eddy current generated in the conducting wire is not remarkable.
  • a spiral laminated coil having a spiral surface is formed by a conductor having an elongated cross-sectional shape in which the width dimension in the conductor cross section is larger than the thickness dimension in the conductor cross section.
  • the area of the conductor where the leakage magnetic flux is interlinked is several times wider than that of the conductor having a circular cross section. As a result, the generation of eddy current becomes remarkable.
  • the stator coil is excited by receiving an alternating current supplied from the outside.
  • the magnetic flux generated in the stator including the stator coil is an alternating magnetic flux.
  • the main magnetic path of the alternating magnetic flux is the stator core and the rotor core, but a part of the alternating magnetic flux becomes a leakage magnetic flux and interlinks a part other than the stator core and the rotor core. It has been conventionally known that one of the places where the leakage magnetic flux is large is the tooth tip side of the stator core.
  • the conductor cross section is a circular conductor, the eddy current generated in the conductor is not remarkable because the conductor area where the leakage magnetic flux is interlinked is limited.
  • a spiral laminated coil having a spiral surface is formed by a conductor having an elongated cross-sectional shape in which the width dimension in the conductor cross section is larger than the thickness dimension in the conductor cross section.
  • the area of the conductor where the leakage magnetic flux is interlinked is several times wider than that of the conductor having a circular cross section, and the generation of eddy current is remarkable.
  • the resistivity of the material, or the driving conditions of the motor the heat generation becomes large, and their loss cannot be ignored. As a result, problems such as a decrease in efficiency as a motor have been considered.
  • FIGS. 4A, 4B and 4C are illustrated.
  • FIG. 4A is a front view of the stator coil 5 illustrated as a conventional example.
  • FIG. 4B is a perspective view showing a stator coil 5 illustrated as a conventional example.
  • FIG. 4C is a side view of the stator coil 5 illustrated as a conventional example.
  • an eddy current 45 as shown by a dotted line and an arrow A virtually represented in FIG. 4A is generated in the coil line portion 5q of each turn.
  • the eddy current 45 generates Joule heat, which causes a loss and reduces the efficiency of the motor.
  • the self-temperature rise of the motor itself due to the eddy current causes an increase in copper loss of the motor itself.
  • the present invention provides a stator coil having improved heat dissipation against heat generated by an eddy current even when the space factor of the stator coil is increased.
  • An object of the present invention is to improve the characteristics of the stator coil and the motor as compared with the conventional case.
  • the first invention comprises a stator core including a laminate in which a plurality of stator core sheets are laminated, a stator including a stator coil having a tooth provided in the stator core as a part of a magnetic core, and a tooth of the stator core.
  • the stator coil has a conductor portion of the stator coil and a conductor portion including an insulating coating covering the conductor portion and a cross section of the conductor portion.
  • a part of the coil end portion that includes a surface includes two opposing sides of the four sides of a rectangular cross-sectional shape in the spiral surface, is in the direction in which the stator cores are laminated, and is a portion where the stator coil protrudes from the end surface of the stator core.
  • the motor includes an absent structure portion that is absent from the side facing the outer diameter direction of the stator core to the side facing the direction in which the rotor is located.
  • the absent structure portion is a groove portion which is formed in a part of the coil end portion in a groove shape from the side facing the outer diameter direction of the stator core to the side facing the direction where the rotor is located. This is the motor of the first invention.
  • the missing structure portion is a hole formed in a part of the coil end portion from the side facing the outer diameter direction of the stator core to the side facing the direction in which the rotor is located. It is a motor of the first invention which is a part.
  • the present invention even when the space factor of the stator coil is increased, a stator coil having improved heat dissipation against heat generated by eddy current is found, and the motor has improved characteristics of the stator coil as compared with the conventional case. Can be provided.
  • FIG. 1B Top view showing the motor according to the first embodiment Side view showing the motor according to the first embodiment Sectional view taken along the line 1C-1C in FIG. 1B Front view of the stator coil according to the first embodiment Front view of the stator coil according to the second embodiment Front view of the stator coil illustrated as a conventional example Perspective view of the stator coil illustrated as a conventional example Side view of the stator coil illustrated as a conventional example
  • FIG. 1A is a top view showing a motor according to the first embodiment.
  • FIG. 1B is a side view showing the motor according to the first embodiment.
  • FIG. 1C is a cross-sectional view taken along the line 1C-1C in FIG. 1B.
  • the motor 1 has a shaft 2, a rotor 3, a stator 4, an insulator (not shown), and stator coils U11, U22, U32, U41, and V12 inside a cover case (not shown). It includes V21, V31, V42, W11, W22, W32, W41 and bus bars 51, 52, 53, 54.
  • the longitudinal direction of the shaft 2 (direction perpendicular to the paper surface of FIG. 1A) is referred to as the Z-axis direction, and the direction orthogonal to this (direction parallel to the paper surface of FIG. 1A) is the X-axis direction and the Y-axis. Called direction.
  • integration means that a plurality of parts are not only mechanically connected by bolting or caulking, but also by material bonding such as covalent bond, ionic bond, and metal bond. , The state of one object in which parts are electrically connected, or the state of one object in which the entire parts are material-bonded by melting or the like and electrically connected.
  • a refrigerant (not shown) circulates inside the motor 1, and the heat generated by the motor is cooled by the refrigerant.
  • the refrigerant flows from the upstream portion to the downstream side where the refrigerant is circulated through the gaps provided in each of the stator core, the stator coil, and the periphery of the rotor, and then returns to the upstream portion to circulate.
  • a part of the flow path of the refrigerant is provided with a heat radiating portion for cooling the refrigerant.
  • the circulation of the refrigerant may be provided with a device for forcibly circulating the refrigerant.
  • the rotor 3 is provided in contact with the outer periphery of the shaft 2.
  • the rotor 3 includes magnets 31 in which north poles and south poles are alternately arranged along the outer peripheral direction of the shaft 2 so as to face the stator 4.
  • a neodymium magnet is used as the magnet 31 used in the rotor 3, but the material, shape, or material thereof can be appropriately changed according to the output of the motor and the like.
  • the stator 4 has a substantially annular stator core 41, a plurality of teeth 42 provided at equal intervals along the inner circumference thereof, and slots 43 provided between the teeth 42, respectively.
  • the stator 4 is arranged outside the rotor 3 at regular intervals from the rotor 3 when viewed from the Z-axis direction.
  • the stator core 41 is configured as an aggregate of a plurality of core segments.
  • the core segment is composed of a yoke 44 and a plurality of teeth 42.
  • a suitable configuration may be appropriately selected in addition to the configuration illustrated in the present embodiment.
  • the yoke 44 has an annular shape.
  • the yoke 44 may form a plurality of fan-shaped core segments, and the fan-shaped core segments may be arranged in an annular shape.
  • the stator core 41 and each core segment are laminated bodies formed by laminating and integrating a plurality of core sheets (stator core sheet 41a) obtained by punching an electromagnetic steel sheet containing, for example, silicon into a predetermined shape.
  • the number of magnetic poles of the rotor 3 is 5 N poles facing the stator 4 and 5 S poles, for a total of 10 poles.
  • the number of slots 43 is twelve.
  • the number of magnetic poles of the rotor 3 and the number of slots 43 are not particularly limited to this. Other combinations of the number of magnetic poles and the number of slots are also applicable.
  • the stator 4 has 12 stator coils U11, U22, U32, U41, V12. It has V21, V31, V42, W11, W22, W32, W41.
  • the stator coil is attached to each tooth 42.
  • the stator coils are arranged in each slot 43 when viewed from the Z-axis direction. That is, the stator coils U11, U22, U32, U41, V12. V21, V31, V42, W11, W22, W32, and W41 are concentrated windings with respect to the teeth 42.
  • stator coils U11, U22, U32, and U41 are arranged integrally with the bus bar 51, the stator coils V12 to V42 are arranged together with the bus bar 52, and the stator coils W11 to W41 are arranged integrally with the bus bar 53.
  • the bus bar may or may not be configured, and may be connected by a connection board, lead wires, or the like.
  • the first character represents each phase of the motor 1 (in the case of this embodiment, the U phase, the V phase, and the W phase).
  • the second letter indicates the arrangement order of the stator coils in the same phase.
  • the third character represents the circumferential direction of the spiral coil, which is the stator coil.
  • 1 is a clockwise direction and 2 is a counterclockwise direction. Therefore, the stator coil U11 indicates that the U-phase arrangement order is the first stator coil and the circumferential direction is the clockwise direction.
  • the stator coil V42 indicates that the V-phase arrangement order is the fourth stator coil, and the circumferential direction is the counterclockwise direction. Note that clockwise means clockwise when viewed from the center of motor 1, and "counterclockwise” means counterclockwise when viewed from the center of motor 1.
  • stator coils U11 and U41 are U-phase stator coils
  • stator coils U22 and U32 are U-bar phase stator coils (the direction of the magnetic field generated is opposite to that of the U-phase stator coil).
  • U-phase stator coils the stator coils V12 to V42 and the stator coils W11 to W41 are collectively referred to as a V-phase stator coil and a W-phase stator coil, respectively.
  • FIG. 2 is a front view of the stator coil according to the first embodiment.
  • the stator coil 5 according to the present embodiment having the configuration shown in FIG. 2 has the stator coils U11, U22, U32, U41 and V12 mounted on the teeth 42 of the motor 1 shown in FIG. 1C. It is applied to V21, V31, V42, W11, W22, W32, W41.
  • the stator coil 5 has a spiral structure including an annular body 5 m having a predetermined number of turns. As shown in FIG. 2, the configuration of each turn of the annular body 5 m is substantially rectangular in a plan view. In FIG.
  • the long side side is located on each side of the surface where the laminated surface of the stator core sheet 41a appears in the teeth, and is referred to as a coil line portion 5q. ..
  • the short side side is located between the end sides of the pair of long side sides of the coil line portion 5q in the same direction, and this is called the coil end portion 5r.
  • the coil end portion 5r is a portion in the direction in which a plurality of stator core sheets 41a in the stator core 41 are laminated, and is also a position where the stator coil 5 protrudes from the end surface of the stator core 41.
  • the portion where one side of the coil line portion 5q shifts to one side of the coil end portion 5r is referred to as a coil corner portion 5s.
  • the stator coil 5 which is a spiral coil, includes a conductor portion 5a, an insulating coating 5b provided on the surface of the conductor portion 5a, and a drawer portion 5c from the first turn 5t and the tenth turn 5u of the stator coil 5, respectively. It has a drawer portion 5d.
  • the annular body 5m which is the second turn to the tenth turn 5u of the stator coil 5 is a substantially rectangular annular body in a plan view.
  • the annular body 5 m has two short sides, two long sides, and four coil corner portions 5s.
  • each annular body 5m from the first turn 5t to the ninth turn is configured to make one round in an annular shape.
  • the shape of the ring is less than one round, and the short side of the ring 5m is not enough by one.
  • the shape of the ring is less than about a quarter lap, which is substantially 3/4 laps (3/4 laps). Is.
  • the reason why the 10th turn 5u is less than about a quarter of a lap is due to the arrangement of the drawer portion 5c and the drawer portion 5d. Depending on the positions of the drawer portion 5c and the drawer portion 5d, it may be considered that the tenth turn 5u fills one lap or laps slightly more than one lap. Similarly, it may be considered that the first turn 5t may be less than one lap or slightly more than one lap.
  • the conductor portion 5a has a conductor having a rectangular cross section and an insulating coating 5b that covers the conductor.
  • the conducting wire portion 5a is a structure in which an annular structure is spirally laminated.
  • the spirally laminated structure is a structure in which the motor is laminated in the inner and outer directions in the radial direction.
  • the spirally laminated configuration includes a predetermined number of turns of the annular body 5 m.
  • the predetermined number of turns consists of the first turn 5t to the nth turn (n is an integer of 2 or more).
  • the first turn 5t to the nth turn is referred to as a turn train.
  • the conducting wire portion 5a is a wire rod made of a conductive member having a substantially rectangular cross section.
  • An annular body 5 m is formed of this wire rod, and the annular body 5 m is spirally laminated for 10 turns to form a single-layer structure, whereby the conductor portion 5a constitutes a spiral coil.
  • the conducting wire portion 5a is formed of, for example, copper, aluminum, zinc, magnesium, brass, iron, SUS (Steel Use Stainless) or the like. These are described in a single layer. However, it can be applied not only to a single layer coil but also to a multi-layer coil.
  • the portion wound from the tip of the drawer portion 5c to the lower part of the position where the drawer portion 5d is provided is referred to as the first turn 5t.
  • the side of the stator coil 5 provided with the first turn 5t is referred to as "outside”
  • the side provided with the tenth turn 5u is referred to as "inside”. This is because the outside of the motor is "outside” and the center side of the motor is "inside” with respect to the radial direction of the motor structure.
  • the insulating coating 5b is provided on the entire surface of the conducting wire portion 5a so as to insulate the stator coil 5 and an external member (not shown).
  • the stator coil 5 is insulated from the stator core 41 and the teeth 42 by an insulating coating 5b and an insulating member (not shown) such as insulating paper.
  • the adjacent turns of the stator coil 5 are insulated by an insulating coating 5b.
  • the insulating coating 5b is formed of, for example, polyimide, nylon, PEEK (Poly Ether Ether Ketone, polyetheretherketone), acrylic, amideimide, esterimide, enamel, heat-resistant resin, or the like.
  • the thickness of the insulating coating 5b is about several tens of ⁇ m, for example, between 5 ⁇ m and 50 ⁇ m.
  • Both the drawer portion 5c and the drawer portion 5d are a part of the conductor portion 5a.
  • the drawer portion 5c and the drawer portion 5d are outside the side surface of the stator coil 5, in other words, the plane intersecting the turn row of the conductor portion 5a in order to receive a current supply from the outside or to supply a current to the outside. It extends to.
  • the insulating coating 5b is removed from the drawer portion 5c and the drawer portion 5d. Has been done.
  • the insulating coating 5b does not have to be removed in the entire region of the drawer portion 5c and the drawer portion 5d.
  • the insulating coating 5b may be removed only from the portion necessary for connection with the bus bar 51, the bus bar 52, the bus bar 53, and the bus bar 54.
  • the stator coil 5 has a conducting wire portion 5a including a conducting wire portion 5g and an insulating coating 5b that covers the conducting wire portion 5g.
  • the stator coil 5 has a structure in which the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, a coil having a predetermined number of turns, and is substantially continuous from the first turn to the last turn of this coil.
  • the helicoid surface 5i includes two opposing sides of the four sides of the rectangle having the above-mentioned cross-sectional shape.
  • the stator coil 5 faces a part of the coil end portion 5r, which is a direction in which the stator core sheet 41a of the stator core 41 is laminated and a portion where the stator coil 5 protrudes from the end surface of the stator core 41, in the outer diameter direction of the stator core 41. It is an absent structure portion that is absent from the side to the side facing the direction in which the rotor 3 is located.
  • This absent structure portion is, for example, a structure such as a groove portion 5e that is notched in a groove shape.
  • the above-mentioned missing structure portion is bored in a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located.
  • the hole portion 5f (see FIG. 3) may be used.
  • the shape of the groove portion 5e seen from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located is as shown in FIG. , It looks like a V-shaped valley-shaped notch.
  • the shape of the groove 5e is not limited to the V-shaped valley shape, but may be a U-shaped valley shape or other shape, and further, a sharp angle shape may be formed on a part of the V-shaped valley shape, the U-shaped valley shape, or the other shape. It may include an arc shape, an obscure shape, a curved shape, a straight line, or the like, and does not specify the shape.
  • the structure and shape of the groove 5e are preferably such that the rigidity of the stator coil 5 is not impaired.
  • the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, it is considered that the ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conducting wire portion 5g is preferably about 1/3.
  • the groove bottom portion (valley bottom portion) of the groove portion 5e may have a valley-shaped groove structure having a curved surface, a U-shaped valley-shaped groove structure, or a groove structure having a flat surface.
  • the cross-sectional shape of the conducting wire portion 5g including the portion where the groove portion 5e is arranged and the cross-sectional shape of the conducting wire portion 5g where the groove portion 5e is not arranged are substantially. Is rectangular. However, it is not preferable to form an acute-angled ridgeline at the corners of the four corners in the cross-sectional shape of the rectangular lead wire portion 5g, and the tip of the ridgeline is a curved surface (so-called R chamfer) or C chamfer. It is preferable that the configuration is as follows.
  • the groove portion 5e is arranged only on the side of the coil end portion 5r that does not face the teeth and on the outer peripheral side of the annular body 5m, but is not limited to this.
  • the groove portion 5e may be arranged on the side of the coil end portion 5r facing the teeth and on the inner peripheral side of the annular body 5m. Further, the groove portion 5e may be arranged on both the inner peripheral side and the outer peripheral side of the annular body 5 m.
  • the ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conductor portion 5g is not limited to about 1/3. Considering that the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electrical resistance value of the stator coil 5 are in a trade-off relationship with each other, and in light of the motor specifications, The ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conductor portion 5g is appropriately selected.
  • the number of locations where the grooves 5e are arranged is not particularly limited, and the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electric resistance value of the stator coil 5 are mutually exclusive. Select as appropriate in consideration of the trade-off relationship and in light of the motor specifications.
  • the number of turns of the stator coil 5 is substantially 10. However, the value is not particularly limited to this, and other values may be used. As described above, the number of turns of the stator coil 5 in the present embodiment is about 9.75, which is slightly less than 10, but it is often interpreted as substantially 10.
  • the motor 1 of the present embodiment includes a stator core 41 including a laminated body in which a plurality of stator core sheets 41a are laminated, and a stator including a stator coil 5 having a tooth 42 provided in the stator core 41 as a part of a magnetic core.
  • the stator coil 5 is an insulator that covers the conductor portion 5 g and the conductor portion 5 g of the stator coil 5.
  • the coil has a conducting wire portion 5a including a sexual coating, the cross-sectional shape of the conductor portion 5g is substantially rectangular, the coil has a predetermined number of turns, and the number of turns of the stator coil 5 is from the first turn.
  • This is the direction in which the stator cores 41 are laminated, including substantially continuous spiral surfaces up to the last turn of the number of turns, including two opposing sides of the four sides of the rectangular cross-sectional shape in the spiral surface. Further, it is absent from the side facing the outer diameter direction of the stator core 41 to the side facing the position of the rotor 3 in a part of the coil end portion 5r where the stator coil 5 protrudes from the end surface of the stator core 41. Includes absent structural parts.
  • stator coil 5 As a result, even when the space factor of the stator coil 5 is increased, the stator coil 5 with improved heat dissipation against heat generated by the eddy current is found, and the motor has improved characteristics of the stator coil 5 as compared with the conventional case. Can be provided.
  • the missing structure portion is a groove portion 5e that is missing in a part of the coil end portion 5r in a groove shape from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. You may.
  • FIG. 3 is a front view of the stator coil 5 according to the second embodiment.
  • the configuration of the motor in the present embodiment has the same contents as those in the first embodiment, and the description of the overlapping contents will be omitted.
  • the missing structure portion in the present embodiment is a hole formed in a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. Part 5f (see FIG. 3).
  • the above-mentioned missing structure portion has the shape of the hole portion 5f as viewed from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. As shown in 3, it looks like a round hole drilled in a substantially circular shape.
  • the shape of the hole portion 5f is not limited to a circular round hole, and may be an elliptical elliptical hole, a square square hole, a triangular triangular hole, a polygonal polygonal hole, or another shape. Further, a part of the hole shape may include an acute-angled shape, an arc shape, an obtuse-angled shape, a curved line, a straight line, or the like. It does not specify the shape of the hole 5f.
  • the structure and shape of the hole 5f are preferably such that the rigidity of the stator coil 5 is not impaired.
  • the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, it is considered that the ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conducting wire portion 5g is preferably about 1/3.
  • the cross-sectional shape of the conducting wire portion 5g including the portion where the hole portion 5f is arranged and the cross-sectional shape of the conducting wire portion 5g where the hole portion 5f is not arranged are substantially. Is rectangular. However, it is not preferable to form an acute-angled ridgeline at the corners of the four corners in the cross-sectional shape of the rectangular lead wire portion 5g, and the tip of the ridgeline is curved surface (so-called R chamfer) or C chamfered. It is preferable that the configuration is different.
  • the holes 5f are arranged in a line at substantially the center of the coil end 5r. However, it is not limited to this.
  • the holes 5f may be arranged in a staggered pattern instead of in a single row.
  • the ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conductor portion 5g is not limited to about 1/3.
  • the ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conducting wire portion 5g should be appropriately selected.
  • the number of locations where the groove 5e is arranged is not particularly limited. Regarding the number of locations where the grooves 5e are arranged, consideration is given to the fact that the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electric resistance value of the stator coil 5 are in a trade-off relationship with each other. However, it is selected appropriately in light of the specifications of the motor.
  • the number of turns of the stator coil 5 is substantially 10. However, the value is not particularly limited to this, and other values may be used. As described above, the number of turns of the stator coil 5 in the present embodiment is about 9.75, which is slightly less than 10, but it is often interpreted as substantially 10.
  • the stator coil 5 in the present invention can be formed by casting. According to this method, a spiral stator coil can be easily formed from a conductor having a large cross-sectional area. In addition to the above casting, it may be formed by another method. For example, it may be formed from a solid material such as copper, aluminum, zinc, magnesium, iron, SUS, and brass by cutting or the like. Individually molded parts may be formed by integrating members by welding or joining.
  • the missing structure portion is formed on a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. It is a hole portion 5f that is notched in a hole shape over the entire surface.
  • the present invention even when the space factor of the stator coil is increased, the configuration of the stator coil with improved heat dissipation against heat generated by the eddy current is found, and the characteristics of the stator coil are improved as compared with the conventional case. It is possible to provide a motor. Therefore, it has great industrial value.

Abstract

This motor includes: a stator core including a configuration of a laminated body obtained by laminating a plurality of stator core sheets; a stator including stator coils in which teeth provided to the stator core are portions of magnetic cores; and a rotor that is rotatably supported while having gaps formed between the rotor and the tips of the teeth of the stator core. A portion of a coil end part where the stator coils project relative to an end surface of the stator core in a direction in which the stator core sheets are laminated in the stator core, has cutout structure parts each provided so as to form a cutout in a groove shape from a side facing an outer diameter direction of the stator core to a side facing a direction in which the rotor is located.

Description

モータmotor
 本発明は、モータに関する。本発明は、特にモータのステータコイルの構成に関する。 The present invention relates to a motor. The present invention particularly relates to the configuration of the stator coil of the motor.
 近年、産業、車載用途で、モータの需要は高まっている。その中で、モータの効率向上、低コスト化が要望されている。 In recent years, the demand for motors has been increasing for industrial and in-vehicle applications. Among them, improvement of motor efficiency and cost reduction are required.
 モータの効率向上の一つの手法として、ステータのスロット内に配置されるステータコイルの占積率を向上させることが知られている。ステータコイルの占積率を向上させることで、モータの駆動時に、ステータコイルに流れる電流に起因する損失を抑制できる。 It is known to improve the space factor of the stator coil arranged in the slot of the stator as one method of improving the efficiency of the motor. By improving the space factor of the stator coil, it is possible to suppress the loss caused by the current flowing through the stator coil when the motor is driven.
 ステータコイルの占積率を向上させる手法として、銅材を用いた鋳造コイルをスロット内に配置する等の構成が示されている(例えば、特許文献1を参照)。 As a method for improving the space factor of the stator coil, a configuration such as arranging a cast coil using a copper material in a slot is shown (see, for example, Patent Document 1).
 モータ効率を低下させる要因の一つに、ステータコイルにおける銅損やステータコアにおける鉄損等の発熱に起因する温度上昇がある。モータの内部に冷媒を循環させて放熱を図り温度上昇を抑制することが知られている(例えば、特許文献2を参照)。 One of the factors that lower the motor efficiency is the temperature rise due to heat generation such as copper loss in the stator coil and iron loss in the stator core. It is known that a refrigerant is circulated inside the motor to dissipate heat and suppress a temperature rise (see, for example, Patent Document 2).
 ステータコイルの占積率が向上すると、スロット内でのデッドスペースが小さくなる。しかし、デッドスペースは冷媒の流路の一部を構成しており、スロット内でのデッドスペースが小さくなることは、冷媒の流路が狭くなることと等しく、冷媒の流量を減少させてしまう。その結果、冷媒による冷却効果が有効に作用しないこととなる。ステータコイルまたはステータコアの発熱に起因する温度上昇は過剰なものとなり、モータの効率(efficiency)の低下を招くこととなる。 When the space factor of the stator coil is improved, the dead space in the slot becomes smaller. However, the dead space constitutes a part of the flow path of the refrigerant, and reducing the dead space in the slot is equivalent to narrowing the flow path of the refrigerant, and reduces the flow rate of the refrigerant. As a result, the cooling effect of the refrigerant does not work effectively. The temperature rise due to the heat generated by the stator coil or the stator core becomes excessive, which leads to a decrease in the efficiency of the motor.
 なお、モータの効率とは、モータへの入力電力に対するモータからの機械出力の比を百分率(percentage、単位記号[%])で表すものである。占積率とは、スロットまたはインシュレータ等の巻線収容部の収容断面積に対して、導線等の導体部分が占める割合である。導線等の断面が円形であれば、隣り合う円形の間には、デッドスペースを生じるため、占積率を高めることには限界がある。また、導線の絶縁被膜の厚み等も占積率を低下させる要因となる。ちなみに、導線の絶縁被膜の厚みが一定であると、導線の径寸法が小さい場合ほど、絶縁被膜の厚みまたは絶縁被膜の占める面積の比率は高い。 The efficiency of the motor is the ratio of the mechanical output from the motor to the input power to the motor expressed as a percentage (percentage, unit symbol [%]). The space factor is the ratio of the conductor portion such as the conducting wire to the accommodating cross-sectional area of the winding accommodating portion such as a slot or an insulator. If the cross section of the conducting wire or the like is circular, a dead space is generated between the adjacent circular circles, so that there is a limit to increasing the space factor. In addition, the thickness of the insulating coating of the conducting wire is also a factor that lowers the space factor. Incidentally, when the thickness of the insulating coating of the conducting wire is constant, the smaller the diameter of the conducting wire, the higher the thickness of the insulating coating or the ratio of the area occupied by the insulating coating.
 一方、ステータのスロット内に配置されるステータコイルの占積率の向上に伴って、ステータコイルに生じる渦電流による損失が顕著に現れる場合もある。その為に、コイルの渦電流を低減させる手法として、集合導体における断面が複数の領域で構成される導体をステータコイルに用いる等の構成が示されている(例えば、特許文献3を参照)。 On the other hand, as the space factor of the stator coil arranged in the slot of the stator is improved, the loss due to the eddy current generated in the stator coil may remarkably appear. Therefore, as a method for reducing the eddy current of the coil, a configuration is shown in which a conductor having a cross section composed of a plurality of regions in the collective conductor is used for the stator coil (see, for example, Patent Document 3).
 ステータコイルは、外部からの交番電流の供給を受けて励磁される。当然、ステータコイルを含むステータに発生する磁束は、交番磁束である。この交番磁束は、ステータコア及びロータコアを主な磁路とする。しかし、交番磁束の一部は漏洩磁束となって、ステータコア及びロータコア以外の部分を鎖交する。漏洩磁束の多い箇所の一つとしては、ステータコアのティース先端側であることが従来から知られている。導体断面が円形の導線である場合は、漏洩磁束が鎖交する導体面積が限られている。このため、導線に生じる渦電流は顕著では無い。 The stator coil is excited by receiving an alternating current supplied from the outside. Naturally, the magnetic flux generated in the stator including the stator coil is an alternating magnetic flux. The alternating magnetic flux mainly uses the stator core and the rotor core as magnetic paths. However, a part of the alternating magnetic flux becomes a leakage magnetic flux and interlinks parts other than the stator core and the rotor core. It has been conventionally known that one of the places where the leakage magnetic flux is large is the tooth tip side of the stator core. When the conductor cross section is a circular conductor, the conductor area where the leakage magnetic flux is linked is limited. Therefore, the eddy current generated in the conducting wire is not remarkable.
 一方、ステータコイルの占積率を高めるために、導体断面における幅寸法を、導体断面における厚み寸法よりも大きい寸法とした細長断面形状を有する導体によって、螺旋面を有する螺旋状の積層コイルを構成する。この場合は、漏洩磁束が鎖交する導体面積は、導体断面が円形の導線の場合よりも、数倍広い。これにより、渦電流の発生は顕著なものとなる。 On the other hand, in order to increase the space factor of the stator coil, a spiral laminated coil having a spiral surface is formed by a conductor having an elongated cross-sectional shape in which the width dimension in the conductor cross section is larger than the thickness dimension in the conductor cross section. To do. In this case, the area of the conductor where the leakage magnetic flux is interlinked is several times wider than that of the conductor having a circular cross section. As a result, the generation of eddy current becomes remarkable.
 ステータコイルは、外部からの交番電流の供給を受けて励磁される。当然、ステータコイルを含むステータに発生する磁束は、交番磁束である。この交番磁束は、ステータコア及びロータコアを主な磁路とするが、交番磁束の一部は漏洩磁束となって、ステータコア及びロータコア以外の部分を鎖交する。漏洩磁束の多い箇所の一つとしては、ステータコアのティース先端側であることが従来から知られている。導体断面が円形の導線である場合は、漏洩磁束が鎖交する導体面積が限られているため、導線に生じる渦電流は顕著では無い。 The stator coil is excited by receiving an alternating current supplied from the outside. Naturally, the magnetic flux generated in the stator including the stator coil is an alternating magnetic flux. The main magnetic path of the alternating magnetic flux is the stator core and the rotor core, but a part of the alternating magnetic flux becomes a leakage magnetic flux and interlinks a part other than the stator core and the rotor core. It has been conventionally known that one of the places where the leakage magnetic flux is large is the tooth tip side of the stator core. When the conductor cross section is a circular conductor, the eddy current generated in the conductor is not remarkable because the conductor area where the leakage magnetic flux is interlinked is limited.
 一方、ステータコイルの占積率を高めるために、導体断面における幅寸法を、導体断面における厚み寸法よりも大きい寸法とした細長断面形状を有する導体によって、螺旋面を有する螺旋状の積層コイルを構成する。この場合は、漏洩磁束が鎖交する導体面積は、導体断面が円形の導線の場合よりも、数倍広く、渦電流の発生は顕著なものとなる。例えば、ステータコイルのサイズ、材料の抵抗率、またはモータの駆動条件によっては発熱が大きくなり、それらの損失が無視できない。これにより、モータとしての効率が低下する等の課題が考察された。 On the other hand, in order to increase the space factor of the stator coil, a spiral laminated coil having a spiral surface is formed by a conductor having an elongated cross-sectional shape in which the width dimension in the conductor cross section is larger than the thickness dimension in the conductor cross section. To do. In this case, the area of the conductor where the leakage magnetic flux is interlinked is several times wider than that of the conductor having a circular cross section, and the generation of eddy current is remarkable. For example, depending on the size of the stator coil, the resistivity of the material, or the driving conditions of the motor, the heat generation becomes large, and their loss cannot be ignored. As a result, problems such as a decrease in efficiency as a motor have been considered.
 一従来例として図4A、図4B及び図4Cを例示する。図4Aは、従来例として例示するステータコイル5の正面図である。図4Bは、従来例として例示するステータコイル5を示す斜視図である。図4Cは、従来例として例示するステータコイル5の側面図である。ステータコイル5では、各ターンのコイル線路部5qにおいて、図4Aにおいて仮想的に表す点線と矢印Aとで示すような渦電流45が発生する。渦電流45によって、ジュール熱が発生し、損失となりモータの効率を低下させる。さらには、渦電流に起因するモータ自体の自己温度上昇は、モータ自体の銅損の増加を招く。 As a conventional example, FIGS. 4A, 4B and 4C are illustrated. FIG. 4A is a front view of the stator coil 5 illustrated as a conventional example. FIG. 4B is a perspective view showing a stator coil 5 illustrated as a conventional example. FIG. 4C is a side view of the stator coil 5 illustrated as a conventional example. In the stator coil 5, an eddy current 45 as shown by a dotted line and an arrow A virtually represented in FIG. 4A is generated in the coil line portion 5q of each turn. The eddy current 45 generates Joule heat, which causes a loss and reduces the efficiency of the motor. Furthermore, the self-temperature rise of the motor itself due to the eddy current causes an increase in copper loss of the motor itself.
独国特許出願公開第102012212637号明細書German Patent Application Publication No. 10202012212637 特開2015-109733号公報JP-A-2015-109733 特開2009-199749号公報JP-A-2009-199749
 本発明は、ステータコイルの占積率を高めた場合においても、渦電流に起因する発熱に対して、放熱性を高めたステータコイルを提供する。本発明は、従来よりもステータコイル及びモータの特性を高めることを課題とする。 The present invention provides a stator coil having improved heat dissipation against heat generated by an eddy current even when the space factor of the stator coil is increased. An object of the present invention is to improve the characteristics of the stator coil and the motor as compared with the conventional case.
 課題を解決するために、第1の発明は、複数のステータコアシートを積層する積層体を含むステータコアと、ステータコアに具備するティースを磁心の一部とするステータコイルを含むステータと、ステータコアのティースの先端と空隙を介して回転自在に支承されるロータとを含むモータにおいて、ステータコイルは、ステータコイルの導体部と導体部を被覆する絶縁性の被膜を含む導線部を有し且つ導体部の断面形状が実質的に矩形であり、予め定められたターン数のコイルであり且つステータコイルのターン数のうちの最初のターンからターン数のうちの最後のターンまでの間に実質的に連続する螺旋面を含み、断面形状の矩形における四辺のうち相対する対向の二辺を螺旋面に含み、ステータコアの積層する方向であり且つステータコアの端面よりもステータコイルが突出する箇所であるコイルエンド部の一部分に、ステータコアの外径方向に対面する側からロータの位置する方向に対面する側に亘って欠設する欠設構造部を含むモータである。 In order to solve the problem, the first invention comprises a stator core including a laminate in which a plurality of stator core sheets are laminated, a stator including a stator coil having a tooth provided in the stator core as a part of a magnetic core, and a tooth of the stator core. In a motor including a tip and a rotor rotatably supported through a gap, the stator coil has a conductor portion of the stator coil and a conductor portion including an insulating coating covering the conductor portion and a cross section of the conductor portion. A substantially rectangular shape, a coil with a predetermined number of turns, and a substantially continuous spiral from the first turn of the stator coil turns to the last turn of the number of turns. A part of the coil end portion that includes a surface, includes two opposing sides of the four sides of a rectangular cross-sectional shape in the spiral surface, is in the direction in which the stator cores are laminated, and is a portion where the stator coil protrudes from the end surface of the stator core. In addition, the motor includes an absent structure portion that is absent from the side facing the outer diameter direction of the stator core to the side facing the direction in which the rotor is located.
 また、第2の発明は、欠設構造部は、コイルエンド部の一部分に、ステータコアの外径方向に対面する側からロータの位置する方向に対面する側に亘って溝状に欠設する溝部である第1の発明のモータである。 Further, in the second invention, the absent structure portion is a groove portion which is formed in a part of the coil end portion in a groove shape from the side facing the outer diameter direction of the stator core to the side facing the direction where the rotor is located. This is the motor of the first invention.
 また、第3の発明は、欠設構造部は、コイルエンド部の一部分に、ステータコアの外径方向に対面する側からロータの位置する方向に対面する側に亘って孔状に欠設する孔部である第1の発明のモータである。 Further, in the third invention, the missing structure portion is a hole formed in a part of the coil end portion from the side facing the outer diameter direction of the stator core to the side facing the direction in which the rotor is located. It is a motor of the first invention which is a part.
 本発明によれば、ステータコイルの占積率を高めた場合においても、渦電流に起因する発熱に対して、放熱性を高めたステータコイルを見出し、従来よりもステータコイルの特性を高めたモータを提供可能である。 According to the present invention, even when the space factor of the stator coil is increased, a stator coil having improved heat dissipation against heat generated by eddy current is found, and the motor has improved characteristics of the stator coil as compared with the conventional case. Can be provided.
実施の形態1に係るモータを示す上面図Top view showing the motor according to the first embodiment 実施の形態1に係るモータを示す側面図Side view showing the motor according to the first embodiment 図1Bにおける1C-1C線における断面図Sectional view taken along the line 1C-1C in FIG. 1B 実施の形態1に係るステータコイルの正面図Front view of the stator coil according to the first embodiment 実施の形態2に係るステータコイルの正面図Front view of the stator coil according to the second embodiment 従来例として例示するステータコイルの正面図Front view of the stator coil illustrated as a conventional example 従来例として例示するステータコイルの斜視図Perspective view of the stator coil illustrated as a conventional example 従来例として例示するステータコイルの側面図Side view of the stator coil illustrated as a conventional example
 以下、本発明のモータに関して図面を適宜に参照して説明する。なお、以下に記す各実施の形態は、一例示に過ぎず、本発明、その適用物またはその用途を制限することを意図するものではない。 Hereinafter, the motor of the present invention will be described with reference to the drawings as appropriate. It should be noted that each of the embodiments described below is merely an example, and is not intended to limit the present invention, its application, or its use.
 (実施の形態1)
 [モータの構造について]
 図1Aは、実施の形態1に係るモータを示す上面図である。図1Bは、実施の形態1に係るモータを示す側面図である。図1Cは、図1Bにおける1C-1C線における断面図である。ただし、いずれにおいても、カバーケース、インシュレータなどの絶縁物等は図示していない。モータ1は、カバーケース(図示せず)の内部に、シャフト2と、ロータ3と、ステータ4と、インシュレータ(図示せず)と、ステータコイルU11、U22、U32、U41、V12.V21、V31、V42、W11、W22、W32、W41と、バスバー51,52,53、54と、を備える。
(Embodiment 1)
[About the structure of the motor]
FIG. 1A is a top view showing a motor according to the first embodiment. FIG. 1B is a side view showing the motor according to the first embodiment. FIG. 1C is a cross-sectional view taken along the line 1C-1C in FIG. 1B. However, in any case, the cover case, insulators and other insulating materials are not shown. The motor 1 has a shaft 2, a rotor 3, a stator 4, an insulator (not shown), and stator coils U11, U22, U32, U41, and V12 inside a cover case (not shown). It includes V21, V31, V42, W11, W22, W32, W41 and bus bars 51, 52, 53, 54.
 ここで、シャフト2の長手方向(図1A紙面に対して垂直な方向)をZ軸方向と呼称し、これに直交する方向(図1A紙面に対して平行な方向)をX軸方向、Y軸方向と呼称する。 Here, the longitudinal direction of the shaft 2 (direction perpendicular to the paper surface of FIG. 1A) is referred to as the Z-axis direction, and the direction orthogonal to this (direction parallel to the paper surface of FIG. 1A) is the X-axis direction and the Y-axis. Called direction.
 また、「一体」あるいは「一体化」とは、複数の部品が、ボルト締め、または、かしめ等の機械的に接続されているだけでなく、共有結合、イオン結合、金属結合などの材料結合によって、部品が電気的に接続された1つの物体、または部品全体が溶融などによって材料結合され電気的に接続された1つの物体の状態をいう。 In addition, "integration" or "integration" means that a plurality of parts are not only mechanically connected by bolting or caulking, but also by material bonding such as covalent bond, ionic bond, and metal bond. , The state of one object in which parts are electrically connected, or the state of one object in which the entire parts are material-bonded by melting or the like and electrically connected.
 モータ1の内部には、図示しない冷媒が循環し、モータの発熱を冷媒によって冷却する構成を有する。冷媒は、ステータコア、ステータコイル及びロータ周辺の各々に有する隙間を流路として、冷媒を循環させる上流部から下流側へ流れ、再び上流部へ戻り循環する。冷媒の流路の一部には、冷媒を冷却するための放熱部などを具備する。冷媒の循環は、強制的に循環を行う装置を具備しても良い。このような構成を具備させることで、ロータ3及びステータ4の冷却を図る。 A refrigerant (not shown) circulates inside the motor 1, and the heat generated by the motor is cooled by the refrigerant. The refrigerant flows from the upstream portion to the downstream side where the refrigerant is circulated through the gaps provided in each of the stator core, the stator coil, and the periphery of the rotor, and then returns to the upstream portion to circulate. A part of the flow path of the refrigerant is provided with a heat radiating portion for cooling the refrigerant. The circulation of the refrigerant may be provided with a device for forcibly circulating the refrigerant. By providing such a configuration, the rotor 3 and the stator 4 are cooled.
 ロータ3は、シャフト2の外周に接して設けられている。ロータ3は、ステータ4に対向してN極、S極がシャフト2の外周方向に沿って交互に配置された磁石31を含んでいる。なお、ロータ3に用いられる磁石31としてネオジム磁石を使用しているが、その材料、形状、または材質については、モータの出力等に応じて適宜変更可能である。 The rotor 3 is provided in contact with the outer periphery of the shaft 2. The rotor 3 includes magnets 31 in which north poles and south poles are alternately arranged along the outer peripheral direction of the shaft 2 so as to face the stator 4. A neodymium magnet is used as the magnet 31 used in the rotor 3, but the material, shape, or material thereof can be appropriately changed according to the output of the motor and the like.
 ステータ4は、実質的に円環状のステータコア41と、その内周に沿って等間隔に設けられた複数のティース42と、ティース42間にそれぞれ設けられたスロット43とを有している。ステータ4は、Z軸方向から見て、ロータ3の外側に、ロータ3と一定の間隔を持って離間して配置されている。 The stator 4 has a substantially annular stator core 41, a plurality of teeth 42 provided at equal intervals along the inner circumference thereof, and slots 43 provided between the teeth 42, respectively. The stator 4 is arranged outside the rotor 3 at regular intervals from the rotor 3 when viewed from the Z-axis direction.
 ステータコア41は、複数のコアセグメントの集合体として構成される。コアセグメントの構成は、ヨーク44と、複数のティース42とからなる構成である。なお、コアセグメントの構成は、本実施の形態に例示する他に適宜好適な構成を選択し得る。例えば、ヨーク44は、一つの円環状の形状である。しかし、ヨーク44は、複数の扇型形状のコアセグメントを構成し、この扇型形状のコアセグメントを円環状に配置する構成でも良い。ステータコア41及び各コアセグメントは、例えば珪素等を含有した電磁鋼板を、予め定めた形状に打ち抜き加工したコアシート(ステータコアシート41a)を複数積層して一体化して構成した積層体である。 The stator core 41 is configured as an aggregate of a plurality of core segments. The core segment is composed of a yoke 44 and a plurality of teeth 42. As the configuration of the core segment, a suitable configuration may be appropriately selected in addition to the configuration illustrated in the present embodiment. For example, the yoke 44 has an annular shape. However, the yoke 44 may form a plurality of fan-shaped core segments, and the fan-shaped core segments may be arranged in an annular shape. The stator core 41 and each core segment are laminated bodies formed by laminating and integrating a plurality of core sheets (stator core sheet 41a) obtained by punching an electromagnetic steel sheet containing, for example, silicon into a predetermined shape.
 なお、本実施の形態において、ロータ3の磁極数は、ステータ4に対向するN極が5個であり、S極が5個の計10極である。スロット43の数は12個である。しかし、ロータ3の磁極数とスロット43の数は、特にこれに限定されるものではない。その他の磁極数とスロット数との組合せについても適用可能である。 In the present embodiment, the number of magnetic poles of the rotor 3 is 5 N poles facing the stator 4 and 5 S poles, for a total of 10 poles. The number of slots 43 is twelve. However, the number of magnetic poles of the rotor 3 and the number of slots 43 are not particularly limited to this. Other combinations of the number of magnetic poles and the number of slots are also applicable.
 ステータ4は12個のステータコイルU11、U22、U32、U41、V12.V21、V31、V42、W11、W22、W32、W41を有している。ステータコイルは各ティース42に対して装着されている。ステータコイルは、Z軸方向から見て、各々のスロット43内に配置されている。つまり、ステータコイルU11、U22、U32、U41、V12.V21、V31、V42、W11、W22、W32、W41はティース42に対して集中巻になっている。さらに、ステータコイルU11、U22、U32、U41がバスバー51と、ステータコイルV12~V42はバスバー52と、ステータコイルW11~W41はバスバー53とそれぞれ一体化されて配置されている。ここでバスバーは構成されていてもいなくてもよく、結線基板やリード線などによる接続であっても良い。 The stator 4 has 12 stator coils U11, U22, U32, U41, V12. It has V21, V31, V42, W11, W22, W32, W41. The stator coil is attached to each tooth 42. The stator coils are arranged in each slot 43 when viewed from the Z-axis direction. That is, the stator coils U11, U22, U32, U41, V12. V21, V31, V42, W11, W22, W32, and W41 are concentrated windings with respect to the teeth 42. Further, the stator coils U11, U22, U32, and U41 are arranged integrally with the bus bar 51, the stator coils V12 to V42 are arranged together with the bus bar 52, and the stator coils W11 to W41 are arranged integrally with the bus bar 53. Here, the bus bar may or may not be configured, and may be connected by a connection board, lead wires, or the like.
 ここで、ステータコイルを表わす符号UXY、VXY、WXYのうち、最初の文字はモータ1の各相(本実施の形態の場合は、U相、V相、W相)を表わす。2番目の文字は同相内のステータコイルの配列順を表わす。3番目の文字はステータコイルである螺旋状のコイルの周回方向を表わす。本実施の形態では、1は時計回り方向、2は反時計回り方向である。従って、ステータコイルU11は、U相の配列順が1番目のステータコイルで、周回方向が時計回り方向であることを表わす。ステータコイルV42は、V相の配列順が4番目のステータコイルで、周回方向が反時計回り方向であることを表わす。なお、時計回りとは、モータ1の中心から見て右回りをいい、「反時計回り」とはモータ1の中心から見て左回りをいう。 Here, among the symbols UXY, VXY, and WXY representing the stator coil, the first character represents each phase of the motor 1 (in the case of this embodiment, the U phase, the V phase, and the W phase). The second letter indicates the arrangement order of the stator coils in the same phase. The third character represents the circumferential direction of the spiral coil, which is the stator coil. In this embodiment, 1 is a clockwise direction and 2 is a counterclockwise direction. Therefore, the stator coil U11 indicates that the U-phase arrangement order is the first stator coil and the circumferential direction is the clockwise direction. The stator coil V42 indicates that the V-phase arrangement order is the fourth stator coil, and the circumferential direction is the counterclockwise direction. Note that clockwise means clockwise when viewed from the center of motor 1, and "counterclockwise" means counterclockwise when viewed from the center of motor 1.
 厳密には、ステータコイルU11,U41はU相のステータコイルであり、ステータコイルU22,U32はUバー相(U相ステータコイルと発生する磁界の向きが逆)のステータコイルである。しかし、以降の説明では、特に断らない限り、U相のステータコイルと総称する。ステータコイルV12~V42及びステータコイルW11~W41についても同様に、V相のステータコイル、W相のステータコイルとそれぞれ総称する。 Strictly speaking, the stator coils U11 and U41 are U-phase stator coils, and the stator coils U22 and U32 are U-bar phase stator coils (the direction of the magnetic field generated is opposite to that of the U-phase stator coil). However, in the following description, unless otherwise specified, they are collectively referred to as U-phase stator coils. Similarly, the stator coils V12 to V42 and the stator coils W11 to W41 are collectively referred to as a V-phase stator coil and a W-phase stator coil, respectively.
 [ステータコイルの構造について]
 図2は、実施の形態1に係るステータコイルの正面図である。また、図2に示す構成の本実施の形態に係るステータコイル5は、図1Cに示すモータ1のティース42に装着されたステータコイルU11、U22、U32、U41、V12.V21、V31、V42、W11、W22、W32、W41に適用される。ステータコイル5は、予め定められたターン数の環状体5mを含む螺旋状の構造を有する。環状体5mの各ターンの構成は、図2に示すとおり、平面視で実質的に矩形状である。図2においては、環状体5mの平面視における短形状の一部分のうち、長辺側は、ティースにおけるステータコアシート41aの積層面が現れる面の側の各々に位置し、コイル線路部5qと呼称する。環状体5mの平面視における短形状の一部分のうち、短辺側は、一対の長辺側であるコイル線路部5qの同方向の端側の間に位置し、これをコイルエンド部5rと呼称する。コイルエンド部5rは、ステータコア41における複数のステータコアシート41aを積層する方向であり且つステータコア41の端面よりもステータコイル5が突出する箇所でもある。
[About the structure of the stator coil]
FIG. 2 is a front view of the stator coil according to the first embodiment. Further, the stator coil 5 according to the present embodiment having the configuration shown in FIG. 2 has the stator coils U11, U22, U32, U41 and V12 mounted on the teeth 42 of the motor 1 shown in FIG. 1C. It is applied to V21, V31, V42, W11, W22, W32, W41. The stator coil 5 has a spiral structure including an annular body 5 m having a predetermined number of turns. As shown in FIG. 2, the configuration of each turn of the annular body 5 m is substantially rectangular in a plan view. In FIG. 2, of a part of the short shape of the annular body 5 m in a plan view, the long side side is located on each side of the surface where the laminated surface of the stator core sheet 41a appears in the teeth, and is referred to as a coil line portion 5q. .. Of the part of the short shape in the plan view of the annular body 5 m, the short side side is located between the end sides of the pair of long side sides of the coil line portion 5q in the same direction, and this is called the coil end portion 5r. To do. The coil end portion 5r is a portion in the direction in which a plurality of stator core sheets 41a in the stator core 41 are laminated, and is also a position where the stator coil 5 protrudes from the end surface of the stator core 41.
 コイル線路部5qの一方側からコイルエンド部5rの一方側へと移行する箇所をコイルコーナー部5sと呼称する。 The portion where one side of the coil line portion 5q shifts to one side of the coil end portion 5r is referred to as a coil corner portion 5s.
 螺旋状のコイルであるステータコイル5は、導線部5aと、導線部5aの表面に設けられた絶縁性被膜5bと、ステータコイル5の第1ターン5t及び第10ターン5uからそれぞれ引出し部5cと、引出し部5dとを有している。また、ステータコイル5の第2ターンから第10ターン5uである環状体5mは平面視で実質的に矩形状の環状である。環状体5mは、2つの短辺と、2つの長辺と、4つコイルコーナー部5sとを有する。なお、図2においては、第1ターン5tから第9ターンまでの各々の環状体5mは、環状の形状にて1周する構成である。一方、第10ターン5uについては、環状の形状が1周に満たず、環状体5mにおける短辺が一つ分程足らない構成である。この構成を別の表現で示すとすれば、第10ターン5uは、環状の形状が、4分の1周程度ほど満たない、実質的には4分の3周(3/4周)する構成である。第10ターン5uが、4分の1周程度ほど満たないこととなる理由は、引出し部5c及び引出し部5dの配置の構成に起因する。引出し部5c及び引出し部5dの配置の位置次第で、第10ターン5uが、1周を満たす場合もあれば、1周よりも僅かに多く周回する場合も考察し得る。同様に、第1ターン5tが、1周に満たない場合もあれば、1周よりも僅かに多く周回する場合も考察し得る。 The stator coil 5, which is a spiral coil, includes a conductor portion 5a, an insulating coating 5b provided on the surface of the conductor portion 5a, and a drawer portion 5c from the first turn 5t and the tenth turn 5u of the stator coil 5, respectively. It has a drawer portion 5d. Further, the annular body 5m which is the second turn to the tenth turn 5u of the stator coil 5 is a substantially rectangular annular body in a plan view. The annular body 5 m has two short sides, two long sides, and four coil corner portions 5s. In addition, in FIG. 2, each annular body 5m from the first turn 5t to the ninth turn is configured to make one round in an annular shape. On the other hand, in the 10th turn 5u, the shape of the ring is less than one round, and the short side of the ring 5m is not enough by one. To express this configuration in another expression, in the 10th turn 5u, the shape of the ring is less than about a quarter lap, which is substantially 3/4 laps (3/4 laps). Is. The reason why the 10th turn 5u is less than about a quarter of a lap is due to the arrangement of the drawer portion 5c and the drawer portion 5d. Depending on the positions of the drawer portion 5c and the drawer portion 5d, it may be considered that the tenth turn 5u fills one lap or laps slightly more than one lap. Similarly, it may be considered that the first turn 5t may be less than one lap or slightly more than one lap.
 導線部5aは断面が矩形の導体と導体を被覆する絶縁性被膜5bを有する。導線部5aは環状体構造を螺旋状に積層する構造体である。螺旋状に積層する構成は、モータにおける径方向の内外方向に積層する構造である。螺旋状に積層する構成は、予め定められたターン数の環状体5mを含むものである。例えば、予め定められたターン数は、第1ターン5tから第nターン(nは2以上の整数)からなる。なお、この第1ターン5tから第nターンを、ターン列と呼称する。 The conductor portion 5a has a conductor having a rectangular cross section and an insulating coating 5b that covers the conductor. The conducting wire portion 5a is a structure in which an annular structure is spirally laminated. The spirally laminated structure is a structure in which the motor is laminated in the inner and outer directions in the radial direction. The spirally laminated configuration includes a predetermined number of turns of the annular body 5 m. For example, the predetermined number of turns consists of the first turn 5t to the nth turn (n is an integer of 2 or more). The first turn 5t to the nth turn is referred to as a turn train.
 導線部5aは断面が実質的に矩形の導電部材からなる線材である。この線材によって環状体5mを構成し、この環状体5mを10ターンについて螺旋状に積層し且つ単層の構造体を構成することによって、導線部5aは螺旋状のコイルを構成している。導線部5aは、例えば、銅、アルミニウム、亜鉛、マグネシウム、真鍮、鉄、SUS(Steel Use Stainless)等によって形成されている。これらは単層で記載している。しかし、単層のみならず、多層のコイルにおいても適用可能である。 The conducting wire portion 5a is a wire rod made of a conductive member having a substantially rectangular cross section. An annular body 5 m is formed of this wire rod, and the annular body 5 m is spirally laminated for 10 turns to form a single-layer structure, whereby the conductor portion 5a constitutes a spiral coil. The conducting wire portion 5a is formed of, for example, copper, aluminum, zinc, magnesium, brass, iron, SUS (Steel Use Stainless) or the like. These are described in a single layer. However, it can be applied not only to a single layer coil but also to a multi-layer coil.
 なお、以降の説明において、引出し部5cの先端から引出し部5dが設けられた位置の下方まで巻回された部分を第1ターン5tとする。以降の1周ずつ巻回された部分を順に第2ターン、第3ターン・・・第10ターン5uと順次数えることとする。各ターンの始点の取り方は任意に定めることができる。ステータコイル5の第1ターン5tが設けられた側を「外」、第10ターン5uが設けられた側を「内」と呼称する。これは、モータ構造の径方向に対し、モータの外側を「外」とし、モータの中心側を「内」としているためである。 In the following description, the portion wound from the tip of the drawer portion 5c to the lower part of the position where the drawer portion 5d is provided is referred to as the first turn 5t. Subsequent turns, which are wound one lap at a time, are sequentially counted as the second turn, the third turn, and the tenth turn 5u. How to take the starting point of each turn can be decided arbitrarily. The side of the stator coil 5 provided with the first turn 5t is referred to as "outside", and the side provided with the tenth turn 5u is referred to as "inside". This is because the outside of the motor is "outside" and the center side of the motor is "inside" with respect to the radial direction of the motor structure.
 絶縁性被膜5bは、ステータコイル5と外部の部材(図示せず)を絶縁するように、導線部5aの表面全体に設けられている。例えば、図1A、図1B及び図1Cに示すモータ1において、絶縁性被膜5b及び図示しない絶縁部材、例えば絶縁紙等によって、ステータコイル5とステータコア41及びティース42との間が絶縁される。ステータコイル5における隣接するターン間は絶縁性被膜5bによって絶縁されている。絶縁性被膜5bは、例えば、ポリイミド、ナイロン、PEEK(Poly Ether Ether Ketone、ポリエーテルエーテルケトン)、アクリル、アミドイミド、エステルイミド、エナメル、耐熱樹脂等によって形成されている。絶縁性被膜5bの厚みは、数十μm程度、例えば、5μmから50μmの間である。 The insulating coating 5b is provided on the entire surface of the conducting wire portion 5a so as to insulate the stator coil 5 and an external member (not shown). For example, in the motor 1 shown in FIGS. 1A, 1B and 1C, the stator coil 5 is insulated from the stator core 41 and the teeth 42 by an insulating coating 5b and an insulating member (not shown) such as insulating paper. The adjacent turns of the stator coil 5 are insulated by an insulating coating 5b. The insulating coating 5b is formed of, for example, polyimide, nylon, PEEK (Poly Ether Ether Ketone, polyetheretherketone), acrylic, amideimide, esterimide, enamel, heat-resistant resin, or the like. The thickness of the insulating coating 5b is about several tens of μm, for example, between 5 μm and 50 μm.
 引出し部5c・引出し部5dは、いずれも導線部5aの一部である。引出し部5c・引出し部5dは、外部からの電流供給を受けるため、あるいは外部に電流を供給するために、ステータコイル5の側面、言いかえると、導線部5aのターン列と交差する平面から外側に延在している。外部の部材、例えば、図1A、図1B及び図1Cに示すバスバー51、バスバー52、バスバー53、バスバー54のいずれかと接続するために、引出し部5c・引出し部5dにおいて、絶縁性被膜5bが除去されている。なお、絶縁性被膜5bは、引出し部5c・引出し部5dの全領域で除去されている必要はない。例えば、バスバー51、バスバー52、バスバー53、バスバー54との接続に必要な部分のみ絶縁性被膜5bが除去されていれば良い。 Both the drawer portion 5c and the drawer portion 5d are a part of the conductor portion 5a. The drawer portion 5c and the drawer portion 5d are outside the side surface of the stator coil 5, in other words, the plane intersecting the turn row of the conductor portion 5a in order to receive a current supply from the outside or to supply a current to the outside. It extends to. In order to connect to an external member, for example, the bus bar 51, the bus bar 52, the bus bar 53, or the bus bar 54 shown in FIGS. 1A, 1B, and 1C, the insulating coating 5b is removed from the drawer portion 5c and the drawer portion 5d. Has been done. The insulating coating 5b does not have to be removed in the entire region of the drawer portion 5c and the drawer portion 5d. For example, the insulating coating 5b may be removed only from the portion necessary for connection with the bus bar 51, the bus bar 52, the bus bar 53, and the bus bar 54.
 ここで、本実施の形態に係るステータコイル5の形状の特徴について詳述する。ステータコイル5は、導線部5gと導線部5gを被覆する絶縁性被膜5bとを含む導線部5aを有する。ステータコイル5は、導線部5gの断面形状が実質的に矩形である構成と、予め定められたターン数のコイルであり且つこのコイルの最初のターンから最後のターンまでの間に実質的に連続する螺旋面5iを含む構成と、上記の断面形状の矩形における四辺のうち相対する対向の二辺を螺旋面5iに含む構成と、を含む。ステータコイル5は、ステータコア41におけるステータコアシート41aを積層する方向であり且つステータコア41の端面よりもステータコイル5が突出する箇所であるコイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って欠設する欠設構造部である。この欠設構造部は、例えば、溝状に欠設する溝部5e等の構造である。 Here, the characteristics of the shape of the stator coil 5 according to the present embodiment will be described in detail. The stator coil 5 has a conducting wire portion 5a including a conducting wire portion 5g and an insulating coating 5b that covers the conducting wire portion 5g. The stator coil 5 has a structure in which the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, a coil having a predetermined number of turns, and is substantially continuous from the first turn to the last turn of this coil. The helicoid surface 5i includes two opposing sides of the four sides of the rectangle having the above-mentioned cross-sectional shape. The stator coil 5 faces a part of the coil end portion 5r, which is a direction in which the stator core sheet 41a of the stator core 41 is laminated and a portion where the stator coil 5 protrudes from the end surface of the stator core 41, in the outer diameter direction of the stator core 41. It is an absent structure portion that is absent from the side to the side facing the direction in which the rotor 3 is located. This absent structure portion is, for example, a structure such as a groove portion 5e that is notched in a groove shape.
 上記の欠設構造部は、後述するように、コイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って孔状に欠設する孔部5f(図3を参照)でも良い。 As will be described later, the above-mentioned missing structure portion is bored in a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. The hole portion 5f (see FIG. 3) may be used.
 上記の欠設構造部は、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘る方向から対面して見た溝部5eの形状は、図2に示すように、実質的にV字谷状の切り欠いた形状に見える。この溝部5eの形状は、V字谷状に限らず、U字谷状及びその他の形状でも良く、更には、V字谷状、U字谷状及びその他の形状の一部分に、鋭角な形状、円弧形状、鈍角な形状、曲線、または直線等を含んでも良く、その形状を特定するものではない。 The shape of the groove portion 5e seen from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located is as shown in FIG. , It looks like a V-shaped valley-shaped notch. The shape of the groove 5e is not limited to the V-shaped valley shape, but may be a U-shaped valley shape or other shape, and further, a sharp angle shape may be formed on a part of the V-shaped valley shape, the U-shaped valley shape, or the other shape. It may include an arc shape, an obscure shape, a curved shape, a straight line, or the like, and does not specify the shape.
 例えば、溝部5eの構造及び形状寸法は、ステータコイル5の剛性を損なわない程度であることが好ましい。導線部5gの断面形状が実質的に矩形である場合においては、導線部5gの断面形状における幅寸法に対する溝部5eの占める割合は、約1/3程度が好適と考察される。そして、溝部5eの溝底部(谷底部)には、曲面を有する谷状の溝構造、U字谷状の溝構造、または平坦面を有する溝構造を有しても良い。 For example, the structure and shape of the groove 5e are preferably such that the rigidity of the stator coil 5 is not impaired. When the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, it is considered that the ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conducting wire portion 5g is preferably about 1/3. The groove bottom portion (valley bottom portion) of the groove portion 5e may have a valley-shaped groove structure having a curved surface, a U-shaped valley-shaped groove structure, or a groove structure having a flat surface.
 また、絶縁性被膜5bの着膜を良好なものとするために、溝部5eを配置する箇所を含む導線部5gの断面形状及び溝部5eを配置しない箇所である導線部5gの断面形状は、実質的に矩形である。しかし、この矩形である導線部5gの断面形状における四隅の角部に当る箇所は、鋭角な稜線を構成することは好適ではなく、稜線の先端が曲面(所謂、R面取り)、または、C面取りされた構成であることが好ましい。 Further, in order to improve the film formation of the insulating coating 5b, the cross-sectional shape of the conducting wire portion 5g including the portion where the groove portion 5e is arranged and the cross-sectional shape of the conducting wire portion 5g where the groove portion 5e is not arranged are substantially. Is rectangular. However, it is not preferable to form an acute-angled ridgeline at the corners of the four corners in the cross-sectional shape of the rectangular lead wire portion 5g, and the tip of the ridgeline is a curved surface (so-called R chamfer) or C chamfer. It is preferable that the configuration is as follows.
 図2においては、溝部5eの配置箇所は、コイルエンド部5rにおけるティースに対面しない側であり且つ環状体5mにおける外周側のみであるが、これに限るものではない。例えば、溝部5eの配置箇所は、コイルエンド部5rにおけるティースに対面する側であり且つ環状体5mにおける内周側でも良い。更には、溝部5eの配置箇所は、環状体5mにおける内周側及び外周側の両方であっても良い。 In FIG. 2, the groove portion 5e is arranged only on the side of the coil end portion 5r that does not face the teeth and on the outer peripheral side of the annular body 5m, but is not limited to this. For example, the groove portion 5e may be arranged on the side of the coil end portion 5r facing the teeth and on the inner peripheral side of the annular body 5m. Further, the groove portion 5e may be arranged on both the inner peripheral side and the outer peripheral side of the annular body 5 m.
 導線部5gの断面形状が実質的に矩形である場合においては、導線部5gの断面形状における幅寸法に対する溝部5eの占める割合は、約1/3程度に限定されるものではない。ステータコイル5の剛性と、ステータコイル5の電気抵抗値の増加によるジュール熱による発熱(自己発熱による温度上昇)とが、互いにトレードオフの関係にあることを配慮し且つモータの仕様に照らして、導線部5gの断面形状における幅寸法に対する溝部5eの占める割合を適宜に選択する。 When the cross-sectional shape of the conductor portion 5g is substantially rectangular, the ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conductor portion 5g is not limited to about 1/3. Considering that the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electrical resistance value of the stator coil 5 are in a trade-off relationship with each other, and in light of the motor specifications, The ratio of the groove portion 5e to the width dimension in the cross-sectional shape of the conductor portion 5g is appropriately selected.
 溝部5eの配置箇所の数についても、特に限定されるものではなく、ステータコイル5の剛性と、ステータコイル5の電気抵抗値の増加によるジュール熱による発熱(自己発熱による温度上昇)とが、互いにトレードオフの関係にあることを配慮し且つモータの仕様に照らして、適宜に選択する。 The number of locations where the grooves 5e are arranged is not particularly limited, and the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electric resistance value of the stator coil 5 are mutually exclusive. Select as appropriate in consideration of the trade-off relationship and in light of the motor specifications.
 なお、本実施の形態では、ステータコイル5のターン数を実質的に10とした。しかし、特にこれに限定するものでは無く、他の値であってもよい。なお、上述のとおり、本実施の形態におけるステータコイル5のターン数は、10を僅かに下回る9.75程度であるが、実質的には10と解釈されることが多い。 In the present embodiment, the number of turns of the stator coil 5 is substantially 10. However, the value is not particularly limited to this, and other values may be used. As described above, the number of turns of the stator coil 5 in the present embodiment is about 9.75, which is slightly less than 10, but it is often interpreted as substantially 10.
 以上のように、本実施の形態のモータ1は、複数のステータコアシート41aを積層する積層体を含むステータコア41と、ステータコア41に具備するティース42を磁心の一部とするステータコイル5を含むステータ4と、ステータコア41のティース42の先端と空隙を介して回転自在に支承されるロータ3とを含むモータ1において、ステータコイル5は、ステータコイル5の導体部5gと導体部5gを被覆する絶縁性の被膜を含む導線部5aを有し且つ導体部5gの断面形状が実質的に矩形であり、予め定められたターン数のコイルであり且つステータコイル5のターン数のうちの最初のターンからターン数のうちの最後のターンまでの間に実質的に連続する螺旋面を含み、断面形状の矩形における四辺のうち相対する対向の二辺を螺旋面に含み、ステータコア41の積層する方向であり且つステータコア41の端面よりもステータコイル5が突出する箇所であるコイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って欠設する欠設構造部を含む。 As described above, the motor 1 of the present embodiment includes a stator core 41 including a laminated body in which a plurality of stator core sheets 41a are laminated, and a stator including a stator coil 5 having a tooth 42 provided in the stator core 41 as a part of a magnetic core. In the motor 1 including the fourth and the rotor 3 rotatably supported through the gap between the tip of the teeth 42 of the stator core 41, the stator coil 5 is an insulator that covers the conductor portion 5 g and the conductor portion 5 g of the stator coil 5. The coil has a conducting wire portion 5a including a sexual coating, the cross-sectional shape of the conductor portion 5g is substantially rectangular, the coil has a predetermined number of turns, and the number of turns of the stator coil 5 is from the first turn. This is the direction in which the stator cores 41 are laminated, including substantially continuous spiral surfaces up to the last turn of the number of turns, including two opposing sides of the four sides of the rectangular cross-sectional shape in the spiral surface. Further, it is absent from the side facing the outer diameter direction of the stator core 41 to the side facing the position of the rotor 3 in a part of the coil end portion 5r where the stator coil 5 protrudes from the end surface of the stator core 41. Includes absent structural parts.
 これにより、ステータコイル5の占積率を高めた場合においても、渦電流に起因する発熱に対して、放熱性を高めたステータコイル5を見出し、従来よりもステータコイル5の特性を高めたモータを提供可能である。 As a result, even when the space factor of the stator coil 5 is increased, the stator coil 5 with improved heat dissipation against heat generated by the eddy current is found, and the motor has improved characteristics of the stator coil 5 as compared with the conventional case. Can be provided.
 また、欠設構造部は、コイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って溝状に欠設する溝部5eであってもよい。 Further, the missing structure portion is a groove portion 5e that is missing in a part of the coil end portion 5r in a groove shape from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. You may.
 (実施の形態2)
 図3は、実施の形態2に係るステータコイル5の正面図である。本実施の形態におけるモータの構成については、実施の形態1と同様の内容であり、重複する内容については、その記述を省略する。
(Embodiment 2)
FIG. 3 is a front view of the stator coil 5 according to the second embodiment. The configuration of the motor in the present embodiment has the same contents as those in the first embodiment, and the description of the overlapping contents will be omitted.
 本実施の形態における欠設構造部は、コイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って孔状に欠設する孔部5f(図3を参照)である。 The missing structure portion in the present embodiment is a hole formed in a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. Part 5f (see FIG. 3).
 また、上記の欠設構造部は、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘る方向から対面して見た孔部5fの形状であって、図3に示すように、実質的に円形状に穿たれた丸孔として見える。孔部5fの形状は、円形状の丸孔に限らず、楕円状の楕円孔、四角状の四角孔、三角状の三角孔、多角形状の多角形孔、またはその他の形状でも良い。更には、その孔形状の一部分に、鋭角な形状、円弧形状、鈍角な形状、曲線、または直線等を含んでも良い。孔部5fの形状を特定するものではない。 Further, the above-mentioned missing structure portion has the shape of the hole portion 5f as viewed from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. As shown in 3, it looks like a round hole drilled in a substantially circular shape. The shape of the hole portion 5f is not limited to a circular round hole, and may be an elliptical elliptical hole, a square square hole, a triangular triangular hole, a polygonal polygonal hole, or another shape. Further, a part of the hole shape may include an acute-angled shape, an arc shape, an obtuse-angled shape, a curved line, a straight line, or the like. It does not specify the shape of the hole 5f.
 孔部5fの構造及び形状寸法は、ステータコイル5の剛性を損なわない程度であることが好ましい。導線部5gの断面形状が実質的に矩形である場合においては、導線部5gの断面形状における幅寸法に対する孔部5fの占める割合は、約1/3程度が好適と考察される。 The structure and shape of the hole 5f are preferably such that the rigidity of the stator coil 5 is not impaired. When the cross-sectional shape of the conducting wire portion 5g is substantially rectangular, it is considered that the ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conducting wire portion 5g is preferably about 1/3.
 絶縁性被膜5bの着膜を良好なものとするために、孔部5fを配置する箇所を含む導線部5gの断面形状及び孔部5fを配置しない箇所である導線部5gの断面形状は、実質的に矩形である。しかし、この矩形である導線部5gの断面形状における四隅の角部に当る箇所は、鋭角な稜線を構成することは好適ではなく、稜線の先端が曲面(所謂、R面取り)、またはC面取りされた構成であることが好ましい。 In order to improve the film formation of the insulating coating 5b, the cross-sectional shape of the conducting wire portion 5g including the portion where the hole portion 5f is arranged and the cross-sectional shape of the conducting wire portion 5g where the hole portion 5f is not arranged are substantially. Is rectangular. However, it is not preferable to form an acute-angled ridgeline at the corners of the four corners in the cross-sectional shape of the rectangular lead wire portion 5g, and the tip of the ridgeline is curved surface (so-called R chamfer) or C chamfered. It is preferable that the configuration is different.
 図3においては、孔部5fの配置箇所は、コイルエンド部5rのほぼ中央部に一列状に配置する構成である。しかし、これに限るものではない。例えば、孔部5fの配置は、一列状ではなく、千鳥状に配置しても良い。 In FIG. 3, the holes 5f are arranged in a line at substantially the center of the coil end 5r. However, it is not limited to this. For example, the holes 5f may be arranged in a staggered pattern instead of in a single row.
 導線部5gの断面形状が実質的に矩形である場合においては、導線部5gの断面形状における幅寸法に対する孔部5fの占める割合は、約1/3程度に限定されるものではない。ステータコイル5の剛性と、ステータコイル5の電気抵抗値の増加によるジュール熱による発熱(自己発熱による温度上昇)とが、互いにトレードオフの関係にあることを配慮し且つモータの仕様に照らして、導線部5gの断面形状における幅寸法に対する孔部5fの占める割合を適宜に選択すべきものである。 When the cross-sectional shape of the conductor portion 5g is substantially rectangular, the ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conductor portion 5g is not limited to about 1/3. Considering that the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electrical resistance value of the stator coil 5 are in a trade-off relationship with each other, and in light of the motor specifications, The ratio of the hole portion 5f to the width dimension in the cross-sectional shape of the conducting wire portion 5g should be appropriately selected.
 また、溝部5eの配置箇所の数についても、特に限定されるものではない。溝部5eの配置箇所の数は、ステータコイル5の剛性と、ステータコイル5の電気抵抗値の増加によるジュール熱による発熱(自己発熱による温度上昇)とが、互いにトレードオフの関係にあることを配慮し且つモータの仕様に照らして、適宜に選択する。 Further, the number of locations where the groove 5e is arranged is not particularly limited. Regarding the number of locations where the grooves 5e are arranged, consideration is given to the fact that the rigidity of the stator coil 5 and the heat generated by Joule heat (temperature rise due to self-heating) due to the increase in the electric resistance value of the stator coil 5 are in a trade-off relationship with each other. However, it is selected appropriately in light of the specifications of the motor.
 本実施の形態では、ステータコイル5のターン数を実質的に10とした。しかし、特にこれに限定するものでは無く、他の値であってもよい。なお、上述のとおり、本実施の形態におけるステータコイル5のターン数は、10を僅かに下回る9.75程度であるが、実質的には10と解釈されることが多い。 In the present embodiment, the number of turns of the stator coil 5 is substantially 10. However, the value is not particularly limited to this, and other values may be used. As described above, the number of turns of the stator coil 5 in the present embodiment is about 9.75, which is slightly less than 10, but it is often interpreted as substantially 10.
 本発明におけるステータコイル5は、鋳造により形成可能である。この方法によれば、断面積の大きい導線を容易に螺旋状のステータコイルを成形可能である。なお、上記の鋳造に限らず、他の方法で形成しても良い。例えば、銅、アルミニウム、亜鉛、マグネシウム、鉄、SUS、真鍮などの固体物から切削加工等によって形成しても良い。個々に成形された部品同士を溶接や接合による部材一体化により形成しても良い。 The stator coil 5 in the present invention can be formed by casting. According to this method, a spiral stator coil can be easily formed from a conductor having a large cross-sectional area. In addition to the above casting, it may be formed by another method. For example, it may be formed from a solid material such as copper, aluminum, zinc, magnesium, iron, SUS, and brass by cutting or the like. Individually molded parts may be formed by integrating members by welding or joining.
 以上のように、本実施の形態のモータ1において、欠設構造部は、コイルエンド部5rの一部分に、ステータコア41の外径方向に対面する側からロータ3の位置する方向に対面する側に亘って孔状に欠設する孔部5fである。 As described above, in the motor 1 of the present embodiment, the missing structure portion is formed on a part of the coil end portion 5r from the side facing the outer diameter direction of the stator core 41 to the side facing the direction in which the rotor 3 is located. It is a hole portion 5f that is notched in a hole shape over the entire surface.
 本発明によれば、ステータコイルの占積率を高めた場合においても、渦電流に起因する発熱に対して、放熱性を高めたステータコイルの構成を見出し、従来よりもステータコイルの特性を高めたモータを提供可能である。したがって、産業的価値の大いなるものである。 According to the present invention, even when the space factor of the stator coil is increased, the configuration of the stator coil with improved heat dissipation against heat generated by the eddy current is found, and the characteristics of the stator coil are improved as compared with the conventional case. It is possible to provide a motor. Therefore, it has great industrial value.
 1 モータ
 3 ロータ
 4 ステータ
 5 ステータコイル
 5a 導線部
 5b 絶縁性被膜
 5c 引出し部
 5d 引出し部
 5e 溝部
 5f 孔部
 5g 導体部
 5i 螺旋面
 5m 環状体
 5q コイル線路部
 5r コイルエンド部
 5s コイルコーナー部
 5t 第1ターン
 5u 第10ターン
 41 ステータコア
 41a ステータコアシート
 42 ティース
 43 スロット
 44 ヨーク
 45 渦電流
 51、52、53、54 バスバー
 A 矢印
 U11、U22、U32、U41、V12.V21、V31、V42、W11、W22、W32、W41 ステータコイル
1 Motor 3 Rotor 4 Stator 5 Stator coil 5a Conductor 5b Insulating coating 5c Drawer 5d Drawer 5e Groove 5f Hole 5g Conductor 5i Spiral surface 5m Annulus 5q Coil line 5r Coil end 5s Coil 1 turn 5u 10th turn 41 Stator core 41a Stator core sheet 42 Teeth 43 Slot 44 Yoke 45 Eddy current 51, 52, 53, 54 Bus bar A Arrow U11, U22, U32, U41, V12. V21, V31, V42, W11, W22, W32, W41 stator coil

Claims (3)

  1. 複数のステータコアシートを積層する積層体を含むステータコアと、前記ステータコアに具備するティースを磁心の一部とするステータコイルを含むステータと、前記ステータコアの前記ティースの先端と空隙を介して回転自在に支承されるロータとを含むモータにおいて、
    前記ステータコイルは、
    前記ステータコイルの導体部と前記導体部を被覆する絶縁性の被膜とを含む導線部を有し且つ前記導体部の断面形状が実質的に矩形であり、
    予め定められたターン数のコイルであり且つ前記ステータコイルの前記ターン数のうちの最初のターンから前記ターン数のうちの最後のターンまでの間に実質的に連続する螺旋面を含み、
    前記断面形状の前記矩形における四辺のうち相対する対向の二辺を前記螺旋面に含み、
    前記ステータコアの前記積層する方向であり且つ前記ステータコアの端面よりも前記ステータコイルが突出する箇所であるコイルエンド部の一部分に、前記ステータコアの外径方向に対面する側から前記ロータの位置する方向に対面する側に亘って欠設する欠設構造部を含むモータ。
    A stator core including a laminate in which a plurality of stator core sheets are laminated, a stator including a stator coil having a tooth provided in the stator core as a part of a magnetic core, and a stator rotatably supported via a gap between the tip of the tooth of the stator core and a gap. In the motor including the rotor
    The stator coil is
    It has a conductor portion including a conductor portion of the stator coil and an insulating coating that covers the conductor portion, and the cross-sectional shape of the conductor portion is substantially rectangular.
    A coil having a predetermined number of turns and comprising a substantially continuous spiral surface from the first turn of the number of turns of the stator coil to the last turn of the number of turns.
    The helicoid surface includes two opposite sides of the four sides of the rectangle having the cross-sectional shape.
    In the direction in which the rotor is located from the side facing the outer diameter direction of the stator core to a part of the coil end portion where the stator coil protrudes from the end surface of the stator core in the stacking direction of the stator core. A motor that includes an absent structural part that is absent over the facing side.
  2. 前記欠設構造部は、コイルエンド部の一部分に、前記ステータコアの外径方向に対面する側から前記ロータの位置する方向に対面する側に亘って溝状に欠設する溝部である請求項1記載のモータ。 The missing structure portion is a groove portion that is formed in a groove shape from a side facing the outer diameter direction of the stator core to a side facing the direction in which the rotor is located in a part of the coil end portion. The described motor.
  3. 前記欠設構造部は、コイルエンド部の一部分に、前記ステータコアの外径方向に対面する側から前記ロータの位置する方向に対面する側に亘って孔状に欠設する孔部である請求項1記載のモータ。 The missing structure portion is a hole portion that is bored in a part of the coil end portion from the side facing the outer diameter direction of the stator core to the side facing the direction in which the rotor is located. 1. The motor according to 1.
PCT/JP2020/034409 2019-11-12 2020-09-11 Motor WO2021095343A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021555916A JPWO2021095343A1 (en) 2019-11-12 2020-09-11

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019204341 2019-11-12
JP2019-204341 2019-11-12

Publications (1)

Publication Number Publication Date
WO2021095343A1 true WO2021095343A1 (en) 2021-05-20

Family

ID=75911407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034409 WO2021095343A1 (en) 2019-11-12 2020-09-11 Motor

Country Status (2)

Country Link
JP (1) JPWO2021095343A1 (en)
WO (1) WO2021095343A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842008U (en) * 1971-09-22 1973-05-29
JPS6059762U (en) * 1983-09-26 1985-04-25 三菱電機株式会社 electromechanical core
JP2012100433A (en) * 2010-11-02 2012-05-24 Toyota Motor Corp Conductor wire including insulative coating and rotating electric machine
DE102012212637A1 (en) * 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting electrical coil
JP2018026925A (en) * 2016-08-09 2018-02-15 三菱日立パワーシステムズ株式会社 Rotary electric machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842008U (en) * 1971-09-22 1973-05-29
JPS6059762U (en) * 1983-09-26 1985-04-25 三菱電機株式会社 electromechanical core
JP2012100433A (en) * 2010-11-02 2012-05-24 Toyota Motor Corp Conductor wire including insulative coating and rotating electric machine
DE102012212637A1 (en) * 2012-07-18 2014-01-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Casting electrical coil
JP2018026925A (en) * 2016-08-09 2018-02-15 三菱日立パワーシステムズ株式会社 Rotary electric machine

Also Published As

Publication number Publication date
JPWO2021095343A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP7257602B2 (en) coil
JP7300585B2 (en) motor
WO2015087567A1 (en) Electromechanical rotating electrical machine
JP2012186938A (en) Armature
US20200036251A1 (en) Electric rotary machine
EP3611826B1 (en) Coil and motor using same
CN110313113B (en) Motor
EP3588744B1 (en) Motor
WO2021095343A1 (en) Motor
JP2016129447A (en) Rotary electric machine
US11811282B2 (en) Coil device having a core with plate shaped coil bodies
US11929654B2 (en) Coil mounting structure
JP7386399B2 (en) Coil installation structure, stator and motor
JPWO2021095343A5 (en)
JP7426558B2 (en) motor
JP2024024492A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20886561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20886561

Country of ref document: EP

Kind code of ref document: A1